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Abstract. In this paper, we prove some properties of fuzzy semi-essential submodules
and fuzzy semi-closed submodules.
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1. Introduction

In 1965, Zadeh [14] proposed the concept of a fuzzy set. The notion of a fuzzy set was
introduced in algebra and various other branches of mathematics. In 1971, Rosenfeld [11]
considered fuzzification of algebraic structures and defined a fuzzy subgroupoid. Fuzzy
submodules were studied by Mordeson and Malik [7]. Pan [10] studied fuzzy finitely
generated modules and fuzzy quotient modules. Acar [2] studied fuzzy prime submodules.
Saikia and Kalita [12] defined a fuzzy essential submodule and proved some characteristics
of such submodules. Nimbhorkar and Khubchandani [8] studied fuzzy essential submodules
with respect to an arbitrary fuzzy submodule. Also, Nimbhorkar and Khubchandani [9]
studied fuzzy essential-small submodules and fuzzy small-essential submodules. Ahmed
and Abbas [3] introduced the notion of a semi-essential submodule of a module. Mijbass
and Abdullah [6] studied semi-essential submodules and semi-uniform modules. Abbas
and Al-Aeashi [1] studied fuzzy semi-essential submodules of a fuzzy module.

In this paper, we study the concepts of a fuzzy semi-essential submodule and a fuzzy
semi-closed submodule as a generalization of fuzzy essential submodule and fuzzy closed
submodule respectively and prove some properties.

1 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004,
India.
e-mail: sknimbhorkar@gmail.com; ORCID: https://orcid.org/0000-0001-5432-8819.

2 School of Business and Management, Christ (Deemed to be University), Pune Lavasa Campus, India.
e-mail: khubchandani jyoti@yahoo.com; ORCID: https://orcid.org/0000-0003-3155-0817.

∗ Corresponding author.
§ Manuscript received: February 04, 2021; accepted: August 16, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.2 © Işık University, Department
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2. Preliminaries

Throughout this paper R denotes a commutative ring with identity, M a unitary R-
module with zero element θ. We use the notations “⊆”and “≤”to denote inclusion and
submodule respectively. We recall some definitions and results.

Definition 2.1. [14] Let S be a nonempty set. A mapping ω : S → [0, 1] is called a fuzzy
subset of S.

Remark 2.1. [14] If ω and σ are two fuzzy subsets of R, then
(i) ω ⊆ σ if and only if ω(x) ≤ σ(x);
(ii) ω ∪ σ = max{ω(x), σ(x)};
(iii) ω ∩ σ = min{ω(x), σ(x)}; for all x ∈ R.

Let N ≤M , then the characteristic function, χN , of N is defined as,

χN (x) =

{
1, if x ∈ N,
0, otherwise.

Definition 2.2. [7] Let X and Y be two nonempty sets and g : X → Y be a mapping.
Let ω ∈ [0, 1]X and σ ∈ [0, 1]Y . Then the image g(ω) ∈ [0, 1]Y and the inverse image
g−1(σ) ∈ [0, 1]X are defined as follows:
for all y ∈ Y ,

g(ω)(y) =

{
∨{ω(x) | x ∈ X, g(x) = y}, if g−1(y) 6= φ,

0, otherwise.

and g−1(σ)(x) = σ(g(x)), for all x ∈ X.

Definition 2.3. [7] Let M be an R-module. A fuzzy subset ω of M is said to be a fuzzy
submodule, if for every x, y ∈M and r ∈ R the following conditions are satisfied:
(i) ω(θ) = 1;
(ii) ω(x− y) ≥ min{ω(x), ω(y)};
(iii) ω(rx) ≥ ω(x).

The set of all fuzzy submodules of M is denoted by F (M).
The support of a fuzzy set ω, denoted by ω∗, is a subset of M defined by
ω∗ = {x ∈M | ω(x) > 0}. We denote by ω∗ the set ω∗ = {x ∈M | ω(x) = 1}.

Definition 2.4. [12] A fuzzy submodule ω of M is called an essential fuzzy submodule of
M , denoted by ω EM , if for every nonzero fuzzy submodule σ of M , ω ∩ σ 6= χθ.

Definition 2.5. [12] A fuzzy submodule ω of M is said to be a closed submodule of M if
ω has no non-constant (proper) essential extension.

Theorem 2.1. [12] Let ω be a non zero fuzzy submodule of M . Then ω EM if and only
if ω∗ EM .

Definition 2.6. [2, Definition 3.2] Let ν be an L-fuzzy submodule of µ. Then ν is called
an L-fuzzy prime submodule of µ if for rt ∈ F (R), xs ∈ F (M) (r ∈ R, x ∈Mand s, t ∈ L),
rtxs ∈ ν implies that either xs ∈ ν or rtµ ⊆ ν.

In particular, taking µ = χM , if for rt ∈ F (R), xs ∈ F (M) we have rtxs ∈ ν implies
that either xs ∈ ν or rtχM ⊆ ν, then ν is called an L-fuzzy prime submodule of M .

Corollary 2.1. [2, Corollary 3.5] Let ν be an L-fuzzy prime submodule of M .
Then ν∗ = {x ∈M | ν(x) = ν(0M )} is a prime submodule of M .
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Theorem 2.2. [2, Theorem 3.6]
(i) Let N be a prime submodule of M and α a prime element in L. If ω is the fuzzy subset
of M defined by

ω(x) =

{
1, if x ∈ N,
α, otherwise.

for all x ∈M , then ω is an L-fuzzy prime submodule of M .
(ii) Conversely, any L-fuzzy prime submodule can be obtained as in (i).

Proposition 2.1. [5, Proposition 2.6] Let ω, ν ∈ F (M).
Then (ω ∩ ν)∗ = ω∗ ∩ ν∗, (ω ∪ ν)∗ = ω∗ ∪ ν∗.
Further if, ω and σ have finite images, then (ω + σ)∗ = ω∗ + σ∗.

Definition 2.7. [6] A nonzero R-submodule N of M is called semi-essential if N ∩P 6= 0
for each nonzero prime R-submodule P of M .

Proposition 2.2. [3, Proposition 1.3] Let g : M →M
′

be an isomorphism. If NEsemiM ,

then g(N)EsemiM
′
.

Lemma 2.1. [4, Lemma 3.8] Let g : M → N be an epimorphism. If ω ∈ F (M) and
σ ∈ F (N), then
(i) g(ω)∗ = g(ω∗);
(ii) g−1(σ)∗ = g−1(σ∗).

Theorem 2.3. [12] The following conditions are equivalent for a fuzzy submodule δ.
(i) δ is semisimple;
(ii) δ has no proper essential submodule;
(iii) Every submodule of δ is a direct summand of δ.

Proposition 2.3. [6, Proposition 13] Let M and L be R-modules. Suppose that g : M → L
is an R-epimorphism such that ker(g) ⊆ rad(M). If N is a semi-essential R-submodule
of L, then g−1(N) is a semi-essential R-submodule of M , where rad(M) =

⋂
P∈Spec(M) P ,

and Spec(M) = {P : P is a prime R-submodule of M}, if no such prime exists then
rad(M) = M .

3. Fuzzy Semi-Essential Submodules

The concept of a fuzzy semi-essential submodule is introduced by Abbas and Al-Aeashi
[1]. We obtain some properties of such fuzzy submodules.

Definition 3.1. [1] A fuzzy submodule ω of an R-module M is called a fuzzy semi-essential
submodule of M if for any nonzero fuzzy prime submodule η of M , ω ∩ η 6= χθ and then
we write ω EsemiM .

Theorem 3.1. Let ω ∈ F (M). Then ω EsemiM if and only if ω∗ EsemiM .

Proof. Assume that ωEsemiM . Let η be a fuzzy prime submodule of M . Then ω∩η 6= χθ
implies that (ω ∩ η)∗ 6= {θ}.
By using Proposition 2.1, we conclude that ω∗ ∩ η∗ 6= {θ}. (I)
As η is a fuzzy prime submodule of M , it follows by Corollary 2.1, that η∗ is prime
submodule of M . Thus by (I), ω∗ EsemiM .

Conversely, assume that ω∗ Esemi M . Let P be a prime submodule of M . As ω∗ is a
semi-essential submodule of M , ω∗ ∩ P 6= {θ}. (II)
Define,



S. K. NIMBHORKAR, J. A. KHUBCHANDANI: FUZZY SEMI-ESSENTIAL SUBMODULES 571

ν(x) =

{
1, if x ∈ P.
α, otherwise, where 0 ≤ α < 1.

Then by Theorem 2.2, ν is a fuzzy prime submodule of M . Here, ν∗ = P . Now, (II)
becomes ω∗ ∩ ν∗ 6= {θ}. Hence (ω ∩ ν)∗ 6= {θ} and thus, ω ∩ ν 6= χθ.
Hence, ω EsemiM . �

Remark 3.1. Every fuzzy essential submodule is semi-essential.

The following example shows that the converse of Remark 3.1 need not be true.

Example 3.1. Let R = Z and M = Z30.
Define ω : M → [0, 1] as follows:

ω(x) =

{
1, if x ∈ (3),

0, otherwise.

We note that ω∗ = (3) is not an essential submodule of M as (10) ∩ (3) = (0).
Hence by Theorem 2.1, ω is not a fuzzy essential submodule of M .
It follows from [13, Theorem 10] that the prime submodules of M coincide with the prime
ideals of M (considering M as a ring). The prime ideals of M are (2), (3) and (5) and the
intersection of each of these with (3) is nonzero. Also, here ω∗ = (3). Hence I = (3) is a
semi-essential submodule of M and so by Theorem 3.1, χI = ω is a fuzzy semi-essential
submodule of M .

Definition 3.2. A fuzzy submodule ω of fuzzy submodule σ is called a semi-essential
submodule of σ if for any non-zero fuzzy prime submodule δ of σ, ω ∩ δ 6= χθ and then we
write ω Esemi σ.

Example 3.2. Let R = Z and M = Z36.
Define σ : M → [0, 1] as follows:

σ(x) =

{
1, if x = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33}
0.5, otherwise.

Then σ∗ = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33} and B = {0, 9, 18, 27} is a prime submod-
ule of σ∗.
Define, η : M → [0, 1] as follows:

δ(x) =

{
1, if x ∈ B,
α, otherwise for all x ∈ σ∗, where 0 ≤ α < 1.

Then by Theorem 2.2, δ is a fuzzy prime submodule of σ.
Also, define ω : M → [0, 1] as follows:

ω(x) =

{
1, if x = {0, 18}
0.4, otherwise.

Here, ω ⊆ σ and ω∗ = {0, 18}.
Also, ω∗ ∩ δ∗ 6= {0}. This implies (ω ∩ δ)∗ 6= {0} and thus, ω ∩ δ 6= χ0.
Hence, ω Esemi σ.

Theorem 3.2. Let ω, σ ∈ F (M) such that ω ⊆ σ. Then ωEsemiσ if and only if ω∗Esemiσ∗.

Proof. Assume that ωEsemi σ. Let δ be a non-zero fuzzy prime submodule of σ. Then by
definition 3.2, it follows that ω ∩ δ 6= χθ.
This implies that (ω ∩ δ)∗ 6= {θ}. Thus, ω∗ ∩ δ∗ 6= {θ}. (I)
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Also by Corollary 2.1, it follows that δ∗ is a prime submodule of σ∗.
Thus, by (I) ω∗ Esemi σ∗.

Conversely, assume that ω∗ Esemi σ∗.
Let A be a prime submodule of σ∗. Then ω∗ ∩A 6= {θ}. (II)
Define,

γ(x) =

{
1, if x ∈ A.
α, for x ∈ σ∗ −A, where 0 ≤ α < 1.

Then by Theorem 2.2, we conclude that γ is a fuzzy prime submodule of σ and γ∗ = A.
Now (II) becomes, ω∗ ∩ γ∗ 6= {θ}. Hence (ω ∩ γ)∗ 6= {θ} and thus, ω ∩ γ 6= χθ.
Hence, ω Esemi σ. �

The following result is from [1, Proposition 3.11]

Theorem 3.3. Let ω1 and ω2 be fuzzy submodules of an R-module M . Suppose that ω1

is a fuzzy submodule of ω2. If ω1 is a fuzzy semi-essential submodule of M , then ω2 is a
fuzzy semi-essential submodule of M .

Remark 3.2. The converse of Theorem 3.3 may not be true.

Example 3.3. Let R = Z and M = Z12.
Define fuzzy submodules ω, ν : M → [0, 1] as follows:

ω(x) =

{
1, if x = {0, 4, 8},
0.7, otherwise.

Then ω∗ = {0, 4, 8}.

ν(x) =

{
1, if x = {0, 2, 4, 6, 8, 10},
0.9, otherwise.

Then ν∗ = {0, 2, 4, 6, 8, 10}.
Now we observe that ω∗ is a semi-essential submodule of ν∗ and ν∗ is a semi-essential
submodule of M . It follows from Theorem 3.2 and Theorem 3.1 that, ω Esemi ν and
ν EsemiM respectively.
Define a fuzzy prime submodule of M as follows:

δ(x) =

{
1, if x = {0, 3, 6, 9},
0.2, otherwise.

where δ∗ = {0, 3, 6, 9} is a prime submodule of M .
Here we observe that ω∗ ∩ δ∗ = {0}. Hence ω∗ is not semi-essential submodule of M .
Thus by Theorem 3.1, ω is not a fuzzy semi-essential submodule of M .

Remark 3.3. If ω1 and ω2 be fuzzy submodules of an R-module M , then ω1∩ω2 may not
be a fuzzy semi-essential submodule of M .

Example 3.4. Let R = Z and M = Z36.
Define fuzzy sets ω1 and ω2 on M as follows:

ω1(x) =

{
1, if x = {0, 12, 24},
0.7, otherwise.

Then ω1∗ = {0, 12, 24} is semi-essential submodule of Z36.

ω2(x) =

{
1, if x = {0, 18},
0.5, otherwise.
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Then ω2∗ = {0, 18} is a semi-essential submodule of Z36.
Then by Theorem 3.2, we have ω1 Esemi Z36 and ω2 Esemi Z36 .
Now,

(ω1 ∩ ω2)(x) =


1, if x = 0,

0.7, if x = 18,

0.5, otherwise.

Then (ω1 ∩ ω2)∗ = {0} which is not a semi-essential submodule of Z36.
Hence by Theorem 3.2, ω1 ∩ ω2 is not a fuzzy semi-essential submodule of Z36.

Proposition 3.1. Let ω1 and ω2 be fuzzy submodules of an R-module M . Suppose that
ω1 is fuzzy essential and ω2 is fuzzy semi-essential. Then ω1 ∩ω2 is a fuzzy semi-essential
submodule of M .

Proof. Let η be a non-zero fuzzy prime submodule of M . As ω2 is a fuzzy semi-essential
submodule of M , it follows that ω2 ∩ η 6= χθ.
Since ω1 is fuzzy essential we have ω1∩ (ω2∩η) 6= χθ. This implies that (ω1∩ω2)∩η 6= χθ.
Hence ω1 ∩ ω2 is a fuzzy semi-essential submodule of M . �

Corollary 3.1. Let ω1 and ω2 be two fuzzy submodules of an R-module M . If ω1 ∩ ω2 is
a fuzzy semi-essential submodule of M , then ω1 and ω2 are fuzzy semi-essential.

Proof. Let η be a non-zero fuzzy prime submodule of M . As ω1∩ω2 is fuzzy semi-essential,
it follows that ω1 ∩ ω2 ∩ η 6= χθ. This implies that ω1 ∩ η 6= χθ and ω2 ∩ η 6= χθ. Thus, ω1

and ω2 are semi-essential. �

We give relationships between images and inverse images.

Proposition 3.2. Let M and M ′ be R-modules and g be an isomorphism from M to
M
′
. If ω is a fuzzy semi-essential submodule of M , then g(ω) is a fuzzy semi-essential

submodule of M
′
.

Proof. Suppose that ω is a fuzzy semi-essential submodule of M then by Theorem 3.1,
ω∗ is a semi-essential submodule of M . By Proposition 2.2, it follows that g(ω∗) is a

semi-essential submodule of M
′
.

Using Lemma 2.1, we conclude that g(ω)∗ = g(ω∗). Thus g(ω)∗ is a semi-essential sub-

module of M
′
. Hence by Theorem 3.1, g(ω) is a fuzzy semi-essential submodule of M

′
. �

Proposition 3.3. Suppose that g is an R-module epimorphism from M to M
′

such that
χkerg ⊆ χradM , where M and M ′ are R-modules. If ω is a fuzzy semi-essential R-

submodule of M
′
, then g−1(ω) is a fuzzy semi-essential of R-submodule of M .

Proof. As ω is a fuzzy semi-essential R-submodule of M
′
, then by Theorem 3.1 we conclude

that ω∗ is a semi-essential R-submodule of M
′
.

Since χkerg ⊆ χradM , we have (χkerg)∗ ⊆ (χradM )∗ and so kerg ⊆ rad(M).

As kerg ⊆ rad(M) and ω∗ is a semi-essential R-submodule of M
′
, by Proposition 2.3, it

follows that g−1(ω∗) is an semi-essential of R-submodule of M . By Lemma 2.1, we have
g−1(ω)∗ = g−1(ω∗) and so g−1(ω)∗ is a semi-essential of R-submodule of M . It follows
from Theorem 3.1, that g−1(ω) is a fuzzy semi-essential of R-submodule of M . �

Proposition 3.4. Let ω1 and ω2 be fuzzy submodules of an R-module M . Suppose that
ω1 is a fuzzy semi-essential submodule of M . If for any fuzzy prime submodule ρ of M ,
ω2 ∩ ρ is a fuzzy prime submodule of M , then ω1 ∩ ω2 is a fuzzy semi-essential submodule
of M .
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Proof. Let η be a fuzzy prime submodule of M . By assumption ω2 ∩ η is a fuzzy prime
submodule of M . As ω1 is fuzzy semi-essential, it follows that (ω1 ∩ ω2) ∩ η 6= χθ. Thus,
ω1 ∩ ω2 is a fuzzy semi-essential submodule of M . �

4. Fuzzy Semi-Closed Submodules

In this section, we introduce the concept of a fuzzy semi-closed submodule and prove
some results.

Definition 4.1. A fuzzy submodule ω of an R-module M is called semi-closed if ω has no
proper(non-constant) semi-essential extensions in M , i.e. if ω Esemi µ ≤M , then ω = µ.

Remark 4.1. Every fuzzy semi-closed submodule of an R-module M is a fuzzy closed
submodule in M .

Proof. Let ω be a fuzzy semi-closed submodule of M and η be a fuzzy submodule of M
such that ω E η ≤M . We know that if ω E η, then ω Esemi η. But ω is semi-closed in M
and so ω = η. Thus, ω is a fuzzy closed submodule in M . �

Theorem 4.1. Let ω1 and ω2 be fuzzy submodules of an R-module M . If ω1 is semi-
closed in ω2 and ω2 is semi-closed in M . Then ω1 is semi-closed in M , provided that ω2

is contained in any semi-essential extension of ω1.

Proof. Let η be a fuzzy submodule of M such that ω1 Esemi η ≤M .
The following two cases arise:
Case (i): η ≤ ω2.
As ω1 is semi-closed in ω2, we get ω1 = η. Hence, ω1 is semi-essential in M .
Case (ii): If ω2 ≤ η.
As ω1 Esemi η ≤ M so by Proposition 3.3, ω2 Esemi η ≤ M . But ω2 is semi-closed in M ,
thus, ω2 = η, that is ω1 Esemi ω2.
Since ω1 is semi-closed in ω2, we conclude that ω1 = ω2. Hence, ω1 is semi-closed in
M . �

Proposition 4.1. Let ω1 and ω2 be two fuzzy semi-closed submodules of an R-module M
such that ω1 ≤ ω2 ≤M . If ω1 is semi-closed in M , then ω1 is semi-closed in ω2.

Proof. Let η be a fuzzy submodule of ω2 such that ω1 Esemi η ≤ ω2. Thus ω1 ≤ η ≤M .
But ω1 is semi-closed in M . Therefore, ω1 = η. Hence, ω1 is semi-closed in ω2. �

Proposition 4.2. If ω1 and ω2 are fuzzy semi-closed submodules of an R-module M .
Then ω1 and ω2 are semi-closed in ω1 + ω2.

Proof. As ω1 ≤ ω1 + ω2 ≤ M and ω2 ≤ ω1 + ω2 ≤ M , then by Proposition 4.1 the result
follows. �

Theorem 4.2. If every fuzzy submodule of ω is semi-closed, then every fuzzy submodule
of ω is a direct summand of ω.

Proof. Let µ be a fuzzy semi-closed submodule of an R-module M ω. By Remark 3.1, µ
is a fuzzy closed submodule of ω, i.e. µ has no proper essential extension in ω.
By Theorem 2.3, µ is a direct summand of ω. �

5. Conclusion

In this paper, we have studied fuzzy semi-essential submodules and fuzzy semi-closed
submodules. In future we shall introduce the concepts of a fully fuzzy prime submodule
and a fully fuzzy essential submodule.
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