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ON FRACTIONAL INTEGRAL OPERATOR OVER NON-NEWTONIAN

CALCULUS

M. MOMENZADEH1, S. NOROZPOUR2, A. E. BASHIROV3∗, §

Abstract. The definition of a non-Newtonian calculus is based on the homeomorphism
which customary denoted by y = α(x). In the mean of this function, elementary alge-
braic operations can be modified and we reach to the world of new calculus that is called
a Non-Newtonian calculus. Nowadays, fractional operators role an important topic in
mathematics because of their applications in many area of interest. In this paper we
use an old technique of Cauchy iterated integrals to define biα-fractional integral oper-
ator. The allocated method makes the new class of fractional integral operators which
are successfully compatible with the non-Newtonian calculi and supported with several
examples. Since the non-Newtonian calculi were introduced, the bigeometric calculus
has been considered as a brilliant example of these kind of calculi. The definition of
fractional integral operator in this calculus leads to Hadamard type fractional integral
operator which answers many questions about the behavior of this operator. Classic
property of fractional integral operator, semigroup property is stablished and this op-
erator is studied. Moreover, Jensen’s inequality provide boundness theorem for general
biα-fractional integral operator.

Keywords: Fractional differential operators, bigeometric calculus, Cauchy iterated inte-
grals, integral operator.
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1. Introduction

The recent studies on fractional differential equations indicate that a variety of inter-
esting and important results have been obtained, and the surge for investigating more
and more results are underway. This concerns the existence and uniqueness of solutions,
the stability properties of solutions, the analytic and numerical methods of solutions etc.
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for these equations. The tools of fractional calculus have played a significant role in im-
proving the modeling techniques for several real-world problems. However, it has been
noticed that most of the works in the area are based on Riemann-Liouville and Caputo
fractional differential equations. Another kind of fractional derivatives that appears side
by side to Riemann-Liouville and Caputo derivatives in the literature is the fractional
derivative due to Hadamard, which contains logarithmic function of arbitrary exponent in
the kernel of the integral. In 1892, Hadamard began the publication of series of articles
under the common title [1]. Third section of this article gave an underlying idea for creat-
ing different form of fractional integral operators. In this section, Hadamard investigated
the relation between coefficients of series with unite radius of convergent and singularity
of function. He applied similar method of Riemann [2] and extend Reimann fractional
integral operator to the form that is known as the Hadamard fractional integral operator.
In part (33) of section 3 of this paper, he considered that if x = ey, where the function
is with respect to y, then the Reimann formulation is changed to the Hadamard form.
Hadamard-type integrals arise in the formulation of many problems in mechanics such as
in fracture analysis.

2. Overview of Bigeometric Calculus

We start our discussion by rewriting some concepts and definitions of bigeometric calcu-
lus. In the 60th decade Michael Grossman and Robert Katz [3] gave an underlying idea for
creating different presentations of Newtonian calculus. Briefly, if α is a homeomorphism
from the system R of real numbers to the interval I, then the algebraic operations in R
can be isometrically transferred to I by letting

(i) a⊕α b = α(α−1(a) + α−1(b)),
(ii) a⊗α b = α(α−1(a)× α−1(b)),

(iii) a	α b = α(α−1(a)− α−1(b)),
(iv) a�α b = α(α−1(a)/α−1(b)).

These α-operations form a field on I. Based on α-operations, α-calculus with the α-
derivative and α-integral can be created. All these calculi are isometric and present differ-
ent views to the same phenomena so that an easily developing issue in one of them may
cause complications in the other ones. The case when α is the identity function, α-calculus
is simply a familiar Newtonian calculus. Otherwise, it presents a non-Newtonian calculus.

In the existing literature, the most investigated non-Newtonian calculus is the case of
the exponential function α(x) = ex. The α-operations in the case of the exponential
function become

(i) a⊕exp b = eln a+ln b = ab,

(ii) a⊗exp b = eln a ln b = aln b = bln a,

(iii) a	exp b = eln a−ln b = a/b,

(iv) a�exp b = eln a/ ln b = a1/ ln b.

These operations define a field in the range I = (0,∞) of the exponential function in which
the neutral elements of exp-addition and exp-multiplication are 1 and e, respectively.

On the basis of α-operations, it is possible to set two calculi. One of them is called α-
calculus, the other one biα-calculus. The derivative of biα-calculus, called biα-derivative
and denoted by f α̂, is defined as the limit

f α̂(x) = lim
y→x

[(f(y)	α f(x))�α (y 	α x)].



442 TWMS J. APP. AND ENG. MATH. V.13, N.2, 2023

Similarly, the integral of biα-calculus, called biα-integralis defined as the limit of the
integral sums ∫ b

a
f(x) dα̂(x) = lim

n⊕
i=1

α[f(ci)⊗α (xi+1 	α xi)].

They are related to the ordinary derivative and integral of Newtonian calculus as

f α̂(x) = α

(
α−1(f(x))′

α−1(x)′

)
and ∫ b

a
f(x) dα̂x = α

(∫ b

a
α−1(f(x))α−1(x)′ dx

)
.

It is not difficult to see that the removal of α−1(x)′ from these formulae modifies them to
a new form as

fα(x) = α(α−1(f(x))′)

and ∫ b

a
f(x) dαx = α

(∫ b

a
α−1(f(x)) dx

)
.

These are called α-derivative and α-integral and they define α-calculus.
In the case of the exponential function α(x) = ex, these calculi are called geometric

(frequently, it is called multiplicative as well) and bigeometric. Bigeometric derivative
and integral are also called π-derivative and π-integral and defined by

fπ(x) = ex(ln f(x))′ and

∫ b

a
f(x) dπ(x) = e

∫ b
a

ln f(x)
x

dx.

Thus, α̂ is replaced by π. Similarly, geometric derivative and integral are defined by

f∗(x) = e(ln f(x))′ and

∫ b

a
f(x) d∗(x) = e

∫ b
a ln f(x) dx,

where α is replaced by ∗.
Bigeometric calculus was prompted in [5]. Recently, it was successfully extended to

complex bigeometric calculus in [6]. Multiplicative calculus was pointed out in [7]. Since
then it was investigated andapplied to different areas [8-17]. In the sequel, we will use the
symbols Df(x) and Ibaf for the biα-derivative and integral, that is,

Df(x) = α

(
α−1(f(x))′

α−1(x)′

)
and Ibaf = α

(∫ b

a
α−1(f(x))α−1(x)′

)
dx.

3. Fractional Integral Operator over biα-Calculus

Now we try to extend the meaning of biα-derivative and biα-integral to reach fractional
biα-integral. Iteration of two biα-integrals of f(x) leads to∫ w

a

∫ v

a
f(s) dα̂sdα̂v = α

(∫ w

a

∫ v

a
α−1(f(s))α−1(s)′−1(v)′ dsdv

)
= α

(∫ w

a
α−1(f(s))α−1(s)′−1(w)− α−1(s)] ds

)
.



M. MOMENZADEH, S. NOROZPOUR, A. E. BASHIROV: ON FRACTIONAL INTEGRAL ... 443

For α(x) = ex, ∫ w

a

∫ v

a
f(s) dπsdπv = e

∫ w
a ln f(s)(ln s)′[lnw−ln s] ds

= e
∫ w
a ln

(
f(s)ln

w
s

)
(ln s)′ ds

=

∫ w

a
f(s)ln w

s dπs. (1)

Because of the form of the integrand, this formula is well suited to the fractional calcu-
lus. The argument that leads to a definition of the fractional integral can be studied by
considering n-fold integral which is called Cauchy iterated integration:∫ x

a
dx1

∫ x1

a
dx2 · · ·

∫ xn−1

a
f(xn)dxn =

1

(n− 1)!

∫ x

a
(x− s)n−1 f(s)ds

If we consider dxi
xi

instead of dxi in the chain ofintegration, then we have Hadamard
approaches as∫ x

a

dx1

x1

∫ x1

a

dx2

x2
· · ·
∫ xn−1

a
f(xn)

dxn
xn

=
1

(n− 1)!

∫ x

a

(
ln
x

s

)n−1
f(s)

ds

s
.

There are several approaches to generalize fractional integral operator which are inspired
by the form of Cauchy iterated integral [18, 19]. For instance, assume the following n-fold
biα-integral as an extension of Cauchy iterated integral

Inα(f)(x) =

∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
f(xn)dα̂xnd

α̂xn−1 · · · dα̂x1. (2)

Applying (1) repeatedly and changing the order of integration leads to

Inα(f)(x) = α

(
1

(n− 1)!

∫ x

a

(
α−1(x)− α−1(s)

)n−1
α−1(f(s))α−1(s)′ ds

)
. (3)

This identity can be proved easily by induction. So we can define fractional integral
operator as follow:

Definition 3.1. Let α(x) be a homeomorphism from the system R of real numbers to the
interval I and β > 0 , then biα-fractional integral operator is defined by

Iβα(f)(x) = α

(
1

Γ(β)

∫ x

a

(
α−1(x)− α−1(s)

)β−1
α−1(f(s))α−1(s)′ ds

)
. (4)

Let us consider this definition deeply. In the case that α(x) = x, wehave Reimann
fractional integral operator. For instance, let α(x) = ex, then we can express bigeometric
fractional integral operator as

Iβexp(f)(x) = exp

(
1

Γ(β)

∫ x

a

(
ln
(x
s

))β−1
ln f(s)

ds

s

)
= eJ

β(ln(f(x)).

Here, Jβ denotes Hadamard fractional integral operator. When β → 1, given operator

tends to π-derivative, i.e., Iβexp(f)(x)→ fπ(x). We should mention that defined operator
is not only the simple transformation of fractional integral operator. In fact, nature
of function determine suitable biα-calculus and related biα-derivative, then related biα-
fractional integral operator can be expressed by last definition. Recently, unification of
Riemann and Hadamard operator was studied [18]. In fact, the author used xpi terms
in chain of iterated integration. The parameter p ranges between 0 and 1. Therefore,
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different values of p create different types of fractional integral operator. Let us consider

α(x) = x
1
p with 0 < p < 1. Then biα-fractional integral operator can be written as

Iβp√·(f)(x) =

(
p

Γ(β)

∫ x

a
(xp − sp)β−1 sp−1(fp(s))ds

) 1
p

=
(
pαJβp (fp(x))

) 1
p

(5)

Here Jβp is Katugampola fractional integral operator. We should remark that α(x) = x
1
p =

exp
(

lnx
p

)
is not satisfying the mentioned conditions for makeing the calculus generally. In

chapter 7 of Grossman’s book [3], quadratic calculus for p = 2 was introduced and similar
discussion can be used to make a sure about this kind of calculi.

Proposition 3.1. Let α be a homeomorphism from the system R of real numbers to the
interval I. Then the semigroup property

IβαI
ν
α(f)(x) = Iβ+ν

α (f)(x)

holds for β > 0 and ν > 0 provided that the respective integrals exist.

Proof. Procedure of prove is similar to the prove of semigroup property for fractional
integral operator. If we expand left side of expression, we have

Iβα (Iνα(f)(x)) = α

(
1

Γ(ν)Γ(β)

∫ x

a

(∫ x

w

(
α−1(x)− α−1(s)

)β−1

×
(
α−1(s)− α−1(w)

)ν−1
α−1(s)′ds

)
α−1(f(w))α−1(w)′ dw

)
.

Applying the substitution Y =
(
α−1(s)− α−1(w)

)
/
(
α−1(x)− α−1(w)

)
and using the

definition of the beta function, we obtain

Iβα (Iνα(f)(x)) = α

(
1

Γ(ν + β)

∫ x

a

((
α−1(x)− α−1(w)

)ν+β−1

×
∫ 1

0
(1− Y )β−1 (Y )ν−1 dY

)
α−1(f(w))α−1(w)′ dw

)
.

This proves the semi-group property. �

4. Properties of biα-Fractional Integral Operator

In this section, we apply the Jensen’s inequality to the biα-fractional integral operator.
Let us start our discussion by one probability concept, mean. We consider the following
definition of mean in biα-calculus

Xα =

( n⊕
i=1

αxi

)
�α n.

If we put α(x) = x, we obtain the definition of arithmetic mean. On the other hand,
letting α(x) = ex and changing n with the corresponding value en in bigeometric calculus
lead to geometric mean. The relation between arithmetic and geometric means can be
answered by convexity of ex which generally reaches to Jensen’s inequality [20].

Theorem 4.1. Let µ be a positive measure on a σ-algebraM in a set Ω so that µ(Ω) = 1.
If f is a real µ-integrable function, if −∞ ≤ a ≤ f(x) ≤ b ≤ ∞ for all x ∈ Ω and if α(x)
is convex on (a, b), then

α

(∫
Ω
fdµ

)
≤
∫

Ω
α(f)dµ (6)

If α(x) is concave, then (6) holds in the reversed direction.
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In the case when Ω = R+, µ = 1
n

∑n
k=1 δk, α(x) = lnx, where δk is the unity mass at

t = k, then Jensen’s inequality coincides with the inequality of arithmetic and geometric
means. Since boundedness of introduced operator is closely related to behavior of α(x),
we consider the restriction on this function to be concave. Definitely, concavity of α(x)
leads to similar inequality with reversed direction. One of brilliant examples of α is the
case that α(x) = ex which is convex function. For instance, it is easy to see that

e
1
b−a

∫ b
a

ln f(x)
x

dx ≤ 1

b− a

∫ b

a
f(x)

1
xdx.

Proposition 4.1. Let α(x) be a convex homeomorphism and let (4) be defined both for f
and α ◦ f . In addition, let 0 ≤ K ≤ 1 for

K =
1

Γ(β + 1)

(
α−1(x)− α−1(a)

)β
. (7)

Then

Iβα(f)(x) ≤ Iβα(α ◦ f)(x) + (1−K)α(0) (8)

Proof. Convexity of α(x) and condition of 0 ≤ K ≤ 1, implies that

Iβα(f)(x) ≤ Kα

(
1∫ x

a (α−1(x)− α−1(r))β−1 (α−1)′ (r)dr

×
∫ x

a
f(s)

(
α−1(x)− α−1(s)

)β−1 (
α−1

)′
(s)ds

)
+ (1−K)α(0).

Now, apply Jensen’s inequality and complete the proof. �

Moreover, we can consider following inequality for α−1
(
Iβα(f)(x)

)
. This inequality

makes relation clear:

Theorem 4.2. Let α(x) be a convex homeomorphism and let (4) be defined both for f
and α−1 ◦ f . Assume that α−1 ◦ f ∈ Lp(a, b) where 1 ≤ p ≤ ∞, a ≥ 0 and β > 0. Then∥∥∥α−1

(
Iβα(f)(x)

)∥∥∥
p
≤ K

∥∥α−1 ◦ f
∥∥
p

where K is defined by (7).

Proof. In the aid of substitution u = α−1(x) − α−1(a) and using generalized Minkowski
inequality, we have∥∥∥α−1

(
Iβα(f)(x)

)∥∥∥
p

=

(∫ b

a

∣∣∣∣∣ 1

Γ(β)

∫ α−1(x)−α−1(a)

0
(α−1 ◦ f)

(
α
(
α−1(x)− u

))
uβ−1du

∣∣∣∣∣
p

dx

) 1
p

≤ 1

Γ(β)

∫ α−1(x)−α−1(a)

0
uβ−1

(∫ b

a

∣∣(α−1 ◦ f)
(
α
(
α−1(x)− u

))∣∣p dx) 1
p

du.

This completes the proof. �

By putting α(x) = x
1
p , biα-fractional integraloperator is related to Katugampola’s

fractional operator [18] by equation (5). Actually, Katugampola’s operator is a unification
of Reimann and Hadamard’s operators and this has done by the parameter 0 < p < 1
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which makes α as a concave function. In the aid of Theorem 2 and relation (5), we can
reach to the following inequality∥∥∥(pαJβp (fp(x))

)∥∥∥
q
≤ K ‖fp(x)‖q .

This inequality can be compared by Theorem 3.1 from [18]. In fact, the author of that
paper has used weighted Lp space which is denoted by Xp

c (a, b) and found boundness of
operator similar to above equation. Discussion about boundness of Hadamard’s fractional
integral operator in the general form is studied at [21].

5. Conclusion

In this article, we introduced fractional integral operator in biα-calculus. This defini-
tion is based on iterated Cauchy integral. Some related theorems are investigated. We
introduced vast number of fractional integral operators and bijection in this space easily
convert fractional integral operators. There are a lot of number of papers that discussed
about the application of different forms of fractional integral operator and new approach
in this article can be useful there.
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