TWMS J. App. and Eng. Math. V.13, N.2, 2023, pp. 448-461

METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION OF THE GRAPHS OF CONVEX POLYTOPES

S. K. SHARMA¹, V. K. BHAT^{1*}, §

ABSTRACT. The metric generator for the simple connected graph Γ is the set of vertices $\mathfrak{Y} \subseteq \mathbb{V}(\Gamma)$ with the property that every pair of vertices $u, v(u \neq v) \in \mathbb{V}$ are determined (or resolved) by some vertex of \mathfrak{Y} . The minimum possible cardinality of this metric generator is called the metric dimension of Γ , denoted by $\dim(\Gamma)$ or $\beta(\Gamma)$. In this article, we determine the exact metric dimension and some other properties of the line graph of the subdivision graph of the graph of convex polytope D_n (exists in the literature).

Keywords: Subdivision graph, resolving set, line graph, metric dimension.

AMS Subject Classification: 05C12, 05C76.

1. INTRODUCTION

The idea of the locating set (or resolving set) was presented independently by Slater in 1975 [11] and Harary and Melter in 1976 [5]. After these two important initial papers, several works regarding theoretical properties, as well as applications, of this graph invariant were published. Initially, Slater considered special acknowledgment of a thief in the network, while others noticed problems in picture preparing (or image processing) and design acknowledgment (or pattern recognition) [8], applications to science are given in [4], to the route of exploring specialist (navigating agent or robots) in systems (or networks) are examined in [7], to issues of check and system revelation (or network discovery) in [3], application to combinatorial enhancement (or optimization) is yielded in [9], and for more work see [10, 12].

The distance between two vertices α and β in the simple connected graph $\Gamma = \Gamma(\mathbb{V}, \mathbb{E})$, denoted by $\partial_{\Gamma}(\alpha, \beta)$, defined as the length of a shortest $\alpha - \beta$ path in Γ . A single vertex a in Γ is said to determine (distinguish or resolve) a pair of vertices $\alpha, \beta \in \mathbb{V}$ if $\partial_{\Gamma}(\alpha, a) \neq$ $\partial_{\Gamma}(\beta, b)$. A set of vertices $\mathfrak{Y} \subseteq \mathbb{V}(\Gamma)$ is a metric generator (or resolving set) for Γ , if every pair of distinct vertices of Γ can be determined (or resolved) by some vertex of \mathfrak{Y} .

e-mail: vijaykumarbhat2000@yahoo.com; ORCID: https://orcid.org/0000-0001-8423-9067.

¹ School of Mathematics, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India.

e-mail: sunnysrrm94@gmail.com; ORCID: https://orcid.org/0000-0001-9376-252X.

^{*} Corresponding author.

[§] Manuscript received: February 01, 2021; accepted: May 17, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.2 © Işık University, Department of Mathematics, 2023; all rights reserved.

Equivalently, for an ordered subset of vertices $\mathfrak{Y} = \{\mathfrak{j}_1, \mathfrak{j}_2, \mathfrak{j}_3, ..., \mathfrak{j}_k\}$ of Γ , any vertex $v \in \mathbb{V}$ may be represented uniquely in the form of the vector $\zeta(v|\mathfrak{Y}) = (\partial_{\Gamma}(\mathfrak{j}_1, v), \partial_{\Gamma}(\mathfrak{j}_2, v), \partial_{\Gamma}(\mathfrak{j}_3, v), ..., \partial_{\Gamma}(\mathfrak{j}_k, v))$. Then \mathfrak{Y} is the metric generator of Γ if for every two different vertices $\alpha, \beta \in \mathbb{V}$, we have $\zeta(\alpha|\mathfrak{Y}) \neq \zeta(\beta|\mathfrak{Y})$. The metric generator \mathfrak{Y} with the minimum possible cardinality is the metric basis for Γ , and this minimum cardinality is known as the metric dimension of Γ , denoted by $\dim(\Gamma)$ or $\beta(\Gamma)$. A set Y consisting of vertices of the graph Γ is said to be an independent resolving set for Γ , if Y is both resolving (metric generator) and independent.

For an undirected graph Γ , the line graph of the graph Γ is a graph $L(\Gamma)$ with vertex set $\mathbb{V}(L(\Gamma)) = \mathbb{E}(\Gamma)$ and two different nodes are adjacent in $L(\Gamma)$ iff they have a common end vertex in Γ . Sometimes a line graph is also termed as edge graph, derived graph, or interchange graph. When every edge of the given undirected graph Γ is replaced by a path of length two, the graph so obtained is known as the subdivision graph of the graph Γ , denoted by $S(\Gamma)$.

The graph of a convex polytope D_n consisting of 2n 5-sided faces and a pair of *n*-sided faces were defined by Baca in [2]. For this family of the plane graph, Imran et al. in [6], prove the following result regarding its metric dimension as:

Theorem 1.1. [6] Let n be the positive integer such that $n \ge 6$ and D_n be the plane graph on 4n vertices and 6n edges. Then, we have $\dim(D_n) = 3$ i.e., it has location number 3.

Now, simply for this graph D_n , two question arises: (1) what should be the metric dimension of the subdivision graph of the graph of convex polytope D_n ? and (2) what should be the metric dimension of the line graph of the subdivision graph of the graph of convex polytope D_n ? Now, working in this direction we obtain an interesting result regarding the metric dimension of the line graph of the subdivision graph of the graph of convex polytope D_n ?

In this article, we determine the exact metric dimension of the line graph of the subdivision graph of the graph of convex polytope D_n [2], denoted by $L(S(D_n))$. We also prove that the line graph $L(S(D_n))$ possesses an independent minimum resolving set of cardinality three i.e., just 3 vertices properly chosen are adequate to resolve all the vertices of the graph $L(S(D_n))$. In the accompanying section, we acquire the metric dimension of the line graph of the subdivision graph of the graph of convex polytope D_n (see Figure 1), and for each positive integer $n; n \geq 6$ we demonstrate that $\beta(L(S(D_n))) = 3$.

2. The plane graph $L(S(D_n))$

The plane graph consisting of 2n 5-sided faces and a pair of *n*-sided faces were defined by Baca in [2], and is denoted by D_n . The subdivision of the plane graph D_n (for n = 8) and the line graph of this subdivision was shown in [1]. We denote this so obtained line graph from the subdivision graph of the plane graph D_n by $L(S(D_n))$. The radially symmetrical plane graph $L(S(D_n))$ comprises the vertex set and an edge set of cardinality 12*n* and 18*n* respectively. It has 4n 3-sided faces, 2n 10-sided faces, and a pair of 2n-sided faces (see Figure 1). By $\mathbb{E}(L(S(D_n)))$ and $\mathbb{V}(L(S(D_n)))$, we signify the arrangement of edges and vertices of the plane graph $L(S(D_n))$ separately. Thus, we have

$$F(L(S(D_n))) = \{p_t, q_t, r_t, s_t, t_t, u_t, v_t, w_t, x_t, y_t, z_t, a_t : 1 \le t \le n\}$$

and

$$\mathbb{E}(L(S(D_n))) =$$

 $\{ p_t q_t, p_t r_t, q_t r_t, r_t s_t, s_t t_t, s_t u_t, t_t u_t, u_t v_t, v_t x_t, v_t w_t, w_t x_t, x_t y_t, y_t z_t, y_t a_t, z_t a_t : 1 \le t \le n \} \cup \{ q_t p_{t+1}, w_t t_{t+1}, a_t z_{t+1} : 1 \le t \le n \}$

FIGURE 1. The Plane Graph $L(S(D_n))$, for $n \ge 6$.

For our gentle purpose, we call the cycle brought forth by the arrangement of vertices $\{p_t, q_t : 1 \leq t \leq n\}$ in the graph, $L(S(D_n)$ as the pq-cycle, the arrangement of vertices $\{r_t : 1 \leq t \leq n\}$ and $\{s_t : 1 \leq t \leq n\}$ in the graph, $L(S(D_n)$ as the set of inward and interior vertices, the cycle brought forth by the arrangement of vertices $\{t_t, u_t, v_t, w_t : 1 \leq t \leq n\}$ in the graph, $L(S(D_n)$ as the tuvw-cycle, the arrangement of vertices $\{x_t : 1 \leq t \leq n\}$ and $\{y_t : 1 \leq t \leq n\}$ in the graph, $L(S(D_n)$ as the set of exterior and outward vertices, and the cycle brought forth by the arrangement of vertices $\{z_t, a_t : 1 \leq t \leq n\}$ as the za-cycle. In the present section, we obtain that the minimum cardinality for the metric generator of the line graph of the subdivision graph of the graph of convex polytope D_n is 3. We also see that the resolving set for the line graph of the grap

Theorem 2.1. Let n be the positive integer such that $n \ge 6$ and $L(S(D_n))$ be the planar graph on 12n vertices as defined above. Then, we have $\dim(L(S(D_n))) = 3$ i.e., it has location number 3.

Proof. Note that for $6 \le n \le 10$, one can see that the set $\mathfrak{Y} = \{z_1, z_2, q_1\}$ is the metric basis set for the graph $L(S(D_n))$ by total enumeration. Now, for $n \ge 11$, we consider the resulting two cases relying on the positive integer n i.e., when the positive whole number n is even and when it is odd.

Case(I) When the integer n is even.

In this case, the integer n can be written as n = 2w, where $w \in \mathbb{N}$ and $w \geq 3$. Let $\mathfrak{Y} = \{z_1, z_2, q_1\} \subset \mathbb{V}(L(S(D_n)))$ (one can find that the location of these metric basis vertices in green color, as shown in Figure 1). Now, in order to show that \mathfrak{Y} is a locating set for the plane graph $L(S(D_n))$, we consign the metric codes for each vertex of $\mathbb{V}(L(S(D_n)))$ regarding the set \mathfrak{Y} .

Now, the metric codes for the nodes of pq-cycle $\{v = p_t, q_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(p_t \mathfrak{Y}): (t=1)$	(7, 8, 1)
$\zeta_M(p_t \mathfrak{Y}): \ (t=2)$	(7,7,1)
$\zeta_M(p_t \mathfrak{Y}): \ (t=3)$	(8,7,3)
$\zeta_M(p_t \mathfrak{Y}): (4 \le t \le w+1)$	(2t+2, 2t, 2t-3)
$\zeta_M(p_t \mathfrak{Y}): \ (t=w+2)$	(2w+4, 2w+4, 2w-1)
$\zeta_M(p_t \mathfrak{Y}): (w+3 \le t \le 2w)$	(4w - 2t + 8, 4w - 2t + 10, 4w - 2t + 3)

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... 451

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(q_t \mathfrak{Y}): (t=1)$	(7, 8, 0)
$\zeta_M(q_t \mathfrak{Y}): (t=2)$	(7, 7, 2)
$\zeta_M(q_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+3, 2t+1, 2t-2)
$\zeta_M(q_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 7, 4w - 2t + 9, 4w - 2t + 2)

The metric codes for the set of inward nodes $\{v = r_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(r_t \mathfrak{Y}): (t=1)$	(6,7,1)
$\zeta_M(r_t \mathfrak{Y}): (t=2)$	(6, 6, 2)
$\zeta_M(r_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+2, 2t, 2t-2)
$\zeta_M(r_t \mathfrak{Y}): \ (t=w+2)$	(2w+3, 2w+4, 2w-1)
$\zeta_M(r_t \mathfrak{Y}): (w+3 \le t \le 2w)$	(4w - 2t + 7, 4w - 2t + 9, 4w - 2t + 3)

The metric codes for the set of interior nodes $\{v = s_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(s_t \mathfrak{Y}): \ (t=1)$	(5, 6, 2)
$\zeta_M(s_t \mathfrak{Y}): (t=2)$	(5, 5, 3)
$\zeta_M(s_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+1, 2t-1, 2t-1)
$\zeta_M(s_t \mathfrak{Y}): (t=w+2)$	(2w+2, 2w+3, 2w)
$\zeta_M(s_t \mathfrak{Y}): (w+3 \le t \le 2w)$	(4w - 2t + 6, 4w - 2t + 8, 4w - 2t + 4)

The metric codes for the nodes of tuvw-cycle $\{v = t_t, u_t, v_t, w_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(t_t \mathfrak{Y}): \ (t=1)$	(5, 6, 3)
$\zeta_M(t_t \mathfrak{Y}): \ (t=2)$	(4, 5, 4)
$\zeta_M(t_t \mathfrak{Y}): \ (3 \le t \le w+1)$	(2t, 2t-2, 2t)
$\zeta_M(t_t \mathfrak{Y}): \ (t=w+2)$	(2w+2, 2w+2, 2w+1)
$\zeta_M(t_t \mathfrak{Y}): (w+3 \le t \le 2w)$	(4w - 2t + 6, 4w - 2t + 8, 4w - 2t + 5)

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(u_t \mathfrak{Y}): (t=1)$	(4, 5, 3)
$\zeta_M(u_t \mathfrak{Y}): \ (t=2)$	(5, 4, 4)
$\zeta_M(u_t \mathfrak{Y}): \ (3 \le t \le w+1)$	(2t+1, 2t-1, 2t)
$\zeta_M(u_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 5, 4w - 2t + 7, 4w - 2t + 5)

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(v_t \mathfrak{Y}): (t=1)$	(3,4,4)
$\zeta_M(v_t \mathfrak{Y}): \ (2 \le t \le w)$	(2t+1, 2t-1, 2t+1)
$\zeta_M(v_t \mathfrak{Y}): (t=w+1)$	(2w+2, 2w+1, 2w+3)
$\zeta_M(v_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 4, 4w - 2t + 6, 4w - 2t + 5)

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(w_t \mathfrak{Y})$: $(t=1)$	(3, 4, 5)
$\zeta_M(w_t \mathfrak{Y}): \ (2 \le t \le w)$	(2t+1, 2t-1, 2t+2)
$\zeta_M(w_t \mathfrak{Y}): \ (t=w+1)$	(2w+2, 2w+1, 2w+2)
$\zeta_M(w_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 4, 4w - 2t + 6, 4w - 2t + 4)

The metric codes for the set of exterior nodes $\{v = x_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(x_t \mathfrak{Y}): (t=1)$	(2, 3, 5)
$\zeta_M(x_t \mathfrak{Y}): (2 \le t \le w)$	(2t, 2t-2, 2t+2)
$\zeta_M(x_t \mathfrak{Y}): (t=w+1)$	(2w+1, 2w, 2w+3)
$\zeta_M(x_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 3, 4w - 2t + 5, 4w - 2t + 5)

The metric codes for the set of outward nodes $\{v = y_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(y_t \mathfrak{Y})$: $(t=1)$	(1, 2, 6)
$\zeta_M(y_t \mathfrak{Y}): (2 \le t \le w)$	(2t - 1, 2t - 3, 2t + 3)
$\zeta_M(y_t \mathfrak{Y}): (t=w+1)$	(2w, 2w - 1, 2w + 4)
$\zeta_M(y_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 2, 4w - 2t + 4, 4w - 2t + 6)

At last, the metric codes for the nodes of za-cycle $\{v = z_t, a_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(z_t \mathfrak{Y}): (t=1)$	(0, 2, 7)
$\zeta_M(z_t \mathfrak{Y}): (t=2)$	(2,0,8)
$\zeta_M(z_t \mathfrak{Y}): \ (3 \le t \le w+1)$	(2t-2, 2t-4, 2t+3)
$\zeta_M(z_t \mathfrak{Y}): (w+2 \le t \le 2w)$	(4w - 2t + 2, 4w - 2t + 4, 4w - 2t + 7)

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(a_t \mathfrak{Y}): \ (t=1)$	(1, 1, 7)
$\zeta_M(a_t \mathfrak{Y}): \ (2 \le t \le w)$	(2t-1, 2t-3, 2t+4)
$\zeta_M(a_t \mathfrak{Y}): \ (t=w+1)$	(2w-1, 2w-1, 2w+4)
$\zeta_M(a_t \mathfrak{Y}): (w+2 \le t \le 2w-1)$	(4w - 2t + 1, 4w - 2t + 3, 4w - 2t + 6)
$\zeta_M(a_t \mathfrak{Y}): \ (t=2w)$	(1,3,7)

We notice that no two vertices are having indistinguishable metric codes, suggesting that $\beta(L(S(D_n))) \leq 3$. Now, so as to finish the evidence for this case, we show that $\beta(L(S(D_n))) \geq 3$ by working out that there is no resolving set \mathfrak{Y} such that $|\mathfrak{Y}| = 2$. Despite what might be expected, we guess that $\beta(L(S(D_n))) = 2$. Now, by $A_1, A_2, A_3, \dots, A_{12}$, we denote the set of vertices as $A_1 = \{p_t : 1 \leq t \leq n\}, A_2 = \{q_t : 1 \leq t \leq n\}, \dots, A_{12} = \{a_t : 1 \leq t \leq n\}$. At that point, we have the accompanying prospects to be talked about.

• When one, as well as the other node, is in the set A_l ; l = 1, 2, 3, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{p_1, p_g\}, p_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \leq g \leq w \text{ and}$
	$\zeta(q_1 \mathfrak{Y}) = \zeta(q_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, q_g\}, q_g \ (2 \le g \le n)$	$\zeta(p_1 \mathfrak{Y}) = \zeta(r_1 \mathfrak{Y}), \text{ for } 2 \leq g \leq w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(p_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, r_g\}, r_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1 \text{ and}$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } w \leq g \leq w+1.$
$\mathfrak{Y} = \{s_1, s_g\}, s_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1, \text{ and}$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } w \leq g \leq w+1.$
$\mathfrak{Y} = \{z_1, z_g\}, z_g (2 \le g \le n)$	$\zeta(w_1 \mathfrak{Y}) = \zeta(v_1 \mathfrak{Y}), \text{ for } 2 \le g \le w+1.$

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... $\quad 453$

Resolving sets	Contradictions
$\mathfrak{Y} = \{t_1, t_g\}, t_g \ (2 \le g \le w)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(s_2 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, u_g\}, u_g (2 \le g \le w)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(t_2 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{v_1, v_g\}, v_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(u_2 \mathfrak{Y}) = \zeta(r_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{w_1, w_g\}, w_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(z_1 \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(s_1 \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{x_1, x_g\}, x_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(v_2 \mathfrak{Y}) = \zeta(a_n \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{y_1, y_g\}, y_g \ (2 \le g \le n)$	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(w_1 \mathfrak{Y}) = \zeta(v_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{a_1, a_g\}, a_g \ (2 \le g \le n)$	$\zeta(w_1 \mathfrak{Y}) = \zeta(v_1 \mathfrak{Y}), \text{ for } 2 \le g \le w \text{ and}$
	$\zeta(z_1 \mathfrak{Y}) = \zeta(z_2 \mathfrak{Y}), \text{ for } g = w + 1.$

• When one node is in the set A_1 and other lies in the set A_l ; l = 2, 3, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{p_1, q_g\}, q_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(s_n \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, r_g\}, r_g \ (1 \le g \le n)$	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } 1 \leq g \leq w \text{ and}$
	$\zeta(r_n \mathfrak{Y}) = \zeta(p_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, s_g\}, s_g \ (1 \le g \le n)$	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } 1 \leq g \leq w \text{ and}$
	$\zeta(r_n \mathfrak{Y}) = \zeta(p_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, t_g\}, t_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(r_n \mathfrak{Y}) = \zeta(p_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, u_g\}, u_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(r_n \mathfrak{Y}) = \zeta(p_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(r_2 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{p_1, w_g\}, w_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1 \text{ and}$
	$\zeta(u_2 \mathfrak{Y}) = \zeta(x_1 \mathfrak{Y}), \text{ for } w \le g \le w+1.$
$\mathfrak{Y} = \{p_1, x_g\}, x_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_2 \mathfrak{Y}) = \zeta(x_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(r_3 \mathfrak{Y}) = \zeta(w_{n-1} \mathfrak{Y}), \text{ for } g = w+1.$
$\mathfrak{Y} = \{p_1, y_g\}, y_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1 \text{ and}$
	$\zeta(u_2 \mathfrak{Y}) = \zeta(x_1 \mathfrak{Y}), \text{ for } w \le g \le w+1.$

Resolving sets	Contradictions
$\mathfrak{Y} = \{p_1, z_g\}, \ z_g \ (1 \le g \le n)$	$\zeta(a_n \mathfrak{Y}) = \zeta(a_1 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(x_2 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = 2 \text{ and}$
	$\zeta(x_1 \mathfrak{Y}) = \zeta(u_2 \mathfrak{Y}), \text{ for } 3 \le g \le w+1.$
$\mathfrak{Y} = \{p_1, a_g\}, a_g \ (1 \le g \le n)$	$\zeta(v_n \mathfrak{Y}) = \zeta(u_2 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(x_1 \mathfrak{Y}) = \zeta(u_2 \mathfrak{Y}), \text{ for } g \leq w \text{ and}$
	$\zeta(t_n \mathfrak{Y}) = \zeta(r_{n-1} \mathfrak{Y}), \text{ for } g = w + 1.$

• When one node is in the set A_2 and other lies in the set A_l ; l = 3, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{q_1, r_g\}, r_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(r_1 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } 2 \le g \le w \text{ and}$
	$\zeta(q_n \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, s_g\}, s_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(q_n \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, t_g\}, t_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(r_1 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(q_n \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, u_q\}, u_q \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w - 1$
	$\zeta(r_1 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(q_n \mathfrak{Y}) = \zeta(r_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y} = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w - 1$
	$\zeta(q_n \mathfrak{Y}) = \zeta(q_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(v_1 \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, w_q\}, w_q \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w-1$
	$\zeta(x_1 \mathfrak{Y}) = \zeta(u_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(r_3 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{q_1, x_q\}, x_q (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w-1 \text{ and}$
	$\zeta(v_1 \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } w \leq g \leq w+1.$
$\mathfrak{Y} = \{q_1, y_q\}, y_q \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w-1 \text{ and}$
	$\zeta(v_1 \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } w \leq g \leq w+1.$
$\mathfrak{Y} = \{q_1, z_q\}, z_q \ (1 \le g \le n)$	$\zeta(p_2 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(y_2 \mathfrak{Y}) = \zeta(a_1 \mathfrak{Y}), \text{ for } g = 2 \text{ and}$
	$\zeta(v_1 \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 3 \le g \le w+1.$
$\mathfrak{Y} = \{q_1, a_q\}, a_q \ (1 \le g \le n)$	$\zeta(y_2 \mathfrak{Y}) = \zeta(a_n \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(t_2 \mathfrak{Y}) = \zeta(v_1 \mathfrak{Y}), \text{ for } 2 \le g \le w \text{ and}$
	$\zeta(z_1 \mathfrak{Y}) = \zeta(y_2 \mathfrak{Y}), \text{ for } g = w + 1.$
	$ 3 (1 1 \mathcal{O}) 3 (\mathcal{O} 1 \mathcal{O}) 1 = - \mathcal{O} 0 1 = - \mathcal{O} 1 = - \mathcal{O} 1 1 1 = - \mathcal{O} 1 1 1 = - \mathcal{O} 1 1 1 1 = - \mathcal{O} 1 1 1 1 = - \mathcal{O} 1$

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... 455

• When one node is in the set A_3 and other lies in the set A_l ; l = 4, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{r_1, s_g\}, s_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(q_1 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, t_g\}, t_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1 \text{ and}$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } w \leq g \leq w+1.$
$\mathfrak{Y} = \{r_1, u_g\}, u_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1 \text{ and}$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } w \le g \le w+1.$

Resolving sets	Contradictions
$\mathfrak{Y} = \{r_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, w_g\}, w_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, x_q\}, x_q \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \leq g \leq w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, y_g\}, y_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{r_1, z_g\}, z_g \ (1 \le g \le n)$	$\zeta(a_n \mathfrak{Y}) = \zeta(a_1 \mathfrak{Y}), \text{ for } g = 1, w+1$
	$\zeta(a_n \mathfrak{Y}) = \zeta(v_2 \mathfrak{Y}), \text{ for } g = 2 \text{ and}$
	$\zeta(t_2 \mathfrak{Y}) = \zeta(y_n \mathfrak{Y}), \text{ for } 3 \le g \le w.$
$\mathfrak{Y} = \{r_1, a_g\}, a_g \ (1 \le g \le n)$	$\zeta(a_{n-1} \mathfrak{Y}) = \zeta(w_2 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 2 \leq g \leq w \text{ and}$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(q_n \mathfrak{Y}), \text{ for } g = w + 1.$

• When one node is in the set A_4 and other lies in the set A_l ; l = 5, 6, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{s_1, t_q\}, t_q \ (1 \le q \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
\sim ($^{o_1}, ^{o_g}$), o_g ($^{i_1} = g \leq n$)	$\zeta(n_1 \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } n \mathfrak{Y} \mathfrak{Y} \mathfrak{Y} \mathfrak{Y} \mathfrak{Y}$ $\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and } \mathfrak{Y}$
(1 (1))	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{s_1, u_g\}, u_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(u_1 \mathfrak{Y}) = \zeta(t_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } g = w+1.$
$\mathfrak{Y} = \{s_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1 \text{ and}$
	$\zeta(t_1 \mathfrak{Y}) = \zeta(u_1 \mathfrak{Y}), \text{ for } w \le g \le w+1.$
$\mathfrak{Y} = \{s_1, w_g\}, w_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{s_1, x_g\}, x_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{s_1, y_g\}, y_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(a_1 \mathfrak{Y}) = \zeta(z_1 \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{s_1, z_g\}, z_g \ (1 \le g \le n)$	$\zeta(a_n \mathfrak{Y}) = \zeta(a_1 \mathfrak{Y}), \text{ for } g = 1, w+1$
	$\zeta(z_n \mathfrak{Y}) = \zeta(u_2 \mathfrak{Y}), \text{ for } g = 2 \text{ and}$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 3 \le g \le w.$
$\mathfrak{Y} = \{s_1, a_g\}, a_g \ (1 \le g \le n)$	$\zeta(q_1 \mathfrak{Y}) = \zeta(p_1 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 2 \leq g \leq w \text{ and}$
	$\zeta(p_n \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } g = w + 1.$

• When one node is in the set A_5 and other lies in the set A_l ; l = 6, 7, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{t_1, u_g\}, u_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(z_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(t_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(a_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, w_g\}, w_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(a_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, x_g\}, x_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(a_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, y_g\}, y_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(a_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, z_g\}, z_g \ (1 \le g \le n)$	$\zeta(a_n \mathfrak{Y}) = \zeta(y_1 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(w_1 \mathfrak{Y}), \text{ for } g = 2, \text{ we have },$
	$\zeta(z_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 3 \leq g \leq w \text{ and}$
	$\zeta(y_1 \mathfrak{Y}) = \zeta(t_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{t_1, a_g\}, a_g \ (1 \le g \le n)$	$\zeta(y_n \mathfrak{Y}) = \zeta(w_1 \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(z_n \mathfrak{Y}) = \zeta(y_1 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(z_1 \mathfrak{Y}) = \zeta(r_n \mathfrak{Y}), \text{ for } g = w + 1.$

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... 457

• When one node is in the set A_6 and other lies in the set A_l ; l = 7, 8, ..., 12.

Resolving sets	Contradictions
$\mathfrak{Y} = \{u_1, v_g\}, v_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(s_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(v_2 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, w_q\}, w_q \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(s_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(v_2 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, x_g\}, x_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(s_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(v_2 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, y_g\}, y_g \ (1 \le g \le n)$	$\zeta(r_n \mathfrak{Y}) = \zeta(p_n \mathfrak{Y}), \text{ for } 1 \le g \le w - 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(s_2 \mathfrak{Y}), \text{ for } g = w \text{ and }$
	$\zeta(v_2 \mathfrak{Y}) = \zeta(s_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, z_g\}, z_g \ (1 \le g \le n)$	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } 1 \le g \le 2,$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 3 \leq g \leq w \text{ and}$
	$\zeta(z_2 \mathfrak{Y}) = \zeta(z_n \mathfrak{Y}), \text{ for } g = w + 1.$
$\mathfrak{Y} = \{u_1, a_g\}, a_g \ (1 \le g \le n)$	$\zeta(p_1 \mathfrak{Y}) = \zeta(q_1 \mathfrak{Y}), \text{ for } g = 1$
	$\zeta(y_n \mathfrak{Y}) = \zeta(t_2 \mathfrak{Y}), \text{ for } 2 \le g \le w - 1$
	$\zeta(z_n \mathfrak{Y}) = \zeta(v_2 \mathfrak{Y}), \text{ for } g = w \text{ and}$
	$\zeta(z_2 \mathfrak{Y}) = \zeta(t_n \mathfrak{Y}), \text{ for } g = w + 1.$
	$\begin{aligned} \zeta(y_n \mathfrak{Y}) &= \zeta(t_2 \mathfrak{Y}), \text{ for } 3 \leq g \leq w \text{ and} \\ \zeta(z_2 \mathfrak{Y}) &= \zeta(z_n \mathfrak{Y}), \text{ for } g = w + 1. \end{aligned}$ $\begin{aligned} \zeta(p_1 \mathfrak{Y}) &= \zeta(q_1 \mathfrak{Y}), \text{ for } g = 1 \\ \zeta(y_n \mathfrak{Y}) &= \zeta(t_2 \mathfrak{Y}), \text{ for } 2 \leq g \leq w - 1 \\ \zeta(z_n \mathfrak{Y}) &= \zeta(v_2 \mathfrak{Y}), \text{ for } g = w \text{ and} \end{aligned}$

Similarly, we get contradictions, when one vertex is in the set A_l $(7 \le l \le 11)$ and the other lies in the set A_l $(8 \le l \le 12)$. In this manner, the above conversation explains that there is no resolving set comprising of two vertices for $\mathbb{V}(L(S(D_n)))$ implying that

 $\beta(L(S(D_n))) = 3$ in this case.

Case(II) When the integer n is odd.

In this case, the integer n can be written as n = 2w + 1, where $w \in \mathbb{N}$ and $w \geq 3$. Let $\mathfrak{Y} = \{z_1, z_2, q_1\} \subset \mathbb{V}(L(S(D_n)))$. Now, in order to show that \mathfrak{Y} is a resolving set for the plane graph $L(S(D_n))$, we consign the metric codes for each vertex of $\mathbb{V}(L(S(D_n)))$ regarding the set \mathfrak{Y} .

Now, the metric codes for the nodes of pq-cycle $\{v = p_t, q_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(p_t \mathfrak{Y}):(t=1)$	(7, 8, 1)
$\zeta_M(p_t \mathfrak{Y}):(t=2)$	(7,7,1)
$\zeta_M(p_t \mathfrak{Y}):(t=3)$	(8,7,3)
$\zeta_M(p_t \mathfrak{Y}): (4 \le t \le w+2)$	(2t+2, 2t, 2t-3)
$\zeta_M(p_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 10, 4w - 2t + 12, 4w - 2t + 5)

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(q_t \mathfrak{Y}):(t=1)$	(7, 8, 0)
$\zeta_M(q_t \mathfrak{Y}):(t=2)$	(7,7,2)
$\zeta_M(q_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+3, 2t+1, 2t-2)
$\zeta_M(q_t \mathfrak{Y}):(t=w+2)$	(2w+5, 2w+5, 2w)
$\zeta_M(q_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 9, 4w - 2t + 11, 4w - 2t + 4)

The metric codes for the set of inward nodes $\{v = r_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(r_t \mathfrak{Y}):(t=1)$	(6,7,1)
$\zeta_M(r_t \mathfrak{Y}):(t=2)$	(6, 6, 2)
$\zeta_M(r_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+2, 2t, 2t-2)
$\zeta_M(r_t \mathfrak{Y}):(t=w+2)$	(2w+5, 2w+4, 2w+1)
$\zeta_M(r_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 9, 4w - 2t + 11, 4w - 2t + 5)

The metric codes for the set of interior nodes $\{v = s_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(s_t \mathfrak{Y}):(t=1)$	(5, 6, 2)
$\zeta_M(s_t \mathfrak{Y}):(t=2)$	(5, 5, 3)
$\zeta_M(s_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+1, 2t-1, 2t-1)
$\zeta_M(s_t \mathfrak{Y}):(t=w+2)$	(2w+4, 2w+3, 2w+2)
$\zeta_M(s_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 8, 4w - 2t + 10, 4w - 2t + 6)

The metric codes for the nodes of tuvw-cycle $\{v = t_t, u_t, v_t, w_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(t_t \mathfrak{Y}):(t=1)$	(5, 6, 3)
$\zeta_M(t_t \mathfrak{Y}):(t=2)$	(4, 5, 4)
$\zeta_M(t_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t, 2t-2, 2t)
$\zeta_M(t_t \mathfrak{Y}):(t=w+2)$	(2w+4, 2w+2, 2w+3)
$\zeta_M(t_t \mathfrak{Y}): (w+3 \le t \le 2w+1)$	(4w - 2t + 8, 4w - 2t + 10, 4w - 2t + 7)

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(u_t \mathfrak{Y}):(t=1)$	(4, 5, 3)
$\zeta_M(u_t \mathfrak{Y}):(t=2)$	(5, 4, 4)
$\zeta_M(u_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t+1, 2t-1, 2t)
$\zeta_M(u_t \mathfrak{Y}):(t=w+2)$	(2w+3, 2w+3, 2w+3)
$\zeta_M(u_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 7, 4w - 2t + 9, 4w - 2t + 7)
$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(v_t \mathfrak{Y}):(t=1)$	(3, 4, 4)
$\zeta_M(v_t \mathfrak{Y}): (2 \le t \le w+1)$	(2t+1, 2t-1, 2t+1)
$\zeta_M(v_t \mathfrak{Y}):(t=w+2)$	(2w+2, 2w+3, 2w+3)
$\zeta_M(v_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 6, 4w - 2t + 8, 4w - 2t + 7)

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... 459

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(w_t \mathfrak{Y}):(t=1)$	(3, 4, 5)
$\zeta_M(w_t \mathfrak{Y}): (2 \le t \le w+1)$	(2t+1, 2t-1, 2t+2)
$\zeta_M(w_t \mathfrak{Y}):(t=w+2)$	(2w+2, 2w+3, 2w+2)
$\zeta_M(w_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 6, 4w - 2t + 8, 4w - 2t + 6)

The metric codes for the set of exterior nodes $\{v = x_t : 1 \le t \le n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(x_t \mathfrak{Y}):(t=1)$	(2,3,5)
$\zeta_M(x_t \mathfrak{Y}): (2 \le t \le w+1)$	(2t, 2t-2, 2t+2)
$\zeta_M(x_t \mathfrak{Y}):(t=w+2)$	(2w+1, 2w+2, 2w+3)
$\zeta_M(x_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 5, 4w - 2t + 7, 4w - 2t + 7)

The metric codes for the set of outward nodes $\{v=y_t: 1\leq t\leq n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(y_t \mathfrak{Y}):(t=1)$	(1, 2, 6)
$\zeta_M(y_t \mathfrak{Y}): (2 \le t \le w+1)$	(2t-1, 2t-3, 2t+3)
$\zeta_M(y_t \mathfrak{Y}):(t=w+2)$	(2w, 2w+1, 2w+4)
$\zeta_M(y_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 4, 4w - 2t + 6, 4w - 2t + 8)

At last, the metric codes for the nodes of $za\text{-cycle}~\{\upsilon=z_t,a_t:1\leq t\leq n\}$ are

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(z_t \mathfrak{Y}):(t=1)$	(0, 2, 7)
$\zeta_M(z_t \mathfrak{Y}):(t=2)$	(2,0,8)
$\zeta_M(z_t \mathfrak{Y}): (3 \le t \le w+1)$	(2t-2, 2t-4, 2t+3)
$\zeta_M(z_t \mathfrak{Y}):(t=w+2)$	(2w, 2w, 2w+5)
$\zeta_M(z_t \mathfrak{Y}):(w+3 \le t \le 2w+1)$	(4w - 2t + 4, 4w - 2t + 6, 4w - 2t + 9)

and

$\zeta_M(v \mathfrak{Y})$	$\mathfrak{Y} = \{z_1, z_2, q_1\}$
$\zeta_M(a_t \mathfrak{Y}):(t=1)$	(1,1,7)
$\zeta_M(a_t \mathfrak{Y}): (2 \le t \le w+1)$	(2t-1, 2t-3, 2t+4)
$\zeta_M(a_t \mathfrak{Y}):(w+2 \le t \le 2w)$	(4w - 2t + 3, 4w - 2t + 5, 4w - 2t + 8)
$\zeta_M(a_t \mathfrak{Y}):(t=2w+1)$	(1,3,7)

Again we see that no two vertices are having indistinguishable metric codes, suggesting that $dim(L(S(D_n))) \leq 3$. Now, on assuming that $dim(L(S(D_n))) = 2$, we consider that to be are parallel prospects as talked about in Case(I) and logical inconsistency can be inferred correspondingly. Consequently, $dim(L(S(D_n))) = 3$ for this situation too, which completes the proof of the theorem.

This result can also be written as:

Theorem 2.2. Let n be the positive integer such that $n \ge 6$ and $L(S(D_n))$ be the planar graph on 12n vertices as defined above. Then, its independent resolving number is 3.

Proof. For proof, refer to Theorem 2.1.

3. Conclusions

In this study, we obtained the exact metric dimension of the line graph of the subdivision graph of the graph of convex polytope D_n . We found that the metric dimension of the line graph $L(S(D_n))$ is the same as the metric dimension of the graph of convex polytope D_n i.e., $\beta(D_n) = \beta(L(S(D_n)))$. We also observed that the basis set \mathfrak{Y} is independent for the graph $L(S(D_n))$. We close this section by raising an open problem that naturally arises from the text.

Open Problem 1: Characterise those families of the graphs of convex polytopes (say A_n) with $\beta(A_n) = \beta(L(S(A_n)))$.

Acknowledgement. The authors express their sincere thanks to the referee(s) for their suggestions which have improved the quality of this paper.

References

- Asif, F., Zahid, Z., Zafar, S., Farahani, M. R. and Gao, W., (2020), On topological properties of some convex polytopes by using line operator on their subdivisions, Hacettepe J. Math. Stat., pp. 1-10.
- [2] Băca, M., (1988), Labellings of two classes of convex polytopes, Util. Math., 34, pp. 24-31.
- [3] Beerloiva, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M. and Ram, L., (2006), Network discovery and verification, IEEE J. Sel. Area Commun., 24, pp. 2168–2181.
- [4] Chartrand, G., Eroh, L., Johnson, M. A. and Oellermann, O. R., (2000), Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105, pp. 99-113.
- [5] Harary, F. and Melter, R. A., (1976), On the metric dimension of a graph, Ars Comb., 2, pp. 191-195.
- [6] Imran, M., Baig, A. Q. and Ahmad, A., (2012), Families of plane graphs with constant metric dimension, Util. Math., 88, pp. 43–57.
- [7] Khuller, S., Raghavachari, B. and Rosenfeld, A., (1996), Landmarks in graphs, Discrete Appl. Math., 70, pp. 217-229.
- [8] Melter, R. A. and Tomescu, I., (1984), Metric bases in digital geometry, Comput. Gr. Image Process., 25, pp. 113-121.
- [9] Sebo, A. and Tannier, E., (2004), On metric generators of graphs, Math. Oper. Res., 29(2), pp. 383-393.
- [10] Sharma, S. K. and Bhat, V. K., (2020), Metric Dimension of heptagonal circular ladder, Discrete Math. Algorithms Appl., 13(1), 2050095.
- [11] Slater, P. J., (1975), Leaves of trees, Congr. Numer, 14, pp. 549-559.
- [12] Tomescu, I. and Imran, M., (2011), Metric dimension and R-Sets of a connected graph, Graphs Comb., 27, pp. 585-591.

S. K. SHARMA, V. K. BHAT: METRIC DIMENSION OF LINE GRAPH OF THE SUBDIVISION... 461

Sunny Kumar Sharma completed his M.Sc. (Mathematics) from University of Jammu in 2017. Currently, he is pursuing his Ph.D. at the school of Mathematics, Shri Mata Vaishno Devi University, Katra, India. His area of interest is computation of metric dimension, edge metric dimension, mixed metric dimension of various families of plane graphs and their applications.

Vijay Kumar Bhat for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.12, N.3.