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TRANSLATION AND SCALAR MULTIPLICATION ON PICTURE

FUZZY IDEAL OF A PS ALGEBRA

S. DOGRA1∗, M. PAL1, §

Abstract. In this paper, the notion of picture fuzzy ideal of PS algebra is introduced
as a generalization of fuzzy ideal of PS algebra. The study of properties of picture fuzzy
ideal of PS algebra is done in the environment of scalar multiplication with picture fuzzy
set, translation of picture fuzzy set and extension of picture fuzzy set.
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1. Introduction

In the purpose of handling uncertainty in real life field, Zadeh [29] introduced fuzzy set.
It is important to make reference to that fuzzy set includes only the grade of membership.
For the generalization of fuzzy set, Atanassov [3] provided the notion of intuitionistic
fuzzy set where intuitionistic fuzzy set includes the grade of membership and the grade
of non-membership. Iseki and Tanaka [12] initiated the notion of BCK algebra. The
concept of BCI algebra was provided by Iseki [13]. Combining the ideas of fuzzy set
and BCK algebra, the study of BCK algebra based on fuzzy set was done by Xi [28].
The concept of fuzzy set associated with BCI algebra was given by Ahmad [1]. Neggers
and Kim [20] provided the notion of d-algebra. With the headway of time, a lot of
works on BCK/BCI/d-algebra and ideals associated with fuzzy set were done by several
researchers [18, 2, 23, 26]. Intuitionistic fuzzy subalgebra and ideals in BCK algebra were
studied by Jun and Kim [19] as an extension of fuzzy set concept associated with BCK
algebra. As the time goes, BCK/BCI algebra and ideals were studied by Senapati et al.
[25, 27] in context of intuitionistic fuzzy set in various directions. Jana et al. [15, 17]
studied BCK/BCI under different set environment and Senapati [24] studied translation
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on B-algebra under intuitionistic fuzzy environment. A new kind of algebra named PS
algebra was initiated by Priya and Ramachandran [21] as a generalization of BCI/BCK/d-
algebra. They [22] also studied PS algebra applying the notion of fuzzy set in PS algebra.
Including the grade of neutral membership and extending the notion of intuitionistic fuzzy
set, the concept of picture fuzzy set was provided by Cuong [6]. Later on various types of
research works under picture fuzzy circumstances were performed by several researchers
[4, 5, 11, 14, 16, 7, 8, 9, 10]. In this article, we will provide the concept of picture fuzzy
ideal and study its properties in context of translation of picture fuzzy set, multiplication
of scalar with picture fuzzy set and extension picture fuzzy set.

2. Preliminaries

Here, we will call back again some basic concepts of BCK/BCI/d-algebra, PS algebra,
ideal of PS algebra, fuzzy set (FS), fuzzy ideal (FI) of PS algebra, intuitionistic fuzzy set
(IFS), picture fuzzy set (PFS) and some operations on picture fuzzy sets (PFSs).
Iseki [13] introduced BCI algebra.

Definition 2.1. [13] An algebra (A, �, 0) is said to be BCI-algebra if for any a, b, c ∈ A,
the below stated conditions are meet.

(i) [(a � b) � (a � c)] � (c � b) = 0
(ii) [a � (a � b)] � b = 0
(iii) a � a = 0
(iv) a � b = 0 and b � a = 0⇒ a = b.

A BCI algebra satisfying the condition 0 � a = 0 for all a ∈ A is called BCK algebra.
Neggers and Kim [20] introduced d-algebra as a related algebraic structure of BCK/BCI-
algebra.

Definition 2.2. [20] An algebra (A, �, 0) is said to be d-algebra if the below stated condi-
tions are fulfilled.

(i) a � a = 0
(ii) 0 � a = 0
(iii) a � b = 0 and b � a = 0⇒ a = b for all a, b ∈ A.

As the generalization of BCK/BCI/d-algebra, Priya and Ramachandran [21] defined
ideal of PS algebra.

Definition 2.3. [21] An algebra (A, �, 0) is said to be PS algebra if the below stated con-
ditions are satisfied.

(i) a � a = 0
(ii) a � 0 = 0
(iii) a � b = 0 and b � a⇒ a = b for all a, b ∈ A.

A binary relation ‘6’ on A is defined as: a 6 b holds iff b � a = 0.

Definition 2.4. [21] Let (A, �, 0) be a PS algebra and C ⊆ A is non-empty. Then C is
called ideal of A if the below stated conditions are meet.

(i) 0 ∈ C
(ii) b � a ∈ C and b ∈ C ⇒ a ∈ C

Definition 2.5. [29] Let A be the set of universe. Then a FS P over A is of the form
P = {(a, µP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the grade of membership of a in P .

Realizing the absence of grade of non-membership in FS and generalizing FS, Atanassov
[3] provided the definition IFS in the following way.
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Definition 2.6. [3] Let A be the set of universe. An IFS P over A is of the form P =
{(a, µP (a), vP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the grade of membership of a in P and
vP (a) ∈ [0, 1] is the grade of non-membership of a in P such that the 0 6 µP (a)+vP (a) 6 1
for all a ∈ A is fulfilled.

Applying the notion of fuzzy set (FS) to PS algebra, Priya and Ramachandran [22]
provided the definition of fuzzy ideal (FI) in PS algebra.

Definition 2.7. [22] Let (A, �, 0) be a PS algebra and P be a FS in A. Then P is called
FI of A if the below stated conditions are satisfied.

(i) µP (0) > µP (a)
(ii) µP (a) > µP (b � a) ∧ µP (b) for all a, b ∈ A.

Including more possible types of uncertainty, Cuong [6] defined PFS generalizing the
concepts of FS and IFS.

Definition 2.8. [6] Let A be the set of universe. Then a PFS P over the universe A
is defined as P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the grade
of positive membership of a in P , ηP (a) ∈ [0, 1] is the grade of neutral membership of
a in P and vP (a) ∈ [0, 1] is the grade of negative membership of a in P such that 0 6
µP (a)+ηP (a)+vP (a) 6 1 for all a ∈ A is fulfilled. For all a ∈ A, 1−(µP (a)+ηP (a)+vP (a))
is the grade of denial membership a in P .

Definition 2.9. [6] Let P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A} and Q = {(a, µQ(a), ηQ(a), vQ(a)) :
a ∈ A} be two PFSs over the universe A. Then intersection between P and Q is denoted
by P ∩Q and is defined in the following way.
P ∩Q = {(a,min(µP (a), µQ(a)),min(ηP (a), ηQ(a)),max(vP (a), vQ(a))) : a ∈ A}

Throughout the paper, we write PFS P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A} as P =
(µP , ηP , vP ).

3. Scalar Multiplication on Picture Fuzzy Ideal

Scalar multiplication with PFS is an important operation. In the current section, scalar
multiplication with PFS is defined and some important properties of PFI in the light of
scalar multiplication with PFS has been highlighted here.
Now, it is the time to introduce PFI of PS algebra as an extension of FI of PS algebra.

Definition 3.1. Let A be a PS algebra. A PFS P = (µP , ηP , vP ) is called PFI of A if the
below stated conditions are meet.
(i) µP (0) > µP (a), ηP (0) > ηP (a) and vP (0) 6 vP (a)
(ii) µP (a) > µP (b � a) ∧ µP (b), ηP (a) > ηP (b � a) ∧ ηP (b) and vP (a) 6 vP (b � a) ∨ vP (b)
for all a, b ∈ A.

Example 3.1. Let us consider the PS algebra (A, �, 0) as follows.

� 0 a b
0 0 a b
a 0 0 b
b 0 a 0

Let us suppose a PFS P = (µP , ηP , vP ) in A such that

µP (0) = 0.35, ηP (0) = 0.3 and vP (0) = 0.2

µP (a) = 0.25, ηP (a) = 0.2 and vP (a) = 0.3

µP (b) = 0.15, ηP (b) = 0.15 and vP (b) = 0.4
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It can be clearly shown that P is a PFI of A.

Now, we are going to initiate the notion of scalar multiplication with PFS where the
scalar lies in the interval [0, 1]. This can be obtained by multiplying the scalar with three
picture fuzzy components individually and it again produces a PFS.

Definition 3.2. Let P = (µP , ηP , vP ) be a PFS over the set of universe A. Then for
a scalar k ∈ [0, 1], scalar multiplication with PFS P is denoted by kP and is defined as
kP = (µkP , ηkP , vkP ), where µkP (a) = kµP (a), ηkP (a) = kηP (a) and vkP (a) = kvP (a) for
all a ∈ A.

Now, two important results on PFI on the basis of scalar multiplication with PFS are
studied by following two Propositions. In this case, non-zero scalar has been taken into
account during multiplication.

Proposition 3.1. Let (A, �, 0) be a PS algebra and P = (µP , ηP , vP ) be a PFI of A. Then
kP is a PFI of A for k ∈ (0, 1].

Proof: Let kP = Q = (µQ, ηQ, vQ) where µQ(a) = kµP (a), ηQ(a) = kηP (a), vQ(a) =
kvP (a) for all a ∈ A and for k ∈ (0, 1].

Now µQ(0) = kµP (0)

> kµP (a) [as P is a PFI of A]

= µQ(a),

ηQ(0) = kηP (0)

> kηP (a) [as P is a PFI of A]

= ηQ(a)

and vQ(0) = kvP (0)

6 kvP (a) [as P is a PFI of A]

= vQ(a) for all a ∈ A.

Also, µQ(a) = kµP (a)

> k(µP (b � a) ∧ µP (b)) [as P is a PFI of A]

= (kµP (b � a)) ∧ (kµP (b))

= µQ(b � a) ∧ µQ(b),

ηQ(a) = kηP (a)

> k(ηP (b � a) ∧ ηP (b)) [as P is a PFI of A]

= (kηP (b � a)) ∧ (kηP (b))

= ηQ(b � a) ∧ ηQ(b)

and vQ(a) = kvP (a)

6 k(vP (b � a) ∨ vP (b)) [as P is a PFI of A]

= (kvP (b � a)) ∨ (kvP (b))

= vQ(b � a) ∧ vQ(b) for all a ∈ A.
Thus, Q = kP is a PFI of A.
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Proposition 3.2. Let (A, �, 0) be a PS algebra and P = (µP , ηP , vP ) be a PFS in A such
that kP is a PFI of A for k ∈ (0, 1]. Then P is a PFI of A.

Proof: Let kP = Q = (µQ, ηQ, vQ) where µQ(a) = kµP (a), ηQ(a) = kηP (a), vQ(a) =
kvP (a) for all a ∈ A and for k ∈ (0, 1].

Here, µQ(0) > µQ(a) [as Q is a PFI of A]

i.e. kµP (0) > kµP (a)

i.e. µP (0) > µP (a) [as k > 0],

ηQ(0) > ηQ(a) [as Q is a PFI of A]

i.e. kηP (0) > kηP (a)

i.e. ηP (0) > ηP (a) [as k > 0]

and vQ(0) 6 vQ(a) [as Q is a PFI of A]

i.e. kvP (0) 6 kvP (a)

i.e. vP (0) 6 vP (a) [as k > 0].

Also, µQ(a) > µQ(b � a) ∧ µQ(b) [as Q is a PFI]

i.e. kµP (a) > (kµP (b � a)) ∧ (kµP (b))

i.e. kµP (a) > k(µP (b � a) ∧ µP (b))

i.e. µP (a) > (µP (b � a) ∧ µP (a)) [as k > 0],

ηQ(a) > ηQ(b � a) ∧ ηQ(b) [as Q is a PFI]

i.e. kηP (a) > (kηP (b � a)) ∧ (kηP (b))

i.e. kηP (a) > k(ηP (b � a) ∧ ηP (b))

i.e. ηP (a) > (ηP (b � a) ∧ ηP (a)) [as k > 0]

and vQ(a) 6 vQ(b � a) ∨ vQ(b) [as Q is a PFI]

i.e. kvP (a) 6 (kvP (b � a)) ∨ (kvP (b))

i.e. kvP (a) 6 k(vP (b � a) ∨ vP (b))

i.e. vP (a) 6 (vP (b � a) ∨ vP (b)) [as k > 0] for all a, b ∈ A.

Thus, P is a PFI of A whenever kP is a PFI of A for k ∈ (0, 1].

4. Picture fuzzy ideal under translation of picture fuzzy set

In the current section, translation of PFS is defined as a generalization of translation
of FS and some results on PFI under translation of PFS are studied.

Definition 4.1. Let (A, �, 0) be the set of universe and P = (µP , ηP , vP ) be a PFS in A.
Then (r, s, t)-translation of P is defined as the PFS P T

r,s,t = (µTP , η
T
P , v

T
P ), where µTP (a) =

µP (a) + r, ηTP (a) = ηP (a) + s, vTP (a) = vP (a)− t and r, s, t ∈ [0, 1] with t = inf{v(a) : a ∈
A} and r + s = t.

Proposition 4.1. Let (A, �, 0) be PS algebra and P = (µP , ηP , vP ) be a PFI of A. Then
P T
r,s,t is a PFI of A.
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Proof: Let P T
r,s,t = (µTP , η

T
P , v

T
P ).

Now, µTP (0) = µP (0) + r

> µP (a) + r [as P is a PFI of A]

= µTP (a),

ηTP (0) = ηP (0) + s

> ηP (a) + s [as P is a PFI of A]

= ηTP (a)

and vTP (0) = vP (0)− t
6 vP (a)− t [as P is a PFI of A]

= vTP (a) for all a ∈ A.

Also, µTP (a) = µP (a) + r

> µP (b � a) ∧ µP (b) + r [as P is a PFI of A]

= (µP (b � a) + r) ∧ (µP (b) + r)

= µTP (b � a) ∧ µT (b),

ηTP (a) = ηP (a) + s

> ηP (b � a) ∧ ηP (b) + s [as P is a PFI of A]

= (ηP (b � a) + s) ∧ (ηP (b) + s)

= ηTP (b � a) ∧ ηTP (b)

and vTP (a) = vP (a)− t
6 vP (b � a) ∨ vP (b)− t [as P is a PFI of A]

= (vP (b � a)− t) ∨ (vP (b)− t)
= vTP (b � a) ∨ vTP (b) for all a, b ∈ A.

Consequently, P T
r,s,t is a PFI of A.

Proposition 4.2. Let (A, �, 0) be a PS algebra and P = (µP , ηP , vP ) be a PFS in A.
Then P = (µP , ηP , vP ) is a PFI of A if P T

r,s,t is a PFI of A.

Proof: Let P T
r,s,t = Q = (µQ, ηQ, vQ).

Now, µQ(0) > µQ(a) [as Q is a PFI of A]

i.e. µP (0) + r > µP (a) + r

i.e. µP (0) > µP (a),

ηQ(0) > ηQ(a) [as Q is a PFI of A]

i.e. ηP (0) + s > µP (a) + s

i.e. ηP (0) > ηP (a)
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and vQ(0) 6 vQ(a) [as Q is a PFI of A]

i.e. vP (0)− t 6 vP (a)− t
i.e. vP (0) 6 vP (a).

Also, µQ(a) > µQ(b � a) ∧ µQ(b) [as Q is a PFI of A]

i.e. µP (a) + r > (µP (b � a) + r) ∧ (µP (b) + r)

i.e. µP (a) + r > (µP (b � a) ∧ µP (b)) + r

i.e. µP (a) > µP (b � a) ∧ µP (a),

ηQ(a) > ηQ(b � a) ∧ ηQ(b) [as Q is a PFI of A]

i.e. ηP (a) + s > (ηP (b � a) + s) ∧ (ηP (b) + s)

i.e. ηP (a) + s > (ηP (b � a) ∧ ηP (b)) + s

i.e. ηP (a) > (ηP (b � a) ∧ ηP (a))

and vQ(a) 6 vQ(b � a) ∨ vQ(b) [as Q is a PFI of A]

i.e. vP (a)− t 6 (vP (b � a)− t) ∨ (vP (b)− t)
i.e. vP (a)− t 6 (vP (b � a) ∨ vP (b))− t

i.e. vP (a) 6 (vP (b � a) ∨ vP (b)) for all a, b ∈ A.
Consequently, P is a PFI of A

Example 4.1. Let us consider the Example 3.1. Here, t=inf {0.2, 0.3, 0.4} = 0.2. De-
pending on t, choose r = 0.15 and s = 0.05. Then translation of PFI P is defined as the
PFS P T

r,s,t = (µTP , η
T
P , v

T
P ) where

µT (0) = µP (0) + r = 0.35 + 0.15 = 0.5

ηTP (0) = ηP (0) + s = 0.3 + 0.05 = 0.35

and vTP (0) = vP (0)− t = 0.2− 0.2 = 0

µT (a) = µT (a) + r = 0.25 + 0.15 = 0.4

ηTP (a) = ηP (a) + s = 0.2 + 0.05 = 0.25

and vTP (a) = vP (a)− t = 0.3− 0.2 = 0.1

µT (b) = µP (b) + r = 0.15 + 0.15 = 0.3

ηTP (b) = ηP (b) + s = 0.15 + 0.05 = 0.2

and vTP (b) = vP (b)− t = 0.4− 0.2 = 0.2

5. Extension picture fuzzy ideal of PS algebra

In the current section, the notion of extension PFI is introduced generalizing the notion
of extension of FI.

Definition 5.1. Let A be the set of universe and P = (µP , ηP , vP ) be a PFI in A. Now,
a PFS Q = (µQ, ηQ, vQ) in A is said to be an extension PFI for P if

(i) Q is a PFI of A
(ii) µQ(a) > µP (a), ηQ(a) > ηP (a) and vQ(a) 6 vP (a) for all a ∈ A.

Proposition 5.1. Let (A, �, 0) be a PS algebra and P = (µP , ηP , vP ) be a PFI. Then P T
r,s,t

is an extension PFI for P .
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Proof: It is known from Proposition 4.1 that P T
r,s,t is a PFI of A.

Now, µTP (a) = µP (a) + r > µP (a)

ηTP (a) = µP (a) + s > ηP (a)

and vTP (a) = vP (a)− t 6 vP (a) for all a ∈ A.

Consequently, P T
r,s,t is an extension PFI for P .

Proposition 5.2. Let (A, �, 0) be a PS algebra and P = (µP , ηP , vP ) be a PFI of A. Also,
let Q = (µP , ηP , vP ), R = (µR, ηR, vR) be two extension PFIs for P . Then Q ∩ R is an
extension PFI for P .

Proof: Let Q ∩ R = S = (µS , ηS , vS), where µS(a) = µQ(a) ∧ µR(a), ηS(a) = ηQ(a) ∧
ηR(a) and vS(a) = vQ(a) ∨ vR(a) for all a ∈ A.

Now, µS(0) = µQ(0) ∧ µR(0)

> µQ(a) ∧ µR(a) [as Q,R are PFIs of A]

= µS(a),

ηS(0) = ηQ(0) ∧ ηR(0)

> ηQ(a) ∧ ηR(a) [as Q,R are PFIs of A]

= ηS(a)

and vS(0) = vQ(0) ∨ vR(0)

6 vQ(a) ∨ vR(a) [as Q,R are PFIs of A]

= vS(a)for all a, b ∈ A

Also, µS(a) = µQ(a) ∧ µR(a)

> (µQ(b � a) ∧ µQ(b)) ∧ (µR(b � a) ∧ µR(b)) [as Q,R are PFIs of A]

= (µQ(b � a) ∧ µR(b � a)) ∧ (µQ(b) ∧ µR(b))

= µS(b � a) ∧ µS(a),

ηS(a) = ηQ(a) ∧ ηR(a)

> (ηQ(b � a) ∧ ηQ(b)) ∧ (ηR(b � a) ∧ ηR(b)) [as Q,R are PFIs of A]

= (ηQ(b � a) ∧ ηR(b � a)) ∧ (ηQ(b) ∧ ηR(b))

= ηS(b � a) ∧ ηS(b)

and vS(a) = vQ(a) ∨ vR(a)

6 (vQ(b � a) ∨ vQ(b)) ∨ (vR(b � a) ∨ vR(b)) [as Q,R are PFIs of A]

= (vQ(b � a) ∨ vR(b � a)) ∨ (vQ(b) ∨ vR(b))

= vS(b � a) ∨ vS(b) for all a, b ∈ A.

Thus, it is obtained that µS(a) > µS(b � a)∧ µS(b), ηS(a) > ηS(b � a)∧ ηS(b) and vS(a) 6
vS(b � a) ∨ vS(b) for all a, b ∈ A.
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Consequently, S = Q ∩R is a PFI of A.

Now µS(a) = µQ(a) ∧ µR(a)

> µP (a) ∧ µP (a) [because Q,R are extension PFIs for P ]

= µP (a),

ηS(a) = ηQ(a) ∧ ηR(a)

> ηP (a) ∧ ηP (a) [because Q,R are extension PFIs for P ]

= ηP (a)

and vS(a) = vQ(a) ∨ vR(a)

6 vP (a) ∨ vP (a) [because Q,R are extension PFIs for P ]

= vP (a) for all a ∈ A.
Thus, S = Q ∩R is an extension PFI for P .

6. Conclusion

In this article, the notions of PFI of PS algebra, scalar multiplication with PFS, trans-
lation of PFS and extension PFI of PS algebra have been introduced. Here, it has been
observed that scalar multiplication of a PFI over a PS algebra is a PFI. Also, it has been
shown that if scalar multiplication of a PFS over a PS algebra is a PFI then PFS will be
a PFI. We have proved that the translation of a PFI over a PS algebra is a PFI. We have
also shown that if the translation of a PFS over a PS algebra is a PFI then PFS will be a
PFI. Here, the translation of a PFI has been presented here with a suitable example. We
have proved that translation of a PFI is an extension PFI and intersection of two extension
PFIs is an extension PFI.
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