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HARMONIC RESONANCE PHENOMENA ON NONLINEAR SH

WAVES

S. AHMETOLAN1∗, N. ÖZDEMIR2, A. PEKER-DOBIE1, A. DEMIRCI1, §

Abstract. The interaction of shear horizontal (SH) waves in a two layered elastic
medium and its mth harmonic component is studied. The dispersion relation is analysed
to obtain the wave number-phase velocity pairs where the third and fifth harmonic reso-
nance phenomena emerge. By employing an asymptotic perturbation method it is shown
that the balance between the weak nonlinearity and dispersion yields a coupled nonlinear
Schrödinger (CNLS) equation for the slowly varying amplitudes of the fundamental wave
and its fifth harmonic component. The nonlinearity effects of the materials and the ratio
of layers’ thicknesses on the linear instabilities of solutions and the existence of solitary
waves are examined.
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1. Introduction

A special class of problems on wave propagation is the nonlinear wave interaction which
has been studied extensively as a consequence of its importance in many different fields
such as plasma physics [1], [2], atmospheric science [3], [4] and biophysics [5]. In addition,
investigation of nonlinear elastic wave interaction in terms of different elastic wave guides
and wave polarization has been the subject of many studies, [6]-[13].

In [6], a system of six semi-linear hyperbolic partial differential equations was derived for
the nonlinear interaction of two co-directional quasi-harmonic Rayleigh surface waves on an
isotropic solid. Kalyanasundaram derived a CNLS system for the nonlinear mode coupling
between monochromatic Rayleigh and Love waves on a half-space of homogeneous isotropic
elastic solid covered by a thin layer [7]. In [8], it was shown that nonlinear interaction
between SH surface and Rayleigh waves on an elastic medium was governed asymptotically
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e-mail: nese.ozdemir@isikun.edu.tr; ORCID: https://orcid.org/0000-0002-9144-5691.

§ Manuscript received: June 22, 2021; accepted: September 29, 2021.
TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.2 © Işık University, Department
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by a Zakharov type system. Teymur also showed that the nonlinear interaction of two co-
directional surface shear horizontal waves in a layered elastic half-space was governed by
a CNLS system asymptotically, see, [9]. Another such example is the work [10] where the
generation of the second harmonic for finite-amplitude waves in a homogeneous isotropic
elastic plate was discussed. In addition, the interaction of two Rayleigh-Lamb modes of
the same nature in isotropic weakly nonlinear elastic plates is investigated in [11]. In
[12], possibility of nonlinear elastic wave interactions for an isotropic solid defined by
three material constants of the third order was studied by a different wave polarization.
Ahmetolan and Demirci investigated the nonlinear interaction of co-directional SH waves
in a two-layered plate of uniform thickness, and showed that the first order slowly varying
amplitudes of interacting waves were governed asymptotically by a CNLS system, see,
[13].

In some of the aforementioned works above, different types of CNLS systems were ob-
tained for complex wave amplitudes of modulated waves by balancing the nonlinearity and
dispersion by using an appropriate asymptotic perturbation method [14], [15]. One com-
mon feature of these works is the assumption of the nonexistence of harmonic resonance.
Note that for the same phase velocities of the fundamental wave, cc and its mth harmonic
component at a critical wave number, kc, the mth harmonic resonance occurs between the
interacting waves. Investigation of such resonance in the interaction of nonlinear waves has
been the subject of few articles [16], [17]. For example, Nayfeh investigated the temporal
and spatial variation of the amplitudes and phases of capillary-gravity waves in a deep
water near the third harmonic resonant wave-number in [16]. Also, Teymur investigated
the fifth harmonic resonance of Love waves on a neo-Hookean layered half space in [17].

When the phase velocity of the fundamental wave coincides with its mth harmonic at the
critical wave number kc, the uniform validity of the asymptotic expansion ceases. In this
case, since the (kc, ωc) and (mkc,mωc) pairs simultaneously satisfy the linear dispersion
relation, mth order amplitude functions tend to be infinite as k → kc. When this happens,
energy transfer occurs between the fundamental wave and its mth harmonic component,
that is, nonlinear resonant interaction occurs between them. In [18], the propagation of
nonlinear SH waves in a two-layered compressible elastic medium with materials in both
layers with different material properties is studied by using an appropriate asymptotic
perturbation method. In that work, it has also been observed that mth harmonic reso-
nance emerges at some critical wave number-phase velocity pairs for specific linear material
parameters and thickness values of layers where m ∈ {3, 5, 7, 9, ...}. The asymptotic ex-
pansion used in [18] is not uniformly valid for (kc, cc), and thus an appropriate uniformly
valid asymptotic expansion is required for this investigation.

In the present work, the mth, harmonic resonance phenomena of nonlinear SH waves
which propagate in a medium given in [18] is investigated. An mth harmonic resonance
may exist where m ∈ {3, 5, 7, 9, ...}, if (kc, ωc) and (mkc,mωc) simultaneously satisfy the
linear dispersion relation.

The outline of the article is as follows: Formulation of the problem is given in sec-
tion 2, and a nonlinear boundary value problem characterizing SH wave propagation in a
two-layered incompressible elastic medium is obtained. The relations for the critical wave
number-phase velocity pair corresponding to the third and fifth harmonic resonances are
derived. In Section 3, the mth harmonic resonance of slowly varying amplitudes of weakly
nonlinear SH waves in such a medium is investigated by employing a multiple scale pertur-
bation method [14]. For m = 5, it is shown that the balance between the weak nonlinearity
and dispersion yields a CNLS system for the slowly varying amplitudes of the fundamental
wave and its fifth harmonic component. In Section 4, discussions on the effects of linear
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and nonlinear material properties of the medium and the ratio of the layers’ thickness on
the linear stability of the plane wave solutions as well as the existence of solitary envelope
solutions are performed [20]. Some concluding remarks are presented in the final section.

2. Formulation of Problem

Let (X,Y, Z) and (x, y, z) be material and spatial coordinate systems, respectively.
Consider a plate of uniform thickness which is composed of two layers occupying the
regions

P1 = {(X,Y, Z)|Y ∈ (0, h1), X, Z ∈ (−∞,∞)},
P2 = {(X,Y, Z)|Y ∈ (−h2, 0), X, Z ∈ (−∞,∞)}

(1)

where P1 and P2 denote the upper and lower layers with thickness h1 and h2, respectively.
The free boundaries, Y =h1 and−h2, are assumed to be free of traction and stresses, and
displacements are continuous at Y =0. SH deformation of a particle which is an anti-plane
shear motion is defined by

x = X, y = Y, z = Z + uν(X,Y, t), ν = 1, 2 (2)

where t is the time, and uν is the particle’s displacement in Pν in the Z-direction due
to the polarization of waves [21]. The constituent materials of the layers are assumed
to be incompressible, homogeneous, isotropic, elastic, and their strain energy functions
are considered to be in the form: Σν = Σν(Iν) where Iν are the first invariant of the
Green’s deformation tensor CKL=xkKxkL [21]. These materials are called generalized neo-
Hookean and the wave motion described above can exist in the layered plate made of such
materials in the absence of body forces acting in the (X,Y ) plane. For problems involving
anti-plane shear motions in nonlinear elastic media [22], generally, an anti-plane shear
motion without any restrictions on stress constitutive equations can’t be maintained in a
medium in the absence of body forces acting in a plane perpendicular to the polarization
direction. Then replacing the displacement of a particle in the upper layer, u1 by u =
u(X,Y, t) and in the lower layer, u2 by v = v(X,Y, t), the governing equation of motion
and boundary conditions of the problem involving terms not higher than the third degree
in the deformation gradients are obtained;

∂2u

∂t2
− c21

( ∂2u
∂X2

+
∂2u

∂Y 2

)
= n1

[ ∂

∂X

( ∂u
∂X
Q(u)

)
+

∂

∂Y

( ∂u
∂Y
Q(u)

)]
in P1,

∂2v

∂t2
− c22

( ∂2v
∂X2

+
∂2v

∂Y 2

)
= n2

[ ∂

∂X

( ∂v
∂X
Q(v)

)
+

∂

∂Y

( ∂v
∂Y
Q(v)

)]
in P2,

(3)

∂u

∂Y
= 0 on Y = h1,

∂v

∂Y
= 0 on Y = −h2 ,

u = v and
∂u

∂Y
−γ ∂v

∂Y
=γq2

∂v

∂Y
Q(v)−q1

∂u

∂Y
Q(u) on Y = 0,

(4)

where Q(ψ)=( ∂ψ∂X )2+( ∂ψ∂Y )2. c1 and c2 are linear shear wave velocities in the layers defined

by c2ν = µν/ρν , ν = 1, 2, where µν =2Σ′ν(3) are linear shear modules of the layer materials,
and ρν are densities of the layers in the initial state. Since the wave motion is isochoric,
ρν remains constant during the motion. The constants γ and qν are defined by

γ = µ2/µ1 qν = nν/c
2
ν , ν = 1, 2, (5)

where nν = 2
ρν

Σν
′′(3) exhibits the nonlinearity of the materials. If nν > 0, it exhibits

hardening behavior in shear, whereas softening behavior for nν<0 [21],[23] .
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3. mth Harmonic Resonance Phenomena

Let the solutions of linear equations be in the following form

u(X,Y, t) = U(Y )ei(kX−ωt) + c.c. , v(X,Y, t) = V (Y )ei(kX−ωt) + c.c. (6)

Here k and ω are the wave numbers and angular frequency, respectively, ”c.c.” represents
the complex conjugate of the preceding terms and the phase velocity of waves is c = ω/k.
It is known that c1 < c2 ≤ c yields the following

U(Y ) = Aeikp1Y +Be−ikp1Y , V (Y ) = Ceikp2Y +De−ikp2Y . (7)

Here, pi = (c2/c2i − 1)1/2, i = 1, 2, and A, B, C and D are constants. If (6) together with
(7) are used in the homogeneous boundary conditions, one obtains the following

WU = 0 (8)

where amplitude vector is U = [A B C D]T , and the dispersion matrix is

W=


ikp1e

ikh1p1 −ikp1e−ikh1p1 0 0
1 1 −1 −1

ikp1 −ikp1 −iγkp2 iγkp2
0 0 ikp2e

−ikh2p2 −ikp2eikh2p2

 . (9)

Existence of nontrivial solutions requires

detW = 0 ⇒ tan(kh1p1) + γ
p2
p1

tan(kh2p2) = 0. (10)

One gets the following dispersion relation for c1 < c ≤ c2 by substituting p2 = iν2 in (10);

detW = 0 ⇒ tan(kh1p1)− γ
ν2
p1

tanh(kh2ν2) = 0. (11)

In the following analysis, the pairs (k, c) and (mk, c) (or (k, ω) and (mk,mω)), m ∈
{3, 5, 7, 9, ...}, which satisfy the dispersion relation at the same point will be found.

Case 1 ( c1 < c2 ≤ c) : Let (k, c) and (mk, c) satisfy (10). The periodicity of tangent
function yields

tan(mkhipi) = tan(khipi) = tan(khipi + nπ). (12)

Using the fact that m is an odd integer (m = 2s+ 1), one gets

kh1p1 =
nπ

2s
, kh2p2 =

lπ

2s
, l, n = 0, 1, 2, .. (13)

for s 6= 0. (13) gives
lp1 = nhp2. (14)

where h = h2/h1. Since (14) is independent of s and consequently of m, then (10) can be
expressed as follows

tan(
nπ

2s
) = −γ p2

p1
tan(

nπ

2s

p2
p1
h). (15)

The dispersion relation (10) for m = 3 (s=1) is

tan
nπ

2
= −γ p2

p1
tan

lπ

2
. (16)

If n = 2r, then either c = c2 or l is an even integer. If n = 2r + 1, then c 6= c1 and
consequently l is an odd integer since p1 6= 0.

The dispersion relation (10) for m = 5 (s=2) is

tan
nπ

4
= −γ p2

p1
tan

lπ

4
. (17)
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If n = 4r + 1, the equation (17) reduces to the following for r = 0, 1, 2, ...

1 = −γ p2
p1

tan
lπ

4
. (18)

For l = 2d , d = 1, 2, ..., (18) yields c = c2. Thus, the interaction of the fundamental wave
and its fifth harmonic component occurs when c = c2. The equation can be expressed in
the following form for l = 4d− 1, d = 1, 2, ...

p1 = γp2. (19)

Since (k, c) and (5k, c) satisfy the dispersion relation at the same time for m = 5, then

5p21 tan4 kh1p1 − 3(p21 + γ2p22) tan2 kh1p1 + 5γ2p22 = 0. (20)

Case 2 ( c1 < c ≤ c2) : Using m = 2s+ 1, equation (12) gives the following

kh2p2 = kh1p1
ν2
p1
h, h =

h2
h1
.

Then, the dispersion equation (11) can be expressed as follows

tan
nπ

2s
= γ

ν2
p1

tanh
(nπ

2s

ν2
p1
h
)
, n = 0, 1, .., s = 1, 2, ... (21)

For the third harmonic resonance (m = 3) if n is an odd integer (n = 2r + 1, r =
0, 1, ...), then the tangent function is unbounded whereas the hyperbolic tangent function
is bounded. Hence, c approaches c1. If n is an even integer (n = 2r, r = 0, 1, ...), then
either c = c2 or c → c1. Thus, for c1 < c ≤ c2, the interaction of the fundamental wave
and its 3rd harmonic component occurs for c = c2.

The dispersion relation (11) for the fifth harmonic resonance phenomenon ( m = 5) is

tan
nπ

4
= γ

ν2
p1

tanh
(nπ

4

ν2
p1
h
)
. (22)

If n = 4r, r = 1, 2, ..., then either c → c1 or c = c2. If n = 4r ± 1, r = 0, 1, ..., then
equation (22) yields

1 = γ
ν2
p1

tanh
(nπ

4

ν2
p1
h
)
. (23)

Since the dispersion relation (11) is satisfied for both (k, c) and (5k, c) simultaneously, the
fifth harmonic resonance occurs for the pair (k, c) which satisfies

5p21 tan4(kh1p1)− 3(p21 − ν22γ2) tan2(kh1p1)− 5n22γ
2 = 0. (24)

Therefore, the interaction between the fundamental wave and its fifth harmonic com-
ponent emerges at the wave numbers k for which c = c2, or which satisfty (23) or (24).

4. Analysis of the propagation of nonlinear SH waves at the wave numbers
where the mth harmonic resonance occurs

In this section, the mth harmonic resonance of slowly varying amplitudes of weakly
nonlinear SH waves in a two layered elastic plate is investigated. The multiple scales
method [14] is employed and thus the following new independent variables are introduced

xi = εiX , y = Y , ti = εit , i = 0, 1, 2 (25)

where ε > 0 is a small parameter measuring the degree of nonlinearity. The variables
{x1, x2, t1, t2} are the slow variables introduced to specify the slow variations of the am-
plitude whereas {x0, y, t0} are the fast variables. It is assumed that the displacement
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functions u and v are functions of new stretched variables, u=u(x0, x1, x2, y, t0, t1, t2) and
v=v(x0, x1, x2, y, t0, t1, t2) and they are expanded in the following asymptotic series of ε

u=
∞∑
n=1

εnun(x0, x1, x2, y, t0, t1, t2), v=
∞∑
n=1

εnvn(x0, x1, x2, y, t0, t1, t2). (26)

Employing (25) and (26) into (3) together with (4), and arranging in like powers of ε, a
hierarchy of equations is obtained. The equations up to third order in ε are as follows

O(ε) : L(1)0 u1 = 0 in P1 and L(2)0 v1 = 0 in P2,
(27)

∂u1
∂y

= 0 on y = h1,
∂v1
∂y

= 0 on y = −h2 ,

u1 = v1 and
∂u1
∂y
−γ ∂v1

∂y
=0 on y = 0,

(28)

O(ε2) : L(1)0 u2 = L(1)1 u1 in P1 and L(2)0 v2 = L(2)1 v1 in P2 (29)

∂u2
∂y

= 0 on y = h1,
∂v2
∂y

= 0 on y = −h2 ,

u2 = v2 and
∂u2
∂y
−γ ∂v2

∂y
=0 on y = 0,

(30)

O(ε3) : L(1)0 u3 = L(1)1 u2 + L(1)2 u1 + n1N0(u1) in P1

L(2)0 v3 = L(2)1 v2 + L(2)2 v1 + n2N0(v1) in P2

(31)

∂u3
∂y

= 0 on y = h1,
∂v3
∂y

= 0 on y = −h2 ,

u3 = v3 and
∂u3
∂y
− γ ∂v3

∂y
= B(u1, v1) on y = 0 ,

(32)

where the linear operators L(ν)0 , L(ν)1 and L(ν)2 , ν=1, 2, and the nonlinear operators B and
N0 are

L(ν)0 ψ=
∂2ψ

∂t20
−c2ν

(∂2ψ
∂x20

+
∂2ψ

∂y2

)
, L(ν)1 ψ=−2

∂2ψ

∂t0∂t1
+2c2ν

∂2ψ

∂x0∂x1
,

L(ν)2 ψ = −∂
2ψ

∂t21
− 2

∂2ψ

∂t0∂t2
+ c2ν

(∂2ψ
∂x21

+ 2
∂2ψ

∂x0∂x2

)
,

N0(ψ) =
∂

∂x0

( ∂ψ
∂x0
Q0(ψ)

)
+

∂

∂y

(∂ψ
∂y
Q0(ψ)

)
, Q0(ψ) =

( ∂ψ
∂x0

)2
+
(∂ψ
∂y

)2
,

B(φ1, φ2) = γβ2
∂φ2
∂y
Q0(φ2)− β1

∂φ1
∂y
Q0(φ1).

(33)

The superscripts in linear operators refer to the layers. Here c1 < c2 is assumed. For
the existence of an SH wave, the phase velocity c must satisfy c1 < c2 ≤ c or c1 <
c ≤ c2. The problem for the first condition will be investigated. The analysis shows
that only the dependence on fast variables {x0, y, t0} can be determined explicitly by the
first order problem whereas the dependence on slow variables can be determined by the
higher order perturbation problems. We are examining the interaction of the fundamental
wave and its mth harmonic component for which both (k, ω) and (mk,mω), or (k, c) and
(mk, c) simultaneously satisfy the linear dispersion relation. The analysis is based on these
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assumptions. The solutions of (27) are obtained as the sum of the fundamental wave and
its mth harmonic mods

u1=
∑
l=1,m

A(l)
1 [R

(l)
1 e

iklp1y+R
(l)
2 e
−iklp1y]eiφl+c.c.

v1=
∑
l=1,m

A(l)
1 [R

(l)
3 e

iklp2y+R
(l)
4 e
−iklp2y]eiφl+c.c.

(34)

where pi = ( c
2

c2i
− 1)1/2, i = 1, 2, φl = (klx0 − ωlt0), l = 1,m. Here kl = lk and ωl =

lω. The complex functions of the slow variables A(1)
1 and A(m)

1 represent the first order
slowly varying amplitudes of the fundamental wave and its mth harmonic component,
respectively. R(l) is the column vector satisfying W(l)R(l) = 0 where

W(l)=


iklp1e

iklh1p1 −iklp1e−iklh1p1 0 0
1 1 −1 −1

iklp1 −iklp1 −iγklp2 iγklp2
0 0 iklp2e

−iklh2p2 −iklp2eiklh2p2

 . (35)

To determine the first order solution of the nonlinear problem, it is sufficient to findA(1)
1

andA(m)
1 . Thus the higher order perturbation problems need to be examined.

To examine the behaviour of the solutions, the interaction of the fundamental wave
and its mth harmonic component is discussed here. To obtain the second order solutions,
the first order solutions are introduced into the governing equations in (29), and then
nonhomogeneous equations are obtained for u2 and v2. Solutions of these equations are
categorized into two groups u2 = ū2 + ũ2, and v2 = v̄2 + ṽ2 such that ū2 and v̄2 are the
particular solutions of (29). ũ2 and ṽ2 are the solutions of the corresponding homogeneous
equations and the nonhomogeneous boundary conditions obtained from (30). From the
nonhomogeneous boundary conditions, the following nonhomogeneous algebraic system of
equations for the second order amplitude functions is obtained

W(l)U
(l)
2 = b

(l)
2 l = 1,m (36)

where

b
(l)
2 = −i

(∂A(l)
1

∂t1

∂W(l)

∂ωl
− ∂A(l)

1

∂x1

∂W(l)

∂kl

)
R(l). (37)

Since detW(l) = 0 and b2
(l) 6= 0, the compatibility condition

L(l) · b(l)
2 = 0 (38)

must be satisfied. Here, L(l) are row vectors defined by L(l)W(l) = 0. From the com-

patibility condition (38), it can easily be shown that A(l)
1 remains constant in a frame

of reference moving with a group velocity V
(l)
g of the waves; that is, A(l)

1 =A(l)
1 (x1−

V
(l)
g t1, x2, t2) where the group velocity of the waves V

(l)
g = dωl/dkl is as follows V

(l)
g =

−(L(l) ∂W(l)

∂kl
R(l))/(L(l) ∂W(l)

∂ωl
R(l)) . Then, one obtains the solution of the equation (36) as

U
(l)
2 = A(l)

2 R(l) − iA
(l)
1

∂x1
T(l), T(l) =

(∂R(l)

∂kl
+ V (l)

g

∂R(l)

∂ωl

)
(39)

where A(l)
2 denotes the second order slowly varying amplitude of the waves, and if neces-

sary, they can be determined from higher order perturbation problems. Since this work

focuses on the mth harmonic resonant interaction of weakly nonlinear SH waves, A(l)
2 need
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not be calculated explicitly. In order to complete the first order solutions, the third order
problem is considered. Introducing the first and second order solutions into (31) gives

L(1)0 (u3)=α1e
iφ1 + α3e

3iφ1 + αme
iφm + α−21me

i(−2φ1+φm) + α21me
i(2φ1+φm)

+ α−12me
i(−φ1+2φm) + α12me

i(φ1+2φm) + α3me
3iφm + c.c.

(40)

L(1)0 (v3)=β1e
iφ1 + β3e

3iφ1 + βme
iφm + β−21me

i(−2φ1+φm) + β21me
i(2φ1+φm)

+ β−12me
i(−φ1+2φm) + β12me

i(φ1+2φm) + β3me
3iφm + c.c.

(41)

where αi and βi are functions of x1, x2, y, t1, t2}. Forms of these functions are extremely
lengthy and thus explicit forms are excluded here. For m ∈ {3, 5, ...}, one gets

2φ1 + φm = (2 +m)φ1 , φ1 + 2φm = (2m+ 1)φ1,

φm − 2φ1 = (m− 2)φ1 , 2φm − φ1 = (2m− 1)φ1.
(42)

Depending on the odd values of m and considering the relations in (42), the nature of
the right hand side terms of the equations (40)-(41) changes. For m = 5, the system of

equations characterizing the change in the amplitude functions A(1)
1 and A(5)

1 is a system
of CNLS equations. However, for m = 3, the structure of the couple system of equations
characterizing the amplitude functions is completely different [16], [19].

Fifth Harmonic Resonance Case: In this case, only the terms in the coefficients of e±φ1

and e±φ5 contribute each other. Thus the right hand sides of the equations (40) are

L(1)0 (u3)=α1e
iφ1 + α15e

iφ5 + the terms in{eiφ3 , eiφ7 , eiφ9 , eiφ11 , e15iφ15}+ c.c.

L(1)0 (v3)=β1e
iφ1 + β15e

iφ5 + the terms in{eiφ3 , eiφ7 , eiφ9 , eiφ11 , e15iφ15}+ c.c.
(43)

where the explicit forms of the coefficients α1, α15, β1 and β15 are given by (54)-(57) in
Appendix, respectively.

As in the second order problem, u3 and v3 are decomposed as u3 = ū3 + ũ3 and
v̄3 = v̄3 + ṽ3 where ū3 and v̄3 are the particular solutions of the equations (43). ũ3 and ṽ3
are the solutions of the corresponding homogeneous equations under the nonhomogeneous
boundary conditions obtained from (32) of the third order problem by employing the
decomposition of u3 and v3. The particular solutions ū3 and v̄3 are expressed as

ū3= {(X1 +X2y)yeikp1y + (X3 +X4y)ye−ikp1y +X5e
3ikp1y +X6e

−3ikp1y +X7e
9ikp1y

+X8e
−9ikp1y +X9e

11ikp1y +X10e
−11ikp1y}eiφ1 +{Y1e3ikp1y + Y2e

−3ikp1y

+ (Y3 + Y4y)ye5ikp1y + (Y5 + Y6y)ye−5ikp1y + Y7e
7ikp1y + Y8e

−7ikp1y

+ Y9e
15ikp1y + Y10e

−15ikp1y}eiφ5 + the terms in {eφ3 , eiφ7 , eiφ9 , eiφ11 , eiφ15}+c.c.

v̄3= {(Z1 + Z2y)yeikp2y + (Z3 + Z4y)ye−ikp2y + Z5e
3ikp2y + Z6e

−3ikp2y + Z7e
9ikp2y

+ Z8e
−9ikp2y + Z9e

11ikp2y + Z10e
−11ikp2y}eiφ1 +{V1e3ikp2y + V2e

−3ikp2y

+ (V3 + V4y)ye5ikp2y + (V5 + V6y)ye−5ikp2y + V7e
7ikp2y + V8e

−7ikp2y

+ V9e
15ikp2y + V10e

−15ikp2y}eiφ5 + the terms in {eφ3 , eiφ7 , eiφ9 , eiφ11 , eiφ15}+c.c.

(44)

Substituting (44) into (43), one can find Xj ,Yj ,Zj andVj , j = 1, ..., 10. They are functions
of the variables {x1,x2, t1, t2} and their explicit structures are not given here.
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Because of the effect of nonlinearity, the terms on the right hand side of (44) need to
be taken into consideration when constructing the solutions of ũ3 and ṽ3

ũ3=
∑
l

{A(l)
3 e

iklp1y+B
(l)
3 e−iklp1y}eiφl+

∑
L

{A(L)
3 eikLp1y+B

(L)
3 e−ikLp1y}eiφL + c.c.

ṽ3=
∑
l

{C(l)
3 eiklp2y+D

(l)
3 e−iklp2y}eiφl+

∑
L

{C(L)
3 eikLp2y+D

(L)
3 e−ikLp2y}eiφL + c.c.

(45)

where l = 1, 5 and L = 3, 7, 9, 11, 15. Using these solutions with the solutions u1, v1, u2,
v2, ū3 and v̄3 in the boundary conditions (33) yields

W(l)U
(l)
3 = b

(l)
3 , W(L)U

(L)
3 = b

(L)
3 (46)

where U
(l)
3 = (A

(l)
3 , B

(l)
3 , C

(l)
3 , D

(l)
3 )T and U

(L)
3 = (A

(L)
3 , B

(L)
3 , C

(L)
3 , D

(L)
3 )T . The explicit

form of b
(L)
3 is not given here, since in the sequel this will not be required whereas b

(l)
3

can be written as in the following form by using a lengthy but straightforward algebra

b
(1)
3 = B

(1)
3 + F11|A(1)

1 |
2A(1)

1 + F51|A(5)
1 |

2A(1)
1 ,

b
(5)
3 = B

(5)
3 + F55|A(5)

1 |
2A(5)

1 + F15|A(1)
1 |

2A(5)
1 .

(47)

B
(l)
3 depends on linear material properties and wave numbers. On the other hand, Fll and

Fnl depend on both linear and nonlinear material properties and wave numbers, and the
formulations of Fll and Fnl are extremely lengthy and thus, the explicit forms are excluded
here. If the nonlinear properties are assumed to be zero, then both Fll and Fnl vanish.

For L, the solution of the second equation in (46) is obtained as U
(L)
3 =W(L)−1 · b(L)

3 . In

order that the first equation in (46) is algebraically solvable for U
(1)
3 , the compatibility

condition

L(l) · b(l)
3 = 0 , l = 1, 5 (48)

must be satisfied. If it is assumed that A(l)
2 depends on x1 and t1 through the combination

x1−Vlg t1 as A(l)
1 , and if the following nondimensional variables and constants are defined,

τ = ω1t2 , ξ = k1(x1 − V1g t1) = k1ε
−1(x2 − V1g t2) , Al = k1A(l)

1

Γl = k21Γ̃l , ∆nl =
∆̃nl

ω1k21
, Λ =

k1
εω1

(V5g − V1g) ,
(49)

Γ̃l =
1

2

d2ωl
dk2l

, ∆̃ll = − L(l) · Fll
L(l) ∂W(l)

∂ωl
R(l)

, ∆̃nl = − L(l) · Fnl
L(l) ∂W(l)

∂ωl
R(l)

then, from the compatibility condition (48), the following coupled equations for the nondi-
mensional amplitude functions A1 and A5 are obtained

i
∂A1

∂τ
+ Γ1

∂2A1

∂ξ2
+ ∆11|A1|2A1 + ∆51|A5|2A1 = 0,

i
∂A5

∂τ
+ iΛ

∂A5

∂ξ
+ Γ5

∂2A5

∂ξ2
+ ∆55|A5|2A5 + ∆15|A1|2A5 = 0.

(50)

Here, Γ1 and Γ5 are linear dispersion coefficients, ∆11 and ∆55 are nonlinear coefficients
which describe the self modulation of wave packets, and ∆15 and ∆51 are nonlinear coupling
coefficients of the cross modulation between two wave packets. It should be noted that (50)
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can be reduced to the following CNLS system when the depending variable transformation

for A5, A5 → A5e
−i(ξ Λ

2Γ5
−τ Λ2

4Γ5
)

is used

i
∂A1

∂τ
+ Γ1

∂2A1

∂ξ2
+ ∆11|A1|2A1 + ∆51|A5|2A1 = 0

i
∂A5

∂τ
+ Γ5

∂2A5

∂ξ2
+ ∆55|A5|2A5 + ∆15|A1|2A5 = 0 .

(51)

Thus once solutions for A1 and A5 are derived from (51) for given initial values of the
form A1(ξ, 0) = A10(ξ) and A5(ξ, 0) = A50(ξ), then the first order solutions u1 and v1 can
be constructed by (34). The system (51) is also derived in different physical fields such as
nonlinear optics, geophysical fluid dynamics, Rossby waves, etc. [3], [4], [5], [13], [24]-[28].
As stated in [28], there are relationships between the dispersion coefficient, nonlinear self-
interaction and nonlinear cross interaction terms of (51) which are derived in nonlinear
optics. However, there is no relationship between the coefficients of the CNLS system in
geophysical applications, as was the case in our study.

The CNLS equations (51) was solved by Manakov [29] for the special choice of coef-
ficients where Γ1=Γ5=1, and ∆11=∆55=∆15=∆51=constant. The system is known as
integrable (in inverse scattering sense) only for Γ1 =Γ5 and ∆11 =∆55 =∆15 =∆51, or,
for Γ1=−Γ5 and ∆11=∆55=−∆15=−∆51 [30]. Different types of solutions of (51) were
obtained for special choices of the coefficients, including travelling wave solutions in terms
of elliptic Jacobian functions [31]-[33] and in terms of the Weierstrass elliptic function [27],
[33].

5. The Effect of Nonlinearity and the Existence of Solitary Waves

In the present study, the focus is on the effects of linear and nonlinear material properties
of the layered medium on the linear stability of the plane wave solutions, and the existence
of solitary envelope solutions of the system (51) by following the work of Roskes [20].

According to the linearized stability analysis for the plane wave solutions of the CNLS
equations in (51), it is known that these waves are unstable if S1 = Γ1Γ2T < 0 where
T = (∆11∆55 − ∆15∆51). Solitary envelope solutions of the system (51) also exist. The
following form of these solutions

A1 = η1e
iθ1τ sech(δξ), A5 = η2e

iθ2τ sech(δξ), (52)

provided that [20];

S2 = (Γ1∆55 − Γ5∆51)T > 0, S3 = (Γ5∆11 − Γ1∆15)T > 0. (53)

Here, η1, η2, θ1 and θ2 satisfy the conditions

δ2 =
1

2

T

S2
η21 =

1

2

T

S3
η22, θ1 = Γ1δ

2, θ2 = Γ5δ
2.

Considering the effects of the coefficients of (51) on the existence of the solutions of the
CNLS system, the coefficients of the linear terms Γ1 and Γ5, and the nonlinear terms ∆11,
∆55, ∆15 and ∆51 are substituted in S1, S2 and S3. Then, fictive linear and nonlinear
parameter values, and thickness ratio are replaced in S1, S2 and S3 to observe the effects
of nonlinear material parameters and thickness’ ratio of the layers on the stability of
the solution. S1, S2 and S3 will be examined at some wave number-phase velocity pairs
where the fifth harmonic resonance emerges. The linear material properties are chosen as
γ = µ2/µ1 = 2.159, ρ = ρ2/ρ1 = 1.28007.
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Figure 1. The chosen non-dimensional wave number-phase velocity pairs
(K1, C1) and (K3, C3) satisfying (19) for h = 1

Non-dimensional variables are defined as K = kh1 and C = c/c1. In addition, for the
values of the nonlinear material parameters qi, the relevant medium exhibits hardening
behavior (H) in shear when qi > 0, and softening behavior (S) when qi < 0. A finite region
defined by q1 ∈ [−3, 3] and q2 ∈ [−3, 3] is chosen in order to observe the effect of the
change in the nonlinear material parameter values on the interaction of the fundamental
wave and its fifth harmonic component. It should be pointed out that for the appropriate
non-dimensional wave number-phase velocity pair (Kj , Cj) for which the fifth harmonic
resonance emerges, Si = Si(q1, q2, h). Here S1 is a quadratic polynomial whereas S2 and
S3 are cubic polynomials of q1 and q2.

Figure 2. Common region for (K1, C1) satisfying (19) for h = 1

The non-dimensional wave number-phase velocity pair satisfying (19) can be chosen as
(K1, C1) =(2.06995, 1.44081) and (K2, C2) =(1.82678, 1.44081) for h = 1 and 5, respec-
tively. Similarly, for l = 4 and n = 8, the pair satisfying (14) are chosen as (K3, C3) =
(5.76652, 1.47893) and (K4, C4) =(7.51844, 1.30323) for h = 1 and 5, respectively.

For h = 1, the positions of the pairs (K1, C1) and (K3, C3) on the branches of the
dispersion relation are shown in Fig.1. For h = 5, a similar analysis can be made for
(K2, C2) and (K4, C4). As can be seen in Fig.2, for (K1, C1), there exist solitary wave
solutions for the region where S1 is negative, and S2 and S3 are positive.
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Figure 3. Signs of S1, S2 and S3 for (K2, C2) satisfying (19) for h = 5

Fig.3 shows that the existence of solitary waves can not be stated with any certainty
for the chosen (q1, q2) values and (K2, C2) =(1.82678, 1.44081).

Figure 4. Signs of S1, S2 and S3 for (K3, C3) satisfying (14) for h = 1

For (K3, C3) and (K4, C4), graphs illustrating the change in the sign of Si on q1q2-plane
are given in Fig.4 and 5, respectively. As can be seen in Figure 4, the existence of solitary
waves of the CNLS equation can not be stated with any certainty for the chosen (q1, q2)
values. However, Fig.5 shows that there exist solitary waves for q1 > 0 and q2 < 0; that
is, the upper layer is a hardening material whereas the lower layer is a softening material.

Figure 5. Common region for (K4, C4) satisfying (14) for h = 5

If requested, the coefficients of the CNLS equation can be calculated by using the
selected linear and nonlinear material parameters and the (K1, C1) and (K4, C4) pairs
where soliton solutions exist for the selected thickness ratios. With these coefficients and
appropriate initial amplitude values, the explicit form of soliton solutions given in (52) can
be determined for a chosen dimensionless time value. However, since only the existence of
soliton solutions was examined in this study, this calculation was not included here.
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6. Conclusion

In this work, the multiple scale method is used to investigate the interaction of the mth
harmonic resonance of SH waves propagating in a two layered elastic medium with uni-
form thickness. The constituent materials of the layers are assumed to be incompressible,
homogeneous, isotropic. The dispersion relations of linear waves are derived for the third
and fifth harmonic resonances. Then, the fifth harmonic resonant interaction of weakly
nonlinear SH waves is investigated in a two layered medium with uniform thickness and
with nonlinear, isotropic and homogeneous materials in both layers having different ma-
terial properties. It is shown that the first order slowly varying amplitudes of interacting
waves were characterized by a CNLS equation asymptotically. The effects on the CNLS
system’s solitary wave solutions of the layers’ thickness and of the nonlinear properties of
the materials are examined for the different wave number-phase velocity pairs satisfying
the criteria of the fifth harmonic resonance.

The outline of the article is as follows: Formulation of the problem is given in sec-
tion 2, and a nonlinear boundary value problem characterizing SH wave propagation in a
two-layered incompressible elastic medium is obtained. The relations for the critical wave
number-phase velocity pair corresponding to the third and fifth harmonic resonances are
derived. In Section 3, the mth harmonic resonance of slowly varying amplitudes of weakly
nonlinear SH waves in such a medium is investigated by employing a multiple scale pertur-
bation method [14]. For m = 5, it is shown that the balance between the weak nonlinearity
and dispersion yields a CNLS system for the slowly varying amplitudes of the fundamental
wave and its fifth harmonic component. In Section 4, discussions on the effects of linear
and nonlinear material properties of the medium and the ratio of the layers’ thickness on
the linear stability of the plane wave solutions as well as the existence of solitary envelope
solutions are performed [20]. Some concluding remarks are presented in the final section.
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7. Appendix

α1 = a3le
−ikp1y + a1le

ikp1y + a4le
−ikp1yy + a2le

ikp1yy+(
a3nAe

−ikp1y + a1nAe
ikp1y + a6nAe

−3ikp1y + a5nAe
3ikp1y

)
A1|A1|2+

(a3nBe
−ikp1y + a1nBe

ikp1y + a10nBe
−9ikp1y + a9nBe

9ikp1y

+ a8nBe
−11ikp1y + a7nBe

11ikp1y)A1|A5|2

(54)

α15 = a47le
−5ikp1y + a45le

5ikp1y + a48le
−5ikp1yy + a46le

5ikp1yy+

(a44nBe
−3ikp1y + a43nBe

3ikp1y + a47nBe
−5ikp1y + a45nBe

5ikp1y+

a50nBe
−7ikp1y + a49nBe

7ikp1y)|A1|2A5+

(a47nCe
−5ikp1y + a45nCe

5ikp1y + a52nCe
−15ikp1y + a51nCe

15ikp1y)A5|A5|2

(55)
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β1 = b3le
−ikp2y + b1le

ikp2y + b4le
−ikp2yy + b2le

ikp2yy+(
b3nAe

−ikp2y + b1nAe
ikp2y + b6nAe

−3ikp2y + b5nAe
3ikp2y

)
A1|A1|2+

(b3nBe
−ikp2y + b1nBe

ikp2y + b10nBe
−9ikp2y + b9nBe

9ikp2y

+ b8nBe
−11ikp2y + b7nBe

11ikp2y)A1|A5|2

(56)

β15 = b47le
−5ikp2y + b45le

5ikp2y + b48le
−5ikp2yy + b46le

5ikp2yy+

(b44nBe
−3ikp2y + b43nBe

3ikp2y + b47nBe
−5ikp2y + b45nBe

5ikp2y+

b50nBe
−7ikp2y + b49nBe

7ikp2y)|A1|2A5+

(b47nCe
−5ikp2y + b45nCe

5ikp2y + a52nCe
−15ikp2y + b51nCe

15ikp2y)A5|A5|2

(57)

The coefficients ain and bin depend on linear and non-linear material parameters. The
explicit form of the coefficients ail and bil are given as;

a2l = − 2iR1

kc21p1

(
ω2∂

2A1

∂t21
+ kc21

(
2ω

∂2A1

∂x1∂t1
+ kc21

∂2A1

∂x21

))
(58)

a3l = 2iR2

(
ω
∂A1

∂t2
+ kc21

∂A1

∂x2

)
+ 2iR2

(
ω
∂Ag
∂t1

+ kc21
∂Ag
∂x1

)
+R2

(
−∂

2A1

∂t21
+ c21

∂2A1

∂x21

)
+ 2T2

(
ω

∂A1

∂x1∂t1
+ kc21

∂A1

∂x1

) (59)

a4l =
2iR2

kc21p1

(
ω2∂

2A1

∂t21
+ kc21

(
2ω

∂2A1

∂x1∂t1
+ kc21

∂2A1

∂x21

))
(60)

b2l = − 2iR3

kc22p2

(
ω2∂

2A1

∂t21
+ kc22

(
2ω

∂2A1

∂x1∂t1
+ kc22

∂2A1

∂x21

))
(61)

b3l = 2iR4

(
ω
∂A1

∂t2
+ kc22

∂A1

∂x2

)
+ 2iR4

(
ω
∂Ag
∂t1

+ kc22
∂Ag
∂x1

)
+R4

(
−∂

2A1

∂t21
+ c22

∂2A1

∂x21

)
+ 2T4

(
ω

∂A1

∂x1∂t1
+ kc22

∂A1

∂x1

) (62)

b4l =
2iR4

kc22p2

(
ω2∂

2A1

∂t21
+ kc22

(
2ω

∂2A1

∂x1∂t1
+ kc22

∂2A1

∂x21

))
(63)
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