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COINCIDENCE POINT RESULTS FOR HYBRID PAIR OF MAPPINGS

ON A DISLOCATED METRIC SPACE ENDOWED WITH AN

ARBITRARY BINARY RELATION

S. K. MOHANTA1∗, P. BISWAS1, §

Abstract. We introduce the notion of generalized S-contraction of Nadler type and
prove some new coincidence point results for hybrid pair of mappings in 0-complete dis-
located metric spaces endowed with an arbitrary binary relation. Our results generalize,
extend and unify several well known comparable results including Nadler’s fixed point
theorem in the setting of dislocated metric spaces. As some applications of our main
result, we can obtain several important fixed point results of multi-valued mappings sat-
isfying some contractive type conditions of Kannan type, Fisher type etc. in this new
framework. Moreover, we provide some examples to justify that the generalization is
proper.

Keywords: dislocated metric, 0-completeness, generalized S-contractions, coincidence
point.
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1. Introduction

Banach contraction principle [9] is one of the most impressing results in fixed point
theory. Because of its simplicity and usefulness it has become a popular tool for solving
various problems in nonlinear analysis. Several authors successfully extended this cele-
brated result in diverse ways. In 1994, Matthews [25] gave the concept of a partial metric
space while studying denotational semantics of data flow networks and proved the well
known Banach contraction principle in this setting. Complete partial metric space is a
useful framework to model several complex problems in theory of computation. The works
of [3, 5, 12, 18, 19, 21, 31] are viable and have opened new avenues for application in differ-
ent fields of mathematics and applied sciences. In recent investigations, the study of fixed
point theory for multi-valued mappings takes a vital role in many aspects. In this context,
Nadler [28] proved that every multi-valued contraction on a complete metric space has a
fixed point. Since then, many authors including Gordji [16], Berinde [10], Pathak [29] and
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others [13, 14, 27] studied lots of different types of fixed point theorems for single-valued
and multi-valued contractions. In 2000, Hitzler and Seda [20] introduced the concept of
dislocated metric space as a generalization of partial metric space and obtained an impor-
tant characterization of the Banach contraction principle. After that, Amini-Harandi [17]
initiated the notion of metric-like spaces. Karapinar et al.[22] noticed that the notions
of dislocated metric spaces and metric-like spaces are exactly the same. Subsequently, E.
Karapinar and others [1, 2, 15, 23, 24] considered Sehgal type contractions, F -contractive
mappings, conditionally F -contractions and established some fixed point results in dis-
located metric spaces. The study of fixed point theory combining a binary relation is a
new development in the domain of contractive type multi-valued theory. The aim of this
article is to introduce the notion of generalized S-contraction of Nadler type involving an
arbitrary binary relation and obtain some new coincidence point results for such class of
functions in dislocated metric spaces.

2. Preliminaries

Let (X, d) be a metric space, CL(X) be the family of all nonempty closed subsets of X
and CB(X) be the family of all nonempty closed and bounded subsets of X. For A, B ∈
CB(X), define H(A,B) = max{sup

x∈A
d(x,B), sup

y∈B
d(y,A)}, where d(x,B) = inf{d(x, y) :

y ∈ B}. Then H is called Pompeiu-Hausdorff metric on CB(X). Let T : X → CB(X)
be a multi-valued mapping. If there exists λ ∈ (0, 1) such that H(Tx, Ty) ≤ λ d(x, y)
for all x, y ∈ X, then T is called a multi-valued contraction. Detailed information about
the Pompeiu-Hausdorff metric can be found in [11]. In this section, we recall some basic
definitions, notations and crucial results in dislocated metric spaces.

Definition 2.1. [20] Let X be a nonempty set. A function σ : X × X → [0,∞) is said
to be a dislocated metric (or a metric-like) on X if for any x, y, z ∈ X, the following
conditions hold:

(σ1) σ(x, y) = 0 =⇒ x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

The pair (X,σ) is then called a dislocated metric (or metric-like) space.

It is valuable to note that a partial metric [25] is also a dislocated metric but the
converse is not true, in general. A trivial example of a dislocated metric which is also a
partial metric is given by σ(x, y) = max{x, y}, for all x, y ≥ 0.

The contrary situation can be illustrated by the following example.

Example 2.1. [7] Let X = {1, 2, 3} and consider the dislocated metric σ : X×X → [0,∞)
given by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2

3
, σ(1, 2) = σ(2, 1) =

9

10
,

σ(2, 3) = σ(3, 2) =
4

5
, σ(1, 3) = σ(3, 1) =

7

10
.

Since σ(2, 2) 6= 0, σ is not a metric and since σ(2, 2) > σ(1, 2), σ is not a partial metric.

In a dislocated metric space (X,σ), we define an open σ-ball Bσ(x, r) for x ∈ X and
r > 0 as follows:

Bσ(x, r) = {y ∈ X :| σ(x, y)− σ(x, x) |< r}.
We now visualise the open σ-balls in a particular case.
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Example 2.2. Let X := [0, 1] and σ(x, y) = x + y on X. Then (X,σ) is a dislocated
metric space. In this case, for a ∈ X, r > 0, we have Bσ(a, r) = (a− r, a+ r) ∩X.

Definition 2.2. [22] Let (X,σ) be a dislocated metric space. A subset A ⊆ X is said to
be σ-open if for any a ∈ A, there exists ε > 0 such that Bσ(a, ε) ⊆ A. Also, C ⊆ X is a
σ-closed subset of X if X \C is a σ-open subset of X. The family of all σ-open subsets of
X will be denoted by τσ.

Theorem 2.1. τσ defines a topology on (X,σ).

Remark 2.1. It is worth mentioning that the open σ-balls are not necessarily σ-open sets
and the topology τσ is not even T0. Also, the collection of open σ-balls may not form a
base for a topology on X.

We cite an example in support of the above remark.

Example 2.3. Let X = {a, b, c, d} and σ : X ×X → [0,∞) be given by

σ(a, a) = σ(b, b) = 5, σ(c, c) = σ(d, d) = 6, σ(a, b) = σ(b, a) = 5, σ(b, c) = σ(c, b) = 4,

σ(c, d) = σ(d, c) = 6, σ(a, d) = σ(d, a) = 7, σ(b, d) = σ(d, b) = 7, σ(a, c) = σ(c, a) = 4.

Then, (X,σ) is a dislocated metric space.
The open σ-balls centred at a and radius ε > 0 are as follows:

Bσ(a, ε) =


{a, b}, if 0 < ε ≤ 1,

{a, b, c}, if 1 < ε ≤ 2,

{a, b, c, d}, if ε > 2.

The open σ-balls centred at b and radius ε > 0 are as follows:

Bσ(b, ε) =


{a, b}, if 0 < ε ≤ 1,

{a, b, c}, if 1 < ε ≤ 2,

{a, b, c, d}, if ε > 2.

The open σ-balls centred at c and radius ε > 0 are as follows:

Bσ(c, ε) =

 {c, d}, if 0 < ε ≤ 2,

{a, b, c, d}, if ε > 2.

The open σ-balls centred at d and radius ε > 0 are as follows:

Bσ(d, ε) =

 {c, d}, if 0 < ε ≤ 1,

{a, b, c, d}, if ε > 1.

Therefore, the family of all σ-open subsets of X are

τσ = {∅, {a, b}, {c, d}, {a, b, c, d}}.
Moreover, we see that the open σ-balls are not σ-open sets as the open σ-ball Bσ(a, 32) =
{a, b, c} is not a σ-open set. Also, for the pair a, b, there exists no σ-open set containing
one of the points but not containing the other. This ensures that the topology τσ is not
even T0.

Finally, we note that the collection of open σ-balls may not form a base for a topology on
X. For instance, we consider the open σ-balls Bσ(a, 2) = {a, b, c}, Bσ(b, 3) = {a, b, c, d}.



S. K. MOHANTA AND P. BISWAS: COINCIDENCE POINT RESULTS FOR HYBRID PAIR ... 1211

Then, c ∈ Bσ(a, 2) ∩ Bσ(b, 3) but there exists no ε > 0 such that Bσ(c, ε) ⊂ Bσ(a, 2) ∩
Bσ(b, 3).

Remark 2.2. Let (X,σ) be a dislocated metric space, (xn) be a sequence in X and x ∈ X.
Then (xn) converges to x with respect to(w.r.t.) τσ if lim

n→∞
σ(xn, x) = σ(x, x).

Suppose that lim
n→∞

σ(xn, x) = σ(x, x). We shall show that xn → x w.r.t. τσ. Let U ∈ τσ
and x ∈ U . Then there exists ε > 0 such that Bσ(x, ε) ⊆ U . By hypothesis, there exists
n0 ∈ N such that | σ(xn, x)− σ(x, x) |< ε for all n ≥ n0. This ensures that xn ∈ Bσ(x, ε)
for all n ≥ n0 and hence xn ∈ U for all n ≥ n0. Therefore, (xn) converges to x w.r.t. τσ
on X.

Definition 2.3. [6] Let (X,σ) be a dislocated metric space and let (xn) be a sequence in
X. Then

(i) (xn) converges to a point x ∈ X if lim
n→∞

σ(xn, x) = σ(x, x). This will be denoted

as lim
n→∞

xn = x or xn → x(n→∞).

(ii) (xn) is called a σ-Cauchy sequence if lim
n,m→∞

σ(xn, xm) exists and is finite.

(iii) (X,σ) is said to be complete if for each σ-Cauchy sequence (xn) in X, there is
some x ∈ X such that lim

n→∞
σ(xn, x) = σ(x, x) = lim

n,m→∞
σ(xn, xm).

Definition 2.4. A sequence (xn) in (X,σ) is called 0-Cauchy if

lim
n,m→∞

σ(xn, xm) = 0.

The space (X,σ) is said to be 0-complete if every 0-Cauchy sequence in X converges to a
point x ∈ X such that σ(x, x) = 0.

Lemma 2.1. Let (X,σ) be a dislocated metric space.

(a) (see [22]) If σ(xn, z)→ σ(z, z) = 0 as n→∞, then σ(xn, y)→ σ(z, y) as n→∞
for each y ∈ X.

(b) If (X,σ) is complete, then it is 0-complete.

The converse assertion of (b) may not hold, in general. The following example supports
the above remark.

Example 2.4. [30] The space X = [0,∞) ∩ Q with the dislocated metric σ(x, y) =
max {x, y} is 0-complete, but it is not complete. Moreover, the sequence (xn) with xn = 1
for each n ∈ N is a σ-Cauchy sequence in (X,σ), but it is not a 0-Cauchy sequence.

Definition 2.5. Let (X,σ) be a dislocated metric space and A ⊆ X. The interior of A,
denoted by A0 or Int(A) is the union of all σ-open sets contained in A. Clearly, Int(A)
is always a σ-open set. Moreover, A is σ-open if and only if A = Int(A).

Definition 2.6. Let (X,σ) be a dislocated metric space and A ⊆ X. The closure of A,
denoted by A or cl(A) is the intersection of all σ-closed subsets of X which contains A.
Clearly, cl(A) is always a σ-closed set. Moreover, A is σ-closed if and only if A = A.

The following theorem can be obtained in a way similar to that in metric spaces.

Theorem 2.2. Let (X,σ) be a dislocated metric space and A be any nonempty subset of
X. Then, A is σ-closed if and only if for any sequence (xn) in A which converges to x,
we have x ∈ A.
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Theorem 2.3. Let (X,σ) be a dislocated metric space, A be a σ-closed subset of X and
x ∈ X. If σ(x,A) = 0, then x ∈ A, where σ(x,A) = inf{σ(x, y) : y ∈ A}.

Proof. Let σ(x,A) = 0. Then for any ε > 0, there exists xε ∈ A such that σ(x, xε) <
ε. Therefore, for all n ≥ 1, there exists xn ∈ A such that σ(x, xn) < 1

n . Hence,
lim
n→∞

σ(x, xn) = 0. Again, σ(x, x) ≤ 2σ(x, xn) ensures that σ(x, x) = 0. Thus, lim
n→∞

σ(x, xn) =

σ(x, x) = 0. This means that (xn) converges to x. By applying Theorem 2.2, it follows
that x ∈ A. �

We now give an example to show that the converse of the above property is not true,
in general.

Example 2.5. Let X = {a, b} and define σ : X ×X → [0,∞) by

σ(x, y) =

 2, if x = y = a,

1, otherwise.

Then (X,σ) is a dislocated metric space. We consider X as a σ-closed set and compute

σ(a,X) = min{σ(a, a), σ(a, b)} = 1.

Thus, we find that a ∈ X but σ(a,X) 6= 0.

Definition 2.7. [8] Let (X,σ) be a dislocated metric space and A be a nonempty subset
of X. The subset A is said to be bounded if there exist x0 ∈ X and M > 0 such that
a ∈ Bσ(x0,M) for all a ∈ A.

Let (X,σ) be a dislocated metric space and CBσ(X) be the set of all nonempty closed
bounded subsets of X. An element x ∈ X is said to be a fixed point of a multi-valued
mapping T : X → 2X if x ∈ Tx, where 2X denotes the collection of all nonempty subsets
of X. For A, B ∈ CBσ(X), define

Hσ(A,B) = max{sup
x∈A

σ(x,B), sup
y∈B

σ(y,A)},

where σ(x,B) = inf{σ(x, y) : y ∈ B}. Such a map Hσ is called the Hausdorff dislocated
metric induced by the dislocated metric σ.

Lemma 2.2. [8] Let (X,σ) be a dislocated metric space. For all A, B, C ∈ CBσ(X), we
have the following:

(i) Hσ(A,A) = sup{σ(a,A) : a ∈ A};
(ii) Hσ(A,B) = Hσ(B,A);
(iii) Hσ(A,B) = 0 =⇒ A = B;
(iv) Hσ(A,B) ≤ Hσ(A,C) +Hσ(C,B).

Lemma 2.3. Let (X,σ) be a dislocated metric space. For any A, B ∈ CBσ(X) and any
x, y ∈ X, we have the following:

(i) σ(x,B) ≤ σ(x, b) for any b ∈ B;
(ii) σ(x,B) ≤ Hσ(A,B) for any x ∈ A;
(iii) σ(x,A) ≤ σ(x, y) + σ(y,A).

Proof. (i) and (ii) are obvious. We now prove part (iii). For any x, y ∈ X and a ∈ A, we
have

σ(x, a) ≤ σ(x, y) + σ(y, a).

This implies that,
σ(x,A) ≤ σ(x, a) ≤ σ(x, y) + σ(y, a)
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and hence σ(x,A) ≤ σ(x, y) + σ(y,A). �

Lemma 2.4. [8] Let A, B ∈ CBσ(X) and a ∈ A. Then for all ε > 0, there exists a point
b ∈ B such that σ(a, b) ≤ Hσ(A,B) + ε.

Let (X,σ) be a dislocated metric space, ρ be a binary relation over X and S = ρ∪ ρ−1.
Then for x, y ∈ X, xSy ⇔ (xρy or yρx). In fact, xSy ⇒ ySx for x, y ∈ X.

Definition 2.8. (X,σ, S) is called regular if the following condition holds:
If the sequence (un) in X and the point u ∈ X are such that unSun+1 for all n ≥ 1 and

lim
n→∞

σ(un, u) = σ(u, u) = 0, then there exists a subsequence (uni) of (un) such that uniSu

for all i ≥ 1.

Definition 2.9. Let (X,σ) be a dislocated metric space and ρ be a binary relation over
X. Then the mapping f : X → X is called S-preserving if f maps comparable elements
into comparable elements, that is,

x, y ∈ X, xSy ⇒ (fx)S (fy).

For subsets A, B of X, we use the following notation:

AS B ⇔ aSb for all a ∈ A, b ∈ B.

Definition 2.10. Let (X,σ) be a dislocated metric space and ρ be a binary relation over
X. Then the mapping T : X → CBσ(X) is called S-preserving if

∀x, y ∈ X, xSy ⇒ (Tx)S (Ty).

Definition 2.11. Let (X,σ) be a dislocated metric space and ρ be a binary relation over
X. Let T : X → CBσ(X) be a multi-valued mapping and g : X → X be a single-valued
mapping. Then T is called S-preserving w.r.t. g if

∀x, y ∈ X, (gx)S(gy)⇒ (Tx)S (Ty).

Definition 2.12. Let (X,σ) be a dislocated metric space and T : X → CBσ(X) and
g : X → X be two mappings. If y = gx ∈ Tx for some x in X, then x is called a
coincidence point of T and g and y is called a point of coincidence of T and g.

Theorem 2.4. [26] Let (X, d) be a metric space and let T : X → CL(X) and f : X → X
be a hybrid pair of mappings such that T (X) ⊆ f(X) and f(X) a complete subspace of X.
Assume that there exists r ∈ (0, 1) such that

H(Tx, Ty) ≤ r d(fx, fy) (1)

for all x, y ∈ X. Then f and T have a point of coincidence in f(X).

3. Main Results

We begin with the following definition.

Definition 3.1. Let (X,σ) be a dislocated metric space, ρ be a binary relation over X
and let S = ρ ∪ ρ−1. Then the pair (T, f) of mappings T : X → CBσ(X) and f : X → X
is called a generalized S-contraction of Nadler type if there exists β ∈ (0, 1) such that

Hσ(Tx, Ty) ≤ βMσ(fx, fy), (2)

for all x, y ∈ X with (fx)S(fy) where

Mσ(fx, fy) = max{σ(fx, fy), σ(fx, Tx), σ(fy, Ty),
σ(fx, Ty) + σ(fy, Tx)

4
}.

We now present our main result.
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Theorem 3.1. Let (X,σ) be a dislocated metric space, ρ be a binary relation over X and
let S = ρ ∪ ρ−1. Let T : X → CBσ(X) and f : X → X be such that T (X) ⊆ f(X) and
f(X) a 0-complete subspace of X. Assume that T is S-preserving w.r.t. f and (T, f) is
generalized S-contraction of Nadler type. Suppose also that the following conditions hold:

(i) (X,σ, S) is regular;
(ii) there exists x0 ∈ X such that (fx0)Sz for some z ∈ Tx0.

Then f and T have a point of coincidence u(say) in f(X) with σ(u, u) = 0.

Proof. Suppose there exists x0 ∈ X such that (fx0)Sz for some z ∈ Tx0. If fx0 ∈
Tx0, then there is nothing to prove. So, we assume that fx0 6∈ Tx0. This ensures that
σ(fx0, Tx0) > 0, since Tx0 is σ-closed. Therefore, σ(fx0, y) > 0 for all y ∈ Tx0. As
Tx0 ⊆ f(X) is nonempty, there exists x1 ∈ X such that z = fx1 ∈ Tx0, σ(fx0, fx1) > 0
and (fx0)S(fx1). If fx1 ∈ Tx1, then f and T have a point of coincidence in f(X). So,
we assume that fx1 6∈ Tx1. Since Tx0, Tx1 ∈ CBσ(X) and fx1 ∈ Tx0, by Lemma 2.4,
there exists fx2 ∈ Tx1 for some x2 ∈ X such that

σ(fx1, fx2) ≤ Hσ(Tx0, Tx1) +
1− β

2
Mσ(fx0, fx1).

Since fx1 6∈ Tx1, we have σ(fx1, Tx1) > 0 and consequently, σ(fx1, fx2) > 0. As
T is S-preserving w.r.t. f and (fx0)S(fx1), fx1 ∈ Tx0, fx2 ∈ Tx1, it follows that
(fx1)S(fx2). If fx2 ∈ Tx2, then the theorem is proved. So, we assume that fx2 6∈ Tx2.
Proceeding similarly to that of the above, there exists fx3 ∈ Tx2 for some x3 ∈ X and
σ(fx2, fx3) > 0 such that

σ(fx2, fx3) ≤ Hσ(Tx1, Tx2) +
1− β

2
Mσ(fx1, fx2).

As T is S-preserving w.r.t. f and (fx1)S(fx2), fx2 ∈ Tx1, fx3 ∈ Tx2, it follows that
(fx2)S(fx3). Continuing in this way, we can obtain a sequence (fxn) in f(X) such that
fxn ∈ Txn−1, fxn 6∈ Txn, σ(fxn, fxn+1) > 0, (fxn)S(fxn+1) for n = 0, 1, 2, · · · and

σ(fxn, fxn+1) ≤ Hσ(Txn−1, Txn) +
1− β

2
Mσ(fxn−1, fxn), for all n ∈ N. (3)

By using condition (2), we obtain from condition (3) that

σ(fxn, fxn+1) ≤ βMσ(fxn−1, fxn) +
1− β

2
Mσ(fxn−1, fxn)

=
1 + β

2
Mσ(fxn−1, fxn), ∀n ∈ N, (4)

where

Mσ(fxn−1, fxn) = max


σ(fxn−1, fxn), σ(fxn−1, Txn−1), σ(fxn, Txn),

σ(fxn−1,Txn)+σ(fxn,Txn−1)
4

 . (5)

We now estimate each of the terms on the right hand side of condition (5) separately.

σ(fxn−1, Txn−1) ≤ σ(fxn−1, fxn), as fxn ∈ Txn−1,

σ(fxn, Txn) ≤ σ(fxn, fxn+1), as fxn+1 ∈ Txn
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and

σ(fxn−1, Txn) + σ(fxn, Txn−1)

4
≤ σ(fxn−1, fxn+1) + σ(fxn, fxn)

4

≤ 3σ(fxn−1, fxn) + σ(fxn, fxn+1)

4
≤ max{σ(fxn−1, fxn), σ(fxn, fxn+1)}.

Therefore,

Mσ(fxn−1, fxn) = max


σ(fxn−1, fxn), σ(fxn−1, Txn−1), σ(fxn, Txn),

σ(fxn−1,Txn)+σ(fxn,Txn−1)
4


≤ max

 σ(fxn−1, fxn), σ(fxn, fxn+1),

max{σ(fxn−1, fxn), σ(fxn, fxn+1)}


= max{σ(fxn−1, fxn), σ(fxn, fxn+1)}.

If max{σ(fxn−1, fxn), σ(fxn, fxn+1)} = σ(fxn, fxn+1), then

Mσ(fxn−1, fxn) ≤ σ(fxn, fxn+1),

which contradicts condition (4).
Therefore, max{σ(fxn−1, fxn), σ(fxn, fxn+1)} = σ(fxn−1, fxn) and hence

Mσ(fxn−1, fxn) ≤ σ(fxn−1, fxn), for all n ∈ N.
So, condition (4) implies that

σ(fxn, fxn+1) ≤
1 + β

2
σ(fxn−1, fxn), for all n ∈ N. (6)

By repeated use of condition (6), we get

σ(fxn, fxn+1) ≤ αn σ(fx0, fx1), for all n ∈ N, (7)

where α = 1+β
2 ∈ (0, 1).

We now prove that the sequence (fxn) is 0-Cauchy in f(X).

For m,n ∈ N with m > n, we obtain by using condition (7) that

σ(fxn, fxm) ≤ σ(fxn, fxn+1) + σ(fxn+1, fxn+2) + · · ·
+σ(fxm−2, fxm−1) + σ(fxm−1, fxm)

≤ [αn + αn+1 + · · ·+ αm−2 + αm−1]σ(fx0, fx1)

< αn [1 + α+ α2 + · · · ]σ(fx0, fx1)

=
αn

1− α
σ(fx0, fx1)

→ 0, as n→∞.
This shows that lim

m,n→∞
σ(fxn, fxm) = 0. Therefore, (fxn) is 0-Cauchy in f(X). As

f(X) is 0-complete, there exists u ∈ f(X) such that lim
n→∞

fxn = u = ft for some t ∈ X
with σ(u, u) = 0. That is, lim

n→∞
σ(fxn, u) = σ(u, u) = 0.

Moreover, since (X,σ, S) is regular, there exists a subsequence (fxni) of (fxn) such
that (fxni)S(ft) for all i ∈ N. By condition (2), we have

Hσ(Txni , T t) ≤ βMσ(fxni , ft), for all i ∈ N.
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This gives that

σ(fxni+1, T t) ≤ Hσ(Txni , T t) ≤ βMσ(fxni , ft), for all i ∈ N. (8)

We now prove that there is k ∈ N such that for each i ≥ k,

Mσ(fxni , ft) = σ(ft, T t), where

Mσ(fxni , ft) = max


σ(fxni , ft), σ(fxni , Txni), σ(ft, T t),

σ(fxni ,T t)+σ(ft,Txni )

4

 . (9)

We now estimate each of the terms on the right hand side of the above expression.

Suppose that σ(ft, T t) 6= 0. Let ε = σ(ft,T t)
4 > 0. Since lim

i→∞
σ(fxni , ft) = 0, there

exists k1 ∈ N such that

σ(fxni , ft) <
σ(ft, T t)

4
, for each i ≥ k1.

As σ(fxn, ft)→ 0, there exists k2 ∈ N such that

σ(fxni+1, ft) <
σ(ft, T t)

4
, for each i ≥ k2.

So, it must be the case that

σ(ft, Txni) ≤ σ(ft, fxni+1) <
σ(ft, T t)

4
, for each i ≥ k2.

As σ(fxni , T t) ≤ σ(fxni , ft) + σ(ft, T t), it follows that

σ(fxni , T t) <
σ(ft, T t)

4
+ σ(ft, T t) ≤ 5

4
σ(ft, T t), for each i ≥ k1.

Put k = max{k1, k2}. Then, for i ≥ k, we have

σ(fxni , Txni) ≤ σ(fxni , fxni+1) ≤ σ(fxni , ft) + σ(ft, fxni+1) <
σ(ft, T t)

2

and

σ(fxni , T t) + σ(ft, Txni)

4
<

1

4
(
5

4
+

1

4
)σ(ft, T t) =

3

8
σ(ft, T t) < σ(ft, T t).

Then, for i ≥ k, it follows from condition (9) that Mσ(fxni , ft) = σ(ft, T t). Therefore,
for i ≥ k, we obtain from condition (8) that

σ(fxni+1, T t) ≤ β σ(ft, T t). (10)

By condition (10), for i ≥ k, we get

σ(ft, T t) ≤ σ(ft, fxni+1) + σ(fxni+1, T t) ≤ σ(ft, fxni+1) + β σ(ft, T t).

Taking limit as i→∞, we have σ(ft, T t) ≤ β σ(ft, T t) < σ(ft, T t). Thus, we arrive at a
contradiction. Therefore, σ(ft, T t) = 0. Since Tt is σ-closed, it follows that u = ft ∈ Tt.
That is, u is a point of coincidence of f and T with σ(u, u) = 0. �

Corollary 3.1. Let (X,σ) be a dislocated metric space. Let T : X → CBσ(X) and
f : X → X be such that T (X) ⊆ f(X) and f(X) a 0-complete subspace of X. Assume
that there exists β ∈ [0, 1) such that

Hσ(Tx, Ty) ≤ βMσ(fx, fy),

for all x, y ∈ X. Then f and T have a point of coincidence u(say) in f(X) with σ(u, u) =
0.
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Proof. The proof follows from Theorem 3.1 by taking ρ = X ×X. �

The following result is a generalization of Theorem 2 [8].

Corollary 3.2. Let (X,σ) be a 0-complete dislocated metric space and let T : X →
CBσ(X) be a multi-valued mapping. Assume that there exists β ∈ [0, 1) such that

Hσ(Tx, Ty) ≤ βMσ(x, y),

for all x, y ∈ X, where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), σ(x,Ty)+σ(y,Tx)4 }.
Then T has a fixed point u(say) in X with σ(u, u) = 0.

Proof. The proof follows from Theorem 3.1 by taking f = I, the identity map on X and
ρ = X ×X. �

Corollary 3.3. Let (X,σ,�) be a partially ordered 0-complete dislocated metric space.
Let T : X → CBσ(X) be a multi-valued mapping with the property that if x, y ∈ X and
x, y are comparable, then z1, z2 are comparable for all z1 ∈ Tx, z2 ∈ Ty. Assume that
there exists β ∈ (0, 1) such that

Hσ(Tx, Ty) ≤ βMσ(x, y),

for all x, y ∈ X with x � y or y � x. Suppose also that the triple (X,σ,�) has the
following property:

If (xn) is a sequence in X such that lim
n→∞

σ(xn, x) = σ(x, x) = 0 and xn, xn+1 are

comparable for all n ≥ 1, then there exists a subsequence (xni) of (xn) such that xni , x are
comparable for all i ≥ 1.

If there exists x0 ∈ X such that x0, z are comparable for some z ∈ Tx0, then T has a
fixed point u(say) in X with σ(u, u) = 0.

Proof. The proof can be obtained from Theorem 3.1 by taking f = I and ρ = {(x, y) ∈
X ×X : x � y or y � x}. �

Corollary 3.4. Let (X,σ) be a 0-complete dislocated metric space. Let ρ be a binary
relation over X and let S = ρ∪ ρ−1. Suppose T : X → CBσ(X) is S-preserving and there
exists β ∈ (0, 1) such that

Hσ(Tx, Ty) ≤ βMσ(x, y),

for all x, y ∈ X with xSy. Suppose also that the following conditions hold:

(i) (X,σ, S) is regular;
(ii) there exists x0 ∈ X such that x0Sz for some z ∈ Tx0.

Then T has a fixed point u(say) in X with σ(u, u) = 0.

Proof. The proof follows from Theorem 3.1 by taking f = I. �

We obtain some results as an application of Theorem 3.1.

The result stated below is a generalization of Nadler’s fixed point theorem [28].

Theorem 3.2. Let (X,σ) be a dislocated metric space and let T : X → CBσ(X) and
f : X → X be a hybrid pair of mappings such that T (X) ⊆ f(X) and f(X) a 0-complete
subspace of X. Assume that there exists β ∈ [0, 1) such that

Hσ(Tx, Ty) ≤ β σ(fx, fy)

for all x, y ∈ X. Then f and T have a point of coincidence u(say) in f(X) with σ(u, u) =
0.
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Proof. As σ(fx, fy) ≤ Mσ(fx, fy) for all x, y ∈ X, the result follows from Theorem 3.1
by considering ρ = X ×X. �

Theorem 3.3. Let (X,σ) be a 0-complete dislocated metric space and let T : X →
CBσ(X) be a multi-valued mapping such that

Hσ(Tx, Ty) ≤ a1 σ(x, y) + a2 σ(x, Tx) + a3 σ(y, Ty) + a4 [σ(x, Ty) + σ(y, Tx)] (11)

for all x, y ∈ X, where a1, a2, a3, a4 ≥ 0 and a1 + a2 + a3 + 4a4 < 1. Then T has a fixed
point u(say) in X with σ(u, u) = 0.

Proof. Condition (11) gives that

Hσ(Tx, Ty) ≤ (a1 + a2 + a3 + 4a4)Mσ(x, y) (12)

for all x, y ∈ X, where 0 ≤ a1 + a2 + a3 + 4a4 < 1. Taking β = a1 + a2 + a3 + 4a4, it
follows from condition (12) that

Hσ(Tx, Ty) ≤ βMσ(x, y)

for all x, y ∈ X, where β ∈ [0, 1) is a constant. Now applying Corollary 3.2, we can obtain
the desired result. �

We now present Nadler’s fixed point theorem in dislocated metric spaces.

Theorem 3.4. Let (X,σ) be a 0-complete dislocated metric space and let T : X →
CBσ(X) be a multi-valued mapping. Assume that there exists β ∈ [0, 1) such that

Hσ(Tx, Ty) ≤ β σ(x, y) (13)

for all x, y ∈ X. Then T has a fixed point u(say) in X with σ(u, u) = 0.

Proof. Condition (13) implies that Hσ(Tx, Ty) ≤ β σ(x, y) ≤ βMσ(x, y) for all x, y ∈ X
where β ∈ [0, 1) is a constant. The result now follows from Corollary 3.2. �

Remark 3.1. We note that Theorem 3.1 is a proper generalization(see Example 3.1) of
some multi-valued fixed point theorems including Nadler’s fixed point theorem [28].

Remark 3.2. The results of this study are obtained under the weaker assumption that the
underlying dislocated metric space is 0-complete. In view of Lemma 2.1(b), these are also
valid if the space is complete.

We now present an example to justify the validity of our main result. It should be
noticed that a generalized version of Nadler’s Theorem can not explain the existence of
points of coincidence in the following example.

Example 3.1. Let X = [0,∞) and σ : X ×X → [0,∞) be defined by

σ(x, y) =

 0, if x = y ∈ (3, 9],

x+ y, otherwise.

Then (X,σ) is a 0-complete dislocated metric space. Let T : X → CBσ(X) be defined
by

Tx =


{0, x3}, if 0 ≤ x < 1,

{0}, if x = 1,

[x2, x2 + 6], if x > 1
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and fx = 3x for all x ∈ X. Obviously, T (X) ⊆ f(X) = X. It is easy to check that
each Tx is σ-closed and bounded in (X,σ).

If we consider the usual metric d(x, y) =| x− y | for all x, y ∈ X, then (X, d) is a com-
plete metric space. For x = 0, y = 2, we have fx = 0, fy = 6, Tx = {0}, T y = [4, 10].
Therefore, H(Tx, Ty) = max{4, 10} = 10 > k d(fx, fy) for any k ∈ (0, 1) and hence
condition (1) of Theorem 2.4 does not hold true. So, Theorem 2.4 can not explain the
existence of points of coincidence of f and T . However, our main result can explain it.

Let ρ = {(0, 1
3n ) : n = 1, 2, 3, · · · } ∪ {(0, 0)}. For x = 0, y = 1

3n+1 , n ∈ N and

S = ρ ∪ ρ−1, we have fx = 0, fy = 1
3n , Tx = {0}, T y = {0, 1

3n+2 } and so (fx)S(fy)
which implies that (Tx)S(Ty). Therefore, T is S-preserving w.r.t. f and x0 = 0 ∈ X
such that (fx0)Sz for z = 0 ∈ Tx0. Moreover, for x = 0, y = 1

3n+1 , n ∈ N, we have

Hσ(Tx, Ty) = max{0, 1
3n+2 } = 1

3n+2 and

Mσ(fx, fy) = max

 σ(fx, fy), σ(fx, Tx), σ(fy,Ty)2 ,

σ(fx,Ty)+σ(fy,Tx)
2

 = max

{
1

3n
, 0,

1

2
· 1

3n

}
=

1

3n
.

Therefore, Hσ(Tx, Ty) = 1
3n+2 = 1

9 Mσ(fx, fy). In case x = y = 0, we have Hσ(Tx, Ty) =

0 = Mσ(fx, fy). Thus, Hσ(Tx, Ty) = 1
9 Mσ(fx, fy) for all x, y ∈ X with (fx)S(fy).

Also, any sequence (xn) in X with the property xnSxn+1 must be either xn = 0, ∀n ∈ N
or a sequence of the following form

xn =


0, if n is odd,

1
3n , if n is even,

where the words ‘odd’ and ‘even’ are interchangeable. Therefore, it follows immediately
that (X,σ, S) is regular. Thus, all the hypotheses of Theorem 3.1 hold true. Then the
existence of points of coincidence of f and T follows from Theorem 3.1.

It is worthy to note that Theorem 3.1 can not assure the uniqueness of a point of
coincidence. It is obvious that f and T have infinitely many points of coincidence in f(X).
In fact, for every x ∈ (1, 3], fx is a point of coincidence of f and T with σ(fx, fx) = 0.

Now we show that Theorem 3.1 remains invalid without regularity property of (X,σ, S).

Example 3.2. Let X = [0,∞) with σ(x, y) = x + y for all x, y ∈ X. Then (X,σ) is a
0-complete dislocated metric space. Let T : X → CBσ(X) be defined by

Tx =

 {1}, if x = 0,

{x9}, if x 6= 0

and fx = x
3 for all x ∈ X. Then, T (X) ⊆ f(X) = X. Let ρ = {(x, y) : (x, y) ∈

(0, 1]× (0, 1], x ≤ y} and S = ρ ∪ ρ−1. For x, y ∈ X and

(fx)S(fy) ⇒ 0 < fx, fy ≤ 1⇒ 0 < x, y ≤ 3

⇒ Tx = {x
9
}, T y = {y

9
}, 0 <

x

9
,
y

9
≤ 1

3
⇒ (Tx)S(Ty).

This proves that T is S-preserving w.r.t. f . Obviously, for x0 = 3 ∈ X, we have
(fx0)Sz for z = 1

3 ∈ Tx0. Further, we note that for x, y ∈ X with (fx)S(fy), we have
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0 < x, y ≤ 3, Tx = {x9}, T y = {y9}. Therefore,

Hσ(Tx, Ty) = σ(
x

9
,
y

9
) =

1

9
(x+ y) =

1

3
σ(fx, fy) ≤ 1

3
Mσ(fx, fy),

for all x, y ∈ X with (fx)S(fy). Thus, condition (2) of Theorem 3.1 holds true. But
(X,σ, S) is not regular. In fact, the sequence (xn) where xn = 1

n is such that lim
n→∞

σ(xn, 0) =

σ(0, 0) = 0 and xnSxn+1 for all n ∈ N. But there exists no subsequence (xni) of (xn) such
that (xni , 0) ∈ S. Thus, all the hypotheses of Theorem 3.1 are fulfilled except regularity
property. As a result, we observe that there exists no point of coincidence of f and T in
f(X).

4. Conclusions

In this work, we obtained some coincidence point and fixed point results by using an
arbitrary binary relation. Our main result generalized the well known Nadler’s fixed point
theorem in the setting of dislocated metric spaces. Finally, some examples are provided
to justify that our main result is a proper generalization of some well known comparable
results in the existing literature.

Acknowledgement. The authors would like to thank the referees for their valuable com-
ments and suggestions.
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intégrales, Fund. Math., 3, pp. 133-181.

[10] Berinde, M. and Berinde, V., (2007), On a general class of multi-valued weakly Picard mappings, J.
Math. Anal. Appl., 326, pp. 772-782.
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