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ON THE k-DISTANCE DIFFERENTIAL OF GRAPHS

D. A. MOJDEH1, I. MASOUMI2∗, §

Abstract. Let G = (V,E) be a graph and X ⊆ V . The differential of X is defined
as ∂(X) = |B(X)| − |X| where B(X) is a set of all vertices in V − X which has adja-
cent vertex in the set X. Also, the differential of a graph G written ∂(G), is equal to
max{∂(X) : X ⊆ V }. In this paper, we initiate the study of k-distance differential of
graphs which is a generalization of differential of graphs. In addition, we show that for

any connected graph G of order n ≥ k + 2, the number (2k−1)n
2k+3

is a sharp lower bound
for k-distance differential of G. We also obtain upper bounds for k-distance differential
of graphs. Finally, we characterize the graphs whose k-distance differential belongs to
{n− 2, n− 3, 1}.

Keywords: Differential of graphs, k-distance domination, k-distance differential of graph,
domination number of graphs.

AMS Subject Classification: 05C69.

1. Introduction

Currently, social networks such as Facebook, Twitter and Instagram are Frecognized as
important communication and information tools. Due to their far-reaching publicity, social
networks are now broadly used in political geostrategies and viral marketing. Some authors
have used maximization problems, utilizing their extensive applications in these topics
as a fundamental algorithmic problem for disseminating information on social networks
[7, 9, 12]. These problems require determining the best group of nodes to influence the
rest. Assume that G = (V,E) is a graph of order n. The study of the graph parameter
∂(G) which is called the differential of G can be deduced from such scenarios. For every
set of vertices D ⊆ V , suppose that B(D) is the set of vertices in V − D that have a
neighbor in the vertex set D, and put C(D) = V − (D ∪ B(D)). The differential of D is
defined as ∂(D) = |B(D)|− |D| and the differential of a graph G, written ∂(G), is defined
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as max{∂(D) : D ⊆ V }. A set D is also called a ∂-set or differential set when we have
∂(D) = ∂(G). If D has minimum cardinality among all ∂-sets then D is called a minimum
∂-set. The graph parameter ∂ was presented in [13, 14], where several basic properties were
obtained and it has been also studied in [1, 2, 3, 4, 5, 11, 15, 16, 17, 18]. More generally,
the idea of viral marketing (as explained in [7, 9, 12]) tries to use customers acquired by
specific marketing offers as multiplicators, influencing their immediate neighborhood to
buy certain products. This pattern is a accidental one from the start but can be simplified
to lead to the graph theoretical problem studied in this paper. Note that for a graph G of
order n ≥ 2, 0 ≤ ∂(G) ≤ n−2. For each graph G with connected components G1, · · · , Gk,
∂(G) = ∂(G1) + · · ·+ ∂(Gk). Thus, we will only consider connected graphs. As described
in [14] this parameter is related to the famous parameter γ(G) denoting the minimum size
of a vertex dominating set in G.

This paper is organized as follows: We initiate the study of k-distance differential of
graphs which is a generalization of differential of graphs in Section 2. In Section 3, we

show that for any connected graph G of order n ≥ k + 2, the number (2k−1)n
2k+3 is a sharp

lower bound for the k-distance differential of G. We discuss the complexity of k-distance
differential number in section 4. In Section 5, we obtain upper bounds for this parameter
of graphs. Finally, in Section 6 we characterize all graphs G for which their k-distance
differentials belong to {n− 2, n− 3, 1}.

2. Preliminary results

We refer the reader to [19, 10] for any terminology and notation which are not defined
here. The open neighborhood of a vertex v ∈ V is the set N(v) = {u : uv ∈ E(G)}
while the open neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v). The closed
neighborhood of a vertex v ∈ V is N(v)∪{v} while the closed neighborhood of a set S ⊆ V
is the set N [S] = N(S) ∪ S. Let Ev be the set of edges incident with v in G, that is,
Ev = {uv ∈ E(G) : u ∈ N(v)}. We denote the degree of v by degG(v) = |Ev|. A leaf of G
is a vertex with degree one, a support vertex is a vertex adjacent to a leaf, a strong support
vertex is a support vertex adjacent to at least two leaves and an end-support vertex is
a support vertex whose neighbors (at most except one) are leaves. The set of all leaves
adjacent to a vertex v is denoted by L(v). We denote the minimum degree of a graph G
with δ(G) and the maximum degree with ∆(G). The distance between two vertices x and
y in G denoted dG(x, y), is the length of the shortest (x, y)-path in G. The diameter of a
graph G denoted by diam(G), is the greatest distance between two vertices of G. For a set
S ⊆ V , the private neighborhood pn[v, S] of v ∈ S is defined by pn[v, S] = N [v]−N [S−{v}]
equivalently, pn[v, S] = {u ∈ V : N [u] ∩ S = {v}}. Every vertex in pn[v, S] is named a
private neighbor of v. The external private neighborhood epn(v, S) of v with respect to S
includes those private neighbors of v in V − S. Therefore, epn(v, S) = pn[v, S]−{v} [13].
Let k be a positive integer. Given a vertex v ∈ V (G), the open k-neighborhood Nk,G(v) is
equal to the set {u ∈ V (G) : u 6= v and d(u, v) ≤ k} and the closed k-neighborhood Nk,G[v]
is equal to the set Nk,G(v)∪{v}. The open k-neighborhood Nk,G(S) of a set S ⊆ V is equal
to the set ∪v∈SNk,G(v) and the closed k-neighborhood Nk,G[S] of a set S ⊆ V is equal
to the set Nk,G(S) ∪ S. The k-degree of a vertex v is defined as degk,G(v) = |Nk,G(v)|.
The minimum and maximum k-degree of a graph G are shown by δk(G) and ∆k(G)
respectively. For a nonempty subset S ⊆ V and any vertex v ∈ V , we denote by Nk,S(v)
the set of k-neighbors of v in S that is, Nk,S(v) := {u ∈ S : 0 < d(u, v) ≤ k} and
dk,S(v) = |Nk,S(v)|. The graph G is called k-distance regular if δk(G) = ∆k(G). The

kth power Gk of a graph G is the graph with vertex set V (Gk) = V (G) and edge set
E(Gk) = {xy : 0 < d(x, y) ≤ k}. Now clearly, we have Nk,G(v) = N1,Gk(v) = NGk(v),
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Nk,G[v] = N1,Gk [v] = NGk [v], degk,G(v) = deg1,Gk(v) = degGk(v), δk(G) = δ1(Gk) = δ(Gk)

and ∆k(G) = ∆1(Gk) = ∆(Gk). A vertex v is called k-adjacent to (or k-neighbor of ) a
vertex w if d(v, w) = k.

A set S ⊆ V is a dominating set if N [S] = V . The domination number γ(G) is the
minimum cardinality of a dominating set of G. A dominating set S ⊆ V is called a γ(G)-
set if |S| = γ(G) [10]. Assume that k ≥ 1 is an integer. A set D ⊆ V is called a k-distance
dominating set of G if every vertex in V (G)−D is within distance k of at least one vertex
in D. The k-distance domination number γk(G) of G is the minimum cardinality among
all k-distance dominating sets of G [8].

Assume that G = (V,E) is an arbitrary graph and notice the following game. You are
allowed to buy as many tokens from a bank as you like at a cost of 1 dollar each. For exam-
ple suppose you buy s tokens. You then place the tokens on some subset of s vertices of V .
For every vertex of G which has no token on it, but is k-adjacent to a vertex with a token
on it, you received 1 dollar from the bank. Your target is to maximize your profit, that
is the total value received from the bank minus the cost of the tokens bought. According
to this game we define the k-distance differential of a set X to be ∂k(X) = |Bk(X)| − |X|
and the k-distance differential of a graph G to be equal to max{∂k(X)} for any subset X
of V as follows.

Definition 2.1. Let G = (V,E) be a graph, X ⊆ V and Bk(X) be the set of vertices
in V − X that have a k-neighbor in the set X. For a nonempty subset X ⊆ V we
say Ck(X) = V − (X ∪ Bk(X)). We define the k-distance differential of a set X to
be ∂k(X) = |Bk(X)| − |X| and the k-distance differential of a graph G to be equal to
∂k(G) =max {∂k(X) : X ⊆ V }. A set D satisfying ∂k(D) = ∂k(G) is called a ∂k-set or
k-distance differential set. A graph G is said to be a k-distance dominant differential if it
contains a ∂k-set which is also a k-distance dominating set.

An alternative way to study the k-distance differential of a graph is as follows, which is
based on the notion of a k-distance big subtree, i.e. some subtree Sd = T1,d with d ≥ 2 such
that T1,d is a rooted tree with root c such that d = deg(c) = max{deg(v) : v ∈ V (T1,d)} and
the maximum distance between the root c and other vertices of subtree Sd is k. For the
graph G = (V,E), a k-distance big subtree packing(kDBSP) is given by a vertex-disjoint
collection C = {Xi : 1 ≤ i ≤ t} of (not necessarily induced) k-distance big subtrees Xi ⊆ V ,
the graph induced by Xi, written G[Xi] for short, contains some Sd with d = |Xi|−1 ≥ 2.
If C is a collection of k-distance big subtree packing of G, we also show this property
by C ∈ kDBSP (G). For a set S ⊆ V , the private k-neighborhood pnk,G[v, S] of v ∈ S
is defined by pnk,G[v, S] = Nk,G[v] − Nk,G[S − {v}] equivalently, pnk,G[v, S] = {u ∈ V :
Nk,G[u] ∩ S = {v}}. Every vertex in pnk,G[v, S] is called a private k-neighbor of v. The
external private k-neighborhood epnk,G(v, S) of v with respect to S includes those private
k-neighbors of v in V − S. Therefore epnk,G(v, S) = pnk,G[v, S] − {v}. We will say that
v ∈ V − S is an S-external private k-neighbor(S-epkn) of u if Nk,G(v) ∩ S = {u}.

Lemma 2.1. For a graph G, ∂k(G) = max{
∑

S∈C(|S| − 2) : C ∈ kDBSP (G)}.

Proof. For every C = {X1, · · · , Xt} ∈ kDBSP (G), if we consider the set D consisting of
all centers x1, · · · , xt of X1, · · · , Xt, then we have

∂k(G) ≥ ∂k(D) = |Bk(D)| − |D| ≥
t∑

j=1

(|Nk,G(xj) ∩Xj | − 1) =

t∑
j=1

(|Xj | − 2).
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Thus, ∂k(G) ≥ max{
∑

S∈C(|S| − 2) : C ∈ kDSP (G)}. Conversely, if we take a minimum

∂k-set D = {v1, · · · , vt} ⊆ V , then each vertex v ∈ D has at least two D-epkn’s because of
if there exists v ∈ D having less than two D-epkn, D′ = D−{v} satisfies ∂k(D′) ≥ ∂k(D)
contracting the minimality of D. Then the family of sets X1 = Nk,G[v1]−{v2, · · · , vt} and

Xj = Nk,G[vj ] − (∪j−1
i=1Xi ∪ {vj+1, · · · , vt}) for every j = 2, · · · , t is a k-distance subtree

packing of G and

∂k(D) =

t∑
j=1

(|Nk,G(vj)− (∪j−1
i=1 (Xi ∪ {vj+1, · · · , vt})| − 1)

=
t∑

j=1

(|Xi| − 2) ≤ max{
∑
S∈C

(|S| − 2) : C ∈ kDBSP (G)}.

Thus the proof ends. �

We now present the following lemma which provides the basic background for the proof
of the next theorem.

Lemma 2.2. If D is minimum ∂k-set of G, then the set {D,Bk(D), Ck(D)} is a parti-
tion(not necessarily nonempty) of V such that:
(a) for all v ∈ D, degk,Bk(D)(v) ≥ 2.

(b) for all v ∈ Bk(D), degk,Ck(D)(v) ≤ 2.

(c) for all v ∈ Ck(D), degk,Ck(D)(v) ≤ 1.

Proof. (a) If there exists v ∈ D such that degk,Bk(D)(v) ≤ 1, then we put S = D − {v}.
Thus we have ∂k(S) ≥ ∂k(D) and |S| < |D|, that is a contradiction.
(b) If there exists v ∈ Bk(D) such that degk,Ck(D)(v) ≥ 3, then we put S = D∪{v}. Thus
we obtain a greater k-distance differential, that is a contradiction.
(c) If there exists v ∈ Ck(D) such that degk,Ck(D)(v) ≥ 2, then taking S = D ∪ {v}, the
k-distance differential would be greater, that is a contradiction. �

3. Existence results and complexity

Lemma 3.1. Let G be a connected graph. If D is a ∂k-set of G and D is not a k-distance
dominating set, then Bk(D) = X = V − D − S where S 6= ∅, ∂k(D) = |V | − 2|D| − |S|
and every vertex in S has at most one k-neighbor in S.

Proof. Let G be a graph and ∂k(G) = ∂k(D) = be a k-distance differential set of G. Then
it is clear Bk(D) = X = V − D − S where S 6= ∅. On the contrary, suppose that a
vertex v in S has at least two k-neighbors vertices in S like S′. Let D′ = D ∪ {v}. Then
Bk(D′) = V −D−S ∪S′ and ∂k(D′) = |Bk(D′)|− |D′| = |V |− |D|− |S|+ |S′|− |D|−1 =
|V | − 2|D| − |S|+ |S′| − 1 > ∂k(D). �

By Lemma 3.1 we have.

Proposition 3.1. Let G be a connected graph.
1. If D is a ∂k-set of G, then D is a k + 1-distance dominating set of G. Therefore a
subset D′ of D is a γk+1-set of G.
2. If D is a γk-set of G, then ∂k(D) = |V (G)| − 2|D| ≤ ∂k(G). Therefore there exists a
set X with |X| ≤ |D| such that ∂k(X) = ∂k(G).
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Proof. 1. Let Bk(D) = V − D − S. If S = ∅, then D is a k-distance dominating set of
G and the proof is trivial. Let S 6= ∅. Then Lemma 3.1 shows that every vertex in S
has distance at most 1 of a vertex in V −D. Therefore every vertex in S has distance at
most k + 1 of a vertex in D. Therefore, if D is a ∂k-set of G, then D is a k + 1 distance
dominating set and there is a subset D′ of D for which γk+1-set of G.
2. Let D be a γk-set of G. Then ∂k(D) = |V (G)| − 2|D| and ∂k(G) ≥ |V (G)| − 2|D|.
Therefore there is a set X of V (G) such that ∂k(G) = ∂k(G) and |V (G)| − 2|D| ≤
|V (G)| − 2|X| − |S|. This inequality shows that |X| ≤ |D|. �

Now we discuss on the complexity of k-distance differential set of a graph G. The rest
of this section we want to focus on the complexity of the ∂k problem. So we interest to
know the decision problem whether an arbitrary graph admits a k-distance differential
number of a graph G (k-DDN) with at least m. We give the following decision problem
as.

m(k-DDN) Problem:
INSTANCE: A connected graph G and a positive integer m ≤ |V (G)|.
QUESTION: Is ∂k ≥ m?

Our aim is to show that the problem is NP-complete for arbitrary graph G. To this
end we make use of the well-known k-DISTANCE DOMINATION PROBLEM (k-DISDN
problem) which is known to be NP-complete for k ≥ 1.

Theorem 3.1. For k ≥ 1, the (k-DDN) Problem is NP -hard.

Proof. By Proposition 3.1 every k-DDN leads to a k+ 1-distance dominating set and any
k-distance dominating set leads to a k-DDN. Since (k-DISDN problem) is NP -hard, hence
k-DDN Problem is NP -hard. �

4. Lower bound of k-distance differential

This section prepares the main part of our paper. We put out one core result, giving
lower bound on connected graphs in general in terms of the order of the graph. We
complement this result by representing infinite families of graphs that attain the given
bound.

Theorem 4.1. For every connected graph G of order n ≥ k + 2, ∂k(G) ≥ (2k−1)n
2k+3 . This

bound is sharp.

Proof. By Lemma 2.1,

∂k(G) = max{S2,··· ,S∆}−packing{
∆∑

d=2

(d− 1)kd},

where kd is the number of k-distance Sd subtrees in the k-distance big subtree packing.
We assume that D is the set of vertices which are the centers of the k-distance subtrees in
a packing C giving the k-distance differential of G with minimum size, that is minimum
number of k-distance stars. We are going to find the maximum value for |Ck(D)|. For
each vertex v ∈ D which is a center of a k-distance Sd subtree X where d ≥ 3, we consider
the subgraph induced by X. Plus slightly abusing notation, let Bk({v}) denote X − {v}
and let Ck({v}) be the Ck-vertices(vertices in Ck(D) that are k-neighbors of Bk({v}). Let
us note that it is possible that a vertex u belongs to two k-distance different sets Ck({v1})
and Ck({v2}), but it does not matter because we are looking for the maximum cardinality
of Ck(D). Since by Lemma 2.2, the maximum number of k-neighbors that every vertex
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d− 2
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k

Bk(v) Ck(v)

v
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k − 1

Figure 1. A local worst-case situation for big subtree.

k
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Bk(v)
Ck(v)

v

Bk(v) Ck(v)

v
k

k

Figure 2. A local worst-case situation for small subtree.

in Bk({v}) has in Ck({v}) is two and Ck({v}) has only P1 and Pk+1 components, the
maximum cardinality of Ck({v}) is attained in the case depicted in Figure 1.

We cannot have more than d − 2 vertices in Bk({v}) having two private k-neighbors
in Ck({v}) because of taking all these vertices, we would obtain a bigger k-distance dif-
ferential. None of the rectangular vertices in Ck({v}) can have a k-neighbor in Ck({v}),
since in such a case, taking this vertex and circular vertices, we would also obtain a bigger
k-distance differential. Therefore the maximum number of vertices we can have in Ck({v})
for any k-distance subtree Sd is (2k+ 2)|Bk(v)|− (2k+ 4) = (2k+ 2)d− (2k+ 4). If v ∈ D
is a center of a k-distance subtree S2, then the set Ck({v}) cannot have more than two
vertices since in such a case, we can choose one or two vertices in {v}∪Bk({v})∪Ck({v})
giving a bigger k-distance differential; see Figure 2.

Hence, if the number of Pk+1, k-distance paths, is pk+1, then

|Ck(D)| ≤ (2k + 2)(|Bk(D)| − 2pk+1)− (2k + 4)(|D| − pk+1) + 2pk+1

= (2k + 2)|Bk(D)| − (2k + 4)|D| − 2kpk+1 + 2pk+1.

On the other hand
n = |Ck(D)|+ |Bk(D)|+ |D| ≤

(2k + 2)|Bk(D)| − (2k + 4)|D| − 2kpk+1 + 2pk+1 + |Bk(D)|+ |D|
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Pt = P3

P2k+3 = P7

Figure 3. Graph G3,2.

= (2k + 3)(|Bk(D)| − |D|) + pk+1(2− 2k) ≤ (2k + 3)(|Bk(D)| − |D|) + n(2− 2k).

Therefore

n− n(2− 2k) ≤ (2k + 3)(|Bk(D)| − |D|), and then |Bk(D)| − |D| ≥ (2k − 1)n

2k + 3
.

Since ∂k(G) ≥ ∂k(D) ≥ |Bk(D)| − |D|, ∂(G) ≥ (2k−1)n
2k+3 .

For seeing the sharpness of the lower bound of ∂k(G), let k be a positive integer and
let P i

2k+3 be a path with vertices vi1 , vi2 , · · · , vi2k+3
and with center ci = vik+2

. Let Gt,k

be a graph consists of t disjoint P i
2k+3, (1 ≤ i ≤ t) and a path of Pt with vertex set

V (Pt) = {c1, c2, · · · , ct}, see G3,2 in Figure 3. Then the connected graphs Gt,k, (t ≥ 1) of

order n = (2k+ 3)t is a graph with k-distance differential of (2k−1)n
2k+3 . Thus the proof ends.

�

5. Upper bounds of k-distance differential

Theorem A [2]. Let G be a graph of order n and ∆(G) ≥ 1. Then

∂(G) ≤ n(∆(G)− 1)

∆(G) + 1
.

From Theorem A and the definition of Gk we have:

Theorem 5.1. Let k ≥ 1 be an integer and G be a graph of order n with ∆k(G) ≥ 1, then

∂k(G) ≤ n(∆k(G)− 1)

∆k(G) + 1
.

Proof. Firstly, we have clearly ∂k(G) = ∂(Gk) and ∆k(G) = ∆(Gk). Thus by Theorem A,
we obtain

∂k(G) = ∂(Gk) ≤ n(∆(Gk)− 1)

∆(Gk) + 1
=
n(∆k(G)− 1)

∆k(G) + 1
.

�

Theorem 5.2. Let k ≥ 1 be an integer and G be a graph of order n ≥ 2. If diam(G) ≤ k,
then ∂k(G) = n− 2.

Proof. If diam(G) ≤ k, then we put D = {v}. Then ∂k(G) ≥ ∂k(D) = |Bk(D)| − |D| =
(n − 1) − 1 = n − 2. On the other hand, for any nonempty set X ⊆ G, ∂k(X) ≤ n − 2.
Therefore ∂k(G) = n− 2. �
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Theorem 5.3. For any graph G of order n ≥ k + 2, (2k+1)n
2k+3 ≤ ∂k(G) + γk(G) ≤ n− 1.

Proof. If D is a ∂k(G)-set, since γk(G) ≤ |D|+ |Ck(D)|, we have

∂k(G) + γk(G) ≤ |Bk(D)| − |D|+ |D|+ |Ck(D)| = |Bk(D)|+ |Ck(D)| = n− |D| ≤ n− 1.

Now we prove the lower bound. If γk(G) ≥ 2n
2k+3 , since ∂k(G) ≥ (2k−1)n

2k+3 , we deduce

∂k(G) + γk(G) ≥ (2k+1)n
2k+3 . If γk(G) < 2n

2k+3 and we take a k-distance dominating set

S ⊆ V such that |S| = γk(G), we obtain ∂k(G) + γk(G) ≥ ∂k(S) + γk(G)

= |V − S| − |S|+ γk(G) = n− 2γk(G) + γk(G) = n− γk(G) > n− 2n

2k + 3
=

(2k + 1)n

2k + 3
.

�

Theorem 5.4. For any graph G of order n with ∆(G) ≥ 3 and for every positive integer
k, we have

∂k(G) ≤ n(∆− 1)(∆(∆− 1)k−1 − 1)

(∆− 2)(∆ + 1)
.

Proof. Since each vertex v ∈ V (G) dominates at most ∆ vertices at distance 1 from v, at
most ∆(∆ − 1) vertices at distance 2 from v, at most ∆(∆ − 1)2 vertices at distance 3
from v, and so on, then we have

∆k(G) ≤ ∆ + ∆(∆− 1) + ∆(∆− 1)2 + · · ·+ ∆(∆− 1)k−1 = ∆
(∆− 1)k − 1

∆− 2
.

On the other hand, Theorem 5.1 yields that ∂k(G) ≤ n(∆k(G)−1)
∆(G)+1 . Therefore

∂k(G) ≤
n(∆ (∆−1)k−1

∆−2 − 1)

∆ + 1
≤ n∆(∆− 1)k −∆

(∆− 2)(∆ + 1)
≤ n(∆− 1)(∆(∆− 1)k−1 − 1)

(∆− 2)(∆ + 1)
.

�

The next example has straightforward proof. We only sketch the proof of one of the
cases, the other cases are left.

Example 5.1. For all paths Pn and cycles Cn,

∂k(Pn) = ∂k(Cn) =



(2k−1)n
2k+1 , n ≡ 0 (mod 2k + 1);

n− 2b n
2k+1c − 1, n ≡ 1 (mod 2k + 1);

n− 2b n
2k+1c − 2, otherwise.

Proof. Let n ≡ 0 (mod 2k + 1) and n = t(2k + 1). For any X ⊆ V (Cn) (X ⊆ V (Pn)),
Bk(X) has maximum size if any two vertices in X like xi, xj has distance d(xi, xj) ≥ 2k+1.

In particular if we choose the set S as follows {vk+1, v3k+2, · · · , v(2t−1)k+t}, then |Bk(S)|
has maximum value and |S| minimum value for covering all vertices between V − S and

S. It is easy to see that if n ≡ 0 (mod 2k + 1), then ∂k(Cn) = (2k−1)n
2k+1 = ∂k(Pn). The

other cases are similarly proved. �

Given the positive integers 2m < n, place n vertices around a circle, equally spaced.
For 2m, form H2m,n by making each vertex adjacent to the nearest m vertices in each
direction around the circle. This graph is called the first type of Harary graph.
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Example 5.2. If G = H2m,n is of the first type of Harary graph, then we have:

∂k(G) =


(2km− 1)b n

2km+1c if n ≡ 0, 1, 2 (mod 2km+ 1);

(2km− 1)b n
2km+1c+ l − 2 if n ≡ l (mod 2km+ 1), (3 ≤ l ≤ 2km).

Proof. If xi is a vertex, then xi k-distance dominates 2km vertices except itself. If xi and
xj are two vertices such that |i−j| = 2km+1, then the 4km distinct vertices are k-distance
dominated by xi and xj . Therefore, if then n ≡ t (mod 2km+ 1) and t ∈ {0, 1, 2}, we say
X = {vkm+1, v3km+2, v5km+3 · · · , v(2r+1)km+r+1}, where r = b n

2km+1c − 1.

In this case Bk(X) = V −X − S is such away |Bk(X)| = n − |X| − |S| and ∂k(X) =
n − 2|X| − |S| = ∂k(G) for |S| = t. If n ≡ t (mod 2km + 1) and 3 ≤ t ≤ 2km,
we say X ′ = {vkm+1, v3km+2, v5km+3 · · · , v(2r+1)km+r+1, v((2r+2)km+r+1)b t

2
c}. In this case

Bk(X ′) = V −X ′ is such away |Bk(X ′)| = n− |X ′| and ∂k(X ′) = n− 2|X ′| = ∂k(G).

If Y ⊆ V (G) and |Y | < |X|, then it is easy to see that |Bk(Y )| ≤ |Bk(X)| or if |Y | = |X|,
but the indices of some vertices like yi and yj in Y are such that |i− j| < 2km+ 2, then

it is easy to see that |Bk(Y )| ≤ |Bk(X)| and so ∂k(Y ) ≤ ∂k(X).
Now let n ≡ 0 (mod 2km+ 1). Then ∂k(X) = n− 2|X| = n− 2(r+ 1) = n− 2b n

2km+1c =

(2km− 1)b n
2km+1c. Let n ≡ l (mod 2km+ 1) where 1 ≤ l ≤ 2km. If we consider X same

as above, then |Bk(X)| = n− l − |X| and ∂k(X) = n− l − 2|X| = (2km− 1)b n
2km+1c.

If we add a vertex vn+d l
2
e to the set X and obtain the set X1, then |Bk(X1)| = n− |X1| =

n−|X|−1 and ∂k(X1) = n−2|X1| = n−2|X|−2 = (2km−1)b n
2km+1c+ l−2. Therefore,

for l = 1, 2, the set X gives us a maximum ∂k(X) and for l ≥ 3, the set X1 gives us a
maximum ∂k(X). Thus the proof ends. �

6. Exact value of k-distance differential

In this section we study the exact value of k-distance differential of graphs.

Theorem 6.1. For any graph G with maximum k-degree ∆k(G), ∂k(G) ≥ ∆k(G) − 1.
This bound is sharp.

Proof. Let D = {v} where v is a vertex of maximum k-degree ∆k(G). Then we have
∂k(G) ≥ ∂k(D) = |Bk(D)| − |D| = ∆k(G)− 1.
For seeing the sharpness of the bound, assume that k ≥ 1 is an integer and L is a graph
with ∆k(L) = n(L)− 1 ≥ 2. Now put G = tK1 ∪ t′K2 ∪ L for two integers t, t′ ≥ 0. Then
∆k(G) = ∆k(L) and ∂k(G) = (n− t− 2t′ − 1)− 1 = ∆k(G)− 1. �

Theorem 6.2. Suppose that k ≥ 1 is an integer and G is a graph of order n ≥ 2. Then
∂k(G) = n− 2 if and only if n = 2 or n ≥ 3 and ∆k(G) = n− 1.

Proof. If n = 2, then ∂k(G) = 2 − 2 = n − 2. If n ≥ 3 and ∆k(G) = n − 1, then by
Theorem 6.1 we conclude

∆k(G)− 1 = n− 1− 1 = n− 2 ≤ ∂k(G) ≤ n− 2.

Therefore ∂k(G) = n − 2. Conversely, we suppose that ∂k(G) = n − 2. If ∆k(G) = 0,
then it follows that n = 2. If ∆k(G) ≥ 1, then we deduce from Theorem 5.1 that

∂k(G) = n− 2 ≤ (∆k−1)n
∆k+1 . Therefore ∆k(G) ≥ n− 1. This leads to ∆k(G) = n− 1. �

Theorem 6.3. Let k ≥ 1be an integer, and let G be a graph of order n. Then ∂k(G) = 0
if and only if G = tK1 ∪ t′K2 for some integers t, t′ ≥ 0.
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Proof. If G = tK1 ∪ t′K2 for some integers t, t′ with t + t′ ≥ 1, then clearly, ∂k(G) = 0.
Conversely, suppose that ∂k(G) = 0. If ∆k(G) ≥ 2, then from Theorem 6.1 we have a
contradiction. Therefore ∆k(G) ≤ 1 and so G = tK1 ∪ t′K2 for some integers t, t′ with
t+ t′ ≥ 1. �

Theorem 6.4. Let k ≥ 1 be an integer and G be a graph of order n ≥ 4. Then ∂k(G) =
n− 3 if and only if ∆k(G) = n− 2.

Proof. If ∆k(G) = n−2, then by Theorem 6.2, we have ∂k(G) ≤ n−3. On the other hand,
from Theorem 6.1, ∂k(G) ≥ ∆k(G)− 1 = n− 2− 1 = n− 3, so we deduce ∂k(G) = n− 3.
Conversely, If ∂k(G) = n − 3, then by Theorem 6.2, we have ∆k(G) ≤ n − 2. Now let
D be a ∂k(G)-set. Since ∂k(G) = n − 3 ≥ 1, it follows that |D| ≥ 1. If |D| ≥ 2, then
|Bk(D)| ≤ n− 2. Therefore ∂k(G) ≤ n− 4, a contradiction. So, D = {x} for some vertex
x. This shows that degk,G(x) = n − 2, implying ∆k(G) ≥ n − 2. On the other hand,
∆k(G) = n− 1 is impossible by Theorem 6.2. So, ∆k(G) = n− 2. �

Theorem 6.5. Let k ≥ 2 be an integer, and let G be a graph of order n ≥ 3. Then
∂k(G) = 1 if and only if G = K3 ∪ tK1 ∪ t′K2 or G = P3 ∪ tK1 ∪ t′K2 for some integers
t, t′ ≥ 0.

Proof. If G = K3 ∪ tK1 ∪ t′K2 or G = P3 ∪ tK1 ∪ t′K2 for some integers t, t′ ≥ 0, then
clearly ∂k(G) = 1.
Conversely, we suppose that ∂k(G) = 1. If ∆k(G) ≥ 3, then Theorem 6.1, implies the
contradiction 1 = ∂k(G) ≥ ∆k(G)− 1 ≥ 2. Thus ∆k(G) ≤ 2.
If ∆k(G) ≤ 1, then we have ∂k(G) = 0 by Theorem 5.1, which is a contradiction.
Consequently, ∆k(G) = 2. If G contains at least two components L1 and L2 with
∆k(L1) = ∆k(L2), then ∂k(G) ≥ 2 − 1 + 2 − 1 = 2, a contradiction. Hence G has
exactly one component L with ∆k(L) = 2 and the remaining components are isolated
vertices or isomorphic to K2. If |V (L)| ≥ 4, then the assumption k ≥ 2 shows that
∆k(G) = ∆k(L) ≥ 3, a contradiction. Hence |V (L)| = 3 and so G = K3 ∪ tK1 ∪ t′K2 or
G = P3 ∪ tK1 ∪ t′K2 for some integers t, t′ ≥ 0. �

A classical result from [6] states that, for a simple graph G, if diam(G) ≥ 3, then
diam(G) ≤ 3. It follows that, if diam(G) ≥ 4, then diam(G) ≤ 2. From this result we
have:

Theorem 6.6. Let k ≥ 3 be an integer and let G be a graph of order n ≥ 2. Then
∂k(G) = n− 2 or ∂k(G) = n− 2.

Proof. If diam(G) ≤ 3, then it follows from Theorem 5.2 that ∂k(G) = n−2. If diam(G) ≥
4, then diam(G) ≤ 2. Applying again Theorem 5.2 for G, we see that ∂k(G) = n− 2. �

Theorem 6.7. Let G be a graph of order n ≥ 2. If diam(G) 6= 3, then ∂2(G) = n− 2 or
∂2(G) = n− 2.

Proof. If diam(G) ≤ 2, then it follows from Theorem 5.2 that ∂2(G) = n−2. If diam(G) ≥
3, then the assumption diam(G) 6= 3 implies that diam(G) ≥ 4. Same as above we deduce
that diam(G) ≤ 2, and Theorem 5.2 leads to ∂2(G) = n− 2. �

Theorem 6.8. Let k ≥ 1 be an integer and G be a connected graph of order n with
n−∆(G)− k ≥ 0, then

∂k(G) ≥ ∆(G) + k − 2.
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Proof. Let v be a vertex of G such that degG(v) = ∆(G). If d(u, v) ≤ k for each u ∈ V (G),
then obviously ∂k(G) = n − 2 and we are done. If d(w, v) > k for some w ∈ V (G), then
choose a vertex u in G such that d(u, v) = k + 1. Let P be a shortest (u, v)-path.
Then d(v, z) ≤ k for each z ∈ (V (P ) − {u}) ∪ NG(v). By setting D = {v, u}, we have
∂k(D) = |Bk(D)| − |D| ≥ (∆(G) + k − 1) + 1− 2 = ∆(G) + k − 2. �

Theorem 6.9. Let G be a t-regular graph with diam(G) ≥ 3. For any integer 1 ≤ k ≤
bdiam(G)

2 c, ∂k(G) ≥ (k + 1)(t− 1).

Proof. Suppose that P = x1x2 · · ·xdiam(G)+1 be a diametral path of graph G. Clearly, we

have Nk(x1) ∩ Nk(xd) = ∅. Now we put D = {x1, xd}. Since G is t-regular, |Bk(D)| ≥
2t+ (k − 1)(t− 1) and hence ∂k(G) ≥ ∂k(D) = |Bk(D)| − |D| ≥ 2t+ (k − 1)(t− 1)− 2 =
2(t− 1) + (k − 1)(t− 1). �

7. Conclusions

The concept of k-distance differential in graphs was initially investigated in this paper.
We studied the computational complexity of this concept and proved some bounds on k-
distance differential of graphs. We now conclude the paper with some problems suggested
by this research.

• For every connected graph G of order n ≥ k+ 2, ∂k(G) ≥ (2k−1)n
2k+3 as already noted

in Theorem 4.1. It is worthwhile to characterize all graphs G with ∂k(G) = (2k−1)n
2k+3 .

• The decision problem k-DISTANCE DIFFERENTIAL NUMBERS is NP-complete
for arbitrary graph G, as proved in Theorem 3.1. Is it possible to construct
a polynomial-time algorithm to compute ∂k(G) for some well-known families of
graphs, like trees?
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[5] Bermudo, S. and Rodŕıguez, J. M. and Sigarreta, J. M., (2015), On the differential in graphs, Utilitas
Mathematica, 97 , pp. 257-270.

[6] Bondy, J. A. and Murty, U. S. R., (1976), Graph Theory with Applications, The Macmillan Press Ltd.
London and Basingstoke.

[7] Culotta, A., (2005), Maximizing cascades in social networks, Tech. rep., University of Massachusetts,
USA.

[8] Davila, R. and Fast, C. and Henning, M. A. and Kenter, F., (2017), Lower bounds on the distance
domination number of a graph, Contributions to Discrete Mathematics, 12, pp. 11-21.

[9] Domingos, P. and Richardson, M., (2001), Mining the network value of customers, in: Proceedings of
the Seventh International Conference on Knowledge Discovery and Data Mining, KDD, pp. 57-66.



D. A. MOJDEH, I. MASOUMI: ON THE K-DISTANCE DIFFERENTIAL OF GRAPHS 625

[10] Haynes, T. W. and Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in graphs,
New York: Marcel Dekker.

[11] Hern´andez-G´omez, J. C., Differential and Operations on Graphs, (2015), International Journal of
Mathematical Analysis, Vol. 9, no. 7, pp. 341-349. http://dx.doi.org/10.12988/ijma.2015.411344.

[12] Kempe, D. and Kleinberg, J. M. and Tardos, E., Influential nodes in a diffusion model for social
networks, in: Caires, L. and Italiano, G. F. and Monteiro, L. and Palamidessi, C. and Yung, M.(Eds.),
(2005), Automata, Languages and Programming, ICALP, in: LNCS, vol. 3580, Springer, pp. 1127-1138.

[13] Lewis, J. R., (2004), “Differentials of graphs”, Master’s Thesis, East Tennessee State University.
[14] Mashburn, J. L. and Haynes, T. W. and Hedetniemi, S. M. and Hedetniemi, S. T. and Slater, P. J.,

(2006), Differentials in graphs, Utilitas Mathematica, 69, pp. 43-54.
[15] Mojdeh, D. A. and Parsian, A. and Masoumi, I., Characterization of double Roman trees, to appear

in Ars Combinatoria.
[16] Mojdeh, D. A. and Parsian, A. and Masoumi, I.,(2019), Strong Roman Domination Number of Com-

plementary Prism Graphs, Turk. J. Math. Comput. Sci.,11(1), pp. 40-47.
[17] Pushpam, P. R. L. and Yokesh, D., (2010), Differentials in certain classes of graphs, Tamkang Journal

of Mathematics 41(2), pp. 129-138.
[18] Sigarreta, J. M., (2016), Differential in Cartesian product graphs, Ars Combinatoria, 126, pp. 259-267.
[19] West, D. B., (2001), Introduction to Graph theory, Second edition, Prentice Hall.

D. Ali Mojdeh for the photography and short autobiography, see TWMS J. App. and Eng. Math.
V.12, N.2.

Iman Masoumi is a researcher in the field of graph theory and computer science in
Iran. He received his B.Sc. degree from Arak University, M.Sc. degree from Tarbiat
Modares University of Tehran and Ph.D degree from Tafresh University. His research
interests include graph theory, differntial geometry and machine learning on graphs.


