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EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR

FRACTIONAL NONLINEAR VOLTERRA-FREDHOLM

INTEGRO-DIFFERENTIAL EQUATIONS

A. HAMOUD1∗, M. OSMAN2, §

Abstract. In this paper, we establish some new conditions for the existence and unique-
ness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm integro-
differential equations with integral boundary conditions. The desired results are proved
by using Banach and Krasnoselskii’s fixed point theorems. In addition, the Ulam-Hyers
stability and Ulam-Hyers-Rassias stability for solutions of the given problem are also
discussed. An example is presented to guarantee the validity of our results.
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1. Introduction

Recently, it has been proven that the differential models involving nonlocal derivatives
of fractional order arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in many fields, for instance, physics, chemistry, aerody-
namics, electrodynamics of complex medium, polymer rheology, and so forth [13, 14, 26].
For instance, fractional differential and fractional integro-differential equations are an ex-
cellent tool to describe hereditary properties of viscoelastic materials and, in general, to
simulate the dynamics of many processes on anomalous media [4, 10, 11, 12, 15, 23].

Theory of fractional differential equations has been extensively studied by several au-
thors as Baleanu [1], Balachandran and Trujillo [3], Kilbas et al. [13], Lakshmikantham
and Rao [14], and also see [7, 8, 9].

The stability theory for functional equations started with a problem related to the
stability of group homomorphisms that was considered by Ulam in 1940 [24]. Afterwards,
Rassias [16] introduced new ideas e.g., by proposing to consider unbounded right-hand

1 Department of Mathematics, Taiz University, Taiz-380 015, Yemen.
e-mail: maths.aah@bamu.ac.in; ORCID: https://orcid.org/0000-0002-8877-7337.

∗ Corresponding author.
2 College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China.

e-mail: mawiaosman@yahoo.com; ORCID: https://orcid.org/0000-0001-5015-1104.
§ Manuscript received: February 14, 2021; accepted: April 23, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.2 © Işık University, Department
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sides in the involved inequalities, depending on certain functions, introducing therefore
the so-called Hyers-Ulam-Rassias stability. Equation stability is an important subject
in the applications. Many authors investigated different types of stability of fractional
integro-differential equations, for instance, see [17, 18, 19, 20, 21].

Subsequently several authors have investigated the problem for different types of nonlin-
ear differential equations and integro-differential equations including functional differential
equations in Banach spaces. Very recently N’Guer’ekata [22] discussed the existence of
solutions of fractional abstract differential equations with nonlocal initial condition. The
nonlocal Cauchy problem is discussed by authors in [2] using the fixed-point concepts.
Tidke [23] studied the fractional mixed Volterra-Fredholm integro-differential equations
with nonlocal conditions using Leray-Schauder Theorem. Naimi et al. [15], studied exis-
tence, uniqueness and generalized Ulam stability for fractional integro-differential problem
with integral conditions by used the Krasnoselskii and Banach fixed point theorems.

Baleanu et al. [1], by using fixed-point methods, studied the existence and uniqueness
of a solution for the nonlinear fractional boundary value problem given by

cDνu(t) = A(t, u(t)), t ∈ J = [0, T ], 0 < ν < 1,

u(0) = u(T ), u(0) = β1u(η), u(T ) = β2u(η), 0 < η < T, 0 < β1 < β2 < 1.

Devi and Sreedhar [5] used the monotone iterative technique to the Caputo fractional
integro-differential equation of the type

cDνu(t) = A(t, u(t), Iνu(t)), t ∈ J = [0, T ], 0 < ν < 1,

u(0) = u0.

Wang and Zhou [25] studied the Ulam stability and data dependence for a Caputo
fractional differential given by

cDνu(t) = A(t, u(t)), t ∈ J = [a,+∞), 0 < ν < 1,

u(a) = ξ.

Dong et al. [6] established the existence and uniqueness of solutions via Banach and
Schaude fixed point techniques for the problem given by

cDν
0+u(t) = A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds, t ∈ J = [0, T ], 0 < ν ≤ 1,

u(0) = ξ.

Motivated by the above works, we will study a more general problem of Caputo frac-
tional integro-differential equations wich called Caputo fractional Volterra-Fredholm integro-
differential equation with integral boundary condition in Banach Space:

cDν+β
0+

u(t) = A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+ Iν0+F (t, u(t)), (1)

u(0) = b

∫ η

0
u(s)ds, b ∈ R, 0 < η < 1, (2)

where cDν+β
0+

is the Caputo fractional derivative of order ν + β, 0 < ν + β ≤ 1, t ∈ J :=
[0, 1], A,F : J × X −→ X, u : Ω −→ R, and ξ : J −→ L2(Ω) is a random variable with
E(u2) <∞. B,C : J × J ×X −→ X are continuous functions satisfying some conditions
which will be stated later. Iν0+ denotes the left sided Riemann-Liouville fractional integral
of order ν.

The paper is organized as follows: Sect. 2, we present some notations, definitions
and results which are used throughout this paper. In Sect. 3, we use the fixed point
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techniques to prove the existence and uniqueness results for the problem (1)-(2). In Sect.
4, we establish the Hyers-Ulam stability of the problem (1)-(2) be also discussed. In Sect.
5, an example is presented to guarantee the validity of our results. Concluding remarks
close the paper in Sect. 6.

2. Preliminaries

Here, we present some notations, definitions and results which are used throughout this
paper.

Let X, we denote the Banach space equipped with the norm ‖.‖ and C(J,X), Cn(J,X)
denotes respectively the Banach spaces of all continuous bounded functions and n times
continuously differentiable functions on J . In addition, we define the norm [14]

‖u‖C = max
t∈J
|u(t)|,

for any continuous function u : J −→ X.

Definition 2.1. [26] The left sided Riemann-Liouville fractional integral of order ν > 0
of a function u : J −→ X is defined as

Jν0+u(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1u(s)ds, t ∈ J,

where Γ denotes the Gamma function.

Definition 2.2. [13] The left sided fractional derivative of u ∈ Cn(J,X) in the Caputo
sense is defined by

cDν
0+u(t) = Jm−ν

0+
Dmu(t)

=


1

Γ(m−ν)

∫ t
0 (t− s)m−ν−1 ∂

mu(s)
∂sm ds, m− 1 < ν < m,

∂mu(t)
∂tm , ν = m, m ∈ N.

Hence, we have

(1) Jν0+J
vu = Jν+v

0+
u, ν, v > 0.

(2) Jν0+u
β = Γ(β+1)

Γ(β+ν+1)u
β+ν ,

(3) Dν
0+u

β = Γ(β+1)
Γ(β−ν+1)u

β−ν , ν > 0, β > −1.

(4) Jν0+D
ν
0+u(t) = u(t)− u(a), 0 < ν < 1.

(5) Jν0+D
ν
0+u(t) = u(t)−

∑m−1
k=0 u

(k)(0+) (t−a)k

k! , t > 0.

Definition 2.3. [26] The Riemann Liouville fractional derivative of order ν > 0 is nor-
mally defined as

Dν
0+u(t) = Dm

0+J
m−ν
0+

u(t), m− 1 < ν ≤ m, m ∈ N.

Theorem 2.1. [13] (Banach fixed point theorem). Let (S, ‖.‖) be a complete normed space,
and let the mapping F : S −→ S be a contraction mapping. Then F has exactly one fixed
point.

Theorem 2.2. [13] (Krasnoselskii fixed point theorem). Let w be bounded, closed and
convex subset in a Banach space X. If T1, T2 : w −→ w are two applications satisfying the
following conditions:
1) T1x+ T2y ∈ w for every x, y ∈ w;
2) T2 is a contraction;
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3) T1 is compact and continuous.
Then there exists a ∈ w such that T1a+ T2a = a.

Lemma 2.1. [6] Let u(t), A(t), q(t) ∈ C(J,R+) and let n(t) ∈ C(J,R+) be nondecreasing
for which the inequality

u(t) ≤ n(t) +

∫ t

0
A(s)u(s)ds+

∫ t

0
A(s)

∫ s

0
q(r)u(r)drds,

holds for any t ∈ J. Then

u(t) ≤ n(t)
[
1 +

∫ t

0
A(s)

(∫ s

0
(A(r) + q(r))dr

)
ds
]
.

3. Existence and uniqueness results

In this section, we shall give an existence and uniqueness results of Eq.(1), with the
condition (2). Before starting and proving the main results, we introduce the following
hypotheses:
(A1) For any t ∈ J and u, v ∈ X, (t, s) ∈ G = {(t, s) : 0 ≤ s ≤ t ≤ 1}, there exist positive
constants L1, L2, L3 and L4 such that

‖A(t, u)−A(t, v)‖ ≤ L1‖u− v‖,
‖F (t, u)− F (t, v)‖ ≤ L2‖u− v‖,
‖B(t, s, u)−B(t, s, v)‖ ≤ L3‖u− v‖,
‖C(t, s, u)− C(t, s, v)‖ ≤ L4‖u− v‖,

with L = max{L1, L2, L3, L4}.
(A2) Assume that A,B,C and F satisfy

‖A(t, u)‖ ≤ µ1(t)‖u‖,
‖F (t, u)‖ ≤ µ2(t)‖u‖,
‖B(t, s, u)‖ ≤ µ3(t)‖u‖,
‖C(t, s, u)‖ ≤ µ4(t)‖u‖,

where µi ∈ L∞(J,R+), i = 1, 2, 3, 4, t ∈ J , u ∈ X and (t, s) ∈ G.
(A3) Let t ∈ J, and the functions A,F,B and C are continuous on J . Then there exist
positive constants N1, N2, N3 and N4 such that

‖A(t, u(t))‖ ≤ L1‖u‖+N1,

‖F (t, u(t))‖ ≤ L2‖u‖+N2,

‖B(t, s, u)‖2 ≤ L3‖u‖+N3,

‖C(t, s, u)‖2 ≤ L4‖u‖+N4.
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Lemma 3.1. Let 0 < ν+β < 1, b 6= 1
η and u ∈ C(J,X) is called a solution of the problem

(1)-(2) ⇐⇒ u satisfies

u(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr +

∫ 1

0
C(s, r, u(r))dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, u(r))dr

]
ds

+
b

1− bη

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ +

∫ 1

0
C(r, σ, u(σ))dσ

+

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσ

]
dr. (3)

Proof. Let u ∈ C(J,X) be a solution of the problem (1)-(2). Firstly, we show that u is
solution of integral equation (3). By 2.2, we obtain

Iν+β
0+

cDν+β
0+

u(t) = u(t)− u(0). (4)

In addition, from equation in (1) and Definition 2.1, and use the assumption (4) of 2.2,
we have

Iν+β
0+

cDν+β
0+

u(t)

= Iν+β
0+

(
A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+ Iν0+F (t, u(t))

)
ds

=

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr +

∫ 1

0
C(s, r, u(r))dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, u(r))dr

]
ds. (5)

By substituting (5) in (4) with nonlocal condition in problem (3), we get the following
integral equation

u(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr +

∫ 1

0
C(s, r, u(r))dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, u(r))dr

]
ds+ u(0). (6)
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From integral boundary condition of our problem with using Fubini’s theorem and after
some computations, we get:

u(0) = b

∫ η

0
u(s)ds

= b

∫ η

0

[ ∫ s

0

(s− r)ν+β−1

Γ(ν + β)

[
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ

+

∫ 1

0
C(r, σ, u(σ))dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσ

]
dr
]
ds+ bηu(0)

= b

∫ η

0

∫ s

0

(s− r)ν+β−1

Γ(ν + β)
A(r, u(r))drds

+b

∫ η

0

∫ s

0

(s− r)ν+β−1

Γ(ν + β)
[

∫ r

0
B(r, σ, u(σ))dσ +

∫ 1

0
C(r, σ, u(σ))dσ]drds

+b

∫ η

0

∫ s

0

(s− r)ν+β−1

Γ(ν + β)

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσdrds+ bηu(0)

= b

∫ η

0

∫ η

r

(s− r)ν+β−1

Γ(ν + β)
dsA(r, u(r))dr

+b

∫ η

0

∫ η

r

(s− r)ν+β−1

Γ(ν + β)
ds[

∫ r

0
B(r, σ, u(σ))dσdr +

∫ 1

0
C(r, σ, u(σ))dσ]dr

+b

∫ η

0

∫ η

r

(s− r)ν+β−1

Γ(ν + β)
ds

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσdr + bηu(0),

that is

u(0) =
b

1− bη

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ

+

∫ 1

0
C(r, σ, u(σ))dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσ

]
dr. (7)

Finally, by substituting (7) in (6) we find (3). Conversely, from 2.2 and by applying the

operator cDν+β
0+

on both sides of (3), we find

cDν+β
0+

u(t) = cDν+β
0+

Iν+β
0+

(
A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds

+Iν0+F (t, u(t))
)
ds+c Dν+β

0+
u(0)

= A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+ Iν0+F (t, u(t)), (8)

this means that u satisfies the equation in the problem (1)-(2). Furthermore, by substi-
tuting t by 0 in integral equation (3), we have clearly that the integral boundary condition
in (2) holds. Therefore, u is solution of problem (1)-(2), which completes the proof. �
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Theorem 3.1. Assume that the assumptions (A1) and (A2) are satisfied and if

K :=
‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 1)
+
‖µ2‖L∞β(ν + 1, ν + β)

Γ(ν + 1)Γ(ν + β)

+
|b|‖µ1‖L∞ην+β+1 + |b|‖µ3‖L∞ην+β+1 + |b|‖µ4‖L∞ην+β+1

|1− bη|Γ(ν + β + 2)

+
|b|‖µ2‖L∞η2ν+β+1β(ν + 1, ν + β + 1)

|1− bη|Γ(ν + β1)Γ(ν + β + 1)
≤ 1, (9)

and

LK1 := L
|b|

|1− bη|

[ 3ην+β+1

Γ(ν + β + 2)
+
η2ν+β+1β(ν + 1, ν + β + 1)

Γ(ν + 1)Γ(ν + β + 1)

]
≤ 1. (10)

Then the problem (1)-(2) has at least one solution u(t) on J .

Proof. Consider the operator Υ : Bψ −→ Bψ by

Υu(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr +

∫ 1

0
C(s, r, u(r))dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, u(r))dr

]
ds+

b

1− bη

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

×
[
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ +

∫ 1

0
C(r, σ, u(σ))dσ

+

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσ

]
dr. (11)

For any function u ∈ C(J,X) we define the norm

‖u‖1 = max{e−t‖u(t)‖ : t ∈ [0, 1]},

and consider the closed ball

Bψ = {u ∈ C(J,X) such that ‖u‖1 ≤ ψ}.

For any t ∈ [0, r]. It is easy to see that the operator Υ is well-defined.

Let us define the operators Υ1,Υ2 on Bψ as follows

Υ1u(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr

+

∫ 1

0
C(s, r, u(r))dr +

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, u(r))dr

]
ds, (12)

and

Υ2u(t) =
b

1− bη

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ

+

∫ 1

0
C(r, σ, u(σ))dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, u(σ))dσ

]
dr. (13)
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For u, v ∈ Bψ, t ∈ J and by the assumption (A2), we find

‖Υ1u(t) + Υ2v(t)‖

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0
‖B(s, r, u(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))‖dr +

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))‖dr

]
ds

+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖A(r, v(r))‖+

∫ r

0
‖B(r, σ, v(σ))‖dσ

+

∫ 1

0
‖C(r, σ, v(σ))‖dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
‖F (σ, v(σ))‖dσ

]
dr

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
µ1(s)‖u(s)‖+

∫ s

0
µ3(s)‖u(r)‖dr +

∫ 1

0
µ4(s)‖u(r)‖dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
µ2(s)‖u(r)‖dr

]
ds

+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
µ1(r)‖v(r)‖+

∫ r

0
µ3(r)‖v(σ)‖dσ

+

∫ 1

0
µ4(r)‖v(σ)‖dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
µ2(σ)‖v(σ)‖dσ

]
dr

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖µ1‖L∞‖u‖1es + ‖µ3‖L∞‖u‖1(es − 1)

+‖µ4‖L∞‖u‖1(es − 1) + ‖µ2‖L∞‖u‖1
∫ s

0

(s− r)ν−1

Γ(ν)
erdr

]
ds

+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖µ1‖L∞‖v‖1er + ‖µ3‖L∞‖v‖1(er − 1)

+‖µ4‖L∞‖v‖1(er − 1) + ‖µ2‖L∞‖v‖1
∫ r

0

(r − σ)ν−1

Γ(ν)
eσdσ

]
dr.
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Therefore,

‖Υ1u+ Υ2v‖1

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖µ1‖L∞‖u‖1

es

et
+ ‖µ3‖L∞‖u‖1

(es − 1)

et

+‖µ4‖L∞‖u‖1
(es − 1)

et
+ ‖µ2‖L∞‖u‖1

∫ s

0

(s− r)ν−1

Γ(ν)

er

et
dr
]
ds

+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖µ1‖L∞‖v‖1

er

et
+ ‖µ3‖L∞‖v‖1

(er − 1)

et

+‖µ4‖L∞‖v‖1
(er − 1)

et
+ ‖µ2‖L∞‖v‖1

∫ r

0

(r − σ)ν−1

Γ(ν)

eσ

et
dσ
]
dr

≤ ψ
[‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 1)
+

‖µ2‖L∞
Γ(ν + 1)Γ(ν + β)

∫ 1

0
(1− s)ν+β+1sνds

|b|‖µ1‖L∞ην+β+1 + |b|‖µ3‖L∞ην+β+1 + |b|‖µ4‖L∞ην+β+1

|1− bη|Γ(ν + β + 1)

+
|b|‖µ2‖L∞

|1− bη|Γ(ν + 1)Γ(ν + β + 1)

∫ η

0
(η − r)ν+βrνdr

]
= ψ

[‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞
Γ(ν + β + 1)

+
‖µ2‖L∞β(ν + 1, ν + β)

Γ(ν + 1)Γ(ν + β)

+
|b|‖µ1‖L∞ην+β+1 + |b|‖µ3‖L∞ην+β+1 + |b|‖µ4‖L∞ην+β+1

|1− bη|Γ(ν + β + 2)

+
|b|‖µ2‖L∞η2ν+β+1β(ν + 1, ν + β + 1)

|1− bη|Γ(ν + 1)Γ(ν + β + 1)

]
= ψK

≤ ψ.

This implies that (Υ1u+ Υ2v) ∈ Bψ. Here we used the computations∫ 1

0
(1− s)ν+β+1sνds = β(ν + 1, ν + β)∫ η

0
(η − r)ν+βrνdr = η2ν+β+1β(ν + 1, ν + β + 1),

and the estimations: es

et ≤ 1, e
r

et ≤ 1, e
σ

et ≤ 1. Now, we establish that Υ2 is a contraction
mapping. For u, v ∈ X and t ∈ J , we have

‖Υ2u(t)−Υ2u(t)‖

≤ |b|
|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖A(r, u(r))−A(r, v(r))‖

+

∫ r

0
‖B(r, σ, u(σ))−B(r, σ, v(σ))‖dσ +

∫ 1

0
‖C(r, σ, u(σ))− C(r, σ, v(σ))‖dσ

+

∫ r

0

(r − σ)ν−1

Γ(ν)
‖F (σ, u(σ))− F (σ, v(σ))‖dσ

]
dr
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≤ |b|
|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
L1‖u− v‖1er +

∫ r

0
L3‖u− v‖1eσdσ

+

∫ 1

0
L4‖u− v‖1eσdσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
L2‖u− v‖1eσdσ

]
dr

≤ |b|
|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
L‖u− v‖1er + L‖u− v‖1(er − 1)

+L‖u− v‖1(er − 1) +

∫ r

0

(r − σ)ν−1

Γ(ν)
L‖u− v‖1eσdσ

]
dr.

Thus,

‖Υ2u(t)−Υ2u(t)‖

≤ |b|
|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
L‖u− v‖1

er

et
+ L‖u− v‖1

(er − 1)

et

+L‖u− v‖1
(er − 1)

et
+

∫ r

0

(r − σ)ν−1

Γ(ν)
L‖u− v‖1

eσ

et
dσ
]
dr

≤ |b|L
|1− bη|

[ 3ην+β+1

Γ(ν + β + 2)
+
η2ν+β+1β(ν + 1, ν + β + 1)

Γ(ν + 1)Γ(ν + β + 1)

]
‖u− v‖1.

Then since LK1 ≤ 1, Υ2 is a contraction mapping. The continuity of the functions A,B,C
and F implies that the operator Υ1 is continuous. Also, Υ1Bψ ⊂ Bψ, for each u ∈ Bψ,
i.e., Υ1 is uniformly bounded on Bψ as

‖Υ1u(t)‖ ≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0
‖B(s, r, u(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))‖dr +

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))‖dr

]
ds,

which implies that

‖Υ1u‖1 ≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖µ1‖L∞‖u‖1

es

et
+ ‖µ3‖L∞‖u‖1

(es − 1)

et

+‖µ4‖L∞‖u‖1
(es − 1)

et
+ ‖µ2‖L∞‖u‖1

∫ s

0

(s− r)ν−1

Γ(ν)

er

et
dr
]
ds

≤ ψ
[‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 1)
+
‖µ2‖L∞β(ν + 1, ν + β)

Γ(ν + 1)Γ(ν + β)

≤ ψK

≤ ψ. (14)

Finally, we will show that (Υ1Bψ) is equi-continuous. For this end, we define

Ā = sup
(s,u)∈J×Bψ

‖A(s, u)‖, F̄ = sup
(s,u)∈J×Bψ

‖F (s, u)‖,

B̄ = sup
(s,r,u)∈G×Bψ

∫ s

0
‖B(s, r, u)‖dr, C̄ = sup

(s,r,u)∈G×Bψ

∫ 1

0
‖C(s, r, u)‖dr.
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Let for any u ∈ Bψ and for each t1, t2 ∈ J with t1 ≤ t2, we have:

‖(Υ1u)(t1)− (Υ1u)(t2)‖

≤
∫ t2

t1

(t2 − s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0
‖B(s, r, u(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))‖dr +

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))‖dr

]
ds

+

∫ t1

0

[(t1 − s)ν+β−1 − (t2 − s)ν+β−1]

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0
‖B(s, r, u(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))‖dr +

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))‖dr

]
ds

≤
∫ t2

t1

(t2 − s)ν+β−1

Γ(ν + β)

[
Ā+ B̄ + C̄ +

F̄

Γ(ν)

∫ s

0
(s− r)ν−1dr

]
ds

+

∫ t1

0

[(t1 − s)ν+β−1 − (t2 − s)ν+β−1]

Γ(ν + β)

[
Ā+ B̄ + C̄ +

F̄

Γ(ν)

∫ s

0
(s− r)ν−1dr

]
ds

≤
∫ t2

t1

(t2 − s)ν+β−1

Γ(ν + β)

[
Ā+ B̄ + C̄ +

F̄

Γ(ν + 1)

]
ds

+

∫ t1

0

[(t1 − s)ν+β−1 − (t2 − s)ν+β−1]

Γ(ν + β)

[
Ā+ B̄ + C̄ +

F̄

Γ(ν + 1)

]
ds

≤ 1

Γ(ν + β + 1)

[
Ā+ B̄ + C̄ +

F̄

Γ(ν + 1)

][
2(t2 − t1)ν+β + tν+β

1 − tν+β
2

]
−→ 0 as t1 −→ t2,

this means that |Υ1u(t2)−Υ1u(t1)| −→ 0, which implies that (Υ1Bψ) is equi-continuous,
then Υ1 is relatively compact on Bψ. Hence by Arzela-Ascoli theorem, Υ1 is compact on
Bψ. Now, all hypothesis of Theorem 2.2 hold, therefore the operator Υ has a fixed point
on Bψ. So the problem (1)-(2) has at least one solution on J . This proves the theorem.

�

Theorem 3.2. Assume that the assumptions (A1) and (A3) are satisfied and if LK < 1.
Then the problem (1)-(2) has a unique solution on J .

Proof. Let the operator Υ as in Theorem 3.1. Define

Rψ = {u ∈ C(J,X) : ‖u‖ ≤ ψ}.

We fix ψ ≥ NK
1−LK , where N = max{N1, N2, N3, N4}, such that N1 = supt∈J ‖A(t, 0)‖,

N2 = supt∈J ‖F (t, 0)‖, N3 = sup(t,s)∈G ‖B(t, s, 0)‖, N4 = sup(t,s)∈G ‖C(t, s, 0)‖.

Firstly, we will prove that ΥRψ ⊂ Rψ. For any u ∈ Rψ, we have

‖(Υu)(t)‖ ≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0
‖B(s, r, u(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))‖dr +

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))‖dr

]
ds
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+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖A(r, u(r))‖+

∫ r

0
‖B(r, σ, u(σ))‖dσ

+

∫ 1

0
‖C(r, σ, u(σ))‖dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
‖F (σ, u(σ))‖dσ

]
dr

≤ (Lψ +N)K

≤ ψ.

Hence, ΥRψ ⊂ Rψ.

Secondly, We shall show that Υ : Rψ −→ Rψ is a contraction. From the assumption
(A1) we have for any u, v ∈ Rψ and for each t ∈ J

‖(Υu)(t)− (Υv)(t)‖ ≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))−A(s, v(s))‖

+

∫ s

0
‖B(s, r, u(r))−B(s, r, v(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))− C(s, r, v(r))‖dr

+

∫ s

0

(s− r)ν−1

Γ(ν)
‖F (r, u(r))− F (r, v(r))‖dr

]
ds

+
|b|

|1− bη|

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖A(r, u(r))−A(r, v(r))‖

+

∫ r

0
‖B(r, σ, u(σ))−B(r, σ, v(σ))‖dσ

+

∫ 1

0
‖C(r, σ, u(σ))− C(r, σ, v(σ))‖dσ

+

∫ r

0

(r − σ)ν−1

Γ(ν)
‖F (σ, u(σ))− F (σ, v(σ))‖dσ

]
dr

≤ LK‖u− v‖.

Since LK < 1, it follows that Υ is a contraction, from Theorem 2.1, then there exists
u ∈ C(J,X) such that Υu = u, which is the unique solution of the problem (1)-(2) in
C(J,X). This proof is completed. �

4. Ulam-Hyers stability

In this section, we establish the Hyers-Ulam stability of the problem (1)-(2).
We say that the problem (1)- (2) has the Hyers-Ulam stability, if for all ε > 0 and all

function v ∈ C(J,X) satisfying

v(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, v(s)) +

∫ s

0
B(s, r, v(r))dr

+

∫ 1

0
C(s, r, v(r))dr +

∫ s

0

(s− r)ν−1

Γ(ν)
F (r, v(r))dr

]
ds
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+
b

1− bη

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
A(r, v(r)) +

∫ r

0
B(r, σ, v(σ))dσ

+

∫ 1

0
C(r, σ, v(σ))dσ +

∫ r

0

(r − σ)ν−1

Γ(ν)
F (σ, v(σ))dσ

]
dr. (15)

We define the nonlinear continuous operator ∆ : C(J,X) −→ C(J,X), as follows

∆v(t) =c Dν+β
0+

v(t)− Iν0+F (t, v(t))−A(t, v(t))−
∫ t

0
B(t, s, v(s))ds−

∫ 1

0
C(t, s, v(s))ds.

Definition 4.1. [19] For each ε > 0 and for each solution v of the problem (1)- (2), such
that

‖∆v‖ ≤ ε, (16)

the problem (1), is said to be Ulam-Hyers stable if we can find a positive real number α
and a solution u ∈ C(J,X) of the problem (1), satisfying the inequality

‖u− v‖ ≤ αε∗, (17)

where ε∗ is a positive real number depending on ε.

Definition 4.2. [20] Let m ∈ C(R+,R+) such that for each solution v of the problem (1),
we can find a solution u ∈ C(J,X) of the problem (1) such that

‖u(t)− v(t)‖ ≤ mε∗, t ∈ J. (18)

Then the problem (1), is said to be generalized Ulam-Hyers stable.

Definition 4.3. [19] For each ε > 0 and for each solution v of the problem (1) is called
Ulam-Hyers-Rassias stable with respect to Θ ∈ C(J,R+) if

‖∆v(t)‖ ≤ εΘ(t), t ∈ J, (19)

and there exist a real number α > 0 and a solution v ∈ C(J,X) of the problem (1) such
that

‖u(t)− v(t)‖ ≤ αε∗Θ(t), t ∈ J, (20)

where ε∗ is a positive real number depending on ε.

Theorem 4.1. Assume that (A1) holds, with LK < 1. The problem (1) is both Ulam-
Hyers and generalized Ulam-Hyers stable.

Proof. Let u ∈ C(J,X) be a solution of (1), satisfying (3) in the sense of Theorem 3.2
Let v be any solution satisfying (16). Lemma 3.1 implies the equivalence between the
operators ∆ and Υ – Id (where Id is the identity operator) for every solution v ∈ C(J,X)
of (1) satisfying LK < 1. Therefore, we deduce by the fixed-point property of the operator
Υ that:

‖v(t)− u(t)‖ = ‖v(t)−Υv(t) + Υv(t)− u(t)‖
= ‖v(t)−Υv(t) + Υv(t)−Υu(t)‖
≤ ‖Υv(t)−Υu(t)‖+ ‖Υv(t)− v(t)‖
≤ LK‖u− v‖+ ε,

because LK < 1 and ε > 0, we find

‖u− v‖ ≤ ε

1− LK
.
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Fixing ε∗ = ε
1−LK , and α = 1, we obtain the Ulam-Hyers stability condition. In addition,

the generalized Ulam-Hyers stability follows by taking mε = ε
1−LK . �

Theorem 4.2. Assume that (A1) holds with L < 1
K , and there exists a function Θ ∈

C(J,R+) satisfying the condition (19). Then the problem (1) is Ulam-Hyers-Rassias stable
with respect to Θ.

Proof. We have from the proof of Theorem (4.1),

‖u(t)− v(t)‖ ≤ ε∗Θ(t), t ∈ J.

where ε∗ = ε
1−LK . This completes the proof. �

5. Example

Example 5.1. Consider the fractional Volterra-Fredholm integro-differential equation
(1) with condition

u(0) = 3

∫ 0.2

0
u(s)ds,

where ν = β = 0.2, b = 3, η = 0.2. By the above, we find that K = 0.2248, K1 = 1.4489.
To illustrate our results in Theorem 3.1 and Theorem 4.1, we take for u, v ∈ X =

R+ and t ∈ [0, 1] the following continuous functions: A(t, u(t)) = (2−t)u(t)
60 , F (t, u(t)) =

(3−t2)u(t)
72 , B(t, s, u(s)) = e−(s+t)

64 u(s), C(t, s, u(s)) = cos(s+t)
32 u(s). Then, we get

L = 0.0555, K1 = 1.4489, LK1 = 0.0805 < 1, K = 0.2248 < 1, LK = 0.0125.

All assumptions of Theorem 3.1 are satisfied. Hence, there exists at least one solution on
[0, 1].

By take the same functions, we result the assumption

LK = 0.0125 < 1,

then there exists a unique solution on [0, 1].
In order to illustrate our stability result, we consider the same above example:

LK = 0.0125 < 1.

This implies that the problem is Ulam-Hyers stable, then it is generalized Ulam-Hyers
stable. It is Ulam-Hyers-Rassias stable if there exists a continuous and positive function.

6. Concluding remarks

In this paper, we studied the existence and uniqueness of solutions for a class of nonlinear
Caputo fractional Volterra-Fredholm integro-differential equations with the integral con-
ditions. In addition, the Ulam-Hyers stability and generalized Ulam-Hyers stability for
solutions of the given problem are also discussed. The desired results are proved by using
via using Banach and Krasnoselskii fixed point theorems.

Remark 1. By taking C ≡ 0 and
∫ η

0 u(s)ds = 1, in the problem (1)-(2), the results of
reference [6] appear as a special case of our results. Also, by taking B ≡ 0 in the problem
(1)-(2), the results of reference [25] appear as a special case of our results.
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