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GENERALIZED CONTRACTIVE MAPPINGS ON QUASIMETRIC

SPACES

S. MOHAMADI1, M. IRANMANESH1∗, A. R. K. MIRMOSTAFAEE2, §

Abstract. In this paper, we introduce a new class of generalized contractive mappings
to establish a fixed point theorem for this class of mappings in complete quasimetric
spaces. In fact, at first we present the notion of ordered cyclic weakly (ψ,ϕ,A,B)-
contraction and then we establish a fixed point theorem for such mappings in complete
ordered s-quasimetric spaces. This can be considered as an improvement of some old
fixed point theorems in the literature. Finally, we provide an example to show that our
result is genuine generalizations of some fixed point theorems.
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1. Introduction

Let (X, d) be a metric space and T : X → X be a mappings. The mappings T is called
a ϕ-weak contraction if for each x, y ∈ X, there exists a function ϕ : [0,∞)→ [0,∞) such
that ϕ is positive on (0,∞), ϕ(0) = 0 and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)).

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in
1997. In 2001, Roades proved that under certain circumstances every ϕ-weak contraction
on a complete metric space has a fixed point.

Theorem 1.1. [10] Let (X, d) be a nonempty complete metric space and T : X → X be a
ϕ-weak contraction on X. If ϕ is a continuous and nondecreasing function with ϕ(t) > 0
for all t > 0 and ϕ(0) = 0, then T has a unique fixed point.

Dutta and Choudhury improved the above result as follow.
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Theorem 1.2. [6] Let (X, d) be a nonempty complete metric space and let T : X → X be
a self mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y))

where ψ,ϕ:[0,∞) → [0,∞) are both continuous and monotone non decreasing functions
with ψ(t) = ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

In 2009, Doric obtained the following generalization of Theorem 1.2.

Theorem 1.3. [5] Let (X, d) be a nonempty complete metric space and let T : X → X be
a self mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

for any x, y ∈ X, where M is given by

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]},

and

(a) ψ : [0,∞)→ [0,∞) is a continuous monotone non decreasing function with ψ(t) =
0 if and only if t = 0,

(b) ϕ : [0,∞)→ [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only
if t = 0.

Then T has a unique fixed point.

The aim of this paper is to obtain some improvements of the above results, when the
underlying space is a b-metric or s-quasimetric space.

2. Preliminaries

Throughout this paper, R denotes the real line, and N is the set of all natural numbers.
We recall some preliminaries that will be needed in the sequel.

Definition 2.1. [4] Let X be a nonempty set and s ≥ 1 a given real number. A function
d : X × X → R+ is called a b-metric provided that, for all x, y, z ∈ X, the following
conditions hold:

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x);
iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space with the parameter s.

Example 2.1. Let (X, ρ) be a metric space and d(x, y) = (ρ(x, y))p, where p > 1 is a real
number. Using convexity of the function f(x) = xp for x > 0, we see that d is a b-metric
with the parameter s = 2p−1.

Remark 2.1. Every metric space is a b-metric space with s = 1, however, the converse
is not true in general. For example if X is the real numbers with usual metric, according
to the above example, (X, |.|2) is a b-metric space which is not metric, since |3 − 1|2 6≤
|3− 2|2 + |2− 1|2.

Definition 2.2. [3] Let (X, d) be a b-metric space.

(i) A sequence {xn} in X is called convergent if there exists x ∈ X such that d(xn, x)→
0 as n→∞. In this case, we write limn→∞ xn = x.

(ii) A sequence {xn} in X is called Cauchy if d(xn, xm)→ 0 as n,m→∞.
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(iii) The b-metric space (X, d) is said to be complete if every Cauchy sequence in X is
convergent.

(iv) A set B ⊆ X is said to be closed if for any sequence {xn} in B which {xn} is
convergent to z ∈ X, we have z ∈ B.

Definition 2.3. [4] A pair (X, d) consisting of a non-empty set X and a function d :
X ×X → [0,∞) is said to be a semimetric space if it satisfies the following conditions:

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x);

for all x, y ∈ X. The function d is then called a semimetric.

Definition 2.4. [2] A semimetric space (X, d) is called a quasimetric space or, more
specifically, a s-quasimetric space, where s ≥ 1 is fixed, if it satisfies the following condi-
tion:

(iii) d(x, z) ≤ s.max{d(x, y), d(y, z)}
for all x, y, z ∈ X. In this case, the function d called a s-quasimetric.

A 1-quasimetric space is known broadly in the literature as an ultrametric space. Every
1-quasimetric space is therefore a metric space. On the other hand, every metric space is,
in fact, a 2-quasimetric space. The reverse, however, does not hold even for 1 < s ≤ 2,
i.e., there exist s-quasimetric spaces which are not metric, see e. g. the following example.

Example 2.2. Consider a set X := {a, b, c} consisting of three distinct elements. Define
a function d : X ×X → R as follows: put 0 for d(a, a), d(b, b) and d(c, c), and d(a, b) =
d(b, a) = 1, d(a, c) = d(c, a) = 4, d(c, b) = d(b, c) = 2. One may think of such a space as a
non-existent triangle, where the lengths of its sides are equal to 1, 2 and 4, respectively.

In [7] Frink provided an innovative method for constructing a metric equivalent to a
2-quasimetric.

Theorem 2.1. [7](Frink) Let (X, d) be a 2-quasimetric space. Then there exists a metric
ρ on X such that

∀x, y ∈ X, ρ(x, y) ≤ d(x, y) ≤ 4ρ(x, y)

In this theorem the metric ρ is obtained by the so-called chain approach, namely, ρ is
defined by

ρ(x, y) = inf

n∑
i=1

d(xi−1, xi);

where the infimum is taken over all finite sequences of points x0, x1, x2, . . . , xn, where
x0 = x and xn = y, guaranteeing that the inequality is satisfied.

Schroeder[12] improved Frink’s theorem as follows.

Theorem 2.2. [12](Schroeder) Let (X, d) be a s-quasimetric space with s ≤ 2. Then there
exists a metric ρ on X such that

∀x, y ∈ X, ρ(x, y) ≤ d(x, y) ≤ 2sρ(x, y).

Recently, the above result generalized as follows.

Theorem 2.3. [2] If (X, d) is a s-quasimetric space with s ≤ 2, then there exists a metric
ρ on X for which the following inequalities hold:

∀x, y ∈ X, ρ(x, y) ≤ d(x, y) ≤ s2ρ(x, y).



510 TWMS J. APP. AND ENG. MATH. V.13, N.2, 2023

Definition 2.5. A function f : X → R is called lower semi-continuous, if for any {xn} ⊂
X and x ∈ X

xn → x⇒ f(x) ≤ lim inf
n→∞

f(xn).

Definition 2.6. [9] A function ψ : [0,∞)→ [0,∞) is called an altering distance function
if the following properties are satisfied:

(i) ψ is continuous and nondecreasing;
(ii) ψ(0) = 0 and ψ(t) > 0 for all t > 0.

We define Ψ to be the set of all function ψ.

Throughout the paper, let Φ be the set of all functions ϕ : [0,∞) → [0,∞) satisfying
the following conditions:

(i) ϕ is lower semi-continuous;
(ii) ϕ(0) = 0 and ϕ(t) > 0 for each t > 0.

In [11], the following common fixed point result for contractions in ordered b-metric spaces
were proved.

Theorem 2.4. [11] Let (X,≤, d) be a complete ordered b-metric space and let T, S :
X → X be two weakly increasing mappings. Suppose that there exist two altering distance
functions ψ,ϕ and a constant L ≥ 0 such that the inequality

ψ(s4d(Tx, Sy)) ≤ ψ(Ms(x, y))− ϕ((Ms(x, y))) + Lψ(N(x, y)),

holds for all comparable x, y ∈ X, where

Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Sy),
1

2s
[d(x, Sy) + d(y, Tx)]}

and

N(x, y) = min{d(y, Sy), d(x, Sy), d(y, Tx)}

If either [T or S is continuous], or the space (X,≤, d) is regular, then T and S have a
common fixed point.
Here, the ordered metric space (X,≤, d) is called regular if for any non-decreasing sequence
{xn} in X such that xn → x ∈ X, as n→∞, one has xn ≤ x for all n ∈ N.

3. Main results

Definition 3.1. [8] Let (X,≤, d) be an ordered b-metric space, let T, S : X → X be two
mappings, and let A and B be nonempty closed subsets of X. The pair (T, S) is called an
ordered cyclic weakly (ψ,ϕ, L,A,B)-contraction if

(1) X = A ∪B is a cyclic representation of X w.r.t. the pair (T, S); that is, TA ⊆ B
and SB ⊆ A;

(2) there exist two altering distance functions ψ,ϕ and a constant L ≥ 0, such that for
arbitrary comparable element x, y ∈ X with x ∈ A and y ∈ B, we have

ψ(s2d(Tx, Sy)) ≤ ψ(Ms(x, y))− ϕ((Ms(x, y))) + Lψ(N(x, y)),

where

Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Sy),
1

2s
[d(x, Sy) + d(y, Tx)]}

and

N(x, y) = min{d(y, Sy), d(x, Sy), d(y, Tx)}
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Definition 3.2. [13] Let (X,≤) be a partially ordered set, and let A and B be closed
subsets of X with X = A ∪B.
Let T, S : X → X be two mappings. The pair (T, S) is said to be (A,B)-weakly increasing
if Tx ≤ STx for all x ∈ A and Sy ≤ TSy for all y ∈ B.

In [8] Hussain et al. proved the following:

Theorem 3.1. Let (X,≤, d) be a complete ordered b-metric space, and let Aand B be
closed subsets of X. Let T, S : X → X be two (A,B)-weakly increasing mappings with
respect to ≤. Suppose that

(a) the pair (T, S) is an orderer cyclic weakly (ψ,ϕ, L,A,B)-contraction
(b) T or S continuous.

Then T and S have a common fixed point u ∈ A ∩B.

Definition 3.3. Let (X,≤, d) be an ordered s-quasimetric space with 1 < s ≤ 2, let
T, S : X → X be two mappings, and let A and B be nonempty closed subsets of X. The
pair (T, S) is called an ordered cyclic weakly (ψ,ϕ,A,B)-contraction if

(1) X = A ∪B is a cyclic representation of X w.r.t. the pair (T, S); that is, TA ⊆ B
and SB ⊆ A;

(2) there exist two altering distance functions ψ, ϕ such that for arbitrary comparable
element x, y ∈ X with x ∈ A and y ∈ B, we have

ψ(2sd(Tx, Sy)) ≤ ψ(M(x, y))− ϕ((M(x, y))), (1)

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

1

s
max[d(x, Sy), d(y, Tx)]

}
Theorem 3.2. Let (X,≤, d) be a complete ordered s-quasimetric space with 1 < s ≤ 2,
let A and B be closed subsets of X. Let T, S : X → X be two (A,B)-weakly increasing
mappings with respect to ≤. Suppose that

(a) the pair (T, S) is an orderer cyclic weakly (ψ,ϕ,A,B)-contraction
(b) T or S is continuous.

Then T and S have a common fixed point u ∈ A ∩B.

Proof. Let us divide the proof into five steps.
Step 1: We prove that u ∈ A ∩B is a fixed point of T if and only if u is a fixed point of
S. Suppose that u is a fixed point of T . By (1), we have

ψ(d(u, Su)) ≤ ψ(2sd(Tu, Su))

≤ ψ(max{d(u, Tu), d(u, Su),
1

s
max(d(u, Su), d(u, Tu))})

− ϕ(max{d(u, Tu), d(u, Su),
1

s
max(d(u, Su), d(u, Tu))})

= ψ(d(u, Su))− ϕ(d(u, Su)).

It follows that ϕ(d(u, Su)) = 0. Therefore, d(u, Su) = 0, So Su = u. Similarly, we can
show that if u is a fixed point of S, Then u is a fixed point of T .
Step 2: Let x0 ∈ A, and let x1 = Tx0. Since TA ⊆ B, we have x1 ∈ B. Also, let
x2 = Sx1. Since SB ⊆ A, We have x2 ∈ A. Continuing this process, we can construct a
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sequence {xn} in X such that x2n+1 = Tx2n, x2n+2 = Sx2n+1, x2n ∈ A, x2n+1 ∈ B. Since
T and S are (A,B)-weakly increasing we have

x1 = Tx0 ≤ STx0 = x2 = Sx1 ≤ TSx1 = x3 ≤ . . .

x2n+1 = Tx2n ≤ STx2n = x2n+2 ≤ . . .
If x2n = x2n+1, for some n ∈ N, then x2n = Tx2n. Thus, x2n is a fixed point of T . By the
first part of proof, we conclude that x2n is also fixed point of S.
Similarly, if x2n+1 = x2n+2, for some n ∈ N, then x2n+1 = Sx2n+1. Thus, x2n+1 is a fixed
point of S. By the first part of proof, we conclude that x2n+1 is also fixed point of T .
Therefore we assume that xn 6= xn+1 for all n ∈ N.

Step 3: We will prove that

lim
n→+∞

d(xn, xn+1) = 0.

By (1), we have

ψ(d(x2n+1, x2n+2)) ≤ ψ(2sd(x2n+1, x2n+2))

= ψ(2sd(Tx2n, Sx2n+1))

≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1)).

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1),

1

s
max[d(x2n+1, Tx2n), d(x2n, Sx2n+1)]}

= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2), 0,
d(x2n, x2n+2)

s
}

= max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Hence, we have

ψ(d(x2n+1, x2n+2)) ≤ ψ(2sd(Tx2n, Sx2n+1))

≤ ψ(max{d(x2n, x2n+1), d(x2n+1, x2n+2)})
− ϕ(max{d(x2n, x2n+1), d(x2n+1, x2n+2)} (2)

If max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2), then (2) becomes

ψ(d(x2n+1, x2n+2)) ≤ ψ(2sd(Tx2n, Sx2n+1))

≤ ψ(d(x2n+1, x2n+2))− ϕ(d(x2n+1, x2n+2))

< ψ(d(x2n+1, x2n+2)),

which is a contradiction. So that

max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n, x2n+1).

Hence (2) becomes

ψ(d(x2n+1, x2n+2)) ≤ ψ(d(x2n, x2n+1))− ϕ(d(x2n, x2n+1))

< ψ(d(x2n, x2n+1)), (3)

is a non-increasing sequence of positive numbers.
Hence, there is e ≥ 0 such that

lim
n→+∞

d(xn, xn+1) = e.
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Letting n→∞ in (3), we get

ψ(e) ≤ ψ(e)− ϕ(e),

which implies that ϕ(e) = 0, and hence e = 0. So, we have

lim
n→+∞

d(xn, xn+1) = 0. (4)

Using (2.4) we have

lim
n→+∞

ρ(xn, xn+1) = 0. (5)

Step 4: We will prove that {xn} is a Cauchy sequence.
Otherwise there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of
{xn} such that n(k) is the smallest index for which n(k) > m(k) > k and

ρ(xm(k), xn(k)) ≥ ε. (6)

This implies that ρ(xm(k), xn(k)−1) < ε for all k ≥ 1 using the triangle inequality we have

ε ≤ ρ(xm(k), xn(k)) ≤ ρ(xm(k), xn(k)−1) + ρ(xn(k)−1, xn(k)).

Letting k →∞ and using (5) we obtain

lim
n→∞

ρ(xm(k), xn(k)) = ε. (7)

Again,

ρ(xm(k), xn(k)−1) ≤ ρ(xm(k), xn(k)) + ρ(xn(k), xn(k)−1)

and

ρ(xm(k), xn(k)) ≤ ρ(xm(k), xn(k)−1) + ρ(xn(k)−1, xn(k)).

Then we have

|ρ(xm(k), xn(k)−1)− ρ(xm(k), xn(k))| ≤ ρ(xn(k), xn(k)−1)

Letting k →∞ and using (5) and (7) it follows that

lim
k→∞

ρ(xm(k), xn(k)−1) = ε.

Similarly, we can prove that

lim
k→∞

ρ(xm(k)−1, xn(k)) = lim
k→∞

ρ(xm(k)−1, xn(k)−1)

lim
k→∞

ρ(xm(k)+1, xn(k)) = lim
k→∞

ρ(xm(k), xn(k)+1) = ε.

Therefore

M(xm(k), xn(k)−1) = max{d(xm(k), xn(k)−1), d(xm(k), xm(k)+1), d(xn(k)−1, xn(k)),

1

s
max

{
(d(xm(k), xn(k)), d(xn(k)−1, xm(k)+1))

}
≤ max{s2ρ(xm(k), xn(k)−1), s

2ρ(xm(k), xm(k)+1), s
2ρ(xn(k)−1, xn(k)),

1

s
(s2 max

{
ρ(xm(k), xn(k)), ρ(xn(k)−1, xm(k)+1)

}
)}.

Letting k →∞ we have

lim sup
k→∞

M(xm(k), xn(k)−1) ≤ 2sε.
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Let x = xm(k)+1, y = xn(k), by (1) we have

ψ(2sρ(xm(k)+1, xn(k))) ≤ ψ(2sd(xm(k)+1, xn(k)))

≤ ψ(M(xm(k), xn(k)−1))− ϕ(M(xm(k), xn(k)−1)).

Letting k →∞
ψ(2sε) = ψ(2s lim

k→∞
ρ(xm(k)+1, xn(k))) ≤

ψ(lim sup
k→∞

M(xm(k), xn(k)−1))− ϕ(lim inf
k→∞

M(xm(k), xn(k)−1)) ≤

ψ(2sε)− ϕ(lim inf
k→∞

M(xm(k), xn(k)−1)),

which implies that ϕ(lim infk→∞M(xm(k), xn(k)−1)) = 0. So that

lim inf
k→∞

M(xm(k), xn(k)−1)) = 0.

It follows that
lim inf
k→∞

d(xm(k), xn(k))) = 0.

Therefore lim inf
k→∞

ρ(xm(k), xn(k)) = 0, which is a contradiction with (6). Therefore {xn} is

a Cauchy sequence.
Step 5: By the completeness of X, there exists z ∈ X such that xn → z as n → ∞,
and lim

n→∞
xn+1 = lim

n→∞
Txn = z. Now, without loss of generality, we suppose that T is

continuous, then we have

d(z, Tz) ≤ sd(z, Txn) + sd(Txn, T z).

Letting n→∞, we get

d(z, Tz) ≤ s lim
n→∞

d(z, Txn) + s lim
n→∞

d(Txn, T z) = 0.

Hence, we have Tz = z. Thus, z is a fixed point of T , since A and B are closed subsets of
X, z ∈ A∩B. By the first part of the proof, we conclude that z is a fixed point of S. �

In the following we provide an example which satisfies our result but dose not satisfy
the result from most current literature. In fact Theorem 2.4 can not apply to this example.

Example 3.1. Let X1 = [0, 13 ] and X2 = {α, β, γ} where α = 1
2 ≤ γ ≤ β = 1. Let

X = X1 ∪X2 and define d : X ×X → [0,∞) by
d(β, α) = 1

2 , d(α, γ) = 1, d(β, γ) = 2,

d(x, y) = |x−y|
100 if x, y ∈ X1,

d(x, y) = 1 if x ∈ X1, y ∈ X2 or x ∈ X2, y ∈ X1

Since d(β, γ) = 2 6≤ 3
2 = d(β, α) + d(α, γ), (X, d) is not a metric space. It is easy to see

that
d(x, y) ≤ 2 max{d(x, z), d(z, y)} (x, y, z ∈ X)

Therefore (X, d) is 2-quasimetric space, which is also complete.
Let S, T : X → X be define by Sx = Tx = x

10 for all x ∈ X.

Take ψ(t) = 2t and ϕ(t) = 1
4 t.

It follows from Theorem 3.2 that 0 is fixed point of T .
This example can not be applied for Theorem 2.4. In fact, in Theorem 2.4 for s = 2, L = 0
if we take x = 0, y = 1

3 , we have

ψ(24d(Tx, Ty)) 6≤ ψ(Ms(x, y))− ϕ((Ms(x, y)))

32

3000
6≤ 7

1200
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4. Conclusion

We investigate the s-quasimetric spaces and we introduce a new class of generalized
contractive mappings to establish a fixed point theorem for this class of mappings in
complete s-quasimetric spaces. Notice that there exist s-quasimetric spaces which are not
metric, finally we provide an example to support our result.
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