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METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION OF

THE GRAPHS OF CONVEX POLYTOPES

S. K. SHARMA1, V. K. BHAT1∗, §

Abstract. The metric generator for the simple connected graph Γ is the set of vertices
Y ⊆ V(Γ) with the property that every pair of vertices u, v(u 6= v) ∈ V are determined
(or resolved) by some vertex of Y. The minimum possible cardinality of this metric
generator is called the metric dimension of Γ, denoted by dim(Γ)or β(Γ). In this article,
we determine the exact metric dimension and some other properties of the line graph of
the subdivision graph of the graph of convex polytope Dn (exists in the literature).
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1. Introduction

The idea of the locating set (or resolving set) was presented independently by Slater
in 1975 [11] and Harary and Melter in 1976 [5]. After these two important initial papers,
several works regarding theoretical properties, as well as applications, of this graph in-
variant were published. Initially, Slater considered special acknowledgment of a thief in
the network, while others noticed problems in picture preparing (or image processing) and
design acknowledgment (or pattern recognition) [8], applications to science are given in [4],
to the route of exploring specialist (navigating agent or robots) in systems (or networks)
are examined in [7], to issues of check and system revelation (or network discovery) in [3],
application to combinatorial enhancement (or optimization) is yielded in [9], and for more
work see [10, 12].

The distance between two vertices α and β in the simple connected graph Γ = Γ(V,E),
denoted by ∂Γ(α, β), defined as the length of a shortest α− β path in Γ. A single vertex
a in Γ is said to determine (distinguish or resolve) a pair of vertices α, β ∈ V if ∂Γ(α, a) 6=
∂Γ(β, b). A set of vertices Y ⊆ V(Γ) is a metric generator (or resolving set) for Γ, if every
pair of distinct vertices of Γ can be determined (or resolved) by some vertex of Y.
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Equivalently, for an ordered subset of vertices Y = {1, 2, 3, ..., k} of Γ, any vertex v ∈
V may be represented uniquely in the form of the vector ζ(v|Y) = (∂Γ(1, v), ∂Γ(2, v), ∂Γ(3,
v), ..., ∂Γ(k, v)). Then Y is the metric generator of Γ if for every two different vertices
α, β ∈ V, we have ζ(α|Y) 6= ζ(β|Y). The metric generator Y with the minimum possible
cardinality is the metric basis for Γ, and this minimum cardinality is known as the metric
dimension of Γ, denoted by dim(Γ) or β(Γ). A set Y consisting of vertices of the graph Γ
is said to be an independent resolving set for Γ, if Y is both resolving (metric generator)
and independent.

For an undirected graph Γ, the line graph of the graph Γ is a graph L(Γ) with vertex
set V(L(Γ)) = E(Γ) and two different nodes are adjacent in L(Γ) iff they have a common
end vertex in Γ. Sometimes a line graph is also termed as edge graph, derived graph, or
interchange graph. When every edge of the given undirected graph Γ is replaced by a path
of length two, the graph so obtained is known as the subdivision graph of the graph Γ,
denoted by S(Γ).

The graph of a convex polytope Dn consisting of 2n 5-sided faces and a pair of n-sided
faces were defined by Baca in [2]. For this family of the plane graph, Imran et al. in [6],
prove the following result regarding its metric dimension as:

Theorem 1.1. [6] Let n be the positive integer such that n ≥ 6 and Dn be the plane graph
on 4n vertices and 6n edges. Then, we have dim(Dn) = 3 i.e., it has location number 3.

Now, simply for this graph Dn, two question arises: (1) what should be the metric
dimension of the subdivision graph of the graph of convex polytope Dn? and (2) what
should be the metric dimension of the line graph of the subdivision graph of the graph
of convex polytope Dn? Now, working in this direction we obtain an interesting result
regarding the metric dimension of the line graph of the subdivision graph of the graph of
convex polytope Dn.

In this article, we determine the exact metric dimension of the line graph of the sub-
division graph of the graph of convex polytope Dn [2], denoted by L(S(Dn)). We also
prove that the line graph L(S(Dn)) possesses an independent minimum resolving set of
cardinality three i.e., just 3 vertices properly chosen are adequate to resolve all the vertices
of the graph L(S(Dn)). In the accompanying section, we acquire the metric dimension of
the line graph of the subdivision graph of the graph of convex polytope Dn (see Figure
1), and for each positive integer n; n ≥ 6 we demonstrate that β(L(S(Dn))) = 3.

2. The plane graph L(S(Dn))

The plane graph consisting of 2n 5-sided faces and a pair of n-sided faces were defined by
Baca in [2], and is denoted by Dn. The subdivision of the plane graph Dn (for n = 8) and
the line graph of this subdivision was shown in [1]. We denote this so obtained line graph
from the subdivision graph of the plane graph Dn by L(S(Dn)). The radially symmetrical
plane graph L(S(Dn)) comprises the vertex set and an edge set of cardinality 12n and 18n
respectively. It has 4n 3-sided faces, 2n 10-sided faces, and a pair of 2n-sided faces (see
Figure 1). By E(L(S(Dn))) and V(L(S(Dn))), we signify the arrangement of edges and
vertices of the plane graph L(S(Dn)) separately. Thus, we have

V(L(S(Dn))) = {pt, qt, rt, st, tt, ut, vt, wt, xt, yt, zt, at : 1 ≤ t ≤ n}
and

E(L(S(Dn))) =
{ptqt, ptrt, qtrt, rtst, sttt, stut, ttut, utvt, vtxt, vtwt, wtxt, xtyt, ytzt, ytat, ztat : 1 ≤ t ≤

n} ∪ {qtpt+1, wttt+1, atzt+1 : 1 ≤ t ≤ n}
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Figure 1. The Plane Graph L(S(Dn)), for n ≥ 6.

For our gentle purpose, we call the cycle brought forth by the arrangement of vertices
{pt, qt : 1 ≤ t ≤ n} in the graph, L(S(Dn) as the pq-cycle, the arrangement of vertices
{rt : 1 ≤ t ≤ n} and {st : 1 ≤ t ≤ n} in the graph, L(S(Dn) as the set of inward and interior
vertices, the cycle brought forth by the arrangement of vertices {tt, ut, vt, wt : 1 ≤ t ≤ n}
in the graph, L(S(Dn) as the tuvw-cycle, the arrangement of vertices {xt : 1 ≤ t ≤ n} and
{yt : 1 ≤ t ≤ n} in the graph, L(S(Dn) as the set of exterior and outward vertices, and
the cycle brought forth by the arrangement of vertices {zt, at : 1 ≤ t ≤ n} as the za-cycle.
In the present section, we obtain that the minimum cardinality for the metric generator
of the line graph of the subdivision graph of the graph of convex polytope Dn is 3. We
also see that the resolving set for the line graph of the subdivision graph of the graph of
convex polytope Dn is independent. For the metric dimension of the graph L(S(Dn)), we
have the following result:

Theorem 2.1. Let n be the positive integer such that n ≥ 6 and L(S(Dn)) be the planar
graph on 12n vertices as defined above. Then, we have dim(L(S(Dn))) = 3 i.e., it has
location number 3.

Proof. Note that for 6 ≤ n ≤ 10, one can see that the set Y = {z1, z2, q1} is the metric
basis set for the graph L(S(Dn)) by total enumeration. Now, for n ≥ 11, we consider the
resulting two cases relying on the positive integer n i.e., when the positive whole number
n is even and when it is odd.
Case(I) When the integer n is even.
In this case, the integer n can be written as n = 2w, where w ∈ N and w ≥ 3. Let
Y = {z1, z2, q1} ⊂ V(L(S(Dn))) (one can find that the location of these metric basis
vertices in green color, as shown in Figure 1). Now, in order to show that Y is a locating set
for the plane graph L(S(Dn)), we consign the metric codes for each vertex of V(L(S(Dn)))
regarding the set Y.
Now, the metric codes for the nodes of pq-cycle {υ = pt, qt : 1 ≤ t ≤ n} are
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ζM (υ|Y) Y = {z1, z2, q1}
ζM (pt|Y): (t = 1) (7, 8, 1)
ζM (pt|Y): (t = 2) (7, 7, 1)
ζM (pt|Y): (t = 3) (8, 7, 3)
ζM (pt|Y): (4 ≤ t ≤ w + 1) (2t+ 2, 2t, 2t− 3)
ζM (pt|Y): (t = w + 2) (2w + 4, 2w + 4, 2w − 1)
ζM (pt|Y): (w+3 ≤ t ≤ 2w) (4w − 2t+ 8, 4w − 2t+ 10, 4w − 2t+ 3)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (qt|Y): (t = 1) (7, 8, 0)
ζM (qt|Y): (t = 2) (7, 7, 2)
ζM (qt|Y): (3 ≤ t ≤ w + 1) (2t+ 3, 2t+ 1, 2t− 2)
ζM (qt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 7, 4w − 2t+ 9, 4w − 2t+ 2)

The metric codes for the set of inward nodes {υ = rt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (rt|Y): (t = 1) (6, 7, 1)
ζM (rt|Y): (t = 2) (6, 6, 2)
ζM (rt|Y): (3 ≤ t ≤ w + 1) (2t+ 2, 2t, 2t− 2)
ζM (rt|Y): (t = w + 2) (2w + 3, 2w + 4, 2w − 1)
ζM (rt|Y): (w+3 ≤ t ≤ 2w) (4w − 2t+ 7, 4w − 2t+ 9, 4w − 2t+ 3)

The metric codes for the set of interior nodes {υ = st : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (st|Y): (t = 1) (5, 6, 2)
ζM (st|Y): (t = 2) (5, 5, 3)
ζM (st|Y): (3 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t− 1)
ζM (st|Y): (t = w + 2) (2w + 2, 2w + 3, 2w)
ζM (st|Y): (w+3 ≤ t ≤ 2w) (4w − 2t+ 6, 4w − 2t+ 8, 4w − 2t+ 4)

The metric codes for the nodes of tuvw-cycle {υ = tt, ut, vt, wt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (tt|Y): (t = 1) (5, 6, 3)
ζM (tt|Y): (t = 2) (4, 5, 4)
ζM (tt|Y): (3 ≤ t ≤ w + 1) (2t, 2t− 2, 2t)
ζM (tt|Y): (t = w + 2) (2w + 2, 2w + 2, 2w + 1)
ζM (tt|Y): (w+ 3 ≤ t ≤ 2w) (4w − 2t+ 6, 4w − 2t+ 8, 4w − 2t+ 5)

ζM (υ|Y) Y = {z1, z2, q1}
ζM (ut|Y): (t = 1) (4, 5, 3)
ζM (ut|Y): (t = 2) (5, 4, 4)
ζM (ut|Y): (3 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t)
ζM (ut|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 5, 4w − 2t+ 7, 4w − 2t+ 5)
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ζM (υ|Y) Y = {z1, z2, q1}
ζM (vt|Y): (t = 1) (3, 4, 4)
ζM (vt|Y): (2 ≤ t ≤ w) (2t+ 1, 2t− 1, 2t+ 1)
ζM (vt|Y): (t = w + 1) (2w + 2, 2w + 1, 2w + 3)
ζM (vt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 4, 4w − 2t+ 6, 4w − 2t+ 5)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (wt|Y): (t = 1) (3, 4, 5)
ζM (wt|Y): (2 ≤ t ≤ w) (2t+ 1, 2t− 1, 2t+ 2)
ζM (wt|Y): (t = w + 1) (2w + 2, 2w + 1, 2w + 2)
ζM (wt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 4, 4w − 2t+ 6, 4w − 2t+ 4)

The metric codes for the set of exterior nodes {υ = xt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (xt|Y): (t = 1) (2, 3, 5)
ζM (xt|Y): (2 ≤ t ≤ w) (2t, 2t− 2, 2t+ 2)
ζM (xt|Y): (t = w + 1) (2w + 1, 2w, 2w + 3)
ζM (xt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 3, 4w − 2t+ 5, 4w − 2t+ 5)

The metric codes for the set of outward nodes {υ = yt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (yt|Y): (t = 1) (1, 2, 6)
ζM (yt|Y): (2 ≤ t ≤ w) (2t− 1, 2t− 3, 2t+ 3)
ζM (yt|Y): (t = w + 1) (2w, 2w − 1, 2w + 4)
ζM (yt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 2, 4w − 2t+ 4, 4w − 2t+ 6)

At last, the metric codes for the nodes of za-cycle {υ = zt, at : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (zt|Y): (t = 1) (0, 2, 7)
ζM (zt|Y): (t = 2) (2, 0, 8)
ζM (zt|Y): (3 ≤ t ≤ w + 1) (2t− 2, 2t− 4, 2t+ 3)
ζM (zt|Y): (w+2 ≤ t ≤ 2w) (4w − 2t+ 2, 4w − 2t+ 4, 4w − 2t+ 7)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (at|Y): (t = 1) (1, 1, 7)
ζM (at|Y): (2 ≤ t ≤ w) (2t− 1, 2t− 3, 2t+ 4)
ζM (at|Y): (t = w + 1) (2w − 1, 2w − 1, 2w + 4)
ζM (at|Y): (w + 2 ≤ t ≤ 2w − 1) (4w − 2t+ 1, 4w − 2t+ 3, 4w − 2t+ 6)
ζM (at|Y): (t = 2w) (1, 3, 7)

We notice that no two vertices are having indistinguishable metric codes, suggesting
that β(L(S(Dn))) ≤ 3. Now, so as to finish the evidence for this case, we show that
β(L(S(Dn))) ≥ 3 by working out that there is no resolving set Y such that |Y| = 2. De-
spite what might be expected, we guess that β(L(S(Dn))) = 2. Now, by A1, A2, A3,...,A12,
we denote the set of vertices as A1 = {pt : 1 ≤ t ≤ n}, A2 = {qt : 1 ≤ t ≤ n},...,A12 =
{at : 1 ≤ t ≤ n}. At that point, we have the accompanying prospects to be talked about.

• When one, as well as the other node, is in the set Al; l = 1, 2, 3, ..., 12.
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Resolving sets Contradictions
Y = {p1, pg}, pg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w and

ζ(q1|Y) = ζ(qn|Y), for g = w + 1.
Y = {q1, qg}, qg (2 ≤ g ≤ n) ζ(p1|Y) = ζ(r1|Y), for 2 ≤ g ≤ w and

ζ(p1|Y) = ζ(p2|Y), for g = w + 1.
Y = {r1, rg}, rg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1 and

ζ(u1|Y) = ζ(t1|Y), for w ≤ g ≤ w + 1.
Y = {s1, sg}, sg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1, and

ζ(u1|Y) = ζ(t1|Y), for w ≤ g ≤ w + 1.
Y = {z1, zg}, zg (2 ≤ g ≤ n) ζ(w1|Y) = ζ(v1|Y), for 2 ≤ g ≤ w + 1.

Resolving sets Contradictions
Y = {t1, tg}, tg (2 ≤ g ≤ w) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1

ζ(s2|Y) = ζ(z1|Y), for g = w and
ζ(p1|Y) = ζ(q1|Y), for g = w + 1.

Y = {u1, ug}, ug (2 ≤ g ≤ w) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1
ζ(t2|Y) = ζ(p1|Y), for g = w and
ζ(p1|Y) = ζ(q1|Y), for g = w + 1.

Y = {v1, vg}, vg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1
ζ(u2|Y) = ζ(r1|Y), for g = w and
ζ(p1|Y) = ζ(r2|Y), for g = w + 1.

Y = {w1, wg}, wg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1
ζ(z1|Y) = ζ(r2|Y), for g = w and
ζ(s1|Y) = ζ(r2|Y), for g = w + 1.

Y = {x1, xg}, xg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1
ζ(v2|Y) = ζ(an|Y), for g = w and
ζ(p1|Y) = ζ(q2|Y), for g = w + 1.

Y = {y1, yg}, yg (2 ≤ g ≤ n) ζ(pn|Y) = ζ(rn|Y), for 2 ≤ g ≤ w − 1
ζ(w1|Y) = ζ(v1|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {a1, ag}, ag (2 ≤ g ≤ n) ζ(w1|Y) = ζ(v1|Y), for 2 ≤ g ≤ w and
ζ(z1|Y) = ζ(z2|Y), for g = w + 1.

• When one node is in the set A1 and other lies in the set Al; l = 2, 3, ..., 12.
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Resolving sets Contradictions
Y = {p1, qg}, qg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(sn|Y) = ζ(r2|Y), for g = w + 1.

Y = {p1, rg}, rg (1 ≤ g ≤ n) ζ(u1|Y) = ζ(t1|Y), for 1 ≤ g ≤ w and
ζ(rn|Y) = ζ(p2|Y), for g = w + 1.

Y = {p1, sg}, sg (1 ≤ g ≤ n) ζ(u1|Y) = ζ(t1|Y), for 1 ≤ g ≤ w and
ζ(rn|Y) = ζ(p2|Y), for g = w + 1.

Y = {p1, tg}, tg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(rn|Y) = ζ(p2|Y), for g = w + 1.

Y = {p1, ug}, ug (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(rn|Y) = ζ(p2|Y), for g = w + 1.

Y = {p1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(r2|Y) = ζ(sn|Y), for g = w + 1.

Y = {p1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(u2|Y) = ζ(x1|Y), for w ≤ g ≤ w + 1.

Y = {p1, xg}, xg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u2|Y) = ζ(x1|Y), for g = w and
ζ(r3|Y) = ζ(wn−1|Y), for g = w + 1.

Y = {p1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(u2|Y) = ζ(x1|Y), for w ≤ g ≤ w + 1.

Resolving sets Contradictions
Y = {p1, zg}, zg (1 ≤ g ≤ n) ζ(an|Y) = ζ(a1|Y), for g = 1

ζ(x2|Y) = ζ(z1|Y), for g = 2 and
ζ(x1|Y) = ζ(u2|Y), for 3 ≤ g ≤ w + 1.

Y = {p1, ag}, ag (1 ≤ g ≤ n) ζ(vn|Y) = ζ(u2|Y), for g = 1
ζ(x1|Y) = ζ(u2|Y), for 2 ≤ g ≤ w and
ζ(tn|Y) = ζ(rn−1|Y), for g = w + 1.

• When one node is in the set A2 and other lies in the set Al; l = 3, ..., 12.
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Resolving sets Contradictions
Y = {q1, rg}, rg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for g = 1

ζ(r1|Y) = ζ(p1|Y), for 2 ≤ g ≤ w and
ζ(qn|Y) = ζ(r2|Y), for g = w + 1.

Y = {q1, sg}, sg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(qn|Y) = ζ(r2|Y), for g = w + 1.

Y = {q1, tg}, tg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(r1|Y) = ζ(p1|Y), for g = w and
ζ(qn|Y) = ζ(r2|Y), for g = w + 1.

Y = {q1, ug}, ug (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(r1|Y) = ζ(p1|Y), for g = w and
ζ(qn|Y) = ζ(r2|Y), for g = w + 1.

Y = {q1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(qn|Y) = ζ(q2|Y), for g = w and
ζ(v1|Y) = ζ(t2|Y), for g = w + 1.

Y = {q1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(x1|Y) = ζ(u2|Y), for g = w and
ζ(r3|Y) = ζ(sn|Y), for g = w + 1.

Y = {q1, xg}, xg(1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(v1|Y) = ζ(t2|Y), for w ≤ g ≤ w + 1.

Y = {q1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(v1|Y) = ζ(t2|Y), for w ≤ g ≤ w + 1.

Y = {q1, zg}, zg (1 ≤ g ≤ n) ζ(p2|Y) = ζ(p1|Y), for g = 1
ζ(y2|Y) = ζ(a1|Y), for g = 2 and
ζ(v1|Y) = ζ(t2|Y), for 3 ≤ g ≤ w + 1.

Y = {q1, ag}, ag (1 ≤ g ≤ n) ζ(y2|Y) = ζ(an|Y), for g = 1
ζ(t2|Y) = ζ(v1|Y), for 2 ≤ g ≤ w and
ζ(z1|Y) = ζ(y2|Y), for g = w + 1.

• When one node is in the set A3 and other lies in the set Al; l = 4, ..., 12.

Resolving sets Contradictions
Y = {r1, sg}, sg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(q1|Y) = ζ(p1|Y), for g = w + 1.

Y = {r1, tg}, tg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(u1|Y) = ζ(t1|Y), for w ≤ g ≤ w + 1.

Y = {r1, ug}, ug (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(u1|Y) = ζ(t1|Y), for w ≤ g ≤ w + 1.
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Resolving sets Contradictions
Y = {r1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {r1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {r1, xg}, xg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {r1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {r1, zg}, zg (1 ≤ g ≤ n) ζ(an|Y) = ζ(a1|Y), for g = 1, w + 1
ζ(an|Y) = ζ(v2|Y), for g = 2 and
ζ(t2|Y) = ζ(yn|Y), for 3 ≤ g ≤ w.

Y = {r1, ag}, ag (1 ≤ g ≤ n) ζ(an−1|Y) = ζ(w2|Y), for g = 1
ζ(yn|Y) = ζ(t2|Y), for 2 ≤ g ≤ w and
ζ(u1|Y) = ζ(qn|Y), for g = w + 1.

• When one node is in the set A4 and other lies in the set Al; l = 5, 6, ..., 12.

Resolving sets Contradictions
Y = {s1, tg}, tg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(p1|Y) = ζ(q1|Y), for g = w + 1.

Y = {s1, ug}, ug (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(u1|Y) = ζ(t1|Y), for g = w and
ζ(p1|Y) = ζ(q1|Y), for g = w + 1.

Y = {s1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1 and
ζ(t1|Y) = ζ(u1|Y), for w ≤ g ≤ w + 1.

Y = {s1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {s1, xg}, xg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {s1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(t2|Y), for g = w and
ζ(a1|Y) = ζ(z1|Y), for g = w + 1.

Y = {s1, zg}, zg (1 ≤ g ≤ n) ζ(an|Y) = ζ(a1|Y), for g = 1, w + 1
ζ(zn|Y) = ζ(u2|Y), for g = 2 and
ζ(yn|Y) = ζ(t2|Y), for 3 ≤ g ≤ w.

Y = {s1, ag}, ag (1 ≤ g ≤ n) ζ(q1|Y) = ζ(p1|Y), for g = 1
ζ(yn|Y) = ζ(t2|Y), for 2 ≤ g ≤ w and
ζ(pn|Y) = ζ(rn|Y), for g = w + 1.

• When one node is in the set A5 and other lies in the set Al; l = 6, 7, ..., 12.
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Resolving sets Contradictions
Y = {t1, ug}, ug (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(zn|Y) = ζ(t2|Y), for g = w and
ζ(y1|Y) = ζ(tn|Y), for g = w + 1.

Y = {t1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(an|Y) = ζ(t2|Y), for g = w and
ζ(y1|Y) = ζ(sn|Y), for g = w + 1.

Y = {t1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(an|Y) = ζ(t2|Y), for g = w and
ζ(y1|Y) = ζ(sn|Y), for g = w + 1.

Y = {t1, xg}, xg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(an|Y) = ζ(t2|Y), for g = w and
ζ(y1|Y) = ζ(sn|Y), for g = w + 1.

Y = {t1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(an|Y) = ζ(t2|Y), for g = w and
ζ(y1|Y) = ζ(sn|Y), for g = w + 1.

Y = {t1, zg}, zg (1 ≤ g ≤ n) ζ(an|Y) = ζ(y1|Y), for g = 1
ζ(yn|Y) = ζ(w1|Y), for g = 2, we have ,
ζ(zn|Y) = ζ(t2|Y), for 3 ≤ g ≤ w and
ζ(y1|Y) = ζ(tn|Y), for g = w + 1.

Y = {t1, ag}, ag (1 ≤ g ≤ n) ζ(yn|Y) = ζ(w1|Y), for 1 ≤ g ≤ w − 1
ζ(zn|Y) = ζ(y1|Y), for g = w and
ζ(z1|Y) = ζ(rn|Y), for g = w + 1.

• When one node is in the set A6 and other lies in the set Al; l = 7, 8, ..., 12.

Resolving sets Contradictions
Y = {u1, vg}, vg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1

ζ(yn|Y) = ζ(s2|Y), for g = w and
ζ(v2|Y) = ζ(sn|Y), for g = w + 1.

Y = {u1, wg}, wg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(s2|Y), for g = w and
ζ(v2|Y) = ζ(sn|Y), for g = w + 1.

Y = {u1, xg}, xg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(s2|Y), for g = w and
ζ(v2|Y) = ζ(sn|Y), for g = w + 1.

Y = {u1, yg}, yg (1 ≤ g ≤ n) ζ(rn|Y) = ζ(pn|Y), for 1 ≤ g ≤ w − 1
ζ(yn|Y) = ζ(s2|Y), for g = w and
ζ(v2|Y) = ζ(sn|Y), for g = w + 1.

Y = {u1, zg}, zg (1 ≤ g ≤ n) ζ(p1|Y) = ζ(q1|Y), for 1 ≤ g ≤ 2,
ζ(yn|Y) = ζ(t2|Y), for 3 ≤ g ≤ w and
ζ(z2|Y) = ζ(zn|Y), for g = w + 1.

Y = {u1, ag}, ag (1 ≤ g ≤ n) ζ(p1|Y) = ζ(q1|Y), for g = 1
ζ(yn|Y) = ζ(t2|Y), for 2 ≤ g ≤ w − 1
ζ(zn|Y) = ζ(v2|Y), for g = w and
ζ(z2|Y) = ζ(tn|Y), for g = w + 1.

Similarly, we get contradictions, when one vertex is in the set Al (7 ≤ l ≤ 11) and the
other lies in the set Al (8 ≤ l ≤ 12). In this manner, the above conversation explains
that there is no resolving set comprising of two vertices for V(L(S(Dn))) implying that
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β(L(S(Dn))) = 3 in this case.

Case(II) When the integer n is odd.
In this case, the integer n can be written as n = 2w + 1, where w ∈ N and w ≥ 3. Let
Y = {z1, z2, q1} ⊂ V(L(S(Dn))). Now, in order to show that Y is a resolving set for
the plane graph L(S(Dn)), we consign the metric codes for each vertex of V(L(S(Dn)))
regarding the set Y.

Now, the metric codes for the nodes of pq-cycle {υ = pt, qt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (pt|Y):(t = 1) (7, 8, 1)
ζM (pt|Y):(t = 2) (7, 7, 1)
ζM (pt|Y):(t = 3) (8, 7, 3)
ζM (pt|Y):(4 ≤ t ≤ w + 2) (2t+ 2, 2t, 2t− 3)
ζM (pt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 10, 4w − 2t+ 12, 4w − 2t+ 5)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (qt|Y):(t = 1) (7, 8, 0)
ζM (qt|Y):(t = 2) (7, 7, 2)
ζM (qt|Y):(3 ≤ t ≤ w + 1) (2t+ 3, 2t+ 1, 2t− 2)
ζM (qt|Y):(t = w + 2) (2w + 5, 2w + 5, 2w)
ζM (qt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 9, 4w − 2t+ 11, 4w − 2t+ 4)

The metric codes for the set of inward nodes {υ = rt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (rt|Y):(t = 1) (6, 7, 1)
ζM (rt|Y):(t = 2) (6, 6, 2)
ζM (rt|Y):(3 ≤ t ≤ w + 1) (2t+ 2, 2t, 2t− 2)
ζM (rt|Y):(t = w + 2) (2w + 5, 2w + 4, 2w + 1)
ζM (rt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 9, 4w − 2t+ 11, 4w − 2t+ 5)

The metric codes for the set of interior nodes {υ = st : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (st|Y):(t = 1) (5, 6, 2)
ζM (st|Y):(t = 2) (5, 5, 3)
ζM (st|Y):(3 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t− 1)
ζM (st|Y):(t = w + 2) (2w + 4, 2w + 3, 2w + 2)
ζM (st|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 8, 4w − 2t+ 10, 4w − 2t+ 6)

The metric codes for the nodes of tuvw-cycle {υ = tt, ut, vt, wt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (tt|Y):(t = 1) (5, 6, 3)
ζM (tt|Y):(t = 2) (4, 5, 4)
ζM (tt|Y):(3 ≤ t ≤ w + 1) (2t, 2t− 2, 2t)
ζM (tt|Y):(t = w + 2) (2w + 4, 2w + 2, 2w + 3)
ζM (tt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 8, 4w − 2t+ 10, 4w − 2t+ 7)
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ζM (υ|Y) Y = {z1, z2, q1}
ζM (ut|Y):(t = 1) (4, 5, 3)
ζM (ut|Y):(t = 2) (5, 4, 4)
ζM (ut|Y):(3 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t)
ζM (ut|Y):(t = w + 2) (2w + 3, 2w + 3, 2w + 3)
ζM (ut|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 7, 4w − 2t+ 9, 4w − 2t+ 7)

ζM (υ|Y) Y = {z1, z2, q1}
ζM (vt|Y):(t = 1) (3, 4, 4)
ζM (vt|Y):(2 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t+ 1)
ζM (vt|Y):(t = w + 2) (2w + 2, 2w + 3, 2w + 3)
ζM (vt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 6, 4w − 2t+ 8, 4w − 2t+ 7)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (wt|Y):(t = 1) (3, 4, 5)
ζM (wt|Y):(2 ≤ t ≤ w + 1) (2t+ 1, 2t− 1, 2t+ 2)
ζM (wt|Y):(t = w + 2) (2w + 2, 2w + 3, 2w + 2)
ζM (wt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 6, 4w − 2t+ 8, 4w − 2t+ 6)

The metric codes for the set of exterior nodes {υ = xt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (xt|Y):(t = 1) (2, 3, 5)
ζM (xt|Y):(2 ≤ t ≤ w + 1) (2t, 2t− 2, 2t+ 2)
ζM (xt|Y):(t = w + 2) (2w + 1, 2w + 2, 2w + 3)
ζM (xt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 5, 4w − 2t+ 7, 4w − 2t+ 7)

The metric codes for the set of outward nodes {υ = yt : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (yt|Y):(t = 1) (1, 2, 6)
ζM (yt|Y):(2 ≤ t ≤ w + 1) (2t− 1, 2t− 3, 2t+ 3)
ζM (yt|Y):(t = w + 2) (2w, 2w + 1, 2w + 4)
ζM (yt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 4, 4w − 2t+ 6, 4w − 2t+ 8)

At last, the metric codes for the nodes of za-cycle {υ = zt, at : 1 ≤ t ≤ n} are

ζM (υ|Y) Y = {z1, z2, q1}
ζM (zt|Y):(t = 1) (0, 2, 7)
ζM (zt|Y):(t = 2) (2, 0, 8)
ζM (zt|Y):(3 ≤ t ≤ w + 1) (2t− 2, 2t− 4, 2t+ 3)
ζM (zt|Y):(t = w + 2) (2w, 2w, 2w + 5)
ζM (zt|Y):(w+3 ≤ t ≤ 2w+1) (4w − 2t+ 4, 4w − 2t+ 6, 4w − 2t+ 9)

and

ζM (υ|Y) Y = {z1, z2, q1}
ζM (at|Y):(t = 1) (1, 1, 7)
ζM (at|Y):(2 ≤ t ≤ w + 1) (2t− 1, 2t− 3, 2t+ 4)
ζM (at|Y):(w + 2 ≤ t ≤ 2w) (4w − 2t+ 3, 4w − 2t+ 5, 4w − 2t+ 8)
ζM (at|Y):(t = 2w + 1) (1, 3, 7)
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Again we see that no two vertices are having indistinguishable metric codes, suggesting
that dim(L(S(Dn))) ≤ 3. Now, on assuming that dim(L(S(Dn))) = 2, we consider that
to be are parallel prospects as talked about in Case(I) and logical inconsistency can be
inferred correspondingly. Consequently, dim(L(S(Dn))) = 3 for this situation too, which
completes the proof of the theorem.

�

This result can also be written as:

Theorem 2.2. Let n be the positive integer such that n ≥ 6 and L(S(Dn)) be the planar
graph on 12n vertices as defined above. Then, its independent resolving number is 3.

Proof. For proof, refer to Theorem 2.1. �

3. Conclusions

In this study, we obtained the exact metric dimension of the line graph of the subdivi-
sion graph of the graph of convex polytope Dn. We found that the metric dimension of the
line graph L(S(Dn)) is the same as the metric dimension of the graph of convex polytope
Dn i.e., β(Dn) = β(L(S(Dn))). We also observed that the basis set Y is independent
for the graph L(S(Dn)). We close this section by raising an open problem that naturally
arises from the text.

Open Problem 1: Characterise those families of the graphs of convex polytopes (say An)
with β(An) = β(L(S(An))).
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