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DECOMPOSITION OF TENSOR PRODUCT OF COMPLETE GRAPHS

INTO CYCLES AND STARS WITH FOUR EDGES

A. P. EZHILARASI1, M. ILAYARAJA2, A. MUTHUSAMY1∗, §

Abstract. In this paper, we prove that the necessary conditions are sufficient for the
existence of a decomposition of tensor product of complete graphs into cycles and stars
with four edges.
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1. Introduction

All graphs considered here are finite and simple. Let Pn, Cn, Sn and Kn denote a path,
cycle, star and complete graph on n vertices and Km,n denotes a complete bipartite graph
with m and n vertices in the parts. Let Km(n) denote a complete m-partite graph with
n vertices in each part. We denote the cycle Ck with vertices x1, x2, · · · , xk and edges
x1x2, · · · , xk−1xk, xkx1 as (x1x2 · · ·xk) and a star Sk+1 consists of a center vertex x0 and
k end vertices x1, x2, · · · , xk as (x0;x1, x2, · · · , xk).

For two graphs G and H, we define their tensor product, denoted by G×H, as follows:
the vertex set is V (G)× V (H) and the edge set is

E(G×H) = {(g, h)(g
′
, h
′
) | gg′ ∈ E(G) andhh

′ ∈ E(H)}.

If E(G) can be partitioned into subsets E1, E2, . . . , Ek such that the subgraph induced
by Ei is Hi, for all i, 1 ≤ i ≤ k, then we say that H1, . . . ,Hk decompose G and we write
G = H1 ⊕ · · · ⊕Hk. For 1 ≤ i ≤ k, if Hi

∼= H, we say that G has a H-decomposition and
it is denoted by H|G. If G can be decomposed into q copies of H1 and r copies of H2,
then we say that G has a {qH1, rH2}-decomposition. If such a decomposition exits for all
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q and r satisfying trivial necessary conditions, then we say that G has a {H1, H2}{q,r}-
decomposition or complete {H1, H2}-decomposition.

The study of {H1, H2} -decomposition has been introduced by Abueida and Daven [1].
Moreover, Abueida and O’Neil [2] have settled the existence of {H1, H2} -decomposition of
Km(λ) when {H1, H2} = {Sn, Cn} for n = 3, 4, 5. Priyadharsini and Muthusamy [10] estab-
lished necessary and sufficient conditions for the existence of {H1, H2}-multidecomposition
of λKn where H1, H2 ∈ {Cn, Pn, Sn} . Lee [6], gave necessary and sufficient conditions
for the decomposition of Km,n into at least one copy of each Ck and Sk+1. Jeevadoss and
Muthusamy [5] have obtained necessary and sufficient conditions for the existence of a
decomposition of product graphs into paths and cycles with four edges. Pauline Ezhilarasi
and Muthusamy [8] have obtained the necessary and sufficient conditions for the existence
of a decomposition of product graphs into paths and stars with three edges. Ilayaraja
et.al, [4] and Pauline Ezhilarasi and Muthusamy, [9] proved the existence of {P5, S5}-
decomposition of product graphs. Many other results on decomposition of graphs into
distinct subgraphs involving cycles and stars have been proved in [6, 7, 11–13]. In this
paper, we establish necessary and sufficient conditions for the existence of a complete
{C4, S5}-decomposition of Km ×Kn.

To prove our results we state the following:

Theorem 1.1. [3] Let q and r be non-negative integers and n ≥ m > 0. Then there exists
a complete {C4, S5}-decomposition of Km,n if and only if one of the following holds:

(1) q 6= 0, 2 and r 6= 1 when m,n ≡ 2 (mod 4);
(2) q, r 6= 1 when m,n ≡ 0 (mod 2);
(3) q 6= 1 and q ≥ n

4 (or m
4 ) when m(or n) is odd and n(or m) ≡ 0 (mod 4).

Theorem 1.2. [5] If m ≡ 0 (mod 4), then Km has a {(m/4)K4, ((m
2 − 4m)/8)C4}-

decomposition.

Remark 1.1. If G and H has a complete {C4, S5}-decomposition, then G ∪H = G⊕H
has a complete {C4, S5}-decomposition.

Remark 1.2. If two stars with four edges have same end vertices, then they can be de-
composed into two cycles on four edges. i.e., {(a0;x1, · · · , x4), (a1;x1, · · · , x4)} gives
{(x1a0x2a1x1), (x3a0x4a1x3)}. We denote such pair of stars as (a0, a1;x1, · · · , x4).

2. Base Constructions

In this section we prove some basic Lemmas which are required to prove our main result.

Lemma 2.1. Let q and r be non-negative integers. Then there exists a complete {C4, S5}-
decomposition of K5,5 − I, with q = 0 or r = 0.

Proof. Let V (G) = {x1, · · · , x5}∪{y1, · · · , y5}. Now, {(x1; y2, y3, y4, y5), (x2; y1, y3, y4, y5),
(x3; y1, y2, y4, y5), (x4; y1, y2, y3, y5), (x5; y1, y2, y3, y4)} and {(y2x1y3x4), (y4x1y5x2),
(y1x2y3x5), (y1x3y5x4), (y2x3y4x5)} respectively gives required stars and cycles. �

Lemma 2.2. There exists a complete {C4, S5}-decomposition of K9,9 − I, for all non-
negative integers q, r with r 6= 1.

Proof. Let V (G) = {x1, · · · , x9} ∪ {y1, · · · , y9}. We can write K9,9 − I = 2(K5,5 − I) ⊕
2K4,4. By Lemma 2.1 and Theorem 1.1, K5,5 − I and K4,4 have a complete {C4, S5}-
decomposition and hence G has a complete {C4, S5}-decomposition except (q, r) ∈ {(1, 17),
(3, 15), (15, 3)}. Now, by Remark 1.2, the cycles and stars
{(x3y5x4y6), (x1, x3; y2, y4, y7, y8), (x5; y3, y4, y6, y7), (x6; y2, y4, y5, y9), (x7; y4, y5, y8, y9),
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(x8; y2, y3, y4, y5), (x9; y3, y4, y5, y8), (y1;x2, x3, x6, x8), (y1;x4, x5, x7, x9),
(y2;x4, x5, x7, x9), (y3;x2, x4, x6, x7), (y6;x2, x7, x8, x9), (y7;x4, x6, x8, x9),
(y8;x2, x4, x5, x6), (y9;x3, x4, x5, x8), (x1; y3, y5, y6, y9), (x2; y4, y5, y7, y9)} gives a required
decomposition for (q, r) ∈ {(1, 17), (3, 15)}.
For (q, r) = (15, 3), the required decomposition is {(x1; y2, y4, y5, y6), (x2; y1, y5, y6, y7),
(x3; y1, y2, y4, y7), (x2y3x5y4), (x4y2x5y1), (x1y3x4y9), (x3y8x5y9), (x3y6x4y5), (x1y8x4y7),
(x2y8x6y9), (x7y5x8y9), (x5y6x8y7), (x7y6x9y8), (x6y5x9y7), (x6y1x7y2), (x8y3x9y4),
(x6y3x7y4), (x8y1x9y2)}. Hence K9,9 − I has a complete {C4, S5}-decomposition. �

Theorem 2.1. Let q and r be non-negative integers. There exists a complete {C4, S5}-
decomposition of Kn,n − I for n ≡ 1 (mod 4) with r 6= 1 and q = 0 or r = 0 when
n = 5.

Proof. When n = 5, 9, the proof follows from Lemmas 2.1 and 2.2.
When n > 9, let n = 4k + 9, k ∈ Z+ and V (G) = V (Kn,n − I) = X ∪ Y , where
X = {x0, x1, · · · , x4k+8} and Y = {y0, y1, · · · , y4k+8}. Partition the sets {x1, x2, · · · , x4k}
and {y1, y2, · · · , y4k} into 4-subsets Xi and Yi, where i = 1, 2, · · · , k respectively. Then
G[Xi∪{x0}, Yi∪{y0}] ∼= K5,5−I and G[Xi, Yj ] ∼= K4,4 for all i 6= j. Therefore, Kn,n−I =
k(K5,5 − I) ⊕ k(k − 1)K4,4 ⊕ (K9,9 − I) ⊕ 2kK8,4. By Theorem 1.1, Lemma 2.2 and
Remark 1.1, k(k − 1)K4,4 ⊕ (K9,9 − I) ⊕ 2kK8,4 can be decomposed into α copies of
C4 and 4k2 + 12k + 18 − α copies of S5, where 0 ≤ α ≤ 4k2 + 12k + 18. By Lemma
2.1, k(K5,5 − I) can be decomposed into 5β copies of C4 and 5(k − β) copies of S5 with
0 ≤ β ≤ k. Hence by Remark 1.1, Kn,n − I can be decomposed into q copies of C4 and
r(= n(k + 2) − q) copies of S5 with 0 ≤ q ≤ n(k + 2). Thus Kn,n − I has a complete
{C4, S5}-decomposition. �

Lemma 2.3. Let q and r be non-negative integers. Then there exists a complete {C4, S5}-
decomposition of P3 ×K3, with q = 0 or r = 0.

Proof. Let V (P3×K3) = {xi,j : 1 ≤ i, j ≤ 3}. Now, the cycles and stars {(x1,1x2,2x3,1x2,3),
(x1,2x2,1x3,2x2,3), (x1,3x2,1x3,3x2,2)} and {(x2,1;x1,2, x1,3, x3,2, x3,3), (x2,2;x1,1, x1,3, x3,1,
x3,3), (x2,3;x1,1, x1,2, x3,1, x3,2)} respectively gives the required decomposition of P3 ×K3.

�

Lemma 2.4. Let q and r be non-negative integers. Then there exists a complete {C4, S5}-
decomposition of P3 ×K5 with r 6= 1.

Proof. Let V (P3 × K5) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 5}. Then the required complete
{C4, S5}-decomposition is given below:

(1) q = 10 and r = 0. The required cycles are
(x1,1x2,4x3,3x2,5), (x1,2x2,5x3,4x2,1), (x1,3x2,4x3,1x2,5), (x1,4x2,5x3,2x2,1),
(x1,1x2,2x3,4x2,3), (x1,2x2,3x3,5x2,4), (x1,5x2,1x3,3x2,2), (x1,3x2,1x3,5x2,2),
(x1,4x2,2x3,1x2,3), (x1,5x2,3x3,2x2,4).

(2) q = 8 and r = 2. The required cycles and stars are
(x1,1x2,4x3,3x2,5), (x1,2x2,5x3,4x2,1), (x1,3x2,4x3,1x2,5), (x1,4x2,5x3,2x2,1),
(x1,1x2,2x3,4x2,3), (x1,2x2,3x3,5x2,4), (x1,4x2,2x3,1x2,3), (x1,5x2,3x3,2x2,5),
(x2,1;x1,3, x1,5, x3,3, x3,5), (x2,2;x1,3, x1,5, x3,3, x3,5).

(3) q = 7 and r = 3. The required cycles and stars are
(x1,1x2,4x3,1x2,5), (x1,2x2,5x3,4x2,1), (x1,3x2,5x3,3x2,1), (x1,4x2,5x3,2x2,1),
(x1,4x2,2x3,1x2,3), (x1,5x2,3x3,2x2,4), (x1,5x2,1x3,5x2,2), (x2,2;x1,1, x1,3, x3,3, x3,4),
(x2,3;x1,1, x1,2, x2,4, x2,5), (x2,4;x1,2, x1,3, x3,3, x3,5).

(4) q = 6 and r = 4. The required cycles and stars are
(x1,1x2,4x3,3x2,5), (x1,2x2,5x3,4x2,1), (x1,3x2,4x3,1x2,5), (x1,4x2,5x3,2x2,1),
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(x1,3x2,1x3,5x2,2), (x1,5x2,1x3,3x2,2), (x2,2;x1,1, x1,4, x3,1, x3,4),
(x2,3;x1,1, x1,2, x1,4, x55), (x2,4;x1,2, x1,5, x3,2, x3,5), (x2,3;x3,1, x3,2, x3,4, x3,5).

(5) q = 5 and r = 5. The required cycles and stars are
(x1,1x2,4x3,3x2,5), (x1,2x2,5x3,4x2,1, x1,2), (x1,3x2,4x3,1x2,5), (x1,4x2,5x3,2x2,1),
(x1,5x2,1x3,3x2,2), (x2,1;x1,2, x1,3, x3,4, x3,5), (x2,2;x1,3, x1,4, x3,1, x3,5),
(x2,3;x1,4, x1,5, x3,1, x3,2), (x2,4;x1,1, x1,5, x3,2, x3,3), (x2,5;x1,1, x1,2, x3,3, x3,4).

(6) q = 4 and r = 6. The required cycles and stars are
(x1,1x2,4x3,3x2,5), (x1,2x2,5x3,4x2,1), (x1,3x2,4x3,1x2,5), (x1,4x2,5x3,2x2,1),
(x2,1;x1,3, x1,5, x3,3, x3,5), (x2,2;x1,3, x1,5, x3,3, x3,5), (x2,2;x1,1, x1,4, x3,1, x3,4),
(x2,3;x1,1, x1,2, x1,4, x1,5), (x2,4;x1,2, x1,5, x3,2, x3,5), (x2,3;x3,1, x3,2, x3,4, x3,5).

(7) q = 3 and r = 7. The required cycles and stars are
(x1,1x2,2x3,4x2,3), (x1,2x2,3x3,5x2,4), (x1,3x2,4x3,3x2,2), (x2,1;x1,2, x1,3, x1,4, x1,5),
(x2,1;x3,2, x3,3, x3,4, x3,5), (x2,2;x1,4, x1,5, x3,1, x3,5), (x2,3;x1,4, x1,5, x3,1, x3,2),
(x2,4;x1,1, x1,5, x3,1, x3,2), (x2,5;x1,1, x1,2, x1,3, x1,4), (x2,5;x3,1, x3,2, x3,3, x3,4).

(8) q = 2 and r = 8. The required cycles and stars are
(x1,3x2,1x3,5x2,2), (x1,5x2,1x3,3x2,2), (x2,1;x1,2, x1,4, x3,2, x3,4),
(x2,2;x1,1, x1,4, x3,1, x3,4), (x2,3;x1,1, x1,2, x1,4, x1,5), (x2,3;x3,1, x3,2, x3,4, x3,5),
(x2,4;x1,1, x1,2, x1,3, x1,5), (x2,4;x3,1, x3,2, x3,3, x3,5), (x2,5;x1,1, x1,2, x1,3, x1,4),
(x2,5;x3,1, x3,2, x3,3, x3,4).

(9) q = 0 and r = 10. The required stars are
(x2,1;x1,2, x1,3, x1,4, x1,5), (x2,1;x3,2, x3,3, x3,4, x3,5), (x2,2;x1,1, x1,3, x1,4, x1,5),
(x2,2;x3,1, x3,3, x3,4, x3,5), (x2,3;x1,1, x1,2, x1,4, x1,5), (x2,3;x3,1, x3,2, x3,4, x3,5),
(x2,4;x1,1, x1,2, x1,3, x1,5), (x2,4;x3,1, x3,2, x3,3, x3,5), (x2,5;x1,1, x1,2, x1,3, x1,4),
(x2,5;x3,1, x3,2, x3,3, x3,4).

Thus the Lemma holds. �

Lemma 2.5. Let q and r be non-negative integers. Then there exists a complete {C4, S5}-
decomposition of P3 ×Kn, for all odd n ≥ 3 with r 6= 1.

Proof. When n = 3, 5, the proof follows from Lammas 2.3 and 2.4. For n > 5,

P3 ×Kn =

(
n− 5

2

)
(P3 ×K3)⊕

(
n− 3

2

)
K2,4 ⊕ (P3 ×K5)

⊕
{ n−3⊕

i=4

Ki,4

}
, i ≡ 0 (mod 2) ≥ 4.

By Lemmas 2.3 and 2.4, P3 ×K3 and P3 ×K5 have a complete {C4, S5}-decomposition.
Also, by Theorem 1.1, K2,4 and Ki,4 have a complete {C4, S5}-decomposition. Hence, by
the remark 1.1, the graph P3 ×Kn has the desired decomposition. �

Lemma 2.6. There exists a complete {C4, S5}-decomposition of K4 × K4, for all non-
negative integers q, r with r ≥ 4.

Proof. Let V (K4 ×K4) = {xi,j : 1 ≤ i, j ≤ 4}. We prove this in two cases as follows:
Case 1: q even.
First we decompose K4 ×K4 into 18S5 as follows:
(x1,1, x3,1;x2,2, x2,4, x2,3, x4,3), (x1,2, x3,2;x2,1, x2,3, x2,4, x4,4), (x1,3, x3,3;x2,1, x2,2, x2,4, x4,1),
(x1,4, x3,4;x2,1, x2,2, x2,3, x4,2), {(x4,1;x2,2, x2,3, x2,4, x3,4), (x4,2;x2,1, x2,3, x2,4, x3,3),
(x4,3;x2,2, x2,1, x2,4, x3,4), (x4,4;x2,2, x2,3, x2,1, x3,3), (x1,1;x3,3, x3,4, x4,2, x4,4),
(x1,2;x3,3, x3,4, x4,1, x4,3), (x1,3;x3,1, x3,4, x4,2, x4,4), (x1,4;x3,3, x3,2, x4,1, x4,3),
(x3,1;x1,2, x1,4, x4,2, x4,4), (x3,2;x1,1, x1,3, x4,1, x4,3)}. By Remark 1.2, the above stars give
required even number of cycles with q ≤ 8.
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By applying Remark 1.2 in the following decomposition, we get the required number of
cycles and stars for q > 8.
{(x3,1x1,2x3,4x1,3), (x4,1x1,3x3,2x1,4), (x4,1x2,2x4,4x3,2), (x4,1x2,4x4,2x3,4), (x4,2x1,4x3,1x2,3),
(x4,4x1,2x4,1x2,3), (x1,1, x3,1;x2,2, x2,4, x4,2, x4,4), (x1,2, x3,2;x2,1, x2,3, x4,1, x4,3),
(x1,3, x3,3;x2,2, x2,4, x4,2, x4,4), (x1,4, x3,4;x2,1, x2,3, x4,1, x4,3), (x1,1;x2,3x3,2, x3,4, x4,3),
(x2,1;x1,3, x3,3, x4,2, x4,4), (x3,3;x1,1, x1,2, x1,4, x4,1), (x4,3;x2,1, x2,2x2,4, x3,1)}.
Case 2: q odd.
By applying Remark 1.2 in the following decomposition, we get the required number of
cycles and stars for q = 1, 3, 5.
{(x2,1x4,2x2,4x4,3), (x1,2, x2,2;x3,3, x3,4, x4,1, x4,3), (x1,4, x2,4;x3,1, x3,2, x3,3, x4,1),
(x1,1;x2,2, x2,4, x3,2, x4,3), (x1,2;x2,1, x2,3, x2,4, x3,1), (x1,3;x2,1, x2,2, x2,4, x3,4),
(x1,4;x2,1, x2,2, x2,3, x4,3), (x2,1;x3,2, x3,3, x3,4, x4,4), (x2,3;x1,1, x3,1, x4,2, x4,4),
(x3,1;x1,3, x2,2, x4,3, x4,4), (x3,2;x1,3, x2,3, x4,3, x4,4), (x3,3;x1,1, x4,1, x4,2, x4,4),
(x3,4;x1,1, x2,3, x4,2, x4,3), (x4,1;x1,3, x2,3, x3,2, x3,4), (x4,2;x1,1, x1,3, x1,4, x3,1),
(x4,4;x1,1, x1,2, x1,3, x2,2)}.
By applying Remark 1.2 in the following decomposition, we get the required number of
cycles and stars for q = 7, 9, 11.
{(x1,2x2,1x3,2x2,3), (x1,3x2,2x3,3x2,4), (x1,1x4,2x1,3x3,2), (x1,2x4,3x1,4x3,3), (x2,2x4,1x3,2x4,3),
(x2,1x4,4x3,1x4,2), (x2,4x4,2x3,4x4,3), (x2,2, x2,3;x1,1, x1,4, x3,1, x3,4),
(x1,2, x1,3;x3,1, x3,4, x4,1, x4,4), (x1,1;x3,3, x3,4, x4,3, x4,4), (x1,4;x3,1, x3,2, x4,1, x4,2),
(x2,1;x1,3, x1,4, x4,3, x4,4), (x2,4;x1,1, x1,2, x4,1, x4,2), (x4,1;x2,3, x2,4, x3,3, x3,4),
(x4,2;x2,1, x3,1, x2,3, x3,3), (x4,4;x2,2, x2,3, x3,2, x3,3)}.
For q = 13, the required decomposition is given below.
{(x4,4x1,3x3,4x1,1), (x4,2x1,1x3,3x2,1), (x4,3x1,4x2,3x3,4), (x4,4x1,2x4,1x2,3), (x2,3x1,2x2,4x4,2),
(x3,3x2,4x4,1x2,2), (x3,4x4,1x3,2x2,1), (x4,2x3,4x2,2x3,1), (x4,4x3,2x2,3x3,1), (x2,1x1,3x2,2x1,4),
(x3,1x1,3x3,2x1,4), (x4,1x1,3x4,2x1,4), (x4,3x2,1x4,4x2,2), (x1,1;x2,2, x2,3, x2,4, x3,2),
(x1,2;x2,1, x3,1, x3,3, x3,4), (x2,4;x1,3, x3,1, x3,2, x4,3), (x3,3;x1,4, x4,1, x4,2, x4,4),
(x4,3;x1,1, x1,2, x3,1, x3,2)}. �

Lemma 2.7. There exists a complete {C4, S5}-decomposition of C4 × C4, for all even
integer q ≥ 0.

Proof. Let V (C4 × C4) = {xi,j : 1 ≤ i, j ≤ 4}. The S5-decomposition of C4 × C4 is given
below.
(x1,1, x3,1;x2,2, x2,4, x4,2, x4,4), (x1,2, x3,2;x2,1, x2,3, x4,1, x4,3),
(x1,3, x3,3;x2,2, x2,4, x4,2, x4,4), (x1,4, x3,4;x2,1, x2,3, x4,1, x4,3).
By Remark 1.2, the pair of stars given above gives the required decomposition. �

Lemma 2.8. There exists a complete {C4, S5}-decomposition of C4 × K4, for all even
integer q ≥ 0.

Proof. Let V (C4 ×K4) = {xi,j : 1 ≤ i, j ≤ 4}. The S5-decomposition of C4 ×K4 is given
below.
(x1,1, x3,1;x2,2, x2,4, x2,3, x4,3), (x1,2, x3,2;x2,1, x2,3, x2,4, x4,4),
(x1,3, x3,3;x2,1, x2,2, x2,4, x4,1), (x1,4, x3,4;x2,1, x2,2, x2,3, x4,2),
(x4,2, x4,4;x1,1, x1,3, x3,1, x3,3), (x4,1, x4,3;x1,2, x1,4, x3,2, x3,4).
By Remark 1.2, the pair of stars given above gives the required decomposition. �

Lemma 2.9. There exists a complete {C4, S5}-decomposition of P3 × K6, for all non-
negative integers q, r with r ≥ 3.

Proof. Let V (P3 ×K6) = {xi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 6}. First we decompose P3 ×K6 into
15S5 as follows:
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(x2,2, x2,4;x1,1, x1,3, x3,1, x3,3), (x2,5, x2,6;x1,1, x1,3, x3,1, x3,3),
(x1,6, x3,6;x2,1, x2,2, x2,3, x2,4), (x1,5, x3,5;x2,1, x2,2, x2,4, x2,6),
(x1,4, x3,4;x2,1, x2,2, x2,3, x2,6), (x1,2, x3,2;x2,3, x2,4, x2,5, x2,6),
{(x2,1;x1,2, x1,3, x3,2, x3,3), (x2,3;x1,1, x1,5, x3,1, x3,5), (x2,5;x1,4, x1,6, x3,4, x3,6)}.
The above pairs of stars gives required even number of cycles and the following set of cycle
and stars gives the required decomposition for the remaining choices of q.
{(x1,2x2,5x3,2x2,3), (x2,1, x2,6;x1,2, x1,4, x3,2, x3,4), (x2,1, x2,2;x1,3, x1,6, x3,3, x3,6),
(x2,2, x2,3;x1,1, x1,4, x3,1, x3,4), (x2,4, x2,5;x1,1, x1,3, x3,1, x3,3),
(x1,5, x3,5;x2,1, x2,2, x2,4, x2,6), (x2,3;x1,5, x1,6, x3,5, x3,6), (x2,4;x1,2, x1,6, x3,2, x3,6),
(x2,5;x1,4, x1,6, x3,4, x3,6), (x2,6;x1,1, x1,3, x3,1, x3,3)}. �

Lemma 2.10. There exists a complete {C4, S5}-decomposition of K4 ×K6, for all non-
negative integers q, r with r ≥ 9.

Proof. Since K4 ×K6 = 3(P3 ×K6) and P3 ×K6 has a complete {C4, S5}-decomposition
(by Lemma 2.9), by Remark 1.1, K4 ×K6 has a complete {C4, S5}-decomposition. �

Lemma 2.11. There exists a complete {C4, S5}-decomposition of K5 ×K6, for all non-
negative integers q, r with r 6= 1.

Proof. Since K5 × K6 = 5((P3\E(3S5) ⊕ 3S5) × K6), as in Lemma 2.9 we have a re-
quired decomposition of 5((P3\E(3S5)) ×K6). Now, we decompose 3S5 ×K6 into 15S5-
decomposition as follows:
(x1,1, x4,1;x3,2, x3,3, x5,2, x5,3), (x1,3, x4,3;x3,1, x3,5, x5,1, x5,5), (x1,5, x4,5;x3,4, x3,6, x5,4, x5,6),
{(x2,1;x1,2, x1,3, x3,2, x3,3), (x4,1;x1,2, x1,3, x2,2, x2,3), (x5,1;x2,2, x2,3, x3,2, x3,3)},
{(x2,3;x1,1, x1,5, x3,1, x3,5), (x4,3;x1,1, x1,5, x2,1, x2,5), (x5,3;x2,1, x2,5, x3,1, x3,5)},
{(x2,5;x1,4, x1,6, x3,4, x3,6), (x4,5;x1,4, x1,6, x2,4, x2,6), (x5,5;x2,4, x2,6, x3,4, x3,6)}. From the
stars {(x2,1;x1,2, x1,3, x3,2, x3,3), (x4,1;x1,2, x1,3, x2,2, x2,3), (x5,1;x2,2, x2,3, x3,2, x3,3)} we
have the cycles {(x1,2x2,1x1,3x4,1), (x2,2x4,1x2,3x5,1), (x3,2x5,1x3,3x2,1)}.
So from the above pair of stars and 3-sets of stars we can get a complete {C4, S5}-
decomposition of 3S5 ×K6 (Remark 1.2). Hence by Remark 1.1, K5 ×K6 has a complete
{C4, S5}-decomposition. �

Lemma 2.12. Let m ≡ 0 (mod 2) and n ≡ 1 (mod 4). There exists a complete {C4, S5}-
decomposition of Km ×Kn, where q and r are non-negative integers with r 6= 1.

Proof. When n = 5, if m = 4, 6 the proof follows from Lemmas 2.10 and 2.11. So, let
m > 6 and m = 2k. Now,

Km ×Kn = K2k ×K5 = (K4 ×K5) ⊕ K2(k−2) ×K5 ⊕ K4,2(k−2) ×K5

= K4 ×K5 ⊕ K2(k−2) ×K5 ⊕ 5K4,8(k−2).

By Theorem 1.2 and Lemma 2.10, K4 × K5 and K4,8(k−2) have a complete {C4, S5}-
decomposition. By applying the above recursive relation to K2(k−2) × K5, we have a
complete {C4, S5}-decomposition of K2(k−2) ×K5. Hence by Remark 1.1, Km ×Kn has a
complete {C4, S5}-decomposition.

When n > 5, Km ×Kn = m(m−1)
2 (Kn,n − I). By Theorem 2.1 and Remark 1.1, Km ×Kn

has a complete {C4, S5}-decomposition. �

Lemma 2.13. Let m ≡ 0 (mod 4) and n ≡ 3 (mod 4). There exists a complete {C4, S5}-
decomposition of Km ×Kn, where q and r are non-negative integers with r 6= 1.

Proof. We can write, Km × Kn = m(m−1)
4 (P3 × Kn). By Theorem 1.1, P3 × Kn has a

complete {C4, S5}-decomposition and hence by Remark 1.1, Km × Kn has a complete
{C4, S5}-decomposition. �
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Lemma 2.14. Let m ≡ 1 (mod 4) and n ≡ 1 (mod 2). There exists a complete {C4, S5}-
decomposition of Km ×Kn, where q and r are non-negative integers with r 6= 1.

Proof. Since Km × Kn = Kn × Km, by applying similar proof of Lemma 2.12, we get a
required decomposition for m > 5.
When m = 5, Km ×Kn can be written as 5(P3 ×Kn). By Theorem 1.1 and Remark 1.1,
Km ×Kn has a complete {C4, S5}-decomposition. �

Lemma 2.15. Let m,n ≡ 0 (mod 4). There exists a complete {C4, S5}-decomposition of
Km ×Kn, where q and r are non-negative integers with r 6= 1.

Proof. By Theorem 1.2, Km can be viewed as (m4 )K4 ⊕ (m
2−4m
8 )C4 and Kn can be viewed

as (n4 )K4 ⊕ (n
2−4n
8 )C4. So,

Km ×Kn =
mn

16
(K4 ×K4) ⊕

mn(m− 4)(n− 4)

64
(C4 × C4)

⊕ mn(m+ n− 8)

32
(C4 ×K4).

Now, by Lemmas 2.6 to 2.8, K4 ×K4, C4 × C4 and C4 ×K4 have a complete {C4, S5}-
decomposition. Hence by Remark 1.1, Km ×Kn has a complete {C4, S5}-decomposition.

�

Lemma 2.16. Let m ≡ 0 (mod 4) and n ≡ 2 (mod 4). There exists a complete {C4, S5}-
decomposition of Km ×Kn, where q and r are non-negative integers with r 6= 1.

Proof. Let m = 4k and n = 4l + 2. When l = 1,

Km ×Kn = K4k ×K6 = (K4 ×K6) ⊕ (K4(k−1) ×K6) ⊕ (K4,4(k−1) ×K6)

= (K4 ×K6) ⊕ (K4(k−1) ×K6) ⊕ 6K4,20(k−1).

By Theorem 1.1 and Lemma 2.10, K4,20(k−1) and K4 × K6 have a complete {C4, S5}-
decomposition. By applying the above recursive relation to K4(k−1) × K6, we have a
complete {C4, S5}-decomposition of K4(k−1) ×K6. Hence by Remark 1.1, Km ×K6 has a
complete {C4, S5}-decomposition.
When l > 1,

Km ×Kn = Km ×K4 ⊕ Km ×K4(l−1)+2 ⊕ Km ×K4(l−1)+2,4

= Km ×K4 ⊕ Km ×K4(l−1)+2 ⊕ mK(m−1)(4l−2),4.

By Theorem 1.1 and Lemma 2.15, K(m−1)(4l−2),4 and Km×K4 have a complete {C4, S5}-
decomposition. Also, by applying the above recursive relation to Km×K4(l−1)+2, we have
a complete {C4, S5}-decomposition of Km ×K4(l−1)+2. Hence by Remark 1.1, Km ×Kn

has a complete {C4, S5}-decomposition. �

3. Main Result

In this section we prove our main result as follows.

Theorem 3.1. Let q and r be non-negative integers. Then Km × Kn has a complete
{C4, S5}-decomposition if and only if one of the following holds.

(1) m ≡ 0 (mod 2) and n ≡ 1 (mod 4);
(2) m ≡ 0 (mod 4) and n ≡ 3 (mod 4);
(3) m ≡ 1 (mod 4) and n ≡ 1 (mod 2);
(4) m,n ≡ 0 (mod 4);
(5) m ≡ 0 (mod 4) and n ≡ 2 (mod 4).
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Proof. Necessity. Since Km ×Kn is (n− 1)(m− 1)-regular with mn vertices, 4|mn
2 (m−

1)(n − 1). The values of m and n satisfying the above condition fallen in one of the
following:

(1) m ≡ 0 (mod 2) and n ≡ 1 (mod 4),
(2) m ≡ 0 (mod 4) and n ≡ 3 (mod 4),
(3) m ≡ 1 (mod 4) and n ≡ 1 (mod 2),
(4) m,n ≡ 0 (mod 4),
(5) m ≡ 0 (mod 4) and n ≡ 2 (mod 4).

Sufficiency. Sufficiency follows by Lemmas 2.12 to 2.16. �

4. Conclusion

In this paper, we proved that the necessary condition mn(m− 1)(n− 1) ≡ 0 (mod 8)
is sufficient for the existence of a decomposition of tensor product of complete graphs into
cycles and stars with four edges. Further, research on the existence of such decomposition
of product graphs into cycles and stars of higher length l > 4 is under progress.
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