PAIR DIFFERENCE CORDIAL LABELING OF SOME UNION OF GRAPHS

R. PONRAJ ${ }^{1 *}$, A. GAYATHRI ${ }^{2}$, S. SOMASUNDARAM ${ }^{2}$, §

Abstract. Let $G=(V, E)$ be a (p, q) graph.
Define

$$
\rho= \begin{cases}\frac{p}{2} & \text { if } p \text { is even } \\ \frac{p-1}{2} & \text { if } p \text { is odd }\end{cases}
$$

and $L=\{ \pm 1, \pm 2, \pm 3, \cdots, \pm \rho\}$ called the set of labels.
Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to $\mathrm{p}-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge $u v$ of G there exists a labeling $|f(u)-f(v)|$ such that $\left|\Delta_{f_{1}}-\Delta_{f_{1}^{c}}\right| \leq 1$, where $\Delta_{f_{1}}$ and $\Delta_{f_{1}^{c}}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of the union of some graphs like path, cycle, star and bistar graph.

Keywords: Path, star, cycle, bistar, comb, fan.
AMS Subject Classification: 05C78.

1. Introduction

In this paper we consider only finite, undirected and simple graphs.Cordial labeling was introduced by cachit[1]. Subsequently several authors studied cordial related labeling $[2,3,8,9]$. The notion of pair difference cordial labeling of a graph was introduced in [6] and the pair difference cordial labeling behavior of several graphs like path, cycle, star, triangular snake, alternate triangular snake,quadrilatral snake, alternate quadrilatral snake, butterfly have been investigated in $[6,7]$. In this paper we investigate the pair difference

[^0]cordial labeling behavior of the union of some graphs like path,cycle,star and bistar graph.

2. Preliminaries

Definition 2.1. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup\right.$ $\left.G_{2}\right)=V\left(G_{1}\right) \cup E\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 2.2. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge uv by a path uvw.
a
Definition 2.3. The graph $F_{n}=P_{n}+K_{1}$ is called the fan graph.

Definition 2.4. A wheel is the graph $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$ and $V\left(K_{1}\right)=\{u\}, u$ is the central vertex of the wheel.

Definition 2.5. The graph $G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and n copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy G_{2}, where G_{1} is graph of order n.

Definition 2.6. The graph $C_{n} \odot K_{1}$ is the called the crown graph.

Definition 2.7. The graph $P_{n} \odot K_{1}$ is the called the comb graph.

Definition 2.8. The bistar $B_{n, n}$ is the graph obtained by joining the apex vertices of two copies of $K_{1, n}$.

3. Pair difference cordial labeling

Definition 3.1. Let $G=(V, E)$ be a (p, q) graph.
Define

$$
\rho= \begin{cases}\frac{p}{2} & \text { if } p \text { is even } \\ \frac{p-1}{2} & \text { if } p \text { is odd }\end{cases}
$$

and $L=\{ \pm 1, \pm 2, \pm 3, \cdots, \pm \rho\}$ called the set of labels.
Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to $\mathrm{p}-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge $u v$ of G there exists a labeling $|f(u)-f(v)|$ such that $\left|\Delta_{f_{1}}-\Delta_{f_{1}^{c}}\right| \leq 1$, where $\Delta_{f_{1}}$ and $\Delta_{f_{1}^{c}}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph.

Theorem 3.1. $K_{1, n} \cup P_{n}$ is pair difference cordial.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Let P_{n} be the path $z_{1} z_{2} \cdots z_{n}$.

Define the map $f: V\left(S\left(K_{1, n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm n\}$ by

$$
\begin{array}{rlrl}
f(u) & =2 & \\
f\left(u_{i}\right) & =i & 1 \leq i \leq n \\
f\left(z_{i}\right) & =-i & 1 \leq i \leq n-2 \\
f\left(z_{n-1}\right) & =-n & \\
f\left(z_{n}\right) & =-n+1 . &
\end{array}
$$

Clearly $\Delta_{f_{1}}=n, \Delta_{f_{1}^{c}}=n-1$. Therefore f is a pair difference cordial labeling of $K_{1, n} \cup P_{n}$.

Theorem 3.2. $S\left(K_{1, n}\right) \cup P_{n}$ is pair difference cordial.
Proof. Let P_{n} be the path $z_{1} z_{2} \cdots z_{n}$. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{x, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{x x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$. Note that $S\left(K_{1, n}\right) \cup P_{n}$ has $3 n+1$ vertices and $3 n-1$ edges.

Case 1. $n \equiv 0(\bmod 4)$.
Define the map $f: V\left(S\left(K_{1, n}\right) \cup P_{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n}{2}\right\}$ by

$$
\begin{aligned}
f(x) & =-\frac{3 n}{2} & & \\
f\left(x_{i}\right) & =2 i & & 1 \leq i \leq \frac{n}{2} \\
f\left(x_{\frac{n+2 i}{2}}\right) & =-2 i & & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{i}\right) & =2 i-1 & & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{\frac{n+2 i}{2}}\right) & =-2 i+1 & & 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

Assign the labels $(n+1),(n+2)$ respectively to the vertices z_{1}, z_{2} and assign the labels $-(n+1),-(n+2)$ respectively to the vertices z_{3}, z_{4}. Next assign the labels $(n+3),(n+4)$ respectively to the vertices z_{5}, z_{6} and assign the labels $-(n+3),-(n+4)$ respectively to the vertices z_{7}, z_{8}. Proceeding like this until we reach z_{n}.

Case 2. $n \equiv 1(\bmod 4)$.
Define the map $f: V\left(S\left(K_{1, n}\right) \cup P_{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n+1}{2}\right\}$ by

$$
\begin{aligned}
f(x) & =-\frac{3 n-1}{2} & & \\
f\left(x_{i}\right) & =2 i & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(x_{\frac{n+2 i+1}{2}}\right) & =-2 i & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(y_{i}\right) & =2 i-1 & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(y_{\frac{n+2 i+1}{2}}\right) & =-2 i+1 & & 1 \leq i \leq \frac{n-1}{2} .
\end{aligned}
$$

Assign the labels $(n+2),(n+3)$ respectively to the vertices z_{1}, z_{2} and assign the labels $-(n),-(n+1)$ respectively to the vertices z_{3}, z_{4}. Next assign the labels $(n+4),(n+5)$ respectively to the vertices z_{5}, z_{6} and assign the labels $-(n+2),-(n+3)$ respectively to the vertices z_{7}, z_{8}. Proceeding like this until we reach z_{n-1}. Finally assign the label $-\frac{3 n+1}{2}$
to the vertex z_{n}.
Case 3. $n \equiv 2(\bmod 4)$.
Assign the labels as in case 1 to the vertices $x, x_{i}, y_{i}(1 \leq i \leq n)$ and $z_{i},(1 \leq i \leq n-2)$. Lastly assign the labels $-\frac{3 n}{2}, \frac{3 n}{2}$ respectively to the vertices z_{n-1}, z_{n}.

Case 4. $n \equiv 3(\bmod 4)$.
Assign the labels as in case 1 to the vertices $x, x_{i}, y_{i}(1 \leq i \leq n)$ and $z_{i},(1 \leq i \leq n-3)$. Finally assign the labels $\frac{3 n+1}{2},-\frac{3 n-3}{2},-\frac{3 n-1}{2}$ respectively to the vertices z_{n-2}, z_{n-1}, z_{n}. The Table 1 given below establish that this vertex labeling f is a pair difference cordial of $S\left(K_{1, n}\right) \cup P_{n}$.

Nature of n	$\Delta_{f_{1}^{c}}$	$\Delta_{f_{1}}$
n is odd	$\frac{3 n-1}{2}$	$\frac{3 n-1}{2}$
n is even	$\frac{3 n}{2}$	$\frac{3 n-2}{2}$

TABLE 1

Theorem 3.3. $K_{1, n} \cup K_{2, n}$ is pair difference cordial if and only if $n \leq 4$.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Let $V\left(K_{2, n}\right)=\left\{v, w, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{v v_{i}, w v_{i}: 1 \leq i \leq n\right\}$. Obviously $K_{1, n} \cup K_{2, n}$ has $2 n+3$ vertices and $3 n$ edges.

Case 1. $n=1,2,3,4$.
The Table 2 and Table 3 shows that $K_{1, n} \cup K_{2, n}$ is pair diffrence cordial for $n=1,2,3,4$.

n	u	u_{1}	u_{2}	u_{3}	u_{4}
1	1	2			
2	3	-3	2		
3	4	-3	3	-4	
4	4	3	5	-4	-5
TABLE 2					

n	v	w	v_{1}	v_{2}	v_{3}	v_{4}
1	-1	1	-2			
2	2	-2	1	-1		
3	2	-2	1	-1	3	
4	2	-2	1	-1	3	-3
TABLE 3						

Case 2. $n \geq 5$.
Suppose f is a pair difference cordial labeling of $K_{1, n} \cup K_{2, n}$. Assume that $f(u)=l_{1}, f(v)=$ $l_{2}, f(w)=l_{3}$ then the maximum value of $\Delta_{f_{1}}$ is attained when $f\left(u_{i}\right)=l_{1}-1, f\left(u_{j}\right)=$ $l_{1}+1, f\left(v_{k}\right)=l_{2}-1, f\left(v_{l}\right)=l_{2}+1, f\left(v_{m}\right)=l_{3}-1, f\left(v_{n}\right)=l_{3}+1$ for some i, j, k, l, m
and n. Therefore $\Delta_{f_{1}} \leq 2+2+2$. That is $\Delta_{f_{1}} \leq 6$. This implies $\Delta_{f_{1}^{c}} \geq 3 n-6$. Hence $\Delta_{f_{1}^{c}-} \Delta_{f_{1}} \geq 3 n-12>1$, a contradiction. Therefore $K_{1, n} \cup K_{2, n}$ is not pair difference cordial for $n \geq 5$.
Theorem 3.4. $K_{1, n} \cup S\left(K_{1, n}\right)$ is pair difference cordial if and only if $n \leq 6$.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{x, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{x x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$. Clearly $K_{1, n} \cup S\left(K_{1, n}\right)$ has $3 n+2$ vertices and $3 n$ edges.

Case 1. $n=1,2,3,4,5,6$.
The Table 4, Table 5 and Table 6 shows that $S\left(K_{1, n}\right) \cup K_{1, n}$ is pair diffrence cordial for $n=1,2,3,4,5,6$.

n	u	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}
1	-1	-2	-3				
2	-2	-1	-3				
3	-4	5	-3	-5			
4	-6	5	7	-5	-7		
5	-7	7	8	-5	-6	-8	
6	-9	8	9	10	-7	-8	-10

TABLE 4

n	x	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
1	2	1	3				
2	4	-4	3				
3	4	2	4	-2			
4	6	2	4	-2	-4		
5	7	2	4	6	-2	-4	
6	7	2	4	6	-2	-4	-6
TABLE 5							

n	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
1	4	-4				
2	2	1				
3	1	3	-1			
4	1	3	-1	-3		
5	1	3	5	-1	-3	
6	1	3	5	-1	-3	-5

Case 2. $n \geq 7$.
Suppose f is a pair difference cordial labeling of $K_{1, n} \cup S\left(K_{1, n}\right)$. Assume that $f(u)=$ $l_{1}, f\left(x_{i}\right)=l_{i}$ then the maximum value of $\Delta_{f_{1}}$ is attained when $f\left(u_{i}\right)=l_{1}-1, f\left(u_{j}\right)=l_{1}+1$ and $f\left(y_{k}\right)=l_{2}-1, f\left(y_{l}\right)=l_{2}+1$ for some i, j, k and l.Therefore $\Delta_{f_{1}} \leq 2+n$. This implies $\Delta_{f_{1}^{c}} \geq 2 n-2$. Hence $\Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq n-4>1$, a contradiction. Therefore $K_{1, n} \cup S\left(K_{1, n}\right)$ is not pair difference cordial for $n \geq 7$.

Theorem 3.5. $K_{1, n} \cup K_{1, n}$ is pair difference cordial if and only if $n \leq 4$.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$ be the vertex set and edge set of first copy . Let the vertex set of second copy of $K_{1, n}$ be $\left\{x, x_{i}: 1 \leq i \leq n\right\}$ and the edge set be $\left\{x x_{i}: 1 \leq i \leq n\right\}$. Note that $K_{1, n} \cup K_{1, n}$ has $2 n+2$ vertices and $2 n$ edges.

Case 1. $n=1,2,3,4$.
The Table 7 and Table 8 shows that $K_{1, n} \cup K_{1, n}$ is pair diffrence cordial for $n=1,2,3,4$.

n	u	u_{1}	u_{2}	u_{3}	u_{4}
1	3	1	2		
2	1	2	3		
3	2	1	3	4	
4	2	1	3	4	5
TABLE 7					

n	x	x_{1}	x_{2}	x_{3}	x_{4}
1	-3	-1	-2		
2	-1	-2	-3		
3	-1	-2	-3	-4	
4	-2	-1	-3	-4	-5
TABLE 8					

Case 2. $n \geq 5$.
Suppose f is a pair difference cordial labeling of $K_{1, n} \cup K_{1, n}$. Assume that $f(u)=l_{1}, f(x)=$ l_{2} then the maximum value of $\Delta_{f_{1}}$ is attained when $f\left(u_{i}\right)=l_{1}-1, f\left(u_{j}\right)=l_{1}+1$ and $f\left(x_{r}\right)=l_{2}-1, f\left(x_{s}\right)=l_{2}+1$ for some i, j, r and s. Therefore $\Delta_{f_{1}} \leq 4$.This implies $\Delta_{f_{1}^{c}} \geq 2 n-4$. Hence $\Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq 2 n-8>1$, a contradiction. Therefore $K_{1, n} \cup K_{1, n}$ is not pair difference cordial for $n \geq 5$.

Theorem 3.6. The union of bistar $B_{n, n}$ and the path $P_{n}, B_{n, n} \cup P_{n}$ is pair difference cordial if and only if $n \leq 5$.

Proof. Let P_{n} be the path $z_{1} z_{2} \cdots z_{n}$. Let $V\left(B_{n, n}\right)=\left\{x, y, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{x x_{i}, y y_{i}: 1 \leq i \leq n\right\} \cup\{x y\}$. Obviously $B_{n, n} \cup P_{n}$ has $3 n+2$ vertices and $3 n$ edges.

Case 1. $n=1$.
First assign the labels $2,-1$ to the vertices x, y respectively. Next assign the labels $1,-2$ to the vertices x_{1}, y_{1} respectively. Now assign the label 1 to the vertex z_{1}.
Case 2. $n=2$.
First assign the labels $2,-2$ to the vertices x, y respectively. Next assign the labels $1,4,-1,-3$ respectively to the vertices $x_{1}, x_{2}, y_{1}, y_{2}$. Finally assign the labels $-4,3$ to the vertices z_{1}, z_{2} respectively.

Case 3. $3 \leq n \leq 5$.
Define the map $f: V\left(B_{n, n} \cup P_{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm\left\lfloor\frac{3 n+2}{2}\right\rfloor\right\}$ by

$$
\begin{array}{rlrl}
f(x) & =2 & \\
f(y) & =-2 & \\
f\left(x_{1}\right) & =1 & \\
f\left(x_{2}\right) & =3 & \\
f\left(x_{i}\right) & =f\left(x_{i-1}\right)+1 & & 3 \leq i \leq n \\
f\left(y_{i}\right) & =-f\left(x_{i}\right) & & 1 \leq i \leq n .
\end{array}
$$

Next consider the vertices $z_{i}, 1 \leq i \leq n$. Table 9 gives the vertex labels to the vertices $z_{i}, 1 \leq i \leq n$ for $n=3,4,5$.

n	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}
3	5	-4	-5		
4	6	7	-6	-7	
5	7	8	-7	-8	-7
TABLE 9					

Case 3. $n \geq 6$.
Suppose f is a pair difference cordial labeling of $B_{n, n} \cup P_{n}$. There are two cases arises.
Subcase 1.n is even.
The maximum number of edges with the label 1 among the vertex labels $1,2,3, \cdots, \frac{n}{2}$ respectively to the vertices $z_{i}, 1 \leq i \leq \frac{n}{2}$ is $\frac{n}{2}-1$ and the maximum number of edges with the label 1 among the vertex labels $-1,-2,-3, \cdots,-\frac{n}{2}$ to the vertices $z_{i}, 1 \leq i \leq \frac{n}{2}$ respectively is $\frac{n}{2}-1$. Also assume that $f(x)=l_{1}, f(y)=l_{2}$ then $\Delta_{f_{1}}=4$. Therefore $\Delta_{f_{1}} \leq\left(\frac{n}{2}-1\right)+\left(\frac{n}{2}-1\right)+4=n+2$. This implies $\Delta_{f_{1}^{c}} \geq 2 n-2$. Hence $\Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq n-4>1$, a contradiction.
Subcase 2. n is odd.
In this case one vertex label is repeated. This vertex labels gives maximum one edge with label 1. Therefore $\Delta_{f_{1}} \leq\left(\frac{n-1}{2}-1\right)+\left(\frac{n-1}{2}-1\right)+5=n+2$. This implies $\Delta_{f_{1}^{c}} \geq 2 n-2$. Hence $\Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq n-4>1$, a contradiction. Hence $B_{n, n} \cup P_{n}$ is pair difference cordial if and only if $n \leq 5$.
Theorem 3.7. $F_{n} \cup P_{n}$ is pair difference cordial for all values of n.
Proof. Let P_{n} be the path $z_{1} z_{2} \cdots z_{n}$. Let $V\left(F_{n}\right)=\left\{x, x_{i},: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=$ $\left\{x x_{i},: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$. Clearly $F_{n} \cup P_{n}$ has $2 n+1$ vertices and $3 n-2$ edges.
First assign the labels $1,2,3, \cdots, n$ to the vertices $z_{1}, z_{2}, z_{3}, \cdots, z_{n}$ respectively and assign the label -1 to the vertex x. Now consider the vertices $x_{i}, 1 \leq i \leq n$. There are four cases arises.
Case 1. $n \equiv 0(\bmod 4)$.
Assign the labels $-1,-2$ to the vertices x_{1}, x_{2} respectively and assign the labels $-4,-3$ respectively to the vertices x_{3}, x_{4}. Now assign the labels $-5,-6$ to the vertices x_{5}, x_{6} respectively and assign the labels $-8,-7$ to the vertices x_{7}, x_{8}. Proceeding like this until we reach x_{n}. In this process the vertex x_{n} get the label $-n+1$.
Case 2. $n \equiv 1(\bmod 4)$.
As in case 1 , assign the labels to the vertices $x_{i}, 1 \leq i \leq n$. Here note that the vertex x_{n}
get the label $-n$.
Case 3. $n \equiv 2(\bmod 4)$.
As in case 1 , assign the labels to the vertices $x_{i}, 1 \leq i \leq n$. In this method the vertex x_{n} get the label $-n$.
Case 4. $n \equiv 3(\bmod 4)$.
As in case 1 , assign the labels to the vertices $x_{i}, 1 \leq i \leq n$. Note that the vertices x_{n-1}, x_{n} get the label $-n+1,-n$.
The Table 10 given below establish that this vertex labeling f is a pair difference cordial of $F_{n} \cup P_{n}$.

Nature of n	$\Delta_{f_{1}^{c}}$	$\Delta_{f_{1}}$
n is odd	$\frac{3 n-1}{2}$	$\frac{3 n-3}{2}$
n is even	$\frac{3 n-2}{2}$	$\frac{3 n-2}{2}$
TABLE 10		

Theorem 3.8. $F_{n} \cup S\left(K_{1, n}\right)$ is pair difference cordial for all values of n.

Proof. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{x, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{x x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$. Let $V\left(F_{n}\right)=\left\{u, u_{i},: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{u u_{i},: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Note that $F_{n} \cup S\left(K_{1, n}\right)$ has $3 n+2$ vertices and $4 n-1$ edges. There are two cases arises.
Case 1.n is even.
Define the map $f: V\left(F_{n} \cup S\left(K_{1, n}\right)\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n+2}{2}\right\}$ by

$$
\begin{aligned}
f(u) & =3 n+2 & & \\
f(x) & =-(3 n+2) & & \\
f\left(u_{i}\right) & =i & & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{\frac{n+2 i}{}}\right) & =-f\left(u_{i}\right) & & 1 \leq i \leq \frac{n}{2} \\
f\left(x_{i}\right) & =\frac{n+4 i}{2} & & 1 \leq i \leq \frac{n}{2} \\
f\left(x_{\frac{n+2 i}{}}\right) & =-f\left(x_{i}\right) & & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{i}\right) & =\frac{n+4 i-2}{2} & & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{\frac{n+2 i}{2}}\right) & =-f\left(y_{i}\right) & & 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

Example 3.1. A pair difference cordial labeling of $F_{6} \cup S\left(K_{1,6}\right)$ is shown in Figure 1.

Figure 1
Case 2.n is odd.
Define the map $f: V\left(F_{n} \cup S\left(K_{1, n}\right)\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n+1}{2}\right\}$ by

$$
\begin{aligned}
f(u) & =-(3 n+1) & & \\
f(x) & =-(3 n-1) & & \\
f\left(u_{i}\right) & =i & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(u_{\frac{n+2 i+1}{2}}\right) & =-f\left(u_{i}\right) & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(x_{i}\right) & =\frac{n+4 i-1}{2} & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(x_{\frac{n+2 i+1}{2}}\right) & =-f\left(x_{i}\right) & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(y_{i}\right) & =\frac{n+4 i-3}{2} & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(y_{\frac{n+2 i+1}{2}}^{2}\right) & =-f\left(y_{i}\right) & & \leq i \leq \frac{n-1}{2} .
\end{aligned}
$$

The Table 11 given below establish that this vertex labeling f is a pair difference cordial of $F_{n} \cup S\left(K_{1, n}\right)$.

Nature of n	$\Delta_{f_{1}^{c}}$	$\Delta_{f_{1}}$
n is odd	$\frac{4 n}{2}$	$\frac{4 n-2}{2}$
n is even	$\frac{4 n}{2}$	$\frac{4 n-2}{2}$

TABLE 11

Example 3.2. A pair difference cordial labeling of $F_{7} \cup S\left(K_{1,7}\right)$ is shown in Figure 2.

Figure 2

Theorem 3.9. $F_{n} \cup F_{n}$ is pair difference cordial for all values of n.
Proof. Let $V\left(F_{n}\right)=\left\{x, y, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{x x_{i}, y y_{i}: 1 \leq i \leq n\right\} \cup$ $\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\}$. Clearly $F_{n} \cup F_{n}$ has $2 n+2$ vertices and $4 n-2$ edges.
Define the map $f: V\left(F_{n} \cup F_{n}\right) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm(n+1)\}$ by

$$
\begin{array}{rlrl}
f(x) & =n+1 & \\
f(y) & =-(n-1) & \\
f\left(x_{i}\right) & =i & 1 \leq i \leq n \\
f\left(y_{i}\right) & =-i & 1 \leq i \leq n-1 \\
f\left(y_{n}\right) & =-(n+1) . & &
\end{array}
$$

Here $\Delta_{f_{1}}=\Delta_{f_{1}^{c}}=2 n-1$. Hence $F_{n} \cup F_{n}$ is pair difference cordial for all values of n.

Theorem 3.10. $\left(C_{n} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ is pair difference cordial for all values of n.
Proof. Let $V\left(\left(C_{n} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)\right)=\left\{x_{i}, y_{i}, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(\left(C_{n} \odot K_{1}\right) \cup\right.$ $\left.\left(P_{n} \odot K_{1}\right)\right)=\left\{x_{i} x_{i+1}, x_{i} u_{i}, y_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{y_{i} y_{i+1}: 1 \leq i \leq n-1\right\}$. Obviously $\left(C_{n} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ has $4 n$ vertices and $4 n-1$ edges.
Define the map $f: V\left(F_{n} \cup F_{n}\right) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm(n+1)\}$ by

$$
\begin{array}{ll}
f\left(x_{i}\right)=i & 1 \leq i \leq n \\
f\left(y_{i}\right)=-i & 1 \leq i \leq n \\
f\left(u_{i}\right)=2 n-i+1 & 1 \leq i \leq n \\
f\left(v_{i}\right)=-2 n+i-1 & 1 \leq i \leq n .
\end{array}
$$

Since $\Delta_{f_{1}}=\frac{4 n}{2}$ and $\Delta_{f_{1}^{c}}=\frac{4 n-2}{2}, \mathrm{f}$ is a pair difference cordial labling.

Theorem 3.11. $W_{n} \cup S\left(K_{1, n}\right)$ is pair difference cordial for all values of n.
Proof. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{x, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{x x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$. Let $V\left(W_{n}\right)=\left\{x, x_{i},: 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{x x_{i},: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup x_{1} x_{n}$. Note that $W_{n} \cup S\left(K_{1, n}\right)$ has $3 n+2$ vertices and $4 n$ edges. There are two cases arises.

Case 1.n is even.

Define the map $f: V\left(W_{n} \cup S\left(K_{1, n}\right)\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n+2}{2}\right\}$ by

$$
\begin{array}{rlrl}
f(x) & =\frac{n+2}{2} & & \\
f(y) & =-\frac{n+2}{2} & & \\
f\left(x_{i}\right) & =i & & 1 \leq i \leq \frac{n}{2} \\
f\left(x_{\frac{n+2 i}{2}}\right) & =-f\left(x_{i}\right) & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{i}\right) & =\frac{n+4 i}{2} & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{\frac{n+2 i}{2}}\right) & =-f\left(y_{i}\right) & 1 \leq i \leq \frac{n}{2} \\
f\left(z_{i}\right) & =\frac{n+4 i+2}{2} & 1 & 1 \leq i \leq \frac{n}{2} \\
f\left(y_{\frac{n+2 i}{}}^{2}\right) & =-f\left(z_{i}\right) & & 1 \leq \frac{n}{2} .
\end{array}
$$

Case 2.n is odd.
Define the map $f: V\left(W_{n} \cup S\left(K_{1, n}\right)\right) \rightarrow\left\{ \pm 1, \pm 2, \cdots, \pm \frac{3 n+1}{2}\right\}$ by

$$
\begin{aligned}
f(x) & =\frac{n+3}{2} & & \\
f(y) & =-\frac{n+1}{2} & & \\
f\left(x_{i}\right) & =i & & 1 \leq i \leq \frac{n+1}{2} \\
f\left(x_{\left.\frac{n+2 i+1}{2}\right)}\right. & =-f\left(x_{i}\right) & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(y_{i}\right) & =\frac{n+4 i+3}{2} & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(y_{\frac{n+2 i-1}{2}}^{2}\right) & =-f\left(y_{i}\right) & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(z_{i}\right) & =\frac{n+4 i+1}{2} & & 1 \leq i \leq \frac{n-1}{2} \\
f\left(z_{\frac{n+2 i-1}{2}}^{2}\right) & =-f\left(z_{i}\right) & & \\
f\left(y_{n}\right) & =-\frac{n+3}{2} & &
\end{aligned}
$$

In both cases, these vertex labeling gives that $\Delta_{f_{1}}=\Delta_{f_{1}^{c}}=2 n$. Hence $W_{n} \cup S\left(K_{1, n}\right)$ is pair difference cordial.

Example 3.3. A pair difference cordial labeling of $W_{8} \cup S\left(K_{1,8}\right)$ is shown in Figure 3.

Figure 3

4. Conclusions

In this paper, we have studied about the pair difference cordial labeling behavior of union of some graphs. Investigation of the pair difference cordiality of some other special graphs are the open problems.

References

[1] Cahit, I., (1987), Cordial Graphs A weaker version of Graceful and Harmonious graphs, Ars combin., 23, 201-207.
[2] Ebrahim Salehi., Seth Churchman., Tahj Hill., Jim Jordan., (2014), Product Cordial Sets of Trees, Congressus Numerantium., 220, 183-193.
[3] Ebrahim Salehi., (2012), Product Cordial Sets of Long Grids, Ars combin., 107, 339-351.
[4] Gallian, J. A., (2016), A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics., 19.
[5] Harary, F., (1969), Graph theory, Addision wesley, New Delhi.
[6] Ponraj, R., Gayathri, A., and Soma Sundaram, S., (2021), Pair difference cordial labeling of graphs, J.Math. Comp.Sci., Vol.11(3), 2551-2567.
[7] Ponraj, R., Gayathri, A., and Soma Sundaram, S., (2021), Pair difference cordiality of some snake and butterfly graphs, Journal of Algorithm and Computation., 53 issue 1, 149-163.
[8] Seoud, M. A., Salman M. S., (2015), On Difference cordial graphs, Mathematica Aeterna., Vol 5, 189-199.
[9] Seoud, M. A., Salman M. S., (2016), Some results and examples on difference cordial graphs, Turkish Journal of Mathematics., 40, 417-427.

A. Gayathri did her M.Phil degree at St. Johns College, Palayamkottai, Tirunelveli, India. She is currently a research scholar, Register number: 20124012092023 in Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli. Her research interest is in Graph Theory. She has published four papers in journals.

S. Somasundaram did his Ph.D at I.I.T, Kanpur, India. He was in the faculty of Mathematics, Manonmaniam Sundaranar University, Tirunelveli. He retired as Professor in June 2020. His research interests include Analysis and Graph Theory.

[^0]: ${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, 627 412, India. e-mail: ponrajmaths@gmail.com, ORCID: https://orcid.org/0000-0001-7593-7429.

 * Corresponding author.
 ${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelvelii 627 012, India. e-mail: gayugayathria555@gmail.com, ORCID: https://orcid.org/0000-0002-1004-0175. e-mail: somutvl@gmail.com, ORCID: https://orcid.org/0000-0001-6980-7468.
 § Manuscript received: April 15, 2021; accepted: October 22, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 3 © Issık University, Department of Mathematics, 2023; all rights reserved.

