Graph Surfaces Invariant by Parabolic Screw Motions with Constant Curvature in $\mathbb{H}^{2} \times \mathbb{R}$

Uǧur Dursun
(Dedicated to the memory of Prof. Dr. Krishan Lal DUGGAL (1929-2022))

Abstract

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\ell>0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\mathbb{H}^{2} \times \mathbb{R}$. In particular, we determine flat and extrinsically flat graph surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. We also obtain complete and non-complete vertical graph surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ with negative constant Gaussian curvature and zero extrinsic curvature.

Keywords: Parabolic screw motion, graph surface, Gaussian curvature, extrinsic curvature, flat surface.
AMS Subject Classification (2020): Primary: 53C40; Secondary: $53 B 25$.

1. Introduction

In $[12,17], H$. Rosenberg and W. Meeks studied minimal surfaces in $M^{2} \times \mathbb{R}$, where M^{2} is a rounded sphere, a complete Riemannian surface with a metric of non-negative curvature, or $M^{2}=\mathbb{H}^{2}$, the hyperbolic plane. Since then, there has been a rapid growing interest in minimal surfaces and surfaces with constant mean curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$, see for instance $[4,5,9,13,14,15,18,19,20]$. Also, surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$ with constant Gaussian curvature or constant extrinsic curvature have attracted many attention in the recent years, [1, 2, 3, 6, 7, 16].

In [1], J. A. Aldeo and et al. proved that there exists a unique complete surface of positive constant Gaussian curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and a unique complete surface of positive constant curvature greater than 1 in $\mathbb{S}^{2} \times \mathbb{R}$, up to isometries of the ambient space. These complete surfaces are precisely the revolution surfaces. Also, they proved that there is no complete immersion of constant Gaussian curvature $K<-1$ into $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$. In [2] J. A. Aldeo and et al. obtained some free boundary results for compact surfaces of positive constant Gaussian curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and positive constant Gaussian curvature greater than 1 in $\mathbb{S}^{2} \times \mathbb{R}$.

In [7], J. M. Espinar and et al. studied complete surfaces with positive extrinsic curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$, and they proved that every complete connected immersed surface with positive extrinsic curvature in $\mathbb{H}^{2} \times \mathbb{R}$ must be properly embedded, homeomorphic to a sphere or a plane. They also showed that only complete surfaces with constant extrinsic curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$ are rotational sphere.
L. Belarbi [3] studied translation surfaces with constant extrinsic Gaussian curvature in the 3-dimensional Heisenberg group which are invariant under the 1-parameter groups of isometries.

In [16] R. Novais and P. D. Santos studied geometric characterizations of conformally flat and radially flat hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ are given by means of their extrinsic geometry, and in [6] Dillan and et al. classified minimal rotation hypersurfaces and flat rotation hypersurfaces in $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$.

Screw motion surfaces with constant mean curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$ were studied in [18, 19]. R. Sa Earp and E. Toubiana [19] obtained an explicit two parameter family of complete, embedded, simply connected, minimal screw motion surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ with pitch ℓ, and for $\ell=1$ each such surface has Gaussian curvature $K=-1$. In [18] R. Sa Earp studied complete minimal and surfaces with constant mean curvature invariant either by parabolic or by hyperbolic screw motions in $\mathbb{H}^{2} \times \mathbb{R}$. Later, Q . Cui and et al. [4] studied the geometric behaviors of hyperbolic and parabolic screw motions surfaces immersed in $\widetilde{P S L_{2}}(\mathbb{R}, \tau)$ with having

[^0]constant mean curvature, where $\widetilde{P S L_{2}}(\mathbb{R}, \tau)$ is a homogeneous simply connected 3-manifold having isometry group of dimension 4.

The isometries of \mathbb{H}^{2} generate isometries in $\mathbb{H}^{2} \times \mathbb{R}$. In particular, a parabolic translation in \mathbb{H}^{2} generates an isometry in $\mathbb{H}^{2} \times \mathbb{R}$ that is called a parabolic isometry. In this work we only consider the parabolic isometries, and the compositions of such isometries with vertical translations which are called parabolic helicoidal-type isometries. The surfaces invariant by this kind of helicoidal isometries is called the parabolic screw motion surfaces.

Motivated by the work [18] on the parabolic screw motion surfaces with constant mean curvature in $\mathbb{H}^{2} \times \mathbb{R}$, we study vertical graph surfaces invariant by the parabolic screw motions in $\mathbb{H}^{2} \times \mathbb{R}$ with constant Gaussian curvature or constant extrinsic curvature. We obtain the ordinary differential equations for the Gaussian curvature and extrinsic curvature of a graph surface $M(f)$ (invariant by the parabolic screw motion) in $\mathbb{H}^{2} \times \mathbb{R}$ for the function of the form $f(x, y)=v(y)+\ell x$, where $v(y)$ is a \mathcal{C}^{2} function. We prove that if a vertical graph surface $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ for a function of the form $f(x, y)=u(x)+v(y)$ is extrinsically flat, then $u(x)=\ell x+c$, that is, $M(f)$ is a parabolic screw motion surface in $\mathbb{H}^{2} \times \mathbb{R}$, (see Sec. 3). Graph surfaces of the form $f(x, y)=u(x)+v(y)$ are also known as the translation surfaces in the literature. We determine graph surfaces $M(f)$ invariant by the parabolic screw motion (and also by parabolic translation) in $\mathbb{H}^{2} \times \mathbb{R}$ with constant Gaussian curvature K and constant extrinsic curvature $K_{\text {ext }}$. We also obtain complete graph surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ with negative constant Gaussian curvature and zero extrinsic curvature.

2. Preliminaries

Let \mathbb{H}^{2} be the upper half-plane model $\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ of the hyperbolic plane equipped with the hyperbolic metric $g=\frac{d x^{2}+d y^{2}}{y^{2}}$ of constant curvature -1 . We consider the product space $\widetilde{M}^{3}=\mathbb{H}^{2} \times \mathbb{R}$ with coordinates (x, y, t) and the metric $\tilde{g}=g+d t^{2}$.

Let $\widetilde{\nabla}$ denote the Riemannian connection of \widetilde{M}^{3}. The Riemannian curvature tensor \widetilde{R} of \widetilde{M}^{3} is given by

$$
\widetilde{R}(X, Y) Z=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z-\widetilde{\nabla}_{[X, Y]} Z
$$

where X, Y, and Z are tangent vector fields on \widetilde{M}^{3}. If $X, Y \in T_{p} \widetilde{M}^{3}$ at a point $p \in \widetilde{M}^{3}$, then the sectional curvature of \widetilde{M}^{3} for the plane spanned by X and Y in $T_{p} \widetilde{M}^{3}$ is

$$
\widetilde{K}(X, Y)=-\frac{\widetilde{g}(\widetilde{R}(X, Y) X, Y)}{\widetilde{g}(X, X) \widetilde{g}(Y, Y)-\widetilde{g}(X, Y) \widetilde{g}(X, Y)}
$$

Let M be a regular surface in \widetilde{M}. Then, the Gauss equation of M in \widetilde{M}^{3} is given by

$$
\begin{equation*}
\tilde{g}(\widetilde{R}(X, Y) Z, W)=\tilde{g}(R(X, Y) Z, W)+\tilde{g}(h(X, Z), h(Y, W))-\tilde{g}(h(Y, Z), h(X, W)) \tag{2.1}
\end{equation*}
$$

where $X, Y, Z, W \in T M, h$ is the second fundamental form, and R is the Riemannian curvature tensor of M.
Let $\partial_{x}=\frac{\partial}{\partial x}, \partial_{y}=\frac{\partial}{\partial y}, \partial_{t}=\frac{\partial}{\partial t}$ denote coordinate vector fields on $\widetilde{M^{3}}$. The vectors $E_{1}=y \partial_{x}, E_{2}=y \partial_{y}, E_{3}=\partial_{t}$ form an orthonormal frame on $\widetilde{M^{3}}$, and in this frame, non-zero covariant derivatives of $\widetilde{M^{3}}$ are

$$
\begin{equation*}
\widetilde{\nabla}_{E_{1}} E_{1}=E_{2}, \widetilde{\nabla}_{E_{1}} E_{2}=-E_{1} \tag{2.2}
\end{equation*}
$$

2.1. Graph surfaces

Let Ω be an open connected region in the hyperbolic plane \mathbb{H}^{2}, and let $f: \Omega \rightarrow \mathbb{R}$ be a \mathcal{C}^{2} function on Ω. A vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ is a set

$$
M(f)=\left\{(x, y, f(x, y)) \in \mathbb{H}^{2} \times \mathbb{R} \mid(x, y) \in \Omega\right\}
$$

and it is called entire if $\Omega=\mathbb{H}^{2}$.
Considering the natural parameterization $\varphi(x, y)=(x, y, f(x, y))$ of $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$, the coordinate vector fields of the graph surface $M(f)$ are

$$
\begin{equation*}
\varphi_{x}(x, y)=\frac{1}{y} E_{1}+f_{x} E_{3} \quad \text { and } \quad \varphi_{y}(x, y)=\frac{1}{y} E_{2}+f_{y} E_{3} \tag{2.3}
\end{equation*}
$$

and the coefficients of the first fundamental form induced by φ are

$$
\begin{equation*}
E=\tilde{g}\left(\varphi_{x}, \varphi_{x}\right)=\frac{1}{y^{2}}+f_{x}^{2}, \quad F=\tilde{g}\left(\varphi_{x}, \varphi_{y}\right)=f_{x} f_{y}, \quad G=\tilde{g}\left(\varphi_{y}, \varphi_{y}\right)=\frac{1}{y^{2}}+f_{y}^{2} . \tag{2.4}
\end{equation*}
$$

Then, the determinant of the induced metric on $M(f)$ by φ is obtained as

$$
\begin{equation*}
E G-F^{2}=\frac{1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)}{y^{4}} \tag{2.5}
\end{equation*}
$$

and the graph surface $M(f)$ is regular, or φ is an immersion if $E G-F^{2}>0$.
We put $W=\sqrt{1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)}$. Then, the normal vector to $M(f)$ in $\widetilde{M^{3}}$ is written as

$$
n=\frac{1}{W}\left(-y f_{x} E_{1}-y f_{y} E_{2}+E_{3}\right)
$$

When we evaluate the covariant derivatives of the tangent vector fields of φ we get

$$
\tilde{\nabla}_{\varphi_{x}} \varphi_{x}=\frac{1}{y^{2}} E_{2}+f_{x x} E_{3}, \tilde{\nabla}_{\varphi_{x}} \varphi_{y}=-\frac{1}{y^{2}} E_{1}+f_{x y} E_{3}, \tilde{\nabla}_{\varphi_{y}} \varphi_{y}=-\frac{1}{y^{2}} E_{2}+f_{y y} E_{3},
$$

and hence, we obtain the coefficients of the second fundamental form in the local coordinates as follows:

$$
\begin{equation*}
L=\tilde{g}\left(\widetilde{\nabla}_{\varphi_{x}} \varphi_{x}, n\right)=\frac{y f_{x x}-f_{y}}{y W}, \quad M=\tilde{g}\left(\widetilde{\nabla}_{\varphi_{x}} \varphi_{y}, n\right)=\frac{y f_{x y}+f_{x}}{y W}, \quad N=\tilde{g}\left(\widetilde{\nabla}_{\varphi_{y}} \varphi_{y}, n\right)=\frac{y f_{y y}+f_{y}}{y W} . \tag{2.6}
\end{equation*}
$$

It is known that for surfaces in \mathbb{R}^{3}, the Gaussian (intrinsic) curvature K and extrinsic curvature $K_{\text {ext }}$ are equal. In the following we see that the intrinsic and extrinsic curvatures differ by the sectional curvature in $\mathbb{H}^{2} \times \mathbb{R}$.

Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ defined by a \mathcal{C}^{2} function f on an open connected region $\Omega \subset \mathbb{H}^{2}$. By using (2.3), we obtain that $\widetilde{R}\left(\varphi_{x}, \varphi_{y}\right) \varphi_{x}=\frac{1}{y^{3}} E_{2}$. Then, the sectional curvature of $\mathbb{H}^{2} \times \mathbb{R}$ for the section determined by the vectors φ_{x} and φ_{y} is

$$
\widetilde{K}\left(\varphi_{x}, \varphi_{y}\right)=-\frac{\widetilde{g}\left(\widetilde{R}\left(\varphi_{x}, \varphi_{y}\right) \varphi_{x}, \varphi_{y}\right)}{E G-F^{2}}=-\frac{1}{y^{4}\left(E G-F^{2}\right)}=-\frac{1}{1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)}
$$

which is bounded i.e. $-1 \leq \widetilde{K}<0$, and the equality case holds if and only if $f(x, y)=c$, where c is a constant. Using (2.2) and (2.3), from the Gauss equation (2.1) we have the Gaussian curvature K of $M(f)$ as

$$
K=K\left(\varphi_{x}, \varphi_{y}\right)=-\frac{\widetilde{g}\left(R\left(\varphi_{x}, \varphi_{y}\right) \varphi_{x}, \varphi_{y}\right)}{E G-F^{2}}=\widetilde{K}+K_{e x t},
$$

where $K_{\text {ext }}$ is the extrinsic curvature of $M(f)$, and it is defined by $K_{\text {ext }}=\left(L N-M^{2}\right) /\left(E G-F^{2}\right)$. Thus, the Gaussian curvature K is given by

$$
K=\frac{1}{E G-F^{2}}\left(-\frac{1}{y^{4}}+\left(L N-M^{2}\right)\right) .
$$

A vertical graph surface $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ is called intrinsically flat (resp., extrinsically flat) if $K=0$ (resp., $\left.K_{\text {ext }}=0\right)$ on $M(f)$.

Using (2.6), the Gaussian curvature and extrinsic curvature of $M(f)$ are obtained, respectively, as

$$
\begin{equation*}
K=\frac{y^{2}\left[\left(y f_{x x}-f_{y}\right)\left(y f_{y y}+f_{y}\right)-\left(y f_{x y}+f_{x}\right)^{2}\right]-y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)-1}{\left[1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)\right]^{2}} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{e x t}=\frac{y^{2}\left[\left(y f_{x x}-f_{y}\right)\left(y f_{y y}+f_{y}\right)-\left(y f_{x y}+f_{x}\right)^{2}\right]}{\left[1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)\right]^{2}} \tag{2.8}
\end{equation*}
$$

Also, since

$$
\begin{equation*}
-1 \leq \widetilde{K}=K-K_{e x t}=-\frac{1}{1+y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)}<0 \tag{2.9}
\end{equation*}
$$

we have that

1) if $M(f)$ has constant extrinsic curvature $K_{e x t}$, then the Gaussian curvature K is bounded, i.e., $K_{e x t}-1 \leq$ $K<K_{e x t}$;
2) if $M(f)$ has constant Gaussian curvature K, then the extrinsic curvature $K_{\text {ext }}$ is bounded, i.e., $K<K_{\text {ext }} \leq$ $K+1$.

By using (2.7) and (2.8), we have the followings:
Proposition 2.1. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function $f: \Omega \subset \mathbb{H}^{2} \rightarrow \mathbb{R}$ defined on an open connected region Ω. Then, $M(f)$ is an intrinsically flat surface in $\mathbb{H}^{2} \times \mathbb{R}$ if and only if $f(x, y)$ satisfies

$$
\begin{equation*}
y^{2}\left[\left(y f_{x x}-f_{y}\right)\left(y f_{y y}+f_{y}\right)-\left(y f_{x y}+f_{x}\right)^{2}\right]-y^{2}\left(f_{x}^{2}+f_{y}^{2}\right)-1=0 \tag{2.10}
\end{equation*}
$$

Proposition 2.2. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function $f: \Omega \subset \mathbb{H}^{2} \rightarrow \mathbb{R}$ defined on an open connected region Ω. Then, $M(f)$ is an extrinsically flat surface in $\mathbb{H}^{2} \times \mathbb{R}$ if and only if $f(x, y)$ satisfies

$$
\begin{equation*}
\left(y f_{x x}-f_{y}\right)\left(y f_{y y}+f_{y}\right)-\left(y f_{x y}+f_{x}\right)^{2}=0 . \tag{2.11}
\end{equation*}
$$

Proposition 2.3. Let $v \in \mathcal{C}^{2}$ be defined on an open interval of \mathbb{R}. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a function of the form $f(x, y)=v(y)+\ell x$, that is, $M(f)$ is invariant by the parabolic screw motion with pitch $\ell>0$. Then, the Gaussian curvature K and the extrinsic curvature $K_{\text {ext }}$ are given, respectively, by

$$
\begin{equation*}
K=\frac{y}{2} \frac{d}{d y}\left(\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}\right)-\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{e x t}=\frac{y}{2} \frac{d}{d y}\left(\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}\right) \tag{2.13}
\end{equation*}
$$

Now, by using (2.9) we prove the following theorem.
Theorem 2.1. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function $f(x, y)$ defined on some open connected region $\Omega \subset \mathbb{H}^{2}$. Then, the difference between the extrinsic curvature $K_{\text {ext }}$ and the Gaussian curvature K is a constant if and only if the function f is given by

$$
\begin{equation*}
f(x, y)=\ell x \mp\left(\sqrt{b^{2}-\ell^{2} y^{2}}+b \ln \left(\frac{y}{b+\sqrt{b^{2}-\ell^{2} y^{2}}}\right)\right)+c \tag{2.14}
\end{equation*}
$$

defined on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\frac{b}{\ell}\right.\right\}$, where $\ell, b, c \in \mathbb{R}$ with $\ell, b>0$. Moreover, $M(f)$ has both $K_{\text {ext }}$ and K constant, that is, $K_{e x t}=0$ and $K=-1 /\left(1+b^{2}\right)$, and it is invariant by the parabolic screw motion with pitch ℓ.

Proof. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function $f(x, y)$ defined on some open connected region $\Omega \subset \mathbb{H}^{2}$. From (2.9), we have $0<K_{\text {ext }}-K \leq 1$, and $K_{\text {ext }}-K$ is a constant if and only if $f(x, y)$ satisfies

$$
f_{x}^{2}+f_{y}^{2}=\frac{b^{2}}{y^{2}}
$$

where $b=\sqrt{\frac{1}{K_{\text {ext }}-K}-1}$. The complete solution of this partial differential equation is of the form

$$
f(x, y)=\ell x \mp \int \frac{\sqrt{b^{2}-\ell^{2} y^{2}}}{y} d y+c
$$

for $0<y<b / \ell$, where ℓ and c are integration constants with $\ell>0$. By integration we obtain (2.14).
Let b be a positive constant. The function $f(x, y)$ given by (2.14) is of the form $f(x, y)=\ell x \mp v(y)$ with $v^{\prime}(y)=\frac{\sqrt{b^{2}-\ell^{2} y^{2}}}{y}$. It can be seen easily that $1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)$ is a constant. Thus, from (2.12) and (2.13) we have $K=-1 /\left(1+b^{2}\right)$ and $K_{\text {ext }}=0$, respectively. Also, for $\ell>0$ the form of f means that $M(f)$ is a parabolic screw motion surface in $\mathbb{H}^{2} \times \mathbb{R}$ with pitch ℓ.

2.2. Parabolic screw motion surfaces

Parabolic and hyperbolic screw motion surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ were studied in [4, 18]. For the definition of parabolic screw motion surfaces we follow [4]. We will use helicoidal-type isometries in $\mathbb{H}^{2} \times \mathbb{R}$ which are the composition of isometries of \mathbb{H}^{2} together with vertical translation in a proportional way. Let δ be the group of parabolic isometries in the half-plane \mathbb{H}^{2}, that is, the parabolic translations given by $T(x, y)=(x+c, y), c \in \mathbb{R}$. This group generates helicoidal-type isometries in $\mathbb{H}^{2} \times \mathbb{R}$, that is, the helicoidal isometries Γ_{ℓ} of pitch $\ell>0$, generated in $\mathbb{H}^{2} \times \mathbb{R}$ are given by $\widetilde{F}(x, y, t)=(T(x, y), t+\ell c)$. More precisely, for a fixed point $\left(x_{0}, y_{0}, t_{0}\right)$, it is given by

$$
\Gamma_{\ell}\left(x_{0}, y_{0}, t_{0}\right)=\left\{\left(x_{0}+c, y_{0}, t_{0}+c \ell\right) \mid c \in \mathbb{R}\right\} \subset \mathbb{H}^{2} \times \mathbb{R}
$$

The surfaces invariant by this helicoidal isometry will be called the parabolic screw motion surfaces. If $\ell=0$, we have surfaces invariant by parabolic translations.

In order to obtain a surface invariant by the parabolic screw motion, we consider a curve $\gamma=(0, y, v(y))$ in the $y t$-plane which is locally the graph of a function $v \in \mathcal{C}^{2}$ defined an open interval of \mathbb{R}. The surface $\Gamma_{\ell}(\gamma)$ which is invariant by this one-parameter group of helicoidal-type isometries generated by the curve γ can therefore be parameterized by

$$
\varphi(x, y)=(x, y, v(y)+\ell x)
$$

which is a vertical graph surface $M(f)$ defined by a function of the form $f(x, y)=v(y)+\ell x$. In the literature, a surface defined by $\varphi(x, y)=(x, y, u(x)+v(y))$ is also known as a translation surface, for instance, see $[8,11,10]$ and references therein.

3. Flat and Extrinsically Flat Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

In this section we obtain intrinsically flat and extrinsically flat vertical graph surfaces invariant by the parabolic screw motions in $\mathbb{H}^{2} \times \mathbb{R}$.

Considering (2.7), (2.8), and L, M, N in (2.6), for planes immersed in $\mathbb{H}^{2} \times \mathbb{R}$ we have
Proposition 3.1. Let $f(x, y)=a x+b y+c$, where $a, b, c \in \mathbb{R}$. Then, the vertical graph surface $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ is extrinsically flat if and only if $f(x, y)=c$. The graph surface $M(f)$ for $f(x, y)=c$ is an entire, complete, and totally geodesic surface invariant by the parabolic screw motions in $\mathbb{H}^{2} \times \mathbb{R}$ with the intrinsic Gaussian curvature $K=-1$.

For the vertical graph surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ for the function of the form $f(x, y)=u(x)+v(y)$ we have
Theorem 3.1. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=u(x)+v(y)$ defined on some open connected region $\Omega \subset \mathbb{H}^{2}$.Then, $M(f)$ is extrinsically flat if and only if

$$
\begin{equation*}
u(x)=\ell x+c \quad \text { and } \quad v(y)=\sqrt{b^{2}-\ell^{2} y^{2}}+b \ln \left(\frac{y}{b+\sqrt{b^{2}-\ell^{2} y^{2}}}\right) \tag{3.1}
\end{equation*}
$$

on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\frac{b}{\ell}\right.\right\}$, where $\ell, b, c \in \mathbb{R}$ with $\ell, b>0$. This surface $M(f)$ is invariant by the parabolic screw motion with pitch ℓ and constant Gaussian curvature $K=-1 /\left(1+b^{2}\right)$.
Proof. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=u(x)+v(y)$. Then, the graph surface $M(f)$ is extrinsically flat if and only if the function f holds (2.11). That is, for $f(x, y)=u(x)+v(y)$, equation (2.11) becomes

$$
\begin{equation*}
u^{\prime \prime}(x)-\frac{1}{y\left(v^{\prime}+y v^{\prime \prime}\right)} u^{\prime 2}(x)-\frac{v^{\prime}}{y}=0 \tag{3.2}
\end{equation*}
$$

This is a differential equation of the form $u^{\prime \prime}(x)+\psi_{1}(y) u^{\prime 2}(x)+\psi_{2}(y)=0$. Since ψ_{1} and ψ_{2} are functions of y, if $u^{\prime \prime}(x) \neq 0$, then the solution of (3.2) does not define u as a function of x, and hence there is no solution of (3.2) unless $u^{\prime \prime}(x)=0$. So, we have $u^{\prime \prime}(x)=0$ which implies that $u(x)=\ell x+c, \ell \neq 0, c \in \mathbb{R}$. Note that this result can also be followed by taking the derivative of (3.2) with respect to y. For $u(x)=\ell x+c$, we have from (3.2) that $v^{\prime} v^{\prime \prime}+\frac{v^{\prime 2}}{y}+\frac{\ell^{2}}{y}=0$. The solution of this differential equation gives

$$
v(y)=\mp \int \frac{\sqrt{b^{2}-\ell^{2} y^{2}}}{y} d y+c
$$

where $b>0$ and c are integration constants, and $0<y<b / \ell$. By integrating the last integral and using a vertical translation and symmetry about the $x y$-plane we have (3.1). Also, from (2.12) we obtain that the Gauss curvature $K=-1 /\left(1+b^{2}\right)$. For the obtained functions $u(x)$ and $v(y), M(f)$ is a parabolic screw motion surface in $\mathbb{H}^{2} \times \mathbb{R}$ with pitch $\ell>0$.

Remark 3.1. Up to a vertical translation, the vertical graph surfaces $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ for $f(x, y)=v(y)+\ell x$ with $v(y)$ defined by the second function in (3.1) are the only surfaces invariant by the parabolic screw motion in $\mathbb{H}^{2} \times \mathbb{R}$ with constant Gaussian curvature K and constant extrinsic curvature $K_{\text {ext }}$.

Now, by taking $\ell=0$ in (3.1), the vertical graph surface $M(f)$ for $f(x, y)=v(y)$ is a cylinder parallel to the x-axis immersed in $\mathbb{H}^{2} \times \mathbb{R}$. Such a surface is invariant by the parabolic translation. Thus, we have

Corollary 3.1. Let $v \in \mathcal{C}^{2}$ be defined an open interval of \mathbb{R}. Up to a vertical translation and symmetry about the xyplane, a vertical graph surface $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ for a function of the form $f(x, y)=v(y)$ is extrinsically flat if and only if $f(x, y)=b \ln y, b \in \mathbb{R}_{+}$. Also, $M(f)$ is an entire surface invariant by the parabolic translation in $\mathbb{H}^{2} \times \mathbb{R}$ with constant Gaussian curvature $K=-1 /\left(b^{2}+1\right)$.

Theorem 3.2. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)+\ell x$ on some open connected region $\Omega \subset \mathbb{H}^{2}$, where ℓ is a positive constant, that is, $M(f)$ is a parabolic screw motion surface in $\mathbb{H}^{2} \times \mathbb{R}$ with pitch ℓ. Then, $M(f)$ is intrinsically flat if and only if

$$
\begin{equation*}
f(x, y)=\ell x \pm \int \frac{\sqrt{b-y^{2}-\ell^{2} y^{4}}}{y^{2}} d y \tag{3.3}
\end{equation*}
$$

on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \mid 0<y<\sqrt{-1+\sqrt{4 \ell^{2} b+1}} / \sqrt{2} \ell\right\}$, where $b>0$ is an integration constant. Also, the extrinsic curvature $K_{\text {ext }}$ is given by $K_{\text {ext }}=y^{2} / b$.

Proof. Let $f(x, y)=v(y)+\ell x$. Then, from (2.12) a vertical graph surface $M(f)$ has zero Gaussian curvature, $K=0$, if and only if the function $v(y)$ satisfies the equation

$$
\begin{equation*}
\frac{y}{2} \frac{d}{d v}\left(\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}\right)-\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}=0 \tag{3.4}
\end{equation*}
$$

Now we put $q(y)=1 /\left(1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)\right)$. Then, we have $y q^{\prime}(y)-2 q(y)=0$, and its solution yields $q(y)=y^{2} / b$, where b is a non-zero integration constant. Therefore, for this $q(y)$, solving $q(y)=1 /\left(1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)\right)$ for $v(y)$, and using a vertical translation, we obtain (3.3) for $b>0$, and from (3.3) we have the region Ω in the theorem.

Now, from (2.13) and (3.4) we get $K_{e x t}=\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}=q(y)=\frac{y^{2}}{b}$.

By taking $\ell=0$, integrating (3.3) and also considering a vertical translation and symmetry about the $x y$-plane, we have

Corollary 3.2. Let $M(f)$ be a vertical graph surface (an immersed cylinder) in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)$ on some open connected region $\Omega \subset \mathbb{H}^{2}$, that is, $M(f)$ is invariant by the parabolic translation. Then, $M(f)$ is intrinsically flat if and only if

$$
\begin{equation*}
f(x, y)=\arcsin \left(\frac{y}{\sqrt{b}}\right)+\frac{\sqrt{b-y^{2}}}{y} \tag{3.5}
\end{equation*}
$$

on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \mid 0<y<\sqrt{b}\right\}$, where b is a positive constant.

4. Surfaces with non-zero constant curvature

In this section we study vertical graph surfaces invariant by parabolic screw motions in $\mathbb{H}^{2} \times \mathbb{R}$ with non-zero constant Gaussian curvature, and with non-zero constant extrinsic curvature.

4.1. Surfaces with non-zero constant extrinsic curvature

Theorem 4.1. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)+\ell x$ on some open connected region $\Omega \subset \mathbb{H}^{2}$, where ℓ is a positive constant, that is, $M(f)$ is a parabolic screw motion surface with pitch ℓ. Then, $M(f)$ has non-zero constant extrinsic curvature $K_{\text {ext }}$ if and only if

$$
\begin{equation*}
f(x, y)=\ell x \pm \int \frac{1}{y} \sqrt{\frac{1-\left(1+\ell^{2} y^{2}\right)\left(b+2 K_{e x t} \ln y\right)}{b+2 K_{e x t} \ln y}} d y \tag{4.1}
\end{equation*}
$$

on the open connected region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \mid 0<b+2 K_{\text {ext }} \ln y<1\right.$ and $\left.\left(1+\ell^{2} y^{2}\right)\left(b+2 K_{\text {ext }} \ln y\right)<1\right\}$.
Proof. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for $f(x, y)=v(y)+\ell x$. Then, $M(f)$ has non-zero constant extrinsic curvature $K_{\text {ext }}$ if and only if

$$
\frac{d}{d v}\left(\frac{1}{1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)}\right)=\frac{2 K_{e x t}}{y}
$$

because of (2.13), which can be written as $1 /\left(1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)\right)=b+2 K_{e x t} \ln y$, where $b \in \mathbb{R}$ and $0<b+$ $2 K_{\text {ext }} \ln y<1$. When we solve this equation for $v(y)$ and using a vertical translation, we obtain (4.1).

By taking $\ell=0$ and integrating (4.1) we have
Corollary 4.1. Let $M(f)$ be a vertical graph surface, (an immersed cylinder) in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)$ on some open connected region $\Omega \subset \mathbb{H}^{2}$. Then, the graph surface $M(f)$ invariant by the parabolic translation has non-zero constant extrinsic curvature $K_{\text {ext }}$ if and only if

$$
\begin{equation*}
f(x, y)=\frac{1}{2 K_{e x t}}\left(\sqrt{\left(1-b-2 K_{e x t} \ln y\right)\left(b+2 K_{e x t} \ln y\right)}-\arctan \sqrt{\frac{1-b-2 K_{e x t} \ln y}{b+2 K_{e x t} \ln y}}\right) \tag{4.2}
\end{equation*}
$$

on the open connected region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \mid e^{-b / 2 K_{\text {ext }}}<y<e^{(1-b) / 2 K_{\text {ext }}}\right\}$ for $K_{\text {ext }}>0$, and $\Omega=\{(x, y) \in$ $\left.\mathbb{H}^{2} \mid e^{(1-b) / 2 K_{e x t}}<y<e^{-b / 2 K_{\text {ext }}}\right\}$ for $K_{\text {ext }}<0$, where b is a constant.

4.2. Surfaces with non-zero Constant Gaussian Curvature

Let $f(x, y)=a x+b y+c$, where $a, b, c \in \mathbb{R}$. Then, from (2.7) the Gaussian curvature of the vertical graph surface $M(f)$ is obtained as

$$
K=\frac{-1-2 y^{2}\left(a^{2}+b^{2}\right)}{\left[1+y^{2}\left(a^{2}+b^{2}\right)\right]^{2}}
$$

from which we can state
Proposition 4.1. Let $f(x, y)=a x+b y+c$, where $a, b, c \in \mathbb{R}$. Then, the vertical graph surface $M(f)$ in $\mathbb{H}^{2} \times \mathbb{R}$ has constant negative Gaussian curvature $K=-1$ if and only if $f(x, y)=c$. The graph surface $M(f)$ invariant by the parabolic screw motions is an entire, totally geodesic and complete surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $K=-1$.

Theorem 4.2. Let $M(f)$ be a vertical graph surface in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)+\ell x$ on some open connected region $\Omega \subset \mathbb{H}^{2}$, where ℓ is a positive constant, that is, $M(f)$ is a parabolic screw motion surface with pitch ℓ. Then, $M(f)$ has non-zero constant Gaussian curvature K if and only if the function $v(y)$ is given by

$$
\begin{equation*}
f(x, y)=\ell x \pm \int \frac{1}{y} \sqrt{\frac{1-\left(\ell^{2} y^{2}+1\right)\left(b y^{2}-K\right)}{b y^{2}-K}} d y \tag{4.3}
\end{equation*}
$$

where b and K are non-zero constants; and the region Ω is given as follows:

1) for $K>0, \Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{K}{b}}<y<\sqrt{\frac{-\left(b-\ell^{2} K\right)+\sqrt{\left(b-\ell^{2} K\right)^{2}+4 \ell^{2} b(1+K)}}{2 b \ell^{2}}}\right.\right\}$ if $b>0$;
2) for $-1<K<0, \Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\sqrt{\frac{-\left(b-\ell^{2} K\right)+\sqrt{\left(b-\ell^{2} K\right)^{2}+4 \ell^{2} b(1+K)}}{2 b \ell^{2}}}\right.\right\}$ if $b>0$, or
$\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{b-\ell^{2} K+\sqrt{\left(b-\ell^{2} K\right)^{2}+4 \ell^{2} b(1+K)}}{2(-b) \ell^{2}}}<y<\sqrt{\frac{K}{b}}\right.\right\}$ if $\ell^{2}(2 \sqrt{K+1}-K-2)<b<0 ;$
3) for $K=-1, \Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{\ell^{2}+b}{-b \ell^{2}}}<y<\frac{1}{\sqrt{-b}}\right.\right\}$ if $-\ell^{2} \leq b<0$, or

$$
\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\frac{1}{\sqrt{-b}}\right.\right\} \text { if } b<-\ell^{2} ;
$$

4) for $K<-1, \Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{b-\ell^{2} K+\sqrt{\left(b-\ell^{2} K_{0}\right)^{2}+4 \ell^{2} b(1+K)}}{2(-b) \ell^{2}}}<y<\sqrt{\frac{K}{b}}\right.\right\}$ if $b<0$.

Proof. Let $f(x, y)=\ell x+v(y)$. A vertical graph surface $M(f)$ has non-zero constant Gaussian curvature K if and only if the function $v(y)$ is a solution of (2.12).
Now, if we put $q(y)=1 /\left(1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)\right)$, then the equation (2.12) turns to $q^{\prime}(y)-\frac{2}{y} q(y)=\frac{2 K}{y}$, and its solution yields $q(y)=b y^{2}-K$, where b is an integration constant. Therefore, for this $q(y)$ solving $q(y)=1 /\left(1+y^{2}\left(v^{\prime 2}+\ell^{2}\right)\right)$ for $v(y)$ and considering a vertical translation, we obtain (4.3). Also, from (2.5) we obtain $E G-F^{2}=\frac{1}{y^{4}\left(b y^{2}-K\right)}$ that implies $b y^{2}-K>0$ as $M(f)$ is regular. From (4.3), the function $v(y)$ is defined if $0<\left(\ell^{2} y^{2}+1\right)\left(b y^{2}-K\right)<1$. Analyzing these inequalities for the values of ℓ, b, and K, we obtain the regions Ω stated in the theorem.

Let $b=0$ in (4.3). Then, from $E G-F^{2}=\frac{1}{y^{4}(-K)}$, the surface $M(f)$ is regular if $K<0$. Also, we have $K_{e x t}=0$ for the function $v(y)$ given by (4.3) because of Theorem 3.1. Thus, by integrating (4.3) and using (2.9) we have

Corollary 4.2. The vertical graph surface $M(f)$ invariant by a parabolic screw motion has negative constant Gaussian curvature with $-1<K<0$ for the function

$$
\begin{equation*}
f(x, y)=\ell x \pm\left(\sqrt{\lambda^{2}-\ell^{2} y^{2}}+\lambda \ln \left(\frac{y}{\lambda+\sqrt{\lambda^{2}-\ell^{2} y^{2}}}\right)\right) \tag{4.4}
\end{equation*}
$$

defined on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\frac{\lambda}{\ell}\right.\right\}$, where $\lambda=\sqrt{\frac{1+K}{-K}}$.
Now, by taking $\ell=0$ in (4.3), and considering a vertical translation and symmetry about the $x y$-plane, we have

Corollary 4.3. Let $M(f)$ be a graph surface (immersed cylinder) in $\mathbb{H}^{2} \times \mathbb{R}$ for a \mathcal{C}^{2} function of the form $f(x, y)=v(y)$ on some open connected region $\Omega \subset \mathbb{H}^{2}$. Then, $M(f)$ invariant by the parabolic translation has non-zero constant Gaussian curvature K if and only if the function f is given by
1)

$$
\begin{equation*}
f(x, y)=\sqrt{\frac{1+K}{K}} \tan ^{-1}\left(\sqrt{\frac{1+K}{K}} \sqrt{\frac{b y^{2}-K}{1+K-b y^{2}}}\right)-\sin ^{-1} \sqrt{b y^{2}-K} \tag{4.5}
\end{equation*}
$$

defined on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{K}{b}}<y<\sqrt{\frac{1+K}{b}}\right.\right\}$ for $K>0$ and $b>0$, or
$\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, \sqrt{\frac{1+K}{b}}<y<\sqrt{\frac{K}{b}}\right.\right\}$ for $K \leq-1$ and $b<0 ;$
2)

$$
\begin{equation*}
f(x, y)=\sqrt{\frac{1+K}{-K}} \tanh ^{-1}\left(\sqrt{\frac{1+K}{-K}} \sqrt{\frac{b y^{2}-K}{1+K-b y^{2}}}\right)+\sin ^{-1} \sqrt{b y^{2}-K} \tag{4.6}
\end{equation*}
$$

defined on the region $\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\sqrt{\frac{1+K}{b}}\right.\right\}$ for $-1<K<0$ and $b>0$, or
$\Omega=\left\{(x, y) \in \mathbb{H}^{2} \left\lvert\, 0<y<\sqrt{\frac{K}{b}}\right.\right\}$ for $-1 \leq K<0$ and $b<0 ;$
3) $f(x, y)=\sqrt{\frac{1+K}{-K}} \ln y$ defined on the region $\Omega=\mathbb{H}^{2}$ for $-1<K<0$ and $b=0$.

When we evaluate the geodesics of the surface $M(f)$ for the function $f(x, y)=a \ln y$ on the region $\Omega=\mathbb{H}^{2}$ we obtain the geodesics parametrized by arc length parameter as follows:

$$
\gamma_{1}(s)=\left(x_{0}, y_{0} e^{s / \sqrt{1+a^{2}}}, a \ln \left(y_{0} e^{s / \sqrt{1+a^{2}}}\right)\right), s \in \mathbb{R}
$$

and

$$
\gamma_{2}(s)=\left(\frac{\sqrt{1+a^{2}}}{x_{0}} \tanh \left(\frac{s-y_{0}}{\sqrt{1+a^{2}}}\right)+x_{1}, \frac{1}{x_{0}} \operatorname{sech}\left(\frac{s-y_{0}}{\sqrt{1+a^{2}}}\right), a \ln \left(\frac{1}{x_{0}} \operatorname{sech}\left(\frac{s-y_{0}}{\sqrt{1+a^{2}}}\right)\right)\right)
$$

$s \in \mathbb{R}$, which are complete, where x_{0}, x_{1}, y_{0} are integration constants. Therefore, the surface $M(f)$ is complete with constant negative Gaussian curvature K with $-1<K<0$.

By Proposition 4.1 and Corollary 4.3 it is seen that the vertical graph surfaces $M(f)$ defined by $f(x, y)=$ $c=$ constant and $f(x, y)=a \ln y$ are the only complete and entire surfaces invariant by parabolic translation in $\mathbb{H}^{2} \times \mathbb{R}$ with constant negative Gaussian curvature. For $f(x, y)=c, M(f)$ has $K_{e x t}=0$ and $K=-1$, and for $f(x, y)=a \ln y, M(f)$ has $K_{\text {ext }}=0$ and $K=-1 /\left(1+a^{2}\right)$.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials
 Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Aledo, J. A., Espinar, J. M., Gálvez, J. A.: Complete surfaces of constant curvature in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$. Calc. Var., 29, 347-363 (2007).
[2] Aledo, J. A., Lozano, V., A. Pastor, J. A.: Compact Surfaces with Constant Gaussian Curvature in Product Spaces. Mediterr. J. Math., 7, 263-270 (2010).
[3] Belarbi, L.: Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform., 50, 5-17 (2019).
[4] Cui, Q., Mafra, A., Peñafiel, C.: Immersed hyperbolic and parabolic screw motion surfaces in the space $\widetilde{P S L}_{2}(\mathbb{R}, \tau)$. Geom. Dedicata, 178, 297-322 (2015).
[5] Daniel, B.: Minimal isometric immersions into $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$. Indiana Univ. Math. J., 64, 1425-1445 (2015).
[6] Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$. Note Mat., 29(1), 41-54 (2009).
[7] Espinar, J. M., Gálvez, J. A., Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces. Comment. Math. Helv., 84, 351-386 (2009).
[8] Hasanis, T., López, R.: Minimal Translation Surfaces in Euclidean Space. Results Math., 75, Article number: 2 (2020).
[9] Hauswirth, 1., Rosenberg, H., Spruck, J.: On complete mean curvature $H=1 / 2$ surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. Comm. Anal. Geom., 16(5), 989-1005 (2009).
[10] Lone, M. S., Karacan, M. K., Tuncer, Y., Es, H.: Translation surfaces in affine 3-space. Hacet. J. Math. Stat., 49, 1944-1954 (2020).
[11] López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom., 52, 105-112 (2011).
[12] Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in $M^{2} \times \mathbb{R}$. Comment. Math. Helv., 80, 811-858 (2005).
[13] Montaldo, S., Onnis, I. I.: Invariant CMC surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. Glasg. Math. J., 46, 311-321 (2004).
[14] Nelli, B., Sa Earp, R., Santos, W., Toubiana, E.: Uniqueness of H-surfaces in $\mathbb{H}^{2} \times \mathbb{R},|H| \leq 1 / 2$, with boundary one or two parallel horizontal circles. Ann. Global Anal. Geom., 33(4), 307-321 (2008).
[15] Nelli, B., Rosenberg, H.: Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$. Bull. Braz. Math. Soc., New Series, 33(2), 263-292 (2002).
[16] Novais, R., Dos Santos, J. P.: Intrinsic and extrinsic geometry of hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$. J. Geom., 108, 1115-1127 (2017).
[17] Rosenberg, H.: Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$. Illinois J. Math., 46, 1177-1195 (2002).
[18] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. J. Aust. Math. Soc., 85, 113-143 (2008).
[19] Sa Earp, R., Toubiana, E.: Screw motion surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$. Illinois J. Math., 49, 1323-1362 (2005).
[20] Souam, R., Toubiana, E. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv., 84, 673-704 (2009).

Affiliations

UĞUR DURSUN
Address: Işık University, Faculty of Engineering and Natural Sciences, Department of Mathematics, 34980 Şile, Istanbul, Türkiye
E-MAIL: ugur.dursun@isikun.edu.tr
ORCID ID: 0000-0002-5225-186X

[^0]: Received : 10-01-2023, Accepted : 02-04-2023

 * Corresponding author

