
TWMS J. App. and Eng. Math. V.13, N.2, 2023, pp. 782-791

A NEW FAMILY OF UNIT-DISTRIBUTIONS: DEFINITION,

PROPERTIES AND APPLICATIONS

T. ARSLAN1, §

Abstract. In this study, a new family of unit-distributions is introduced. Then, a unit-
Gumbel distribution, member of the proposed family of unit-distributions, is obtained as
an example, and some of its statistical properties are provided. The maximum likelihood
method is used for estimating the shape parameter of the unit-Gumbel distribution. In
addition, a new family of continuous distributions is defining by using the composition
technique. Finally, real data sets are used for modeling purposes. The result shows that
the unit-Gumbel distribution is preferable over some well-known unit-distributions such
as the beta, Kumaraswamy, and Topp-Leone, and also the unit-Gompertz distribution,
which is recently introduced.

Keywords: Beta distribution, a family of unit-distributions, Kumaraswamy distribution,
maximum likelihood method, unit-Gumbel distribution.
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1. Introduction

Researchers from different science areas usually aim to explore real phenomena by using
the data extracted from them. In this context, statistical distributions are widely used in
modeling data from various fields. In most of the cases, observed/obtained data are in R
or R+. However, data from some specific experiments (different indices, rates, etc.) or
real-life (infant mortality, human development index, etc.) may have a bounded range on
the unit interval (0, 1). Thus, well-known distributions such as normal, Laplace, gamma,
and Weibull can not be used for modeling such data. In this regard, bounded distributions,
e.g., the power, beta, Johnson [9], Topp-Leone [18], Kumaraswamy [12] distributions, are
used in modeling data on the unit interval (0, 1).

The unit-distribution also plays an essential role in defining the families of continuous
distributions via the composition technique and constructing regression models for a vari-
able having a distribution with unit support (0, 1). See Alzaatreh et al. [1] and references
therein for defining a new family of distributions. See also Ferrari and Cribari-Neto [6],
Jodrá and Jiménez-Gamero [10] and Mazucheli et al. [17] in the context of regression
model for bounded response.
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Recently, Mazucheli et al. [13, 14, 15, 16] introduced unit-Birnbaum-Saunders, unit-
Weibull, unit-Lindley, and unit-Gompertz distirbutions, respectively. Also, Ghitany et
al. [8] obtained unit-inverse Gaussian, and Korkmaz [11] derived unit-generalized half-
normal distributions. For further information about recent literature dealing with the
unit distributions, see Bantan et al. [3] and references given therein.

This study has the following contributions to the related literature. (i) A new family of
unit-distributions is obtained. The resulting family of unit-distributions has not been in-
troduced yet to the best of the author’s knowledge. (ii) A unit-Gumbel (UG) distribution,
member of the proposed family of unit-distributions, is obtained as an example, and some
statistical properties of the UG distribution are shown. The maximum likelihood (ML)
method is used for estimating a shape parameter α of the UG distribution. (iii) A new
family of distributions called the UG-generated (UG-G) family of distributions is defined
using the composition technique.

The paper is organized as follows. A new family of unit-distributions is introduced in
Section 2. Section 3 is reserved for the UG distribution along with its statistical properties
and the UG-G family of distributions. Real data sets are used in Section 4 to show the
modeling capability of the UG distribution. The paper is finalized with some concluding
remarks.

2. A new family of unit-distributions

Let X be a random variable on R and have probability density function (pdf) fX(x)
and cumulative distribution function FX(x). Then, consider the variable-transformation

Z = [1 + exp(−X)]−
1
α

where power of the logistic function is used for the variable-transformation. Thus, the
random variable Z has the pdf

fZ(z;α) = α [z (1− zα)]−1 fX
(
− ln

(
z−α − 1

))
; z ∈ (0, 1), α > 0 (1)

and the cdf

FZ(z;α) =P (Z ≤ z) = P
(
X ≤ − ln

(
z−α − 1

))
=FX

(
− ln

(
z−α − 1

))
.

(2)

Here, α is a shape parameter. The moments of the random variable Z is

E [Zr] =

∫ 1

0
zrα [z (1− zα)]−1 fX

(
− ln

(
z−α − 1

))
dz

=

∫ 1

0

[
1 + exp

(
−F−1X (u;α)

)]− r
α du

(3)

where F−1(·) is inverse function of the cdf, i.e., quantile function of the corresponding
distribution. Noted that second line in E [Zr] is obtianed by using the transformation
FX(− ln (z−α − 1)) = u. The closed form of the expression for E[Zr] given in (3) may not
straightforward depending on form of the F−1X (u;α).
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3. A new unit-distribution

In this section, a new unit-distribution called unit-Gumbel is introduced as an alterna-
tive to some well-known unit-distributions. The ML method is then considered to estimate
its parameter. A small Monte-Carlo simulation study is conducted to show the efficiency
of the ML estimator of the α, i.e., α̂ML . Also, note that a new family of distributions called
the UG-generated family of distributions (UG-G) is introduced. Then, the UG-generated
normal distribution (UG-N), a member of the UG-G family of distributions, is obtained
as an example.

3.1. The unit-Gumbel distribution. Let X follows Gumbel distribution having the
pdf

fX(x) = exp (−x− exp(−x)) ; x ∈ R. (4)

Then, random variable Z defined by Z = [1 + exp(−X)]−
1
α follows the UG distribution

having the pdf

fUG(z;α) = αz−(α+1) exp
(
−
(
z−α − 1

))
; z ∈ (0, 1), α > 0 (5)

and the cdf

FUG(z;α) = exp
(
−
(
z−α − 1

))
(6)

where α is the shape parameter. The hrf of the UG distribution is

hUG(z;α) =
αz−(α+1) exp (− (z−α − 1))

exp (− (z−α − 1))
(7)

and quantile function of the UG distribution is

Qp = (1− ln p)−
1
α ; 0 < p < 1. (8)

The pdf and hrf of the UG distibution are plotted for different values of the shape param-
eter α in Figure 1(a)-1(b), respectively.

(a) pdfs (b) hrfs

Figure 1. Plots for the pdf and hrf of the UG distribution.

Figure 1(b) shows that for different values of the parameter α, the hrf of the UG distri-
bution can form a variety of shapes.
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3.1.1. Moments. Moments of the random variable Z having the UG distribution is ob-
tained by using the formula

E[Zr] = eE r
α

(1) (9)

where Ea(b) represents the exponential integral function
∫∞
1 z−a exp(−bz)dz and e is the

exponential constant (' 2.71828). The E[Z], V[Z], skewness, and kurtosis measures of the
UG distribution are calculated via Mathematica for certain values of shape parameter α
and tabulated in Table 1.

Table 1. The values of some characteristic measures of the UG distribution.

α 0.1 0.3 0.6 0.9 1.0 1.1 1.4 1.7 2.0 5.0
E[Z] 0.0989 0.2735 0.4545 0.5680 0.5963 0.6213 0.6810 0.7246 0.7579 0.8906
V[Z] 0.0401 0.07159 0.0669 0.0523 0.0480 0.0440 0.0343 0.0272 0.0219 0.0053

skewness 2.5460 1.0312 0.3724 0.0819 0.0171 -0.0378 -0.1620 -0.2476 -0.3103 -0.5432
kurtosis 8.9939 2.9731 2.0352 1.9666 1.9815 2.003 2.0821 2.1616 2.2331 2.5989

The E[Z], E[Z2], V[Z], skewness, and kurtosis measures of the UG distribution are also
plotted in Figure 2 for an illustration.

(a) E(Z), E(Z2), and V (Z) (b) skewness(Z) and kurtosis(Z)

Figure 2. Plots of some characteristic measures of the UG distribution.

It is clear from Table 1 and Figure 2 that the pdf of the UG distribution is skewed
to the right if α < 1.0295 and to the left if α > 1.0295. It can also be symmetric when
α = 1.0295.

3.1.2. Order statistics. Let Z(i) be a i -th order statistics of Z in a random sample of size
n from the UG distribution where i = 1, 2, · · · , n. Then, the pdf of the Z(i) is

fZ(i)
(z;α) =

n!

(i− 1)!(n− i)!
fUG(z;α)FUG(z;α)i−1 [1− FUG(z;α)]n−i

=
n!

(i− 1)!(n− i)!
αz−(α+1) exp

(
−i
(
z−α − 1

)) [
1− exp

(
−
(
z−α − 1

))]n−i
(10)

where z ∈ (0, 1) and α > 0. From (10), the pdf of the minimum and maximum order
statistics, i.e., Z(1) and Z(n), are obtained for i = 1 and i = n, respectively.
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3.1.3. Stochastic ordering. Let Z1 ∼ UG(α1) and Z2 ∼ UG(α2). The stochastic ordering

[Z1 ≤lro Z2] , [Z1 ≤hro Z2] , [Z1 ≤mrlo Z2] , and [Z1 ≤sto Z2]

are satisfied when α1 < α2, since

d

dz
ln

(
fZ1(z;α1)

fZ2(z;α1)

)
≤ 0.

Here, ≤lro, ≤hro, ≤mrlo, and ≤sto represent the likelihood ratio order, hazard rate order,
mean residual life order, and stochastic order, respectively. See Erdogan et al. [4] and
reference therein for definitions of them.

3.1.4. The UG generated family of distributions. As stated in Introduction, unit-distributions
can be used to generate a new family of distributions. For example, Eugene et al. [5] used
the beta distribution to obtain a new family of distributions called as beta-generated
family of distributions, i.e., FBeta-G(t) = FBeta(G(t)) where G(t) is the cdf of the any
random variable, FBeta(·) is the cdf of the beta distribution, and FBeta-G(·) is the cdf of
the beta-generated distribution.

By following the same line as in Eugene et al. [5], a new family of distributions having
the cdf

FUG-G(t) =FZ(G(t);α)

=FX
(
− ln

(
G(t)−α − 1

))
can be obtained. Here, FZ(·) is the cdf of the family of unit distributions given in (2),
FX(·) is the cdf of any random variable on R, and G(·) is the cdf of a baseline distribution.

For example, a unit-Gumbel-Normal (UG-N) distribution have the cdf

FUG-N(t;α) =FUG(Φ(t);α)

= exp
(
−
(
Φ(t)−α − 1

))
; t ∈ R, α > 0

and the pdf

fUG-N(t;α) = αφ(t)Φ(t)−(α+1) exp
(
−
(
Φ−α − 1

))
where the Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution, respec-
tively. Note that possible future works can be conducted about the construction of general
families of distributions by using the cdf given in (2).

3.2. Parameter estimation. In this subsection, the ML estimation of the parameter of
the UG distribution is provided. Finally, a Monte-Carlo simulation study is carried out
to show the ML estimator’s efficiency of the parameter α in terms of the mean squared
error (MSE) criterion.

3.2.1. The ML estimation. Let z1 , z2 , . . . , zn be a random sample from the UG distribu-
tion. Then, the ML estimate of the parameter α is the point on which the log-likelihood
function (lnL)

lnL(α; z) = n(1 + lnα)− (α+ 1)

n∑
i=1

ln zi −
n∑
i=1

z−α
i

(10)

attains its maximum.
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By taking the derivative of the lnL with respect to the parameter α and then setting
it to 0, the likelihood equation

∂ lnL

∂α
=
n

α
−

n∑
i=1

ln zi +
n∑
i=1

z−αi ln zi = 0 (11)

is obtianed. It is clear that ML estimate of the unknown parameter of the UG distribution
α̂ML can be obtained by using the Newton-Raphson (NR) technique. The one-dimensional
NR algorithm consists of the following steps.

i. Set k = 0, then give the initial values of the parameter, i.e., α0 .
ii. Obtain the values α

k+1
by using the equation

α
k+1

= α
k
−
[
∂2 lnL

∂α2
(α

k
)

]−1
∂ lnL

∂α
(α

k
)

iii. Repeat (i) and (ii) for (k = 1, 2, . . . ) until |α
k+1
− α

k
| ≤ ε.

Here, second partial derivates of the lnL concerning the α is

∂2 lnL

∂α2
= − n

α2
−

n∑
i=1

z−α
i

ln2 zi .

3.2.2. Monte-Carlo simulation. The ML estimator’s efficiency of the parameter α is shown
via the Monte-Carlo simulation study. All the simulations are conducted for 1, 000 Monte-
Carlo runs via MATLAB2015b software. Here, the sample size n is considered as 30 (small),
50 (moderate) and 100 (large) and shape parameter α is taken to be 0.5, 1.0, 1.5, 2.0, and
2.5. To generate the random variates from the UG distribution, equation

z = (1− ln p)−
1
α ; p ∼ Uniform(0, 1)

is used. For each generated sample, the ML estimate of the parameter α is obtained by
using the NR procedure given in subsection 3.2.1. Then, simulated mean, variance, and
MSE values for the ML estimate of the parameter α are calculated. The results of the
Monte-Carlo simulation study are given in Table 2 .

Table 2. The simulated mean, variance, and MSE values of the ML estimates.

n α = 0.5 α = 1.0 α = 1.5 α = 2.0 α = 2.5
Mean 0.5123 1.0297 1.5486 2.0581 2.5587

30 Variance 0.0034 0.0145 0.0339 0.0651 0.0922
MSE 0.0035 0.0154 0.0362 0.0684 0.0956
Mean 0.5089 1.0152 1.5214 2.0326 2.5401

50 Variance 0.0020 0.0080 0.0184 0.0298 0.0512
MSE 0.0021 0.0082 0.0188 0.0309 0.0527
Mean 0.5046 1.0071 1.5122 2.0116 2.5137

100 Variance 0.0010 0.0034 0.0091 0.0145 0.0248
MSE 0.0010 0.0035 0.0093 0.0146 0.0249

It can be seen from Table 2 that the simulated mean value of α̂ is closed to the exact
value of α. Also, simulated variance values for the α̂, and therefore the MSE values are
small for the moderate and large sample sizes. Also, note that the MSE values for the ML
estimate of the parameter α decrease when the sample size increases, as expected.
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4. Applications

In this subsection, the UG distribution is used to model three data sets from the related
literature. Data Set-I and Data Set-II have the values obtained by two different algorithms,
which are used for estimating unit capacity factor; see Genc [7] and references therein.
Data Set-III includes 30 measurements of tensile strength of polyester fibers; see Mazuchli
et al. [16]. These data sets are provided in Table 3.

Table 3. Data sets which are modeled by the UG distribution.

Data Set-I (n = 22)
0.853 0.759 0.874 0.800 0.716 0.557 0.503 0.399 0.334 0.207 0.118 0.118
0.097 0.078 0.067 0.056 0.044 0.036 0.026 0.019 0.014 0.010

Data Set-II (n = 23)
0.853 0.759 0.866 0.809 0.717 0.544 0.492 0.403 0.344 0.213 0.116 0.116
0.092 0.070 0.059 0.048 0.036 0.029 0.021 0.014 0.011 0.008 0.006

Data Set-III (n = 30)
0.023 0.032 0.054 0.069 0.081 0.094 0.105 0.127 0.148 0.169 0.188 0.216
0.255 0.277 0.311 0.361 0.376 0.395 0.432 0.463 0.481 0.519 0.529 0.567
0.642 0.674 0.752 0.823 0.887 0.926

The beta and Kumaraswamy distributions are the natural rivals of the UG distribution.
Thus, they are included in the applications to compare the modeling capabilities of the
UG, beta, and Kumaraswamy distributions. However, Genc [7] modeled Data Set-I and
Data Set-II by using the Topp-Leone distribution having one shape parameter. Also,
Mazucheli et al. [16] proposed to use the unit-Gompertz distribution to model the Data
Set-III. Therefore, the Topp-Leone and unit-Gompertz distributions are also considered
in applications to make comparisons complete.

In the comparisons, Akaike Information Criterion (AIC) and some well-known goodness-
of-fit statistics, such as Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), and root-
mean-squared error (RMSE), are considered.

The KS, CvM, RMSE, and AIC values are calculated by using the equations

KS = max

∣∣∣∣F (x(i); Θ̂)− i

n+ 1

∣∣∣∣, CvM =

n∑
i=1

[
F (x(i); Θ̂)− 2i− 1

2n

]2
+

1

12n
,

RMSE =

[
1

n

n∑
i=1

(
F (x(i); Θ̂)− i

n+ 1

)2
]1/2

and AIC = −2 lnL+ 2k,

respectively. Here, x(i) is the i-th ordered observation and Θ̂ denotes the estimated pa-
rameter vector. The minimum value of the AIC, KS, CvM, and RMSE imply the best
modeling performance; see Arslan et al. [2] and Erdogan et al. [4].

The unknown parameter α of the UG distribution is estimated by using the NR given
in subsection 3.2.1. Estimates of parameters of the beta, Kumaraswamy, Topp-Leone, and
unit-Gompertz distributions are also obtained via the ML method by using the optimiza-
tion tool “fminsearch” function, which is available in MATLAB2015b software. Parameter
estimates of the UG, beta, Kumaraswamy, Topp-Leone, and unit-Gompertz distributions,
along with goodness-of-fit statistics for them, are given in Table 4.



T. ARSLAN: A NEW FAMILY OF UNIT-DISTRIBUTIONS: DEFINITION, PROPERTIES AND ... 789

Table 4. Estimation results along with the goodness-of-fit statistics for
the UG, Topp-Leone, beta, Kumaraswamy, and unit-Gompertz distribu-
tions.

Fitting results for the Data Set-I

Distributions α̂ β̂ lnL AIC KS CvM RMSE
UG 0.3050 — 8.5052 -15.0104 0.1466 0.0893 0.0691

Topp-Leone 0.6777 — 5.4983 -8.9965 0.1848 0.1777 0.0955
Beta 0.5539 1.2198 6.7819 -9.5628 0.2002 0.1264 0.0778

Kumaraswamy 1.2305 0.5718 6.8436 -9.6872 0.1963 0.1230 0.0771
unit-Gompertz 0.7264 0.3666 8.5660 -13.1320 0.1370 0.0907 0.0703

Fitting results for the Data Set-II

Distributions α̂ β̂ lnL AIC KS CvM RMSE
UG 0.2727 — 11.3099 -20.6198 0.1268 0.0853 0.0668

Topp-Leone 0.5943 — 8.1151 -14.2302 0.1690 0.1735 0.0926
Beta 0.4869 1.1679 9.6075 -15.2149 0.1836 0.1189 0.0739

Kumaraswamy 1.1862 0.5044 9.6708 -15.3416 0.1789 0.1159 0.0734
unit-Gompertz 0.8115 0.3080 11.3364 -18.6728 0.1336 0.0880 0.0681

Fitting results for the Data Set-III

Distributions α̂ β̂ lnL AIC KS CvM RMSE
UG 0.4306 — 3.9475 -5.8950 0.0766 0.0168 0.0237

Topp-Leone 1.1091 — 2.9039 -3.8078 0.0665 0.0332 0.0388
Beta 0.9666 1.6205 3.3051 -2.6101 0.0669 0.0221 0.0288

Kumaraswamy 1.6084 0.9627 3.3110 -2.6221 0.0650 0.0207 0.0278
unit-Gompertz 1.0381 0.4212 3.9488 -3.8976 0.0733 0.0155 0.0225

It is clear from Table 4 that the UG distribution has the smallest CvM and RMSE values
for Data Set-I and Data Set-II. Concerning the KS criterion, the UG distribution has the
smallest value only for the Data Set-II. The UG and unit-Gompertz distribution have
more or less the same KS, CvM, and RMSE values for the Data Set-III. Thus, the UG
distribution shows better goodness-of-fit to the data than the beta and Kumaraswamy
distributions. Although the UG distribution has only one shape parameter, it models
the corresponding data sets as good as the unit-Gompertz distribution with two shape
parameters. Also, note that the UG distribution has the smallest AIC values among
the beta, Kumaraswamy, Topp-Leone, and unit-Gompertz distributions. Overall, the UG
distribution is preferable over the beta, Kumaraswamy, Topp-Leone, and unit-Gompertz
distributions in modeling the data having bounded range on the unit interval (0, 1).

The fitting performance of the UG distribution is also illustrated in Figure 3(a)-(c).
Also, plots for the lnL function of the UG distribution for the data sets considered in the
application are given in Figure 3(d)-(f). It is clear from Figure 3(d),(e),(f) that the ML
estimate of parameter α is the point on which the lnL function of the UG distribution
attains its maximum.
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(a) The cdf fitting for Data Set-I (b) The cdf fitting for Data Set-II (c) The cdf fitting for Data Set-III

(d) The lnL plot for Data Set-I (e) The lnL plot for Data Set-II (f) The lnL plot for Data Set-III

Figure 3. The cdf fitting and lnL plots of the UG distribution.

5. Conclusion

In this paper, a new family of unit-distributions is introduced. The UG distribution is
obtained as an alternative to the beta, Kumaraswamy, Topp-Leone, and unit-Gompertz
distributions. The ML estimate of its parameter α is also provided. Three real data sets are
modeled by the UG, beta, Kumaraswamy, Topp-Leone, and unit-Gompertz distributions.
The results show that the UG distribution is preferable over the beta, Kumaraswamy, and
Topp-Leone distributions in terms of the goodness-of-fit criteria; see Table 4. Although
the UG distribution has a smaller number of parameters than the beta, Kumaraswamy,
and unit-Gompertz distribution, it shows better modeling performance in modeling the
data having bounded range on the unit interval (0, 1). Also, note that obtaining new
distributions using the cdf given in Section 2 can be carried out as future work.

Acknowledgement. The author would like to express his gratitude to the reviewers for
their helpful comments.
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