DECOMPOSITION OF TENSOR PRODUCT OF COMPLETE GRAPHS INTO CYCLES AND STARS WITH FOUR EDGES

A. P. EZHILARASI ${ }^{1}$, M. ILAYARAJA ${ }^{2}$, A. MUTHUSAMY ${ }^{1 *}$, §

Abstract

In this paper, we prove that the necessary conditions are sufficient for the existence of a decomposition of tensor product of complete graphs into cycles and stars with four edges.

Keywords: Graph decomposition, Cycle, Star, Product graph.
AMS Subject Classification: 05C51, 05C70

1. Introduction

All graphs considered here are finite and simple. Let P_{n}, C_{n}, S_{n} and K_{n} denote a path, cycle, star and complete graph on n vertices and $K_{m, n}$ denotes a complete bipartite graph with m and n vertices in the parts. Let $K_{m(n)}$ denote a complete m-partite graph with n vertices in each part. We denote the cycle C_{k} with vertices $x_{1}, x_{2}, \cdots, x_{k}$ and edges $x_{1} x_{2}, \cdots, x_{k-1} x_{k}, x_{k} x_{1}$ as $\left(x_{1} x_{2} \cdots x_{k}\right)$ and a star S_{k+1} consists of a center vertex x_{0} and k end vertices $x_{1}, x_{2}, \cdots, x_{k}$ as ($x_{0} ; x_{1}, x_{2}, \cdots, x_{k}$).

For two graphs G and H, we define their tensor product, denoted by $G \times H$, as follows: the vertex set is $V(G) \times V(H)$ and the edge set is

$$
E(G \times H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid g g^{\prime} \in E(G) \text { and } h h^{\prime} \in E(H)\right\} .
$$

If $E(G)$ can be partitioned into subsets $E_{1}, E_{2}, \ldots, E_{k}$ such that the subgraph induced by E_{i} is H_{i}, for all $i, 1 \leq i \leq k$, then we say that H_{1}, \ldots, H_{k} decompose G and we write $G=H_{1} \oplus \cdots \oplus H_{k}$. For $1 \leq i \leq k$, if $H_{i} \cong H$, we say that G has a H-decomposition and it is denoted by $H \mid G$. If G can be decomposed into q copies of H_{1} and r copies of H_{2}, then we say that G has a $\left\{q H_{1}, r H_{2}\right\}$-decomposition. If such a decomposition exits for all

[^0]q and r satisfying trivial necessary conditions, then we say that G has a $\left\{H_{1}, H_{2}\right\}_{\{q, r\}}{ }^{-}$ decomposition or complete $\left\{H_{1}, H_{2}\right\}$-decomposition.

The study of $\left\{H_{1}, H_{2}\right\}$-decomposition has been introduced by Abueida and Daven [1]. Moreover, Abueida and O'Neil [2] have settled the existence of $\left\{H_{1}, H_{2}\right\}$-decomposition of $K_{m}(\lambda)$ when $\left\{H_{1}, H_{2}\right\}=\left\{S_{n}, C_{n}\right\}$ for $n=3,4,5$. Priyadharsini and Muthusamy [10] established necessary and sufficient conditions for the existence of $\left\{H_{1}, H_{2}\right\}$-multidecomposition of λK_{n} where $H_{1}, H_{2} \in\left\{C_{n}, P_{n}, S_{n}\right\}$. Lee [6], gave necessary and sufficient conditions for the decomposition of $K_{m, n}$ into at least one copy of each C_{k} and S_{k+1}. Jeevadoss and Muthusamy [5] have obtained necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and cycles with four edges. Pauline Ezhilarasi and Muthusamy [8] have obtained the necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and stars with three edges. Ilayaraja et.al, [4] and Pauline Ezhilarasi and Muthusamy, [9] proved the existence of $\left\{P_{5}, S_{5}\right\}$ decomposition of product graphs. Many other results on decomposition of graphs into distinct subgraphs involving cycles and stars have been proved in $[6,7,11-13]$. In this paper, we establish necessary and sufficient conditions for the existence of a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{m} \times K_{n}$.

To prove our results we state the following:
Theorem 1.1. [3] Let q and r be non-negative integers and $n \geq m>0$. Then there exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{m, n}$ if and only if one of the following holds:
(1) $q \neq 0,2$ and $r \neq 1$ when $m, n \equiv 2(\bmod 4)$;
(2) $q, r \neq 1$ when $m, n \equiv 0(\bmod 2)$;
(3) $q \neq 1$ and $q \geq \frac{n}{4}\left(\right.$ or $\left.\frac{m}{4}\right)$ when $m($ or $n)$ is odd and $n($ or $m) \equiv 0(\bmod 4)$.

Theorem 1.2. [5] If $m \equiv 0(\bmod 4)$, then K_{m} has a $\left\{(m / 4) K_{4},\left(\left(m^{2}-4 m\right) / 8\right) C_{4}\right\}$ decomposition.

Remark 1.1. If G and H has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition, then $G \cup H=G \oplus H$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Remark 1.2. If two stars with four edges have same end vertices, then they can be decomposed into two cycles on four edges. i.e., $\left\{\left(a_{0} ; x_{1}, \cdots, x_{4}\right),\left(a_{1} ; x_{1}, \cdots, x_{4}\right)\right\}$ gives $\left\{\left(x_{1} a_{0} x_{2} a_{1} x_{1}\right),\left(x_{3} a_{0} x_{4} a_{1} x_{3}\right)\right\}$. We denote such pair of stars as $\left(a_{0}, a_{1} ; x_{1}, \cdots, x_{4}\right)$.

2. Base Constructions

In this section we prove some basic Lemmas which are required to prove our main result.
Lemma 2.1. Let q and r be non-negative integers. Then there exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{5,5}-I$, with $q=0$ or $r=0$.

Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{5}\right\} \cup\left\{y_{1}, \cdots, y_{5}\right\}$. Now, $\left\{\left(x_{1} ; y_{2}, y_{3}, y_{4}, y_{5}\right),\left(x_{2} ; y_{1}, y_{3}, y_{4}, y_{5}\right)\right.$, $\left.\left(x_{3} ; y_{1}, y_{2}, y_{4}, y_{5}\right),\left(x_{4} ; y_{1}, y_{2}, y_{3}, y_{5}\right),\left(x_{5} ; y_{1}, y_{2}, y_{3}, y_{4}\right)\right\}$ and $\left\{\left(y_{2} x_{1} y_{3} x_{4}\right),\left(y_{4} x_{1} y_{5} x_{2}\right)\right.$, $\left.\left(y_{1} x_{2} y_{3} x_{5}\right),\left(y_{1} x_{3} y_{5} x_{4}\right),\left(y_{2} x_{3} y_{4} x_{5}\right)\right\}$ respectively gives required stars and cycles.

Lemma 2.2. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{9,9}-I$, for all nonnegative integers q, r with $r \neq 1$.

Proof. Let $V(G)=\left\{x_{1}, \cdots, x_{9}\right\} \cup\left\{y_{1}, \cdots, y_{9}\right\}$. We can write $K_{9,9}-I=2\left(K_{5,5}-I\right) \oplus$ $2 K_{4,4}$. By Lemma 2.1 and Theorem 1.1, $K_{5,5}-I$ and $K_{4,4}$ have a complete $\left\{C_{4}, S_{5}\right\}$ decomposition and hence G has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition except $(q, r) \in\{(1,17)$, $(3,15),(15,3)\}$. Now, by Remark 1.2, the cycles and stars
$\left\{\left(x_{3} y_{5} x_{4} y_{6}\right),\left(x_{1}, x_{3} ; y_{2}, y_{4}, y_{7}, y_{8}\right),\left(x_{5} ; y_{3}, y_{4}, y_{6}, y_{7}\right),\left(x_{6} ; y_{2}, y_{4}, y_{5}, y_{9}\right),\left(x_{7} ; y_{4}, y_{5}, y_{8}, y_{9}\right)\right.$,
$\left(x_{8} ; y_{2}, y_{3}, y_{4}, y_{5}\right),\left(x_{9} ; y_{3}, y_{4}, y_{5}, y_{8}\right),\left(y_{1} ; x_{2}, x_{3}, x_{6}, x_{8}\right),\left(y_{1} ; x_{4}, x_{5}, x_{7}, x_{9}\right)$, $\left(y_{2} ; x_{4}, x_{5}, x_{7}, x_{9}\right),\left(y_{3} ; x_{2}, x_{4}, x_{6}, x_{7}\right),\left(y_{6} ; x_{2}, x_{7}, x_{8}, x_{9}\right),\left(y_{7} ; x_{4}, x_{6}, x_{8}, x_{9}\right)$,
$\left.\left(y_{8} ; x_{2}, x_{4}, x_{5}, x_{6}\right),\left(y_{9} ; x_{3}, x_{4}, x_{5}, x_{8}\right),\left(x_{1} ; y_{3}, y_{5}, y_{6}, y_{9}\right),\left(x_{2} ; y_{4}, y_{5}, y_{7}, y_{9}\right)\right\}$ gives a required decomposition for $(q, r) \in\{(1,17),(3,15)\}$.
For $(q, r)=(15,3)$, the required decomposition is $\left\{\left(x_{1} ; y_{2}, y_{4}, y_{5}, y_{6}\right),\left(x_{2} ; y_{1}, y_{5}, y_{6}, y_{7}\right)\right.$, $\left(x_{3} ; y_{1}, y_{2}, y_{4}, y_{7}\right),\left(x_{2} y_{3} x_{5} y_{4}\right),\left(x_{4} y_{2} x_{5} y_{1}\right),\left(x_{1} y_{3} x_{4} y_{9}\right),\left(x_{3} y_{8} x_{5} y_{9}\right),\left(x_{3} y_{6} x_{4} y_{5}\right),\left(x_{1} y_{8} x_{4} y_{7}\right)$, $\left(x_{2} y_{8} x_{6} y_{9}\right),\left(x_{7} y_{5} x_{8} y_{9}\right),\left(x_{5} y_{6} x_{8} y_{7}\right),\left(x_{7} y_{6} x_{9} y_{8}\right),\left(x_{6} y_{5} x_{9} y_{7}\right),\left(x_{6} y_{1} x_{7} y_{2}\right),\left(x_{8} y_{3} x_{9} y_{4}\right)$, $\left.\left(x_{6} y_{3} x_{7} y_{4}\right),\left(x_{8} y_{1} x_{9} y_{2}\right)\right\}$. Hence $K_{9,9}-I$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Theorem 2.1. Let q and r be non-negative integers. There exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{n, n}-I$ for $n \equiv 1(\bmod 4)$ with $r \neq 1$ and $q=0$ or $r=0$ when $n=5$.

Proof. When $n=5,9$, the proof follows from Lemmas 2.1 and 2.2.
When $n>9$, let $n=4 k+9, k \in \mathbb{Z}^{+}$and $V(G)=V\left(K_{n, n}-I\right)=X \cup Y$, where $X=\left\{x_{0}, x_{1}, \cdots, x_{4 k+8}\right\}$ and $Y=\left\{y_{0}, y_{1}, \cdots, y_{4 k+8}\right\}$. Partition the sets $\left\{x_{1}, x_{2}, \cdots, x_{4 k}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{4 k}\right\}$ into 4 -subsets X_{i} and Y_{i}, where $i=1,2, \cdots, k$ respectively. Then $G\left[X_{i} \cup\left\{x_{0}\right\}, Y_{i} \cup\left\{y_{0}\right\}\right] \cong K_{5,5}-I$ and $G\left[X_{i}, Y_{j}\right] \cong K_{4,4}$ for all $i \neq j$. Therefore, $K_{n, n}-I=$ $k\left(K_{5,5}-I\right) \oplus k(k-1) K_{4,4} \oplus\left(K_{9,9}-I\right) \oplus 2 k K_{8,4}$. By Theorem 1.1, Lemma 2.2 and Remark 1.1, $k(k-1) K_{4,4} \oplus\left(K_{9,9}-I\right) \oplus 2 k K_{8,4}$ can be decomposed into α copies of C_{4} and $4 k^{2}+12 k+18-\alpha$ copies of S_{5}, where $0 \leq \alpha \leq 4 k^{2}+12 k+18$. By Lemma 2.1, $k\left(K_{5,5}-I\right)$ can be decomposed into 5β copies of C_{4} and $5(k-\beta)$ copies of S_{5} with $0 \leq \beta \leq k$. Hence by Remark 1.1, $K_{n, n}-I$ can be decomposed into q copies of C_{4} and $r(=n(k+2)-q)$ copies of S_{5} with $0 \leq q \leq n(k+2)$. Thus $K_{n, n}-I$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Lemma 2.3. Let q and r be non-negative integers. Then there exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $P_{3} \times K_{3}$, with $q=0$ or $r=0$.
Proof. Let $V\left(P_{3} \times K_{3}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 3\right\}$. Now, the cycles and stars $\left\{\left(x_{1,1} x_{2,2} x_{3,1} x_{2,3}\right)\right.$, $\left.\left(x_{1,2} x_{2,1} x_{3,2} x_{2,3}\right),\left(x_{1,3} x_{2,1} x_{3,3} x_{2,2}\right)\right\}$ and $\left\{\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{3,2}, x_{3,3}\right),\left(x_{2,2} ; x_{1,1}, x_{1,3}, x_{3,1}\right.\right.$, $\left.\left.x_{3,3}\right),\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{3,1}, x_{3,2}\right)\right\}$ respectively gives the required decomposition of $P_{3} \times K_{3}$.

Lemma 2.4. Let q and r be non-negative integers. Then there exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $P_{3} \times K_{5}$ with $r \neq 1$.

Proof. Let $V\left(P_{3} \times K_{5}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 5\right\}$. Then the required complete $\left\{C_{4}, S_{5}\right\}$-decomposition is given below:
(1) $q=10$ and $r=0$. The required cycles are
$\left(x_{1,1} x_{2,4} x_{3,3} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}\right),\left(x_{1,3} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)$,
$\left(x_{1,1} x_{2,2} x_{3,4} x_{2,3}\right),\left(x_{1,2} x_{2,3} x_{3,5} x_{2,4}\right),\left(x_{1,5} x_{2,1} x_{3,3} x_{2,2}\right),\left(x_{1,3} x_{2,1} x_{3,5} x_{2,2}\right)$,
$\left(x_{1,4} x_{2,2} x_{3,1} x_{2,3}\right),\left(x_{1,5} x_{2,3} x_{3,2} x_{2,4}\right)$.
(2) $q=8$ and $r=2$. The required cycles and stars are
$\left(x_{1,1} x_{2,4} x_{3,3} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}\right),\left(x_{1,3} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)$, $\left(x_{1,1} x_{2,2} x_{3,4} x_{2,3}\right),\left(x_{1,2} x_{2,3} x_{3,5} x_{2,4}\right),\left(x_{1,4} x_{2,2} x_{3,1} x_{2,3}\right),\left(x_{1,5} x_{2,3} x_{3,2} x_{2,5}\right)$,
$\left(x_{2,1} ; x_{1,3}, x_{1,5}, x_{3,3}, x_{3,5}\right),\left(x_{2,2} ; x_{1,3}, x_{1,5}, x_{3,3}, x_{3,5}\right)$.
(3) $q=7$ and $r=3$. The required cycles and stars are
$\left(x_{1,1} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}\right),\left(x_{1,3} x_{2,5} x_{3,3} x_{2,1}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)$,
$\left(x_{1,4} x_{2,2} x_{3,1} x_{2,3}\right),\left(x_{1,5} x_{2,3} x_{3,2} x_{2,4}\right),\left(x_{1,5} x_{2,1} x_{3,5} x_{2,2}\right),\left(x_{2,2} ; x_{1,1}, x_{1,3}, x_{3,3}, x_{3,4}\right)$,
$\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{2,4}, x_{2,5}\right),\left(x_{2,4} ; x_{1,2}, x_{1,3}, x_{3,3}, x_{3,5}\right)$.
(4) $q=6$ and $r=4$. The required cycles and stars are

$$
\left(x_{1,1} x_{2,4} x_{3,3} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}\right),\left(x_{1,3} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)
$$

$\left(x_{1,3} x_{2,1} x_{3,5} x_{2,2}\right),\left(x_{1,5} x_{2,1} x_{3,3} x_{2,2}\right),\left(x_{2,2} ; x_{1,1}, x_{1,4}, x_{3,1}, x_{3,4}\right)$,
$\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{1,4}, x_{55}\right),\left(x_{2,4} ; x_{1,2}, x_{1,5}, x_{3,2}, x_{3,5}\right),\left(x_{2,3} ; x_{3,1}, x_{3,2}, x_{3,4}, x_{3,5}\right)$.
(5) $q=5$ and $r=5$. The required cycles and stars are
$\left(x_{1,1} x_{2,4} x_{3,3} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}, x_{1,2}\right),\left(x_{1,3} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)$,
$\left(x_{1,5} x_{2,1} x_{3,3} x_{2,2}\right),\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{3,4}, x_{3,5}\right),\left(x_{2,2} ; x_{1,3}, x_{1,4}, x_{3,1}, x_{3,5}\right)$,
$\left(x_{2,3} ; x_{1,4}, x_{1,5}, x_{3,1}, x_{3,2}\right),\left(x_{2,4} ; x_{1,1}, x_{1,5}, x_{3,2}, x_{3,3}\right),\left(x_{2,5} ; x_{1,1}, x_{1,2}, x_{3,3}, x_{3,4}\right)$.
(6) $q=4$ and $r=6$. The required cycles and stars are
$\left(x_{1,1} x_{2,4} x_{3,3} x_{2,5}\right),\left(x_{1,2} x_{2,5} x_{3,4} x_{2,1}\right),\left(x_{1,3} x_{2,4} x_{3,1} x_{2,5}\right),\left(x_{1,4} x_{2,5} x_{3,2} x_{2,1}\right)$,
$\left(x_{2,1} ; x_{1,3}, x_{1,5}, x_{3,3}, x_{3,5}\right),\left(x_{2,2} ; x_{1,3}, x_{1,5}, x_{3,3}, x_{3,5}\right),\left(x_{2,2} ; x_{1,1}, x_{1,4}, x_{3,1}, x_{3,4}\right)$,
$\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{1,4}, x_{1,5}\right),\left(x_{2,4} ; x_{1,2}, x_{1,5}, x_{3,2}, x_{3,5}\right),\left(x_{2,3} ; x_{3,1}, x_{3,2}, x_{3,4}, x_{3,5}\right)$.
(7) $q=3$ and $r=7$. The required cycles and stars are
$\left(x_{1,1} x_{2,2} x_{3,4} x_{2,3}\right),\left(x_{1,2} x_{2,3} x_{3,5} x_{2,4}\right),\left(x_{1,3} x_{2,4} x_{3,3} x_{2,2}\right),\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{1,4}, x_{1,5}\right)$,
$\left(x_{2,1} ; x_{3,2}, x_{3,3}, x_{3,4}, x_{3,5}\right),\left(x_{2,2} ; x_{1,4}, x_{1,5}, x_{3,1}, x_{3,5}\right),\left(x_{2,3} ; x_{1,4}, x_{1,5}, x_{3,1}, x_{3,2}\right)$,
$\left(x_{2,4} ; x_{1,1}, x_{1,5}, x_{3,1}, x_{3,2}\right),\left(x_{2,5} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}\right),\left(x_{2,5} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}\right)$.
(8) $q=2$ and $r=8$. The required cycles and stars are
$\left(x_{1,3} x_{2,1} x_{3,5} x_{2,2}\right),\left(x_{1,5} x_{2,1} x_{3,3} x_{2,2}\right),\left(x_{2,1} ; x_{1,2}, x_{1,4}, x_{3,2}, x_{3,4}\right)$,
$\left(x_{2,2} ; x_{1,1}, x_{1,4}, x_{3,1}, x_{3,4}\right),\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{1,4}, x_{1,5}\right),\left(x_{2,3} ; x_{3,1}, x_{3,2}, x_{3,4}, x_{3,5}\right)$,
$\left(x_{2,4} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,5}\right),\left(x_{2,4} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{3,5}\right),\left(x_{2,5} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}\right)$,
$\left(x_{2,5} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}\right)$.
(9) $q=0$ and $r=10$. The required stars are
$\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{1,4}, x_{1,5}\right),\left(x_{2,1} ; x_{3,2}, x_{3,3}, x_{3,4}, x_{3,5}\right),\left(x_{2,2} ; x_{1,1}, x_{1,3}, x_{1,4}, x_{1,5}\right)$,
$\left(x_{2,2} ; x_{3,1}, x_{3,3}, x_{3,4}, x_{3,5}\right),\left(x_{2,3} ; x_{1,1}, x_{1,2}, x_{1,4}, x_{1,5}\right),\left(x_{2,3} ; x_{3,1}, x_{3,2}, x_{3,4}, x_{3,5}\right)$,
$\left(x_{2,4} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,5}\right),\left(x_{2,4} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{3,5}\right),\left(x_{2,5} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}\right)$, $\left(x_{2,5} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}\right)$.
Thus the Lemma holds.
Lemma 2.5. Let q and r be non-negative integers. Then there exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $P_{3} \times K_{n}$, for all odd $n \geq 3$ with $r \neq 1$.
Proof. When $n=3,5$, the proof follows from Lammas 2.3 and 2.4. For $n>5$,

$$
\begin{aligned}
P_{3} \times K_{n}= & \left(\frac{n-5}{2}\right)\left(P_{3} \times K_{3}\right) \oplus\left(\frac{n-3}{2}\right) K_{2,4} \oplus\left(P_{3} \times K_{5}\right) \\
& \oplus\left\{\bigoplus_{i=4}^{n-3} K_{i, 4}\right\}, i \equiv 0 \quad(\bmod 2) \geq 4 .
\end{aligned}
$$

By Lemmas 2.3 and 2.4, $P_{3} \times K_{3}$ and $P_{3} \times K_{5}$ have a complete $\left\{C_{4}, S_{5}\right\}$-decomposition. Also, by Theorem 1.1, $K_{2,4}$ and $K_{i, 4}$ have a complete $\left\{C_{4}, S_{5}\right\}$-decomposition. Hence, by the remark 1.1, the graph $P_{3} \times K_{n}$ has the desired decomposition.
Lemma 2.6. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{4} \times K_{4}$, for all nonnegative integers q, r with $r \geq 4$.

Proof. Let $V\left(K_{4} \times K_{4}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 4\right\}$. We prove this in two cases as follows: Case 1: q even.
First we decompose $K_{4} \times K_{4}$ into $18 S_{5}$ as follows:
$\left(x_{1,1}, x_{3,1} ; x_{2,2}, x_{2,4}, x_{2,3}, x_{4,3}\right),\left(x_{1,2}, x_{3,2} ; x_{2,1}, x_{2,3}, x_{2,4}, x_{4,4}\right),\left(x_{1,3}, x_{3,3} ; x_{2,1}, x_{2,2}, x_{2,4}, x_{4,1}\right)$,
$\left(x_{1,4}, x_{3,4} ; x_{2,1}, x_{2,2}, x_{2,3}, x_{4,2}\right),\left\{\left(x_{4,1} ; x_{2,2}, x_{2,3}, x_{2,4}, x_{3,4}\right),\left(x_{4,2} ; x_{2,1}, x_{2,3}, x_{2,4}, x_{3,3}\right)\right.$,
$\left(x_{4,3} ; x_{2,2}, x_{2,1}, x_{2,4}, x_{3,4}\right),\left(x_{4,4} ; x_{2,2}, x_{2,3}, x_{2,1}, x_{3,3}\right),\left(x_{1,1} ; x_{3,3}, x_{3,4}, x_{4,2}, x_{4,4}\right)$,
$\left(x_{1,2} ; x_{3,3}, x_{3,4}, x_{4,1}, x_{4,3}\right),\left(x_{1,3} ; x_{3,1}, x_{3,4}, x_{4,2}, x_{4,4}\right),\left(x_{1,4} ; x_{3,3}, x_{3,2}, x_{4,1}, x_{4,3}\right)$,
$\left.\left(x_{3,1} ; x_{1,2}, x_{1,4}, x_{4,2}, x_{4,4}\right),\left(x_{3,2} ; x_{1,1}, x_{1,3}, x_{4,1}, x_{4,3}\right)\right\}$. By Remark 1.2, the above stars give required even number of cycles with $q \leq 8$.

By applying Remark 1.2 in the following decomposition, we get the required number of cycles and stars for $q>8$.
$\left\{\left(x_{3,1} x_{1,2} x_{3,4} x_{1,3}\right),\left(x_{4,1} x_{1,3} x_{3,2} x_{1,4}\right),\left(x_{4,1} x_{2,2} x_{4,4} x_{3,2}\right),\left(x_{4,1} x_{2,4} x_{4,2} x_{3,4}\right),\left(x_{4,2} x_{1,4} x_{3,1} x_{2,3}\right)\right.$, $\left(x_{4,4} x_{1,2} x_{4,1} x_{2,3}\right),\left(x_{1,1}, x_{3,1} ; x_{2,2}, x_{2,4}, x_{4,2}, x_{4,4}\right),\left(x_{1,2}, x_{3,2} ; x_{2,1}, x_{2,3}, x_{4,1}, x_{4,3}\right)$,
$\left(x_{1,3}, x_{3,3} ; x_{2,2}, x_{2,4}, x_{4,2}, x_{4,4}\right),\left(x_{1,4}, x_{3,4} ; x_{2,1}, x_{2,3}, x_{4,1}, x_{4,3}\right),\left(x_{1,1} ; x_{2,3} x_{3,2}, x_{3,4}, x_{4,3}\right)$,
$\left.\left(x_{2,1} ; x_{1,3}, x_{3,3}, x_{4,2}, x_{4,4}\right),\left(x_{3,3} ; x_{1,1}, x_{1,2}, x_{1,4}, x_{4,1}\right),\left(x_{4,3} ; x_{2,1}, x_{2,2} x_{2,4}, x_{3,1}\right)\right\}$.
Case 2: q odd.
By applying Remark 1.2 in the following decomposition, we get the required number of cycles and stars for $q=1,3,5$.
$\left\{\left(x_{2,1} x_{4,2} x_{2,4} x_{4,3}\right),\left(x_{1,2}, x_{2,2} ; x_{3,3}, x_{3,4}, x_{4,1}, x_{4,3}\right),\left(x_{1,4}, x_{2,4} ; x_{3,1}, x_{3,2}, x_{3,3}, x_{4,1}\right)\right.$,
$\left(x_{1,1} ; x_{2,2}, x_{2,4}, x_{3,2}, x_{4,3}\right),\left(x_{1,2} ; x_{2,1}, x_{2,3}, x_{2,4}, x_{3,1}\right),\left(x_{1,3} ; x_{2,1}, x_{2,2}, x_{2,4}, x_{3,4}\right)$,
$\left(x_{1,4} ; x_{2,1}, x_{2,2}, x_{2,3}, x_{4,3}\right),\left(x_{2,1} ; x_{3,2}, x_{3,3}, x_{3,4}, x_{4,4}\right),\left(x_{2,3} ; x_{1,1}, x_{3,1}, x_{4,2}, x_{4,4}\right)$,
$\left(x_{3,1} ; x_{1,3}, x_{2,2}, x_{4,3}, x_{4,4}\right),\left(x_{3,2} ; x_{1,3}, x_{2,3}, x_{4,3}, x_{4,4}\right),\left(x_{3,3} ; x_{1,1}, x_{4,1}, x_{4,2}, x_{4,4}\right)$,
$\left(x_{3,4} ; x_{1,1}, x_{2,3}, x_{4,2}, x_{4,3}\right),\left(x_{4,1} ; x_{1,3}, x_{2,3}, x_{3,2}, x_{3,4}\right),\left(x_{4,2} ; x_{1,1}, x_{1,3}, x_{1,4}, x_{3,1}\right)$,
$\left.\left(x_{4,4} ; x_{1,1}, x_{1,2}, x_{1,3}, x_{2,2}\right)\right\}$.
By applying Remark 1.2 in the following decomposition, we get the required number of cycles and stars for $q=7,9,11$.
$\left\{\left(x_{1,2} x_{2,1} x_{3,2} x_{2,3}\right),\left(x_{1,3} x_{2,2} x_{3,3} x_{2,4}\right),\left(x_{1,1} x_{4,2} x_{1,3} x_{3,2}\right),\left(x_{1,2} x_{4,3} x_{1,4} x_{3,3}\right),\left(x_{2,2} x_{4,1} x_{3,2} x_{4,3}\right)\right.$,
$\left(x_{2,1} x_{4,4} x_{3,1} x_{4,2}\right),\left(x_{2,4} x_{4,2} x_{3,4} x_{4,3}\right),\left(x_{2,2}, x_{2,3} ; x_{1,1}, x_{1,4}, x_{3,1}, x_{3,4}\right)$,
$\left(x_{1,2}, x_{1,3} ; x_{3,1}, x_{3,4}, x_{4,1}, x_{4,4}\right),\left(x_{1,1} ; x_{3,3}, x_{3,4}, x_{4,3}, x_{4,4}\right),\left(x_{1,4} ; x_{3,1}, x_{3,2}, x_{4,1}, x_{4,2}\right)$,
$\left(x_{2,1} ; x_{1,3}, x_{1,4}, x_{4,3}, x_{4,4}\right),\left(x_{2,4} ; x_{1,1}, x_{1,2}, x_{4,1}, x_{4,2}\right),\left(x_{4,1} ; x_{2,3}, x_{2,4}, x_{3,3}, x_{3,4}\right)$,
$\left.\left(x_{4,2} ; x_{2,1}, x_{3,1}, x_{2,3}, x_{3,3}\right),\left(x_{4,4} ; x_{2,2}, x_{2,3}, x_{3,2}, x_{3,3}\right)\right\}$.
For $q=13$, the required decomposition is given below.
$\left\{\left(x_{4,4} x_{1,3} x_{3,4} x_{1,1}\right),\left(x_{4,2} x_{1,1} x_{3,3} x_{2,1}\right),\left(x_{4,3} x_{1,4} x_{2,3} x_{3,4}\right),\left(x_{4,4} x_{1,2} x_{4,1} x_{2,3}\right),\left(x_{2,3} x_{1,2} x_{2,4} x_{4,2}\right)\right.$, $\left(x_{3,3} x_{2,4} x_{4,1} x_{2,2}\right),\left(x_{3,4} x_{4,1} x_{3,2} x_{2,1}\right),\left(x_{4,2} x_{3,4} x_{2,2} x_{3,1}\right),\left(x_{4,4} x_{3,2} x_{2,3} x_{3,1}\right),\left(x_{2,1} x_{1,3} x_{2,2} x_{1,4}\right)$,
$\left(x_{3,1} x_{1,3} x_{3,2} x_{1,4}\right),\left(x_{4,1} x_{1,3} x_{4,2} x_{1,4}\right),\left(x_{4,3} x_{2,1} x_{4,4} x_{2,2}\right),\left(x_{1,1} ; x_{2,2}, x_{2,3}, x_{2,4}, x_{3,2}\right)$,
$\left(x_{1,2} ; x_{2,1}, x_{3,1}, x_{3,3}, x_{3,4}\right),\left(x_{2,4} ; x_{1,3}, x_{3,1}, x_{3,2}, x_{4,3}\right),\left(x_{3,3} ; x_{1,4}, x_{4,1}, x_{4,2}, x_{4,4}\right)$,
$\left.\left(x_{4,3} ; x_{1,1}, x_{1,2}, x_{3,1}, x_{3,2}\right)\right\}$.
Lemma 2.7. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $C_{4} \times C_{4}$, for all even integer $q \geq 0$.
Proof. Let $V\left(C_{4} \times C_{4}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 4\right\}$. The S_{5}-decomposition of $C_{4} \times C_{4}$ is given below.
$\left(x_{1,1}, x_{3,1} ; x_{2,2}, x_{2,4}, x_{4,2}, x_{4,4}\right),\left(x_{1,2}, x_{3,2} ; x_{2,1}, x_{2,3}, x_{4,1}, x_{4,3}\right)$,
$\left(x_{1,3}, x_{3,3} ; x_{2,2}, x_{2,4}, x_{4,2}, x_{4,4}\right),\left(x_{1,4}, x_{3,4} ; x_{2,1}, x_{2,3}, x_{4,1}, x_{4,3}\right)$.
By Remark 1.2, the pair of stars given above gives the required decomposition.
Lemma 2.8. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $C_{4} \times K_{4}$, for all even integer $q \geq 0$.
Proof. Let $V\left(C_{4} \times K_{4}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 4\right\}$. The S_{5}-decomposition of $C_{4} \times K_{4}$ is given below.
$\left(x_{1,1}, x_{3,1} ; x_{2,2}, x_{2,4}, x_{2,3}, x_{4,3}\right),\left(x_{1,2}, x_{3,2} ; x_{2,1}, x_{2,3}, x_{2,4}, x_{4,4}\right)$,
$\left(x_{1,3}, x_{3,3} ; x_{2,1}, x_{2,2}, x_{2,4}, x_{4,1}\right),\left(x_{1,4}, x_{3,4} ; x_{2,1}, x_{2,2}, x_{2,3}, x_{4,2}\right)$,
$\left(x_{4,2}, x_{4,4} ; x_{1,1}, x_{1,3}, x_{3,1}, x_{3,3}\right),\left(x_{4,1}, x_{4,3} ; x_{1,2}, x_{1,4}, x_{3,2}, x_{3,4}\right)$.
By Remark 1.2, the pair of stars given above gives the required decomposition.
Lemma 2.9. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $P_{3} \times K_{6}$, for all nonnegative integers q, r with $r \geq 3$.
Proof. Let $V\left(P_{3} \times K_{6}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 6\right\}$. First we decompose $P_{3} \times K_{6}$ into $15 S_{5}$ as follows:

```
\(\left(x_{2,2}, x_{2,4} ; x_{1,1}, x_{1,3}, x_{3,1}, x_{3,3}\right),\left(x_{2,5}, x_{2,6} ; x_{1,1}, x_{1,3}, x_{3,1}, x_{3,3}\right)\),
\(\left(x_{1,6}, x_{3,6} ; x_{2,1}, x_{2,2}, x_{2,3}, x_{2,4}\right),\left(x_{1,5}, x_{3,5} ; x_{2,1}, x_{2,2}, x_{2,4}, x_{2,6}\right)\),
\(\left(x_{1,4}, x_{3,4} ; x_{2,1}, x_{2,2}, x_{2,3}, x_{2,6}\right),\left(x_{1,2}, x_{3,2} ; x_{2,3}, x_{2,4}, x_{2,5}, x_{2,6}\right)\),
\(\left\{\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{3,2}, x_{3,3}\right),\left(x_{2,3} ; x_{1,1}, x_{1,5}, x_{3,1}, x_{3,5}\right),\left(x_{2,5} ; x_{1,4}, x_{1,6}, x_{3,4}, x_{3,6}\right)\right\}\).
```

The above pairs of stars gives required even number of cycles and the following set of cycle and stars gives the required decomposition for the remaining choices of q.

```
{( (x,2 x x,5}\mp@subsup{x}{3,2}{}\mp@subsup{x}{2,3}{}),(\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,6}{};\mp@subsup{x}{1,2}{,},\mp@subsup{x}{1,4}{,},\mp@subsup{x}{3,2}{},\mp@subsup{x}{3,4}{}),(\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,2}{};\mp@subsup{x}{1,3}{},\mp@subsup{x}{1,6}{},\mp@subsup{x}{3,3}{},\mp@subsup{x}{3,6}{})
( }\mp@subsup{x}{2,2}{,},\mp@subsup{x}{2,3}{;};\mp@subsup{x}{1,1}{},\mp@subsup{x}{1,4}{},\mp@subsup{x}{3,1}{},\mp@subsup{x}{3,4}{}),(\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,5}{};\mp@subsup{x}{1,1}{},\mp@subsup{x}{1,3}{},\mp@subsup{x}{3,1}{},\mp@subsup{x}{3,3}{})
```


Lemma 2.10. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{4} \times K_{6}$, for all nonnegative integers q, r with $r \geq 9$.
Proof. Since $K_{4} \times K_{6}=3\left(P_{3} \times K_{6}\right)$ and $P_{3} \times K_{6}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition (by Lemma 2.9), by Remark 1.1, $K_{4} \times K_{6}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.
Lemma 2.11. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{5} \times K_{6}$, for all nonnegative integers q, r with $r \neq 1$.
Proof. Since $K_{5} \times K_{6}=5\left(\left(P_{3} \backslash E\left(3 S_{5}\right) \oplus 3 S_{5}\right) \times K_{6}\right)$, as in Lemma 2.9 we have a required decomposition of $5\left(\left(P_{3} \backslash E\left(3 S_{5}\right)\right) \times K_{6}\right)$. Now, we decompose $3 S_{5} \times K_{6}$ into $15 S_{5^{-}}$ decomposition as follows:
$\left(x_{1,1}, x_{4,1} ; x_{3,2}, x_{3,3}, x_{5,2}, x_{5,3}\right),\left(x_{1,3}, x_{4,3} ; x_{3,1}, x_{3,5}, x_{5,1}, x_{5,5}\right),\left(x_{1,5}, x_{4,5} ; x_{3,4}, x_{3,6}, x_{5,4}, x_{5,6}\right)$, $\left\{\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{3,2}, x_{3,3}\right),\left(x_{4,1} ; x_{1,2}, x_{1,3}, x_{2,2}, x_{2,3}\right),\left(x_{5,1} ; x_{2,2}, x_{2,3}, x_{3,2}, x_{3,3}\right)\right\}$, $\left\{\left(x_{2,3} ; x_{1,1}, x_{1,5}, x_{3,1}, x_{3,5}\right),\left(x_{4,3} ; x_{1,1}, x_{1,5}, x_{2,1}, x_{2,5}\right),\left(x_{5,3} ; x_{2,1}, x_{2,5}, x_{3,1}, x_{3,5}\right)\right\}$, $\left\{\left(x_{2,5} ; x_{1,4}, x_{1,6}, x_{3,4}, x_{3,6}\right),\left(x_{4,5} ; x_{1,4}, x_{1,6}, x_{2,4}, x_{2,6}\right),\left(x_{5,5} ; x_{2,4}, x_{2,6}, x_{3,4}, x_{3,6}\right)\right\}$. From the stars $\left\{\left(x_{2,1} ; x_{1,2}, x_{1,3}, x_{3,2}, x_{3,3}\right),\left(x_{4,1} ; x_{1,2}, x_{1,3}, x_{2,2}, x_{2,3}\right),\left(x_{5,1} ; x_{2,2}, x_{2,3}, x_{3,2}, x_{3,3}\right)\right\}$ we have the cycles $\left\{\left(x_{1,2} x_{2,1} x_{1,3} x_{4,1}\right),\left(x_{2,2} x_{4,1} x_{2,3} x_{5,1}\right),\left(x_{3,2} x_{5,1} x_{3,3} x_{2,1}\right)\right\}$.
So from the above pair of stars and 3 -sets of stars we can get a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $3 S_{5} \times K_{6}$ (Remark 1.2). Hence by Remark 1.1, $K_{5} \times K_{6}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.
Lemma 2.12. Let $m \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 4)$. There exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{m} \times K_{n}$, where q and r are non-negative integers with $r \neq 1$.
Proof. When $n=5$, if $m=4,6$ the proof follows from Lemmas 2.10 and 2.11 . So, let $m>6$ and $m=2 k$. Now,

$$
\begin{aligned}
K_{m} \times K_{n}=K_{2 k} \times K_{5} & =\left(K_{4} \times K_{5}\right) \oplus K_{2(k-2)} \times K_{5} \oplus K_{4,2(k-2)} \times K_{5} \\
& =K_{4} \times K_{5} \oplus K_{2(k-2)} \times K_{5} \oplus 5 K_{4,8(k-2)}
\end{aligned}
$$

By Theorem 1.2 and Lemma 2.10, $K_{4} \times K_{5}$ and $K_{4,8(k-2)}$ have a complete $\left\{C_{4}, S_{5}\right\}$ decomposition. By applying the above recursive relation to $K_{2(k-2)} \times K_{5}$, we have a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{2(k-2)} \times K_{5}$. Hence by Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.
When $n>5, K_{m} \times K_{n}=\frac{m(m-1)}{2}\left(K_{n, n}-I\right)$. By Theorem 2.1 and Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.
Lemma 2.13. Let $m \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$. There exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{m} \times K_{n}$, where q and r are non-negative integers with $r \neq 1$.
Proof. We can write, $K_{m} \times K_{n}=\frac{m(m-1)}{4}\left(P_{3} \times K_{n}\right)$. By Theorem 1.1, $P_{3} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition and hence by Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Lemma 2.14. Let $m \equiv 1(\bmod 4)$ and $n \equiv 1(\bmod 2)$. There exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{m} \times K_{n}$, where q and r are non-negative integers with $r \neq 1$.
Proof. Since $K_{m} \times K_{n}=K_{n} \times K_{m}$, by applying similar proof of Lemma 2.12, we get a required decomposition for $m>5$.
When $m=5, K_{m} \times K_{n}$ can be written as $5\left(P_{3} \times K_{n}\right)$. By Theorem 1.1 and Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Lemma 2.15. Let $m, n \equiv 0(\bmod 4)$. There exists a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{m} \times K_{n}$, where q and r are non-negative integers with $r \neq 1$.

Proof. By Theorem 1.2, K_{m} can be viewed as $\left(\frac{m}{4}\right) K_{4} \oplus\left(\frac{m^{2}-4 m}{8}\right) C_{4}$ and K_{n} can be viewed as $\left(\frac{n}{4}\right) K_{4} \oplus\left(\frac{n^{2}-4 n}{8}\right) C_{4}$. So,

$$
\begin{aligned}
K_{m} \times K_{n}= & \frac{m n}{16}\left(K_{4} \times K_{4}\right) \oplus \frac{m n(m-4)(n-4)}{64}\left(C_{4} \times C_{4}\right) \\
& \oplus \frac{m n(m+n-8)}{32}\left(C_{4} \times K_{4}\right)
\end{aligned}
$$

Now, by Lemmas 2.6 to $2.8, K_{4} \times K_{4}, C_{4} \times C_{4}$ and $C_{4} \times K_{4}$ have a complete $\left\{C_{4}, S_{5}\right\}$ decomposition. Hence by Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

Lemma 2.16. Let $m \equiv 0(\bmod 4)$ and $n \equiv 2(\bmod 4)$. There exists a complete $\left\{C_{4}, S_{5}\right\}$ decomposition of $K_{m} \times K_{n}$, where q and r are non-negative integers with $r \neq 1$.

Proof. Let $m=4 k$ and $n=4 l+2$. When $l=1$,

$$
\begin{aligned}
K_{m} \times K_{n}=K_{4 k} \times K_{6} & =\left(K_{4} \times K_{6}\right) \oplus\left(K_{4(k-1)} \times K_{6}\right) \oplus\left(K_{4,4(k-1)} \times K_{6}\right) \\
& =\left(K_{4} \times K_{6}\right) \oplus\left(K_{4(k-1)} \times K_{6}\right) \oplus 6 K_{4,20(k-1)}
\end{aligned}
$$

By Theorem 1.1 and Lemma 2.10, $K_{4,20(k-1)}$ and $K_{4} \times K_{6}$ have a complete $\left\{C_{4}, S_{5}\right\}$ decomposition. By applying the above recursive relation to $K_{4(k-1)} \times K_{6}$, we have a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{4(k-1)} \times K_{6}$. Hence by Remark 1.1, $K_{m} \times K_{6}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.
When $l>1$,

$$
\begin{aligned}
K_{m} \times K_{n} & =K_{m} \times K_{4} \oplus K_{m} \times K_{4(l-1)+2} \oplus K_{m} \times K_{4(l-1)+2,4} \\
& =K_{m} \times K_{4} \oplus K_{m} \times K_{4(l-1)+2} \oplus m K_{(m-1)(4 l-2), 4}
\end{aligned}
$$

By Theorem 1.1 and Lemma $2.15, K_{(m-1)(4 l-2), 4}$ and $K_{m} \times K_{4}$ have a complete $\left\{C_{4}, S_{5}\right\}$ decomposition. Also, by applying the above recursive relation to $K_{m} \times K_{4(l-1)+2}$, we have a complete $\left\{C_{4}, S_{5}\right\}$-decomposition of $K_{m} \times K_{4(l-1)+2}$. Hence by Remark 1.1, $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition.

3. Main Result

In this section we prove our main result as follows.
Theorem 3.1. Let q and r be non-negative integers. Then $K_{m} \times K_{n}$ has a complete $\left\{C_{4}, S_{5}\right\}$-decomposition if and only if one of the following holds.
(1) $m \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 4)$;
(2) $m \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$;
(3) $m \equiv 1(\bmod 4)$ and $n \equiv 1(\bmod 2)$;
(4) $m, n \equiv 0(\bmod 4)$;
(5) $m \equiv 0(\bmod 4)$ and $n \equiv 2(\bmod 4)$.

Proof. Necessity. Since $K_{m} \times K_{n}$ is $(n-1)(m-1)$-regular with $m n$ vertices, $4 \left\lvert\, \frac{m n}{2}(m-\right.$ $1)(n-1)$. The values of m and n satisfying the above condition fallen in one of the following:
(1) $m \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 4)$,
(2) $m \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$,
(3) $m \equiv 1(\bmod 4)$ and $n \equiv 1(\bmod 2)$,
(4) $m, n \equiv 0(\bmod 4)$,
(5) $m \equiv 0(\bmod 4)$ and $n \equiv 2(\bmod 4)$.

Sufficiency. Sufficiency follows by Lemmas 2.12 to 2.16.

4. Conclusion

In this paper, we proved that the necessary condition $m n(m-1)(n-1) \equiv 0(\bmod 8)$ is sufficient for the existence of a decomposition of tensor product of complete graphs into cycles and stars with four edges. Further, research on the existence of such decomposition of product graphs into cycles and stars of higher length $l>4$ is under progress.

References

[1] Abueida, A.A. and Daven, M., (2003), Multidesigns for graph-pairs of order 4 and 5, Graphs and Combin., 19 , pp. $433-447$.
[2] Abueida, A.A. and O'Neil, T., (2007), Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Comb. Appl., 49, pp. $32-40$.
[3] Ilayaraja, M. and Muthusamy, A., (2020), Decomposition of complete bipartite graphs into cycles and stars with four edges, AKCE Int. J. Graphs and Combin., 17, pp. $697-702$.
[4] Ilayaraja, M., Sowndhariya, K. and Muthusamy, A., (2020), Decomposition of product graphs into paths and stars on five vertices, AKCE Int. J. Graphs and Combin., 17, pp. $777-783$.
[5] Jeevadoss, S. and Muthusamy, A., (2016), Decomposition of product graphs into paths and cycles of length four, Graphs and Combin., 32, pp. $199-223$.
[6] Lee, H.-C., (2013), Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin., 108, pp. $355-364$.
[7] Lee, H.-C., (2013), Decomposition of complete bipartite graphs with a 1-factor removed into cycles and stars, Discrete Math., 313, pp. 2354-2358.
[8] Pauline Ezhilarasi, A. and Muthusamy, A., (2019), Decomposition of product graphs into paths and stars with Three Edges, Bull. Inst. Combin. Appl., 87, pp. $47-74$.
[9] Pauline Ezhilarasi, A. and Muthusamy, A., (2021), Decomposition of Cartesian Product of Complete Graphs into Paths and Stars with Four Edges, Comment. Math. Univ. Carolin. in press.
[10] Priyadharsini, H.M. and Muthusamy, A., (2009), $\left(G_{m}, H_{m}\right)$-Multifactorization of λK_{m}, J. Combin. Math. Combin. Comput., 69, pp. $145-150$.
[11] Priyadharsini, H.M. and Muthusamy, A., (2012), $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl., 66, pp. $42-48$.
[12] Shyu, T.-W., (2013), Decomposition of complete graphs into cycles and stars, Graphs and Combin., 29, pp. $301-313$.
[13] Shyu, T.-W., (2021), Decomposition of complete bipartite graphs and complete graphs into paths, stars and cycles with four edges each, Discuss. Math. Graph Theory, 41, pp. $451-468$.

A. Pauline Ezhilarasi is a research scholar in the Department of Mathematics, Periyar University, Salem. Her research areas include Graph Decomposition and Combinatorial Designs.

M. Ilayaraja is an assistant professor in the Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India. His research areas include Graph Decomposition and Combinatorial Designs.

A. Muthusamy is a professor in the Department of Mathematics, Periyar University, Salem. His research areas include Graph Decomposition and Combinatorial Designs.

[^0]: ${ }^{1}$ Department of Mathematics, Periyar University, Salem-11, Tamil Nadu, India. e-mail: post2pauline@gmail.com; ORCID: https://orcid.org/0000-0003-0853-9492. e-mail: ambdu@yahoo.com; ORCID: https://orcid.org/0000-0001-9014-6916.

 * Corresponding author.
 ${ }^{2}$ Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore-21, India. e-mail: ilaya@yahoo.com; ORCID: https://orcid.org/0000-0002-7635-1400.
 § Manuscript received: February 03, 2021; accepted: July 2, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 2 © Işık University, Department of Mathematics, 2023; all rights reserved. A. Muthusamy is partially supported by the University Grant Commission, Government of India, New Delhi and the Department of Science and Technology, New Delhi.
 (Grant No.F.510/7/DRS-I/2016(SAP-I) and Grant No. SR/FIST/MSI-115/2016(Level-I)).

