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ABSTRACT

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch
ℓ > 0 and constant Gaussian curvature or constant extrinsic curvature in the product space H2 ×R.
In particular, we determine flat and extrinsically flat graph surfaces in H2 ×R. We also obtain
complete and non-complete vertical graph surfaces in H2 ×R with negative constant Gaussian
curvature and zero extrinsic curvature.

Keywords: Parabolic screw motion, graph surface, Gaussian curvature, extrinsic curvature, flat surface.

AMS Subject Classification (2020): Primary: 53C40; Secondary: 53B25.

1. Introduction

In [12, 17], H. Rosenberg and W. Meeks studied minimal surfaces inM2 ×R, whereM2 is a rounded sphere, a
complete Riemannian surface with a metric of non-negative curvature, orM2 = H2, the hyperbolic plane. Since
then, there has been a rapid growing interest in minimal surfaces and surfaces with constant mean curvature
in H2 ×R and S2 ×R, see for instance [4, 5, 9, 13, 14, 15, 18, 19, 20]. Also, surfaces in H2 ×R and S2 ×R with
constant Gaussian curvature or constant extrinsic curvature have attracted many attention in the recent years,
[1, 2, 3, 6, 7, 16].

In [1], J. A. Aldeo and et al. proved that there exists a unique complete surface of positive constant Gaussian
curvature in H2 ×R and a unique complete surface of positive constant curvature greater than 1 in S2 ×R, up
to isometries of the ambient space. These complete surfaces are precisely the revolution surfaces. Also, they
proved that there is no complete immersion of constant Gaussian curvature K < −1 into H2 ×R and S2 ×R.
In [2] J. A. Aldeo and et al. obtained some free boundary results for compact surfaces of positive constant
Gaussian curvature in H2 ×R and positive constant Gaussian curvature greater than 1 in S2 ×R.

In [7], J. M. Espinar and et al. studied complete surfaces with positive extrinsic curvature in H2 ×R and
S2 ×R, and they proved that every complete connected immersed surface with positive extrinsic curvature
in H2 ×R must be properly embedded, homeomorphic to a sphere or a plane. They also showed that only
complete surfaces with constant extrinsic curvature in H2 ×R and S2 ×R are rotational sphere.

L. Belarbi [3] studied translation surfaces with constant extrinsic Gaussian curvature in the 3-dimensional
Heisenberg group which are invariant under the 1-parameter groups of isometries.

In [16] R. Novais and P. D. Santos studied geometric characterizations of conformally flat and radially flat
hypersurfaces in Sn ×R and Hn ×R are given by means of their extrinsic geometry, and in [6] Dillan and et al.
classified minimal rotation hypersurfaces and flat rotation hypersurfaces in S2 ×R and H2 ×R.

Screw motion surfaces with constant mean curvature in H2 ×R and S2 ×R were studied in [18, 19]. R.
Sa Earp and E. Toubiana [19] obtained an explicit two parameter family of complete, embedded, simply
connected, minimal screw motion surfaces in H2 ×R with pitch ℓ, and for ℓ = 1 each such surface has Gaussian
curvature K = −1. In [18] R. Sa Earp studied complete minimal and surfaces with constant mean curvature
invariant either by parabolic or by hyperbolic screw motions in H2 ×R. Later, Q. Cui and et al. [4] studied the
geometric behaviors of hyperbolic and parabolic screw motions surfaces immersed in P̃SL2(R, τ) with having
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constant mean curvature, where P̃SL2(R, τ) is a homogeneous simply connected 3-manifold having isometry
group of dimension 4.

The isometries of H2 generate isometries in H2 ×R. In particular, a parabolic translation in H2 generates an
isometry in H2 ×R that is called a parabolic isometry. In this work we only consider the parabolic isometries,
and the compositions of such isometries with vertical translations which are called parabolic helicoidal-type
isometries. The surfaces invariant by this kind of helicoidal isometries is called the parabolic screw motion
surfaces.

Motivated by the work [18] on the parabolic screw motion surfaces with constant mean curvature in
H2 ×R, we study vertical graph surfaces invariant by the parabolic screw motions in H2 ×R with constant
Gaussian curvature or constant extrinsic curvature. We obtain the ordinary differential equations for the
Gaussian curvature and extrinsic curvature of a graph surface M(f) (invariant by the parabolic screw motion)
in H2 ×R for the function of the form f(x, y) = v(y) + ℓx, where v(y) is a C2 function. We prove that if a
vertical graph surface M(f) in H2 ×R for a function of the form f(x, y) = u(x) + v(y) is extrinsically flat, then
u(x) = ℓx+ c, that is, M(f) is a parabolic screw motion surface in H2 ×R, (see Sec. 3). Graph surfaces of the
form f(x, y) = u(x) + v(y) are also known as the translation surfaces in the literature. We determine graph
surfaces M(f) invariant by the parabolic screw motion (and also by parabolic translation) in H2 ×R with
constant Gaussian curvature K and constant extrinsic curvature Kext. We also obtain complete graph surfaces
in H2 ×R with negative constant Gaussian curvature and zero extrinsic curvature.

2. Preliminaries

Let H2 be the upper half-plane model H2 = {(x, y) ∈ R2|y > 0} of the hyperbolic plane equipped with the

hyperbolic metric g =
dx2 + dy2

y2
of constant curvature −1. We consider the product space M̃3 = H2 ×R with

coordinates (x, y, t) and the metric g̃ = g + dt2.
Let ∇̃ denote the Riemannian connection of M̃3. The Riemannian curvature tensor R̃ of M̃3 is given by

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

whereX,Y , and Z are tangent vector fields on M̃3. IfX,Y ∈ TpM̃
3 at a point p ∈ M̃3, then the sectional curvature

of M̃3 for the plane spanned by X and Y in TpM̃3 is

K̃(X,Y ) = − g̃(R̃(X,Y )X,Y )

g̃(X,X)g̃(Y, Y )− g̃(X,Y )g̃(X,Y )
.

Let M be a regular surface in M̃3. Then, the Gauss equation of M in M̃3 is given by

g̃(R̃(X,Y )Z,W ) = g̃(R(X,Y )Z,W ) + g̃(h(X,Z), h(Y,W ))− g̃(h(Y, Z), h(X,W )), (2.1)

where X,Y, Z,W ∈ TM , h is the second fundamental form, and R is the Riemannian curvature tensor of M .
Let ∂x = ∂

∂x , ∂y = ∂
∂y , ∂t =

∂
∂t denote coordinate vector fields on M̃3. The vectors E1 = y∂x, E2 = y∂y, E3 = ∂t

form an orthonormal frame on M̃3, and in this frame, non-zero covariant derivatives of M̃3 are

∇̃E1
E1 = E2, ∇̃E1

E2 = −E1. (2.2)

2.1. Graph surfaces

Let Ω be an open connected region in the hyperbolic plane H2, and let f : Ω → R be a C2 function on Ω. A
vertical graph surface in H2 ×R is a set

M(f) = {(x, y, f(x, y)) ∈ H2 ×R | (x, y) ∈ Ω},

and it is called entire if Ω = H2.
Considering the natural parameterization φ(x, y) = (x, y, f(x, y)) of M(f) in H2 ×R, the coordinate vector

fields of the graph surface M(f) are

φx(x, y) =
1

y
E1 + fxE3 and φy(x, y) =

1

y
E2 + fyE3, (2.3)
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and the coefficients of the first fundamental form induced by φ are

E = g̃(φx, φx) =
1

y2
+ f2x , F = g̃(φx, φy) = fxfy, G = g̃(φy, φy) =

1

y2
+ f2y . (2.4)

Then, the determinant of the induced metric on M(f) by φ is obtained as

EG− F 2 =
1 + y2(f2x + f2y )

y4
(2.5)

and the graph surface M(f) is regular, or φ is an immersion if EG− F 2 > 0.
We put W =

√
1 + y2(f2x + f2y ). Then, the normal vector to M(f) in M̃3 is written as

n =
1

W
(−yfxE1 − yfyE2 + E3).

When we evaluate the covariant derivatives of the tangent vector fields of φ we get

∇̃φxφx =
1

y2
E2 + fxxE3, ∇̃φxφy = − 1

y2
E1 + fxyE3, ∇̃φyφy = − 1

y2
E2 + fyyE3,

and hence, we obtain the coefficients of the second fundamental form in the local coordinates as follows:

L = g̃(∇̃φx
φx, n) =

yfxx − fy
yW

, M = g̃(∇̃φx
φy, n) =

yfxy + fx
yW

, N = g̃(∇̃φy
φy, n) =

yfyy + fy
yW

. (2.6)

It is known that for surfaces in R3, the Gaussian (intrinsic) curvature K and extrinsic curvature Kext are
equal. In the following we see that the intrinsic and extrinsic curvatures differ by the sectional curvature in
H2 ×R.

Let M(f) be a vertical graph surface in H2 ×R defined by a C2 function f on an open connected region
Ω ⊂ H2. By using (2.3), we obtain that R̃(φx, φy)φx = 1

y3E2. Then, the sectional curvature of H2 ×R for the
section determined by the vectors φx and φy is

K̃(φx, φy) = − g̃(R̃(φx, φy)φx, φy)

EG− F 2
= − 1

y4(EG− F 2)
= − 1

1 + y2(f2x + f2y )

which is bounded i.e. −1 ≤ K̃ < 0, and the equality case holds if and only if f(x, y) = c, where c is a constant.
Using (2.2) and (2.3), from the Gauss equation (2.1) we have the Gaussian curvature K of M(f) as

K = K(φx, φy) = − g̃(R(φx, φy)φx, φy)

EG− F 2
= K̃ +Kext,

where Kext is the extrinsic curvature of M(f), and it is defined by Kext = (LN −M2)/(EG− F 2). Thus, the
Gaussian curvature K is given by

K =
1

EG− F 2

(
− 1

y4
+ (LN −M2)

)
.

A vertical graph surface M(f) in H2 ×R is called intrinsically flat (resp., extrinsically flat ) if K = 0 (resp.,
Kext = 0) on M(f).

Using (2.6), the Gaussian curvature and extrinsic curvature of M(f) are obtained, respectively, as

K =
y2[(yfxx − fy)(yfyy + fy)− (yfxy + fx)

2]− y2(f2x + f2y )− 1

[1 + y2(f2x + f2y )]
2

(2.7)

and

Kext =
y2[(yfxx − fy)(yfyy + fy)− (yfxy + fx)

2]

[1 + y2(f2x + f2y )]
2

. (2.8)

Also, since

−1 ≤ K̃ = K −Kext = − 1

1 + y2(f2x + f2y )
< 0, (2.9)

we have that
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1) if M(f) has constant extrinsic curvature Kext, then the Gaussian curvature K is bounded, i.e., Kext − 1 ≤
K < Kext;

2) ifM(f) has constant Gaussian curvatureK, then the extrinsic curvatureKext is bounded, i.e.,K < Kext ≤
K + 1.

By using (2.7) and (2.8), we have the followings:

Proposition 2.1. Let M(f) be a vertical graph surface in H2 ×R for a C2 function f : Ω ⊂ H2 → R defined on an open
connected region Ω. Then, M(f) is an intrinsically flat surface in H2 ×R if and only if f(x, y) satisfies

y2[(yfxx − fy)(yfyy + fy)− (yfxy + fx)
2]− y2(f2x + f2y )− 1 = 0. (2.10)

Proposition 2.2. Let M(f) be a vertical graph surface in H2 ×R for a C2 function f : Ω ⊂ H2 → R defined on an open
connected region Ω. Then, M(f) is an extrinsically flat surface in H2 ×R if and only if f(x, y) satisfies

(yfxx − fy)(yfyy + fy)− (yfxy + fx)
2 = 0. (2.11)

Proposition 2.3. Let v ∈ C2 be defined on an open interval of R. Let M(f) be a vertical graph surface in H2 ×R for a
function of the form f(x, y) = v(y) + ℓx, that is, M(f) is invariant by the parabolic screw motion with pitch ℓ > 0. Then,
the Gaussian curvature K and the extrinsic curvature Kext are given, respectively, by

K =
y

2

d

dy

( 1

1 + y2(v′2 + ℓ2)

)
− 1

1 + y2(v′2 + ℓ2)
(2.12)

and

Kext =
y

2

d

dy

( 1

1 + y2(v′2 + ℓ2)

)
. (2.13)

Now, by using (2.9) we prove the following theorem.

Theorem 2.1. Let M(f) be a vertical graph surface in H2 ×R for a C2 function f(x, y) defined on some open connected
region Ω ⊂ H2. Then, the difference between the extrinsic curvature Kext and the Gaussian curvature K is a constant if
and only if the function f is given by

f(x, y) = ℓx∓
(√

b2 − ℓ2y2 + b ln
( y

b+
√
b2 − ℓ2y2

))
+ c (2.14)

defined on the region Ω = {(x, y) ∈ H2| 0 < y < b
ℓ}, where ℓ, b, c ∈ R with ℓ, b > 0. Moreover, M(f) has both Kext and

K constant, that is, Kext = 0 and K = −1/(1 + b2), and it is invariant by the parabolic screw motion with pitch ℓ.

Proof. Let M(f) be a vertical graph surface in H2 ×R for a C2 function f(x, y) defined on some open connected
region Ω ⊂ H2. From (2.9), we have 0 < Kext −K ≤ 1, and Kext −K is a constant if and only if f(x, y) satisfies

f2x + f2y =
b2

y2
,

where b =
√

1
Kext−K − 1. The complete solution of this partial differential equation is of the form

f(x, y) = ℓx∓
∫ √

b2 − ℓ2y2

y
dy + c,

for 0 < y < b/ℓ, where ℓ and c are integration constants with ℓ > 0. By integration we obtain (2.14).
Let b be a positive constant. The function f(x, y) given by (2.14) is of the form f(x, y) = ℓx∓ v(y) with

v′(y) =

√
b2−ℓ2y2

y . It can be seen easily that 1 + y2(v′
2
+ ℓ2) is a constant. Thus, from (2.12) and (2.13) we have

K = −1/(1 + b2) and Kext = 0, respectively. Also, for ℓ > 0 the form of f means that M(f) is a parabolic screw
motion surface in H2 ×R with pitch ℓ.
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2.2. Parabolic screw motion surfaces

Parabolic and hyperbolic screw motion surfaces in H2 ×R were studied in [4, 18]. For the definition of
parabolic screw motion surfaces we follow [4]. We will use helicoidal-type isometries in H2 ×R which are the
composition of isometries of H2 together with vertical translation in a proportional way. Let δ be the group of
parabolic isometries in the half-plane H2, that is, the parabolic translations given by T (x, y) = (x+ c, y), c ∈ R.
This group generates helicoidal-type isometries in H2 ×R, that is, the helicoidal isometries Γℓ of pitch ℓ > 0,
generated in H2 ×R are given by F̃ (x, y, t) = (T (x, y), t+ ℓc). More precisely, for a fixed point (x0, y0, t0), it is
given by

Γℓ(x0, y0, t0) = {(x0 + c, y0, t0 + cℓ)|c ∈ R} ⊂ H2 ×R.
The surfaces invariant by this helicoidal isometry will be called the parabolic screw motion surfaces. If ℓ = 0, we
have surfaces invariant by parabolic translations.

In order to obtain a surface invariant by the parabolic screw motion, we consider a curve γ = (0, y, v(y)) in the
yt-plane which is locally the graph of a function v ∈ C2 defined an open interval of R. The surface Γℓ(γ) which
is invariant by this one-parameter group of helicoidal-type isometries generated by the curve γ can therefore
be parameterized by

φ(x, y) = (x, y, v(y) + ℓx)

which is a vertical graph surface M(f) defined by a function of the form f(x, y) = v(y) + ℓx. In the literature, a
surface defined by φ(x, y) = (x, y, u(x) + v(y)) is also known as a translation surface, for instance, see [8, 11, 10]
and references therein.

3. Flat and Extrinsically Flat Surfaces in H2 × R

In this section we obtain intrinsically flat and extrinsically flat vertical graph surfaces invariant by the
parabolic screw motions in H2 ×R.

Considering (2.7), (2.8), and L,M,N in (2.6), for planes immersed in H2 ×R we have

Proposition 3.1. Let f(x, y) = ax+ by + c, where a, b, c ∈ R. Then, the vertical graph surface M(f) in H2 ×R is
extrinsically flat if and only if f(x, y) = c. The graph surface M(f) for f(x, y) = c is an entire, complete, and totally
geodesic surface invariant by the parabolic screw motions in H2 ×R with the intrinsic Gaussian curvature K = −1.

For the vertical graph surfaces in H2 ×R for the function of the form f(x, y) = u(x) + v(y) we have

Theorem 3.1. LetM(f) be a vertical graph surface in H2 ×R for a C2 function of the form f(x, y) = u(x) + v(y) defined
on some open connected region Ω ⊂ H2.Then, M(f) is extrinsically flat if and only if

u(x) = ℓx+ c and v(y) =
√
b2 − ℓ2y2 + b ln

( y

b+
√
b2 − ℓ2y2

)
(3.1)

on the region Ω = {(x, y) ∈ H2| 0 < y < b
ℓ}, where ℓ, b, c ∈ R with ℓ, b > 0. This surface M(f) is invariant by the

parabolic screw motion with pitch ℓ and constant Gaussian curvature K = −1/(1 + b2).

Proof. Let M(f) be a vertical graph surface in H2 ×R for a C2 function of the form f(x, y) = u(x) + v(y).
Then, the graph surface M(f) is extrinsically flat if and only if the function f holds (2.11). That is, for
f(x, y) = u(x) + v(y), equation (2.11) becomes

u′′(x)− 1

y(v′ + yv′′)
u′

2
(x)− v′

y
= 0. (3.2)

This is a differential equation of the form u′′(x) + ψ1(y)u
′2(x) + ψ2(y) = 0. Since ψ1 and ψ2 are functions of y, if

u′′(x) ̸= 0, then the solution of (3.2) does not define u as a function of x, and hence there is no solution of (3.2)
unless u′′(x) = 0. So, we have u′′(x) = 0 which implies that u(x) = ℓx+ c, ℓ ̸= 0, c ∈ R. Note that this result can
also be followed by taking the derivative of (3.2) with respect to y. For u(x) = ℓx+ c, we have from (3.2) that

v′v′′ +
v′

2

y
+
ℓ2

y
= 0. The solution of this differential equation gives

v(y) = ∓
∫ √

b2 − ℓ2y2

y
dy + c,
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where b > 0 and c are integration constants, and 0 < y < b/ℓ. By integrating the last integral and using a
vertical translation and symmetry about the xy-plane we have (3.1). Also, from (2.12) we obtain that the Gauss
curvature K = −1/(1 + b2). For the obtained functions u(x) and v(y), M(f) is a parabolic screw motion surface
in H2 ×R with pitch ℓ > 0.

Remark 3.1. Up to a vertical translation, the vertical graph surfaces M(f) in H2 ×R for f(x, y) = v(y) + ℓx with
v(y) defined by the second function in (3.1) are the only surfaces invariant by the parabolic screw motion in
H2 ×R with constant Gaussian curvature K and constant extrinsic curvature Kext.

Now, by taking ℓ = 0 in (3.1), the vertical graph surface M(f) for f(x, y) = v(y) is a cylinder parallel to the
x-axis immersed in H2 ×R. Such a surface is invariant by the parabolic translation. Thus, we have

Corollary 3.1. Let v ∈ C2 be defined an open interval of R. Up to a vertical translation and symmetry about the xy-
plane, a vertical graph surface M(f) in H2 ×R for a function of the form f(x, y) = v(y) is extrinsically flat if and only if
f(x, y) = b ln y, b ∈ R+. Also, M(f) is an entire surface invariant by the parabolic translation in H2 ×R with constant
Gaussian curvature K = −1/(b2 + 1).

Theorem 3.2. Let M(f) be a vertical graph surface in H2 ×R for a C2 function of the form f(x, y) = v(y) + ℓx on some
open connected region Ω ⊂ H2, where ℓ is a positive constant, that is,M(f) is a parabolic screw motion surface in H2 ×R
with pitch ℓ. Then, M(f) is intrinsically flat if and only if

f(x, y) = ℓx±
∫ √

b− y2 − ℓ2y4

y2
dy (3.3)

on the region Ω = {(x, y) ∈ H2| 0 < y <
√

−1 +
√
4ℓ2b+ 1/

√
2ℓ}, where b > 0 is an integration constant. Also, the

extrinsic curvature Kext is given by Kext = y2/b.

Proof. Let f(x, y) = v(y) + ℓx. Then, from (2.12) a vertical graph surface M(f) has zero Gaussian curvature,
K = 0, if and only if the function v(y) satisfies the equation

y

2

d

dv

( 1

1 + y2(v′2 + ℓ2)

)
− 1

1 + y2(v′2 + ℓ2)
= 0. (3.4)

Now we put q(y) = 1/(1 + y2(v′
2
+ ℓ2)). Then, we have yq′(y)− 2q(y) = 0, and its solution yields q(y) = y2/b,

where b is a non-zero integration constant. Therefore, for this q(y), solving q(y) = 1/(1 + y2(v′
2
+ ℓ2)) for v(y),

and using a vertical translation, we obtain (3.3) for b > 0, and from (3.3) we have the region Ω in the theorem.
Now, from (2.13) and (3.4) we get Kext =

1
1+y2(v′2+ℓ2)

= q(y) = y2

b .

By taking ℓ = 0, integrating (3.3) and also considering a vertical translation and symmetry about the xy-plane,
we have

Corollary 3.2. Let M(f) be a vertical graph surface (an immersed cylinder) in H2 ×R for a C2 function of the form
f(x, y) = v(y) on some open connected region Ω ⊂ H2, that is, M(f) is invariant by the parabolic translation. Then,
M(f) is intrinsically flat if and only if

f(x, y) = arcsin

(
y√
b

)
+

√
b− y2

y
(3.5)

on the region Ω = {(x, y) ∈ H2| 0 < y <
√
b}, where b is a positive constant.

4. Surfaces with non-zero constant curvature

In this section we study vertical graph surfaces invariant by parabolic screw motions in H2 ×R with non-zero
constant Gaussian curvature, and with non-zero constant extrinsic curvature.
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4.1. Surfaces with non-zero constant extrinsic curvature

Theorem 4.1. Let M(f) be a vertical graph surface in H2 ×R for a C2 function of the form f(x, y) = v(y) + ℓx on some
open connected region Ω ⊂ H2, where ℓ is a positive constant, that is,M(f) is a parabolic screw motion surface with pitch
ℓ. Then, M(f) has non-zero constant extrinsic curvature Kext if and only if

f(x, y) = ℓx±
∫

1

y

√
1− (1 + ℓ2y2)(b+ 2Kext ln y)

b+ 2Kext ln y
dy (4.1)

on the open connected region Ω = {(x, y) ∈ H2| 0 < b+ 2Kext ln y < 1 and (1 + ℓ2y2)(b+ 2Kext ln y) < 1}.

Proof. Let M(f) be a vertical graph surface in H2 ×R for f(x, y) = v(y) + ℓx. Then, M(f) has non-zero constant
extrinsic curvature Kext if and only if

d

dv

( 1

1 + y2(v′2 + ℓ2)

)
=

2Kext

y

because of (2.13), which can be written as 1/(1 + y2(v′
2
+ ℓ2)) = b+ 2Kext ln y, where b ∈ R and 0 < b+

2Kext ln y < 1. When we solve this equation for v(y) and using a vertical translation, we obtain (4.1).

By taking ℓ = 0 and integrating (4.1) we have

Corollary 4.1. Let M(f) be a vertical graph surface, (an immersed cylinder) in H2 ×R for a C2 function of the
form f(x, y) = v(y) on some open connected region Ω ⊂ H2. Then, the graph surface M(f) invariant by the parabolic
translation has non-zero constant extrinsic curvature Kext if and only if

f(x, y) =
1

2Kext

(√
(1− b− 2Kext ln y)(b+ 2Kext ln y)− arctan

√
1− b− 2Kext ln y

b+ 2Kext ln y

)
(4.2)

on the open connected region Ω = {(x, y) ∈ H2| e−b/2Kext < y < e(1−b)/2Kext} for Kext > 0, and Ω = {(x, y) ∈
H2| e(1−b)/2Kext < y < e−b/2Kext} for Kext < 0, where b is a constant.

4.2. Surfaces with non-zero Constant Gaussian Curvature

Let f(x, y) = ax+ by + c, where a, b, c ∈ R. Then, from (2.7) the Gaussian curvature of the vertical graph
surface M(f) is obtained as

K =
−1− 2y2(a2 + b2)

[1 + y2(a2 + b2)]2

from which we can state

Proposition 4.1. Let f(x, y) = ax+ by + c, where a, b, c ∈ R. Then, the vertical graph surface M(f) in H2 ×R has
constant negative Gaussian curvature K = −1 if and only if f(x, y) = c. The graph surface M(f) invariant by the
parabolic screw motions is an entire, totally geodesic and complete surface in H2 ×R with K = −1.

Theorem 4.2. Let M(f) be a vertical graph surface in H2 ×R for a C2 function of the form f(x, y) = v(y) + ℓx on some
open connected region Ω ⊂ H2, where ℓ is a positive constant, that is,M(f) is a parabolic screw motion surface with pitch
ℓ. Then, M(f) has non-zero constant Gaussian curvature K if and only if the function v(y) is given by

f(x, y) = ℓx±
∫

1

y

√
1− (ℓ2y2 + 1)(by2 −K)

by2 −K
dy, (4.3)

where b and K are non-zero constants; and the region Ω is given as follows:

1) for K > 0, Ω =
{
(x, y) ∈ H2|

√
K
b < y <

√
−(b−ℓ2K)+

√
(b−ℓ2K)2+4ℓ2b(1+K)

2bℓ2

}
if b > 0;

2) for −1 < K < 0, Ω =
{
(x, y) ∈ H2| 0 < y <

√
−(b−ℓ2K)+

√
(b−ℓ2K)2+4ℓ2b(1+K)

2bℓ2

}
if b > 0, or

Ω =
{
(x, y) ∈ H2|

√
b−ℓ2K+

√
(b−ℓ2K)2+4ℓ2b(1+K)

2(−b)ℓ2 < y <
√

K
b

}
if ℓ2(2

√
K + 1−K − 2) < b < 0;
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3) for K = −1, Ω =
{
(x, y) ∈ H2|

√
ℓ2+b
−bℓ2 < y < 1√

−b

}
if −ℓ2 ≤ b < 0, or

Ω =
{
(x, y) ∈ H2| 0 < y < 1√

−b

}
if b < −ℓ2;

4) for K < −1, Ω =
{
(x, y) ∈ H2|

√
b−ℓ2K+

√
(b−ℓ2K0)2+4ℓ2b(1+K)

2(−b)ℓ2 < y <
√

K
b

}
if b < 0.

Proof. Let f(x, y) = ℓx+ v(y). A vertical graph surface M(f) has non-zero constant Gaussian curvature K if
and only if the function v(y) is a solution of (2.12).

Now, if we put q(y) = 1/(1 + y2(v′
2
+ ℓ2)), then the equation (2.12) turns to q′(y)− 2

y
q(y) =

2K

y
, and

its solution yields q(y) = by2 −K, where b is an integration constant. Therefore, for this q(y) solving
q(y) = 1/(1 + y2(v′

2
+ ℓ2)) for v(y) and considering a vertical translation, we obtain (4.3). Also, from (2.5) we

obtain EG− F 2 = 1
y4(by2−K) that implies by2 −K > 0 asM(f) is regular. From (4.3), the function v(y) is defined

if 0 < (ℓ2y2 + 1)(by2 −K) < 1. Analyzing these inequalities for the values of ℓ, b, and K, we obtain the regions
Ω stated in the theorem.

Let b = 0 in (4.3). Then, from EG− F 2 = 1
y4(−K) , the surface M(f) is regular if K < 0. Also, we have Kext = 0

for the function v(y) given by (4.3) because of Theorem 3.1. Thus, by integrating (4.3) and using (2.9) we have

Corollary 4.2. The vertical graph surface M(f) invariant by a parabolic screw motion has negative constant Gaussian
curvature with −1 < K < 0 for the function

f(x, y) = ℓx±
(√

λ2 − ℓ2y2 + λ ln
( y

λ+
√
λ2 − ℓ2y2

))
(4.4)

defined on the region Ω =
{
(x, y) ∈ H2| 0 < y < λ

ℓ

}
, where λ =

√
1+K
−K .

Now, by taking ℓ = 0 in (4.3), and considering a vertical translation and symmetry about the xy-plane, we
have

Corollary 4.3. Let M(f) be a graph surface (immersed cylinder) in H2 ×R for a C2 function of the form f(x, y) = v(y)
on some open connected region Ω ⊂ H2. Then, M(f) invariant by the parabolic translation has non-zero constant
Gaussian curvature K if and only if the function f is given by

1)

f(x, y) =

√
1 +K

K
tan−1

(√1 +K

K

√
by2 −K

1 +K − by2

)
− sin−1

√
by2 −K (4.5)

defined on the region Ω =
{
(x, y) ∈ H2|

√
K
b < y <

√
1+K
b

}
for K > 0 and b > 0, or

Ω =
{
(x, y) ∈ H2|

√
1+K
b < y <

√
K
b

}
for K ≤ −1 and b < 0;

2)

f(x, y) =

√
1 +K

−K
tanh−1

(√1 +K

−K

√
by2 −K

1 +K − by2

)
+ sin−1

√
by2 −K (4.6)

defined on the region Ω =
{
(x, y) ∈ H2| 0 < y <

√
1+K
b

}
for −1 < K < 0 and b > 0, or

Ω =
{
(x, y) ∈ H2| 0 < y <

√
K
b

}
for −1 ≤ K < 0 and b < 0;

3) f(x, y) =
√

1+K
−K ln y defined on the region Ω = H2 for −1 < K < 0 and b = 0.

When we evaluate the geodesics of the surface M(f) for the function f(x, y) = a ln y on the region Ω = H2 we
obtain the geodesics parametrized by arc length parameter as follows:

γ1(s) =
(
x0, y0e

s/
√
1+a2

, a ln
(
y0e

s/
√
1+a2

))
, s ∈ R
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and

γ2(s) =
(√1 + a2

x0
tanh

( s− y0√
1 + a2

)
+ x1,

1

x0
sech

( s− y0√
1 + a2

)
, a ln

( 1

x0
sech

( s− y0√
1 + a2

)))
,

s ∈ R, which are complete, where x0, x1, y0 are integration constants. Therefore, the surface M(f) is complete
with constant negative Gaussian curvature K with −1 < K < 0.

By Proposition 4.1 and Corollary 4.3 it is seen that the vertical graph surfaces M(f) defined by f(x, y) =
c = constant and f(x, y) = a ln y are the only complete and entire surfaces invariant by parabolic translation
in H2 ×R with constant negative Gaussian curvature. For f(x, y) = c, M(f) has Kext = 0 and K = −1, and for
f(x, y) = a ln y, M(f) has Kext = 0 and K = −1/(1 + a2).
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UĞUR DURSUN
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