

i

OBJECT RECOGNITION WITH COMPETITIVE CONVOLUTIONAL

NEURAL NETWORKS

TUĞBA ERKOÇ
Işık University, Graduate School of Higher Education

Computer Engineering Doctoral Program, 2023

This thesis is submitted to the Graduate School of Higher Education at Işık

University for the degree of Doctor of Philosophy (PhD) in Computer Engineering

IŞIK UNIVERSITY

JUNE, 2023

ii

OBJECT RECOGNITION WITH COMPETITIVE

CONVOLUTIONAL NEURAL NETWORKS

ABSTRACT

In recent years, Artificial Intelligence (AI) has achieved impressive results, often sur-

passing human capabilities in tasks involving language comprehension and visual

recognition. Among these, computer vision has experienced remarkable progress,

largely due to the introduction of Convolutional Neural Networks (CNNs). CNNs are

inspired by the hierarchical structure of the visual cortex and are designed to detect

patterns, objects, and complex relationships within visual data. One key advantage is

their ability to learn directly from pixel values without the need for domain expertise,

which has contributed to their popularity. These networks are trained using supervised

backpropagation, a process that calculates gradients of the network’s parameters

(weights and biases) with respect to the loss function. While backpropagation enables

impressive performance with CNNs, it also presents certain drawbacks. One such

drawback is the requirement for large amounts of labeled data. When the available data

samples are limited, the gradients estimated from this limited information may not

accurately capture the overall data behavior, leading to suboptimal parameter updates.

However, obtaining a sufficient quantity of labeled data poses a challenge. Another

drawback is the requirement of careful configuration of hyperparameters, including the

number of neurons, learning rate, and network architecture. Finding optimal values for

these hyperparameters can be a time-consuming process. Furthermore, as the

complexity of the task increases, the network architecture becomes deeper and more

complex. To effectively train the shallow layers of the network, one must increase the

number of epochs and experiment with solutions to prevent vanishing gradients.

Complex problems often require a greater number of epochs to learn the intricate

patterns and features present in the data. It’s important to note that while CNNs aim to

mimic the structure of the visual cortex, the brain’s learning mechanism does not

necessarily involve back-propagation. Although CNNs incorporate the layered

architecture of the visual cortex, the reliance on backpropagation introduces an

artificial learning procedure that may not align with the brain’s actual learning process.

iii

Therefore, it is crucial to explore alternative learning paradigms that do not rely on

backpropagation.

In this dissertation study, a unique approach to unsupervised training for CNNs is

explored, setting it apart from previous research. Unlike other unsupervised methods,

the proposed approach eliminates the reliance on backpropagation for training the

filters. Instead, we introduce a filter extraction algorithm capable of extracting dataset

features by processing images only once, without requiring data labels or backward

error updates. This approach operates on individual convolutional layers, gradually

constructing them by discovering filters. To evaluate the effectiveness of this

backpropagation-free algorithm, we design four distinct CNN architectures and

conduct experiments. The results demonstrate the promising performance of training

without backpropagation, achieving impressive classification accuracies on different

datasets. Notably, these outcomes are attained using a single network setup without

any data augmentation. Additionally, our study reveals that the proposed algorithm

eliminates the need to predefine the number of filters per convolutional layer, as the

algorithm automatically determines this value. Furthermore, we demonstrate that filter

initialization from a random distribution is unnecessary when backpropagation is not

employed during training.

Keywords: Convolutional Neural Networks, Unsupervised Learning, Feature

Extraction

iv

REKABETÇİ EVRİŞİMLİ SİNİR AĞLARI İLE NESNE TANIMA

ÖZET

Son yıllarda Yapay Zeka (YZ) dili anlama ve görsel tanımayı içeren görevlerde

genellikle insan yeteneklerini geride bırakarak etkileyici sonuçlar elde etti. Bunların

arasında, bilgisayarla görme, büyük ölçüde Evrişimli Sinir Ağlarının (ESA) ortaya

çıkması ile dikkate değer bir ilerleme kaydetti. ESAlar, görsel korteksin hiyerarşik

yapısından ilham alarak görsel verilerdeki kalıpları, nesneleri ve karmaşık ilişkileri

tespit etmek icin tasarlanmıştır. En önemli avantajlarından biri, popülerliklerine

katkıda bulunan, bir uzmana ihtiya. Duymadan doğrudan piksel değerlerinden

öğrenme yetenekleridir. Bu ağlar, kayıp fonksiyonuna göre ağ parametrelerinin

(ağrılıklar ve eğilimler) gradyanlarını hesaplayan denetimli geri yayılım ile eğitilir.

Geri yayılım, ESAlarda etkileyici bir performans sağlarken, bazı dezavantajlar da

getirir. Bu dezavantajlardan biri büyük miktarlarda etiketlenmiş veri gereksinimidir.

Mevcut veri örnekleri sınırlı olduğunda, bu sınırlı bilgiden hesaplanan gradyanlar ,

genel veri davranışını doğru bir şekilde yakalayamayabilir ve bu da yetersiz

parameter güncellemelerine yol açar. Bununla birlikte, yeterli miktarda etiketlenmiş

veri elde etmek bir zorluk teşkil etmektedir. Diğer nir dezavantaj nöron sayısı,

öğrenme hızı ve ağ mimarisi dahil olmak üzere hiperparametrelerin dikkatli bir

şekilde yapılandırılması gerekliliğidir. Bu hiperparametreler için en uygun değerleri

bulmak zaman alıcı bir süreç olabilir. Ayrıca, görevin karmaşıklığı arttıkça ağ

mimarisi daha derin ve karmaşık bir hale gelir. Ağın sığ katmanlarını etkili bir

şekilde eğitmek için, epok sayısı artırılmalı ve kaybolan gradyanları önlemek için

çözümler üretilmelidir. Karmaşık problemler, verilerde bulunan karmaşık kalıpları ve

özellikleri öğrenmek için genellikle daha fazla sayıda epok gerektirir. ESAlar görsel

korteksin yapısını taklit etmeyi amaçlasa da, beynin öğrenme mekanizmasının

mutlaka geri yayılımı içermediğini not etmek önemlidir. ESAlar görsel korteksin

katmanlı mimarisini içermelerine rağmen, geri yayılıma dayanan öğrenme, beynin

gerçek öğrenme süreciyle uyumlu olmayabilen yapay bir öğrenme prosedürü sunar.

Bu nedenle, geri yayılıma dayanmayan alternatif öğrenme paradigmalarını keşfetmek

önem teşkil etmektedir.

v

Bu tez çalışmasında, önceki araştırmalardan farklı olarak ESAlar için denetimsiz

eğitime yönelik benzersiz bir yaklaşım araştırılmaktadır. Önerilen yaklaşım diğer

denetimsiz yöntemlerin aksine, filtrelerin eğitimi için geri yayılmaya olan bağlılığı

kaldırır. Geri yayılım ile öğrenme yerine, veri etiketleri veya geriye dönük hata

güncellemeleri gerektirmeden görüntüleri yalnızca bir kez işleyerek veri kümesi

özelliklerini çıkarabilen bir filtre çıkarma algoritması sunuyoruz. Bu yaklaşım

bireysel Evrişimli katmanlar üzerinde çalışır ve filtreleri eğitim örnekleri üzerinden

keşfederek evrişim katmanının filtrelerini kademeli olarak oluşturur. Bu geri

yayılımsız algoritmanın etkinliğini değerlendirmek için dört farklı ESA mimarisi

tasarladık ve deneyler yaptık. Sonuçlar, farklı veri kümelerinde etkileyici

sınıflandırma doğrulukları elde ederek, geri yayılım olmadan eğitimin mümkün

olabileceğini göstermektedir. Özellikle, bu sonuçlara herhangi bir veri arttırımı

olmadan vet ek bir ağ kullanılarak ulaşılmıştır. Ek olarak, çalışmamızda önerilen

algoritma, evrişim katmanı başına filtre sayısını önceden belirleme ihtiyacını ortadan

kaldırmaktadır çünkü algoritmamız bu değeri otomatik olarak belirlemektedir.

Ayrıca, eğitim sırasında geri yayılım kullanılmadığından rastgele bir dağılımdan

filtrelere ilkdeğer verilmesinin gereksiz olduğunu da bu çalışma ile gösterdik.

Anahtar Kelimeler: Evrişimli Sinir Ağları, Denetimsiz Öğrenme, Özellik Çıkarma

vi

ACKNOWLEDGEMENTS

I am deeply grateful to the individuals who have made significant contributions to

the completion of this dissertation: First and foremost, I would like to express my

immense gratitude to Prof. Dr. M. Taner Eskil, my supervisor, for their guidance and

support throughout this research journey. Their invaluable insights and constructive

feedback have played a pivotal role in shaping this dissertation. I extend my heartfelt

appreciation to Assoc. Prof. Erkin Dinçmen, Assist. Prof. Emine Ekin, Prof. Dr.

Hazım K. Ekenel and Prof. Dr. Ercan Solak for generously dedicating their time and

offering thoughtful suggestions. Their scholarly guidance has significantly enhanced

the quality of this research. Additionally, I am sincerely thankful to my thesis jury

members Prof. Dr. Bahadır K. Güntürk and Assoc. Prof. Yusuf Yaslan for their

interest and support. I am grateful to my colleagues and friends who have provided

moral support and offered encouragement throughout this dissertation. Their

friendship has made this challenging journey more enjoyable. I would like to express

special thanks to my family for their support, love, and understanding. Their

encouragement and belief in my abilities have served as the driving force behind my

accomplishments. In conclusion, I would like to acknowledge the contributions of all

those who have played a part in shaping this dissertation. Your support and

encouragement have been indispensable, and I am truly grateful for your

involvement.

Tuğba ERKOÇ

This work was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK) under Grant 118E293.

vii

This study is dedicated to my family.

viii

TABLE OF CONTENTS

APPROVAL PAGE .. i

ABSTRACT .. ii

ÖZET .. iv

ACKNOWLEDGEMENTS .. vi

LIST OF CONTENTS .. viii

LIST OF TABLES ... xi

TABLE OF FIGURES .. xiii

LIST OF ALGORITHMS ... xv

LIST OF ABBREVIATIONS ... xvi

CHAPTER 1 ... 1

1. INTRODUCTION ... 1

1.1. Contributions .. 4

1.2. Organization of This Thesis .. 4

CHAPTER 2 ... 6

2. CONVOLUTIONAL NEURAL NETWORKS ... 6

2.1 Convolutional Neural Network Architecture .. 7

2.1.1 Convolutional Layer ... 7

2.1.1.1 Activation Function ... 9

2.1.1.2 Convolution Operation .. 10

2.1.2 Pooling Layer .. 13

2.1.3 Fully Connected Layer .. 15

2.1.4 Output Layer ... 17

2.1.5 Training of CNN ... 18

CHAPTER 3 ... 21

3. LITERATURE SURVEY ... 21

3.1 Initial Steps ... 21

ix

3.2 Backpropagation Era .. 22

3.2.1 Fundamental Deep Learning Problem .. 23

3.2.2 Revival of the Neural Networks Research .. 24

3.2.3 GPU Era .. 24

3.2.4 Unsupervised Learning with Backpropagation 27

3.3 Neocognitron .. 30

CHAPTER 4 ... 32

4. APPROACH ... 32

4.1 Introduction... 32

4.2 Convolutional Filter Discovery .. 34

4.2.1 Center of Gravity Based Candidate Filter Extraction 35

4.2.2 Unsupervised Learning Algorithm for Convolutional Layers of CCNN

Architecture.. 37

CHAPTER 5 ... 41

5. EXPERIMENTS .. 41

5.1 Model Types ... 41

5.2 Experiment Setup.. 42

5.3 Datasets ... 43

5.3.1 MNIST .. 43

5.3.2 EMNIST-Digits ... 43

5.3.3 Kuzushiji-MNIST ... 44

5.3.4 Fashion-MNIST .. 44

5.4 Performance Metrics ... 44

5.5 Experiment Details ... 45

CHAPTER 6 ... 46

6. RESULTS ... 46

6.1 MNIST Experiment Results ... 46

6.2 EMNIST-Digits Experiment Results .. 48

6.3 Kuzushiji-MNIST Experiment Results ... 50

6.4 Fashion-MNIST Experiment Results ... 52

6.5 Filters Discovered via Proposed Unsupervised Process 54

6.5.1 MNIST Dataset ... 54

6.5.2 EMNIST-Digits Dataset .. 55

6.5.3 Kuzushiji-MNIST Dataset .. 56

x

6.5.4 Fashion-MNIST Dataset ... 56

6.5.5 Extracted Filters in Subsequent Layers... 57

6.6 Samples with Incorrect Classification .. 58

6.6.1 Incorrectly Classified MNIST Samples .. 58

6.6.2 Incorrectly Classified EMNIST-Digits Samples 60

6.6.3 Incorrectly Classified Kuzushiji-MNIST Samples 62

6.6.4 Incorrectly Classified Fashion-MNIST Samples 63

CHAPTER 7 ... 65

7. DISCUSSION .. 65

7.1 Comparison of Performance Against Other Studies 66

7.1.1 Comparison of Performance Against Unsupervised Studies 66

7.1.2 Comparison of Performance Against Mixed Studies 67

7.1.3 Comparison of Performance Against Supervised Studies 68

7.2 Proof of Linear Independence of the Extracted Filters 70

7.3 Proof of Independence over the Order of Candidate Processing for Filter

Extraction .. 71

7.4 Comparison to Low-Capacity CNN ... 77

CHAPTER 8 ... 78

8. CONCLUSION .. 78

REFERENCES ... 82

CURRICULUM VITAE .. 91

xi

LIST OF TABLES

Table 5.1 CCNN networks that are used in the experiments with various datasets.

Convolutional layers either use 5 × 5 or 3 × 3 filters. Maxpooling is applied on the

feature maps on 2 × 2 windows with strides of 2. The size of the convolutional filters

is denoted with n while the maxpooling window size is shown with m. 42

Table 6.1 Extracted filter counts and the test accuracy of individual models on

MNIST dataset. .. 46

Table 6.2 The confusion matrix represents the performance of Model A on the

MNIST dataset. .. 47

Table 6.3 Performance metrics of Model type A for individual classes of MNIST

dataset. .. 48

Table 6.4 Extracted filter counts and the test accuracy of individual models on

EMNIST-Digits dataset. ... 49

Table 6.5 The confusion matrix represents the performance of Model A on the

EMNIST-Digits dataset. ... 49

Table 6.6 Performance metrics of Model type A for individual classes of EMNIST-

Digits dataset. ... 50

Table 6.7 Extracted filter counts and the test accuracy of individual models on

Kuzushiji-MNIST dataset. ... 51

Table 6.8 The confusion matrix represents the performance of Model B on the

Kuzushiji-MNIST dataset. ... 51

Table 6.9 Performance metrics of Model type B for individual classes of Kuzushiji-

MNIST dataset. .. 52

Table 6.10 Extracted filter counts and the test accuracy of individual models on

Fashion-MNIST dataset. .. 53

Table 6.11 The confusion matrix represents the performance of Model B on the

Fashion-MNIST dataset. The classes are assigned to numbers ranging from 0 to 9. In

order, the class labels correspond to Tshirt/top, Trouser, Pullover, Dress, Coat, San-

dal, Shirt, Sneaker, Bag, and Ankle boot. .. 53

Table 6.12 Performance metrics of Model type B for individual classes of Fashion-

MNIST dataset. .. 54

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962078
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962078
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962081
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962081
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962084
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962084

xii

Table 7.1 Comparison between previous works and our method for the number of

epochs of training needed for convolutional filters, whether data augmentation and

ensemble of networks are used. The legend of the table: ✓: applied, × : not applied,

NA: no information available. ... 66

Table 7.2 Comparison of the proposed method with other unsupervised studies. 67

Table 7.3 Comparison of the proposed method with other mixed studies. 68

Table 7.4 Comparison of the proposed method with other supervised studies. 69

Table 7.5 Comparison of best performing model filter counts and test accuracy

before and after addition of candidate shuffling. The median of the 50 runs of the

experiments is also presented. .. 72

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093

xiii

TABLE OF FIGURES

Figure 2.1 A typical Convolutional Neural Network ... 6

Figure 2.2 CNNs can recognize high level concepts like face by hierarchically

building feature detectors starting from basic edge like shapes to complex features

like eyes. ... 7

Figure 2.3 Sigmoid, hyperbolic tangent and ReLU activation function curves shown.

ReLU is most popular activation function in CNNs. ... 9

Figure 2.4 PReLU and Leaky ReLU activation function curves. PReLU and Leaky

ReLU allows a small gradient for negative values whereas original ReLU strictly sets

the negative values to zero. .. 10

Figure 2.5 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3

filter with a stride of 1 pixel. .. 11

Figure 2.6 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3

filter with a stride of 1 pixel and zero padding of 1 pixel as per Equation 2.2. Green

background is padding while the image data is shown with light blue background. . 12

Figure 2.7 Convolution layer applies convolution operation to the input images. The

feature maps are then introduced to non-linearity with activation function...............13

Figure 2.8 Visualization of max pooling operation on with a 4 × 4 image with 2 × 2

window size and strides of 2. ... 14

Figure 2.9 Fully connected layers learn the relations between the high-level

patterns……………………………………………………………………………....15

Figure 2.10 Single neuron in Fully Connected Layer. ... 16

Figure 2.11 Neurons dropped out with dropout regularization technique do not

receive or transmit signal. Dropout with probability p = 0.5 is applied to the

neurons………………………………………………………………………………16

Figure 2.12 Output Layer in a CNN... 17

Figure 4.1 The proposed unsupervised backpropagationless filter extraction method.

Images/feature maps are converted to candidates from which the filters are

discovered without label information. Any filter candidate 𝑐𝑖 can become a new filter

for the current layer if the maximum similarity value is less than a preset threshold. If

not, filter with the highest similarity’s weights is updated. 33

Figure 6.1 First layer filters of Model A trained with MNIST dataset. 55

Figure 6.2 First layer filters of Model B trained with Kuzushiji-MNIST dataset. 55

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962113
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962115
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962115
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962117
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962117
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962119
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962119
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962120
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962120
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962121
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962121
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962122
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962124
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962126
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962127

xiv

Figure 6.3 First layer filters of Model A trained with EMNIST-Digits dataset. 55

Figure 6.4 First layer filters of Model B trained with Fashion-MNIST dataset. 57

Figure 6.5 The visualization illustrates the collection of 54 features obtained from the

MNIST training images using Model type A in the second layer. 57

Figure 6.6 The test images belonging to digit class 1 from the MNIST dataset are

inaccurately classified by Model A. Among these images, the second, fourth, and

fifth samples are mistakenly labeled as 6, potentially due to the presence of artifacts

and curved elements within the images. .. 59

Figure 6.7 The test images belonging to digit class 9 from the MNIST dataset are

inaccurately labeled by Model A.. 59

Figure 6.8 Misclassified images from the digit class 6 in the EMNIST-Digits dataset,

as predicted by Model A. ... 60

Figure 6.9 The test images belonging to digit class 8 from the EMNIST-Digits

dataset are inaccurately labeled by Model A.. 61

Figure 6.10 Misclassified images from the class 3 in the Kuzushiji-MNIST dataset,

as predicted by Model B. ... 62

Figure 6.11 The test images belonging to digit class 2 from the Kuzushiji-MNIST

dataset are inaccurately labeled by Model B.. 63

Figure 6.12 The test images belonging to the Bag class that were misclassified. 64

Figure 6.13 The mislabeled test images from the Shirt class, which were incorrectly

classified as similar classes by Model B. ... 64

Figure 7.1 Boxplot of the number of filters extracted from MNIST dataset for both

layers of Model A with candidate shuffling. .. 72

Figure 7.2 Boxplot of the number of filters extracted from EMNIST-Digits dataset

for both layers of Model A with candidate shuffling. .. 74

Figure 7.3 Boxplot of the number of filters extracted from Kuzushiji-MNIST dataset

for both layers of Model B with candidate shuffling. .. 74

Figure 7.4 Boxplot of the number of filters extracted from Fashion MNIST dataset

for both layers of Model B with candidate shuffling. .. 74

Figure 7.5 Boxplot of the test accuracy distribution of Model A over 50 runs on

MNIST dataset with candidate shuffling. .. 75

Figure 7.6 Boxplot of the test accuracy distribution of Model A over 50 runs on

EMNIST-Digits dataset with candidate shuffling. ... 75

Figure 7.7 Boxplot of the test accuracy distribution of Model B over 50 runs on

Kuzushiji-MNIST dataset with candidate shuffling. .. 76

Figure 7.8 Boxplot of the test accuracy distribution of Model B over 50 runs on

Fashion MNIST dataset with candidate shuffling. ... 76

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962128
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962129
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962130
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962130
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962132
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962132
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962134
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962134
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962135
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962135
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962136
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962136
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962137
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962138
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962138
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962139
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962139
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962140
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962140
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962141
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962141
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962143
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962143
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962142
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962142
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962144
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962144
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962145
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962145
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962146
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962146

xv

LIST OF ALGORITHMS

Algorithm 4.1 Candidate Set Creation Process……………………………………...36

Algorithm 4.2 CCNN CoG Based Unsupervised Learning Algorithm……………...38

xvi

LIST OF ABBREVIATIONS

AE: Auto Encoder

AI: Artificial Intelligence

AiS: Add if Silent

ANN: Artificial Neural Network

CAE: Convolutional Auto Encoder

CNN: Convolutional Neural Network

CCNN: Competitive Convolutional Neural Network

CoG: Center of Gravity

DEC: Deep Embedded Clustering

FN: False Negative

FP: False Positive

GAN: Generative Adversarial Network

GMM: Gaussian Mixture Model

GPU: Graphics Processing Unit

GS: Grid Search

KL: Kullback-Leibler

MLP: Multi-Layer Perceptron

MNIST: Modified NIST

NIST: National Institute of Standards and Technology

PReLU: Parametrized Rectified Linear Unit

ReLU: Rectified Linear Unit

RS: Random Search

SAE: Stacked Auto Encoder

SGD: Stochastic Gradient Descent

xvii

SMBO: Sequential Model Based Optimization

TN: True Negative

TP: True Positive

WTA: Winner Take All

1

CHAPTER 1

1. INTRODUCTION

In recent years, CNNs have emerged as the predominant approach for image

classification tasks. Even though it gained popularity in recent years, the history of

CNNs dates back to 1959. Hubel and Weisel (Hubel, Wiesel, 1959) discovered the

presence of alternating set of neurons in the visual cortex of a cat that fire when an

oriented edge stimulus is presented. Fukushima (Fukushima, 1980) proposed the first

CNN architecture that was based on the findings of Hubel and Weisel (Hubel,

Wiesel, 1959). Unlike the majority of modern CNN implementations, Neocognitron

deviated from using gradient-based algorithms for training. Later in 1998 (LeCun,

Bottou, Bengio, Haffner, 1998), LeCun et. al proposed a CNN architecture that is

similar to Neocognitron but trained with the backpropagation algorithm, which has

become the standard for CNNs today. Many different CNN architectures

(Krizhevsky, Sutskever, Geoffrey E., 2012; Simonyan Zisserman, 2014; Zeiler

Fergus, 2014) were proposed since LeNet. Most of the architectures proposed in the

literature are similar; they consist of several convolutional, pooling and fully

connected layers and they are trained through gradient-based backpropagation.

A CNN can be considered as a network that is composed of a feature extractor

and a classifier. The feature extractor implements convolutional and pooling layers

while the classifier part consists of fully connected and softmax layers. Each of these

layers should be carefully preconfigured to achieve reasonable results with training.

The hyperparameters that have to be initialized only for the convolutional layer

include the number of filters and filter size in each layer, stride, activation function

and the learning rate. There is unfortunately no rule of thumb for selecting the right

value for the hyperparameters of a network. Each application domain requires

2

specific settings to attain the optimal architecture, which are generally obtained

through empirical hyperparameter optimization methods.

In traditional CNN implementations, specification of the network architecture

is followed by initialization of the weights of the entire network from a specific

distribution, often without any regard to the input domain (Glorot, Bengio, 2010; He,

Zhang, Ren, Sun, 2015). The expectation of a researcher in this stage is to

coincidentally initialize a set of neurons at such points in the search space that a

gradient based walk will progress their weights to some optima. Since it is

coincidental, the researcher has no other choice than generating a superfluous

number of neurons at each layer to be able to span the search space. Moreover, the

experiments will produce varying results, some of which are subpar due to

circumstantial starting points in the search space. Thus, decision on the number of

neurons/features and the initialization of them in the convolutional layers of CNN are

problems that needs a less tedious process than hyperparameter optimization

methods.

The convolutional layers of CNN architectures serve for one purpose only;

extraction of good features to be fed to a classifier. In visual analysis of images, these

features are cues that involve edges, corners and patterns, all visually observable and

meaningful. These visual cues are building blocks of all objects which are to be

assembled in incremental complexity from shallow to deep layers of CNN. In the

past, these features were handcrafted to reach better classification results. However,

in current CNN architecture, the features are initialized with a random distribution as

mentioned in the previous paragraph. Then, they are trained through gradient based

backpropagation algorithm to some convergence point which is generally reached

after a couple of hundreds of epochs. Moreover, gradient based approaches lose a

leverage of great significance by random initialization of weights and stochastic

search during training, since visual cues in the training set are overlooked. If the

random initialization of the features in convolutional layers could be eliminated,

training the features with a gradient based training algorithm could be discarded.

This would allow less time spent on training the overall CNN model while obtaining

domain specific visual cues.

The utilization of backpropagation for training of the CNN introduces the

credit assignment problem. In neural networks, we do not know which neuron made

the correct/incorrect decision to reach the current classification result. Hence, we do

3

not know which neuron’s weight should be updated with the error signal. Our

approach to creation of a deep convolutional network and its training for feature

extraction is based purely on observations, hence it is not vulnerable to the credit

assignment problem like traditional CNNs that are trained by backpropagation. As

aforementioned, in traditional CNN implementations the network is built with a

number of neurons per layer, its weights are initialized from a random distribution

and the entire network is trained through backpropagation. The backpropagation

algorithm updates the weights of the network incrementally and depending on the

partial derivative of the error on the weights. Since backpropagation is a gradient

based approach, it takes multiple epochs for the neurons to converge to meaningful

filters. This is inherent of the approach since all that is observable is the gradient of

the hyperplane on the search space towards the direction that minimizes the error. We

are forced to take small steps since a large step might lead to divergence, making

training impossible.

Backpropagation based training is also vulnerable to the problem of exploding

or vanishing gradients (Hochreiter, 1991) which impacts the learning process in deep

networks. It is shown that when the gradient of the error is small in the last layer, it

diminishes to infinitesimal values until the backpropagation reaches to the first layer.

Since the value of the gradient gets smaller as backpropagation approaches to the

first layer, training the shallow layers of deep networks through pure

backpropagation is difficult in deep networks. Combined with the weakened error

signal, deep architectures challenge us with an exemplary version of the credit

assignment problem. We cannot correctly distribute and backpropagate the error to

shallow layers, hence producing subpar features at early and simple stages of image

processing. Thus, the quality of the patterns learned in the deeper layers is hampered

and the classification performance deteriorates. Skip connections in Residual

networks (He et al., 2015) were proposed as a work around for the gradual vanishing

of the gradients which adds more complexity to the CNN architectures.

In this work, we introduce Competitive Convolutional Neural Network

(CCNN); an unsupervised deep learning architecture and training algorithm that

extracts a sufficient number of features that span the input domain. We neither

predefine the number of neurons nor initialize them with random values from a

distribution as in conventional CNNs. The filters in our model are discovered within

a single epoch using an unsupervised approach that utilizes competitive learning and

4

a filter discovery rule. This new approach does not add more complexity to the

traditional CNN models since we do not propose new layer or connection types.

1.1. Contributions

Our contributions to the literature with this work are 3-fold. First, we propose

an architecture and an unsupervised training algorithm that eliminate the need for

setting the number of filters in layers before the training commences. The proposed

method starts with empty layers and builds them gradually to discover the sufficient

number of features to represent the complexity of the input domain, in increasing

levels of abstraction from shallow to deep layers.

Our second contribution is to eliminate pre-training initialization of network

weights. This follows from the fact that in our approach training starts with an empty

network. We create and initialize new neurons as needed; a decision made through

the similarity of the observation (input at a specific layer) to the features represented

by the existing neurons. The new neuron that is to represent a new feature is

initialized to resemble the input sample. Thus, creation and initialization of a new

neuron is not random anymore, but rather dependent on the observations, i.e., the

input domain.

Our third contribution in this work is an unsupervised training algorithm that is

a robust, effective and fast feature extractor. This algorithm searches for clusters in

input, finding simple to complex features layer by layer. It is not prone to credit

assignment problem as it is purely unsupervised. It is very fast, often converging in

one epoch per layer. This new training algorithm allows us to completely eliminate

the backpropagation training for the convolutional layers of the model.

1.2. Organization of This Thesis

The motivation and the aim of this thesis is given in the previous sections. The

remainder of this dissertation is structured as follows:

• Chapter 2 - Convolutional Neural Networks: This chapter will introduce the

reader to the concepts of Convolutional Neural Networks. It will provide necessary

information on the topic, so the reader can easily follow the approach in this work.

5

• Chapter 3 - Literature Survey: In this chapter, a brief literature survey on the

topics covered in this thesis will be presented.

• Chapter 4 - Approach: The proposed CNN architecture and the unsupervised

training algorithm for the discovery of the features to be used in the convolutional

layers will be discussed in detail in this chapter.

• Chapter 5 - Experiments: In this chapter, experiment setup, CCNN models,

datasets and the performance metrics used in the experiments are described. Then,

how experiments are conducted will be discussed.

• Chapter 6 - Results: The results of the experiments detailed in the previous

chapter is discussed in this chapter.

• Chapter 7 - Discussion: In this chapter, the results of the new approach are

compared with the previous studies.

• Chapter 8 - Conclusion: In the last chapter of the thesis, a conclusion will be

shared with possible new directions this research may lead to.

6

CHAPTER 2

2. CONVOLUTIONAL NEURAL NETWORKS

CNN is a type of multilayer feed-forward Artificial Neural Network (ANN)

which is based on the structure of animal visual cortex (Hubel, Wiesel, 1959). Due to

its hierarchical layered architecture inspired by the visual cortex of animals, CNNs

are well-suited for visual classification tasks. In basic terms, a CNN consists of

several different kinds of layers that learn features from training images

hierarchically and predicts the class of a given test image based on the learned

features in the images. Convolution and Pooling layers are the key layers in learning

the features from training images while Fully Connected layers act as classifiers

(Figure2.1).

Figure 2.1 A typical Convolutional Neural Network

7

2.1 Convolutional Neural Network Architecture

2.1.1 Convolutional Layer

The purpose of convolutional layer is detecting high level features from given

visual data so that the classifier can classify that data into specific classes according

to the particular features detected in the given data. Prior to the usage of CNNs, the

features had to be hand crafted by the field experts who has domain expertise on that

particular task. The hand crafting of features is a daunting task since every variation

in illumination, position, scale and variations in same class of objects must be

considered during the feature creation process. The solution to this is creating a

feature detection pipeline which resembles the animal visual cortex that could start

by learning basic features like lines and edges and hierarchically building more

complex features (Figure 2.2) to classify images. To be able to work with this kind of

pipeline, we need to be able to extract local features from the given data.

Convolutional layers perform this task with filters. However, for each possible

feature in the given data, we need to define a filter of specific size. This specific size

of the filter ensures that the feature that we are trying to extract is within some local

area which is called receptive field in the given data. Conventionally, the filters are

defined in sizes of 3 × 3, 5 × 5, 7 × 7 or 11 × 11 depending on the visual task at hand.

Figure 2.2 CNNs can recognize high level concepts like face by hierarchically

building feature detectors starting from basic edge like shapes to complex features

like eyes.

8

Since we need one filter per feature, the number of filters - which we do not

know beforehand - in a convolutional layer must also be defined during the

construction of the convolutional layer. The number of filters on a convolutional

layer is a hyperparameter. This hyperparameter’s value needs to be selected with

hyperparameter optimization techniques to achieve good classification performance.

One of the easiest such hyperparameter optimization method is Grid Search (GS),

where a subset of hyperparameter space is searched (Bengio, 2012) for the optimal

performance. However, it is not a suitable optimization technique since the number

of hyperparameters in the CNNs are too large which renders GS a computationally

expensive optimization method (Kaneko, Funatsu, 2015), and GS is often stuck at

some local optima (Keerthi, Lin, 2003). For the optimization of hyperparameters, a

combination of GS and Random Search (RS) is proposed by in works (Larochelle,

Erhan, Courville, Bergstra, Bengio, 2007;Yann, Bottou, Orr, Müller, 1998; Hinton,

2010) whereas it is argued (Hutter, 2009) that Sequential Model Based

Optimization(SMBO) more effectively finds the best solution than RS. It is shown

that CNN hyperparameters can be effectively tuned (Snoek, Larochelle, Adams,

2012) with a Bayesian approach. Regardless of the method of optimization,

hyperparameter values need to be optimized for achieving the optimal performance

from CNN.

The last step in defining feature extracting filters is setting the weights of said

filters. However, in CNNs we do not handcraft the features, so the filters should be

initialized with some values. Initializing the filters in convolutional layers is an

important task, since it affects the ability to learn features from the training data. If

the values of the weights are initialized too small or too big, the learning from the

training data will be either too slow or will not happen at all. This situation is called

vanishing/exploding gradients since learning depends on the backpropagation of

errors which is calculated based on these weight values. Thus, just randomly

initializing the filter weights is not enough. Initializing the weights of the filters

requires some initialization technique that allows CNN to learn from the data in an

acceptable time. The commonly used weight initialization techniques are Gaussian

initialization where the weights are initialized from a zero-mean Gaussian

distribution with a standard deviation of 0.01 (Krizhevsky et al., 2012), Glorot

(Glorot, Bengio, 2010) initialization technique in which the weights are initialized

based on the incoming and outgoing connection counts and He(He et al., 2015)

9

initialization method which is a variant of Glorot that allows very deep networks to

be built. Choosing one of those initialization methods depends on which activation

function is used in the convolutional layer.

2.1.1.1 Activation Function

Activation functions are used to introduce non-linearity to the neural network

models so that the model can generalize well by deciding whether its related neuron

will fire or not. It would not be possible to correctly classify objects that belong to

the same class that have intra-class variations with a linear model. Thus, non-

linearity is introduced to the ANNs through activation functions like sigmoid,

hyperbolic tangent (tanh) and Rectified Linear Units (ReLU) (Nair, Hinton, 2010)

which add generalization capability to ANNs. Instead of sigmoid or hyperbolic

tangent, ReLU and its variants like PReLU or Leaky ReLU is utilized in deep

architectures. The reason behind this selection is based on the vanishing gradients

problem. With the increasing depth of the network in CNNs, very small gradients are

obtained from both sigmoid and tanh functions in backward pass of the training

which slows down the learning until a point where learning becomes impossible.

They also get saturated on the both positive and negative sides and the gradients

become very close to zero for very small or big weight values which again affects the

weight updates in the backward pass of the training phase. ReLU can be described as

a piece-wise function which acts as a linear function for positive inputs whereas it

acts non-linearly for negative inputs by setting the negative values to zero.

Computation cost of the ReLU is small compared to sigmoid or tanh since these

functions involve exponentiation operations. The lack of exponentiation in ReLU

Figure 2.3 Sigmoid, hyperbolic tangent and ReLU activation function curves

shown. ReLU is most popular activation function in CNNs.

10

reduces the cost of complex derivation operation which accelerates the training. This

allows the addition of more layers to the network since the computation cost freed up

from the derivation equations can be invested in increasing the capacity of the

network. Compared to sigmoid and tanh, ReLU do not saturate except for the

negative values. This leads to the downside of using ReLU which is called dying

ReLU problem. When a large gradient flow updates the weight of a neuron in a way

that it starts generating negative responses to stimuli, we encounter dying ReLU

problem. There is no way to recover from this situation when ReLU is the chosen

activation function and some neurons might end up dead (i.e., no contribution to

learning). This problem is addressed with the ReLU variants PReLU (He et al., 2015)

and Leaky ReLU(Maas, Hannun, Ng, 2013) where instead of zeroing out the

negative response to the stimuli, both of these activation functions have a small slope

to the curve in the negative side of the original ReLU function as can be seen in

Figure 2.4. This small slope allows for a small gradient to flow for negative

responses of the neurons instead of completely shutting them down with the cost of

introducing another parameter into the calculations.

2.1.1.2 Convolution Operation

The aim of convolution operation is filtering out specific patterns from the

image which are crucial for identifying the object that is present in the image. Thus,

the convolution operation takes an input image and a filter/kernel. The kernel is used

to search for the pattern locally in the image by applying the convolution operation

Figure 2.4 PReLU and Leaky ReLU activation function curves. PReLU and Leaky

ReLU allows a small gradient for negative values whereas original ReLU strictly

sets the negative values to zero.

11

shown in Equation 2.1. The convolution operation is repeated for each kernel K

defined in the convolutional layer for the same input image I.

 𝐾 ∗ 𝐼 = ∑∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚𝑖𝑗 − 𝑛)

𝑛𝑚

 (2.1)

Starting from the top left of the image, the convolution operation is performed

on the image I. The result is a single value which denotes the likelihood of the

presence of that pattern at that specific location which the current kernel is seeking in

the image. Then, the kernel is moved in the horizontal direction. The amount of

movement is called stride and, it is a parameter that should be predetermined. If the

stride is 1 pixel, the kernel is moved in the horizontal direction 1 step. When the

horizontal locations are exhausted, the kernel is moved in the vertical direction

according to the stride parameter. This is repeated until all possible locations on the

given image is spanned by the kernel as seen in Figure 2.5.

Figure 2.5 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3

filter with a stride of 1 pixel.

12

As it can be observed from Figure 2.5, applying convolution to the image

changes its dimensions. If we apply another layer of convolution, the image will

further shrink to 2 × 2 dimensions. The information at the borders of images is

rapidly lost in this fashion. Instead of losing data in a rapid fashion, we would like to

preserve data even after convolution operation. To be able to preserve as much as we

can, padding is applied to the images before convolution operation. In CNNs,

padding is generally just adding zeros around the image as if we are framing a

portrait. The size of the padding is calculated with Equation 2.2 for stride of 1 pixel

and filter size k. The dimensions of the output of the convolution operation can be

calculated with Equation 2.3. Figure 2.6 shows convolution operation with the same

image padded with 1 pixel of zeros on each side of the image.

𝑃 =

𝑘 − 1

2
 (2.2)

𝑂 = (𝐼ℎ − 𝑘 + 1 + 2𝑃, 𝐼𝑤 − 𝑘 + 1 + 2𝑃) (2.3)

Figure 2.6 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3

filter with a stride of 1 pixel and zero padding of 1 pixel as per Equation 2.2. Green

background is padding while the image data is shown with light blue background.

13

The output of convolution operation is another matrix that is called feature map

or activation map since moving the filter over the image and calculating convolution

maps all possible locations that this particular feature might be present (i.e., map of

filter activation). One feature map per filter is generated for the same image I which

means that if there are K filters in the convolutional layer, the number of feature

maps generated for image I would be K. However, the actual output of the

convolutional layer is not the raw feature maps. The chosen non-linearity/activation

function is applied to these feature maps as seen in Figure 2.7. If the activation

funciton is ReLU, the result is called rectified feature maps (Zeiler, Fergus, 2014).

2.1.2 Pooling Layer

Pooling operation is employed in CNNs to downsample the images so that the

number of equations can be restricted to a manageable number. This dimension

reduction also introduces spatial invariance to the CNNs. Another advantage of using

pooling layer is that it allows the next layer to focus on a larger receptive field while

maintaining the same filter size as the previous convolutional layer. This leads to

detecting more complex features compared to the earlier layers.

Figure 2.7 Convolution layer applies convolution operation to the input images. The

feature maps are then introduced to non-linearity with activation function.

14

Similar to defining a filter in the convolutional layer, a window size is defined

for pooling. This window size is the local data that will be pooled down to a single

value. Pooling window starts from the top left of the image as in the convolution

operation and pooling is applied to the pixels in that region of the image. After the

pooling is applied, the pooling window is shifted in the horizontal direction

according to the stride value. When all the horizontal positions are exhausted, the

pooling window is moved in the vertical direction according to the stride value. The

most commonly used pooling types are max and average pooling. In max pooling the

maximum value inside the pooling window is the output of the pooling operation

whereas in average pooling the average of all values inside the pooling window is the

output of the pooling operation. Max pooling preserves the feature that has the most

activation and removes the surrounding features in the pooling window by ruling

them out as noise while average pooling takes all of the information into account

during the pooling process including the noise. This is why max pooling performs

better than average pooling in classification tasks with CNNs. Figure 2.8 shows how

both max and average pooling operations are applied on the same input with stride of

Figure 2.8 Visualization of max pooling operation on with a 4 × 4 image with 2 × 2

window size and strides of 2.

15

1 and windows size of 2 × 2. The dimensions of the image are halved because of the

pooling window size.

2.1.3 Fully Connected Layer

The convolutional and pooling layers extracts the patterns that could be useful

in classifying the image while fully connected layers(Figure 2.9) learn how to

combine these features to define a specific class. Thus, we can call the fully

connected layers as the classifier part of the CNNs while the other half of the

network works as a feature extractor. The feature maps are three-dimensional data

which need to be connected to fully connected layer which only accepts single

dimensional data. Flatten operation is applied on the feature maps and the flattened

feature maps are connected to fully connected layers. The number of fully connected

layers and how many neurons these layers will include are all hyperparameters that

needs to be tuned with optimization techniques. The neurons (Figure 2.10) in the

fully connected layers are the same as ANN neurons. Each neuron has weights

connected to them and an activation function is applied to the output of the neuron.

Figure 2.9 Fully connected layers learn the relations between the high-level

patterns.

16

Fully connected layers are prone to overfitting during the training due to the

immense number of connections between the neurons. A regularization technique

called Dropout (N. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, 2014)

is applied to avoid overfitting during the training of the fully connected layers.

Dropout randomly selects some neurons in the fully connected layers and disables

that neuron with a probability of p to receive or transmit signal temporarily for the

current iteration of the training as seen in Figure 2.11. The neuron that is disabled in

one training iteration might become active in the next one since the neuron to be

dropped out is re-selected on each iteration. The probability p is a hyperparameter

that needs to be configured. If the value is set as 0.3, it means that 30% of the

neurons will be dropped in each iteration of the training.

Figure 2.10 Single neuron in Fully Connected Layer.

Figure 2.11 Neurons dropped out with dropout regularization technique do not

receive or transmit signal. Dropout with probability p = 0.5 is applied to the neurons.

17

2.1.4 Output Layer

Output layer is the last layer of a CNN. This layer is actually another fully

connected layer but a special layer since this is where the predictions are made by

CNN. The number of neurons is determined by the number of classes in the dataset.

Thus, each neuron represents a class. The activation function in this layer is Softmax.

Softmax makes sure that the activation value of each one of these neurons is in (0, 1)

interval and the total of the activations of the neurons in the output layer does not

exceed 1. The Softmax value is calculated with Equation 2.4.

𝜎(𝑧)𝑖 =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (2.4)

The activation amount for each neuron in this layer represents the belief that

how much the given sample image resembles the specific class represented by the

neurons. The neuron with the maximum activation determines the class of the image.

As an example, assume that there is a CNN model which is trained to recognize cats

and dogs as in Figure 2.12. The Softmax function turns the amount of the stimuli

these two neurons receive into a probability distribution. The network believes that

this input image belongs to cat class with 77% confidence while the confidence of

the network is 23% for this image belonging to the dog class. Since the highest

confidence value belongs to the cat neuron, this image is labeled as cat. At this point

the predicted label and the actual label of the image is compared and if the labels do

Figure 2.12 Output Layer in a CNN.

18

not match, the error is calculated to update the weights of the network. The training

is explained in detail in the next section.

2.1.5 Training of CNN

As mentioned in the previous sections, CNNs consist of convolutional and

fully connected layers which are initialized with a pre-defined initialization method.

After initialization, the weights of the filters in convolutional layers and the neurons

in the fully connected layers need to be trained to be able to identify the class of the

presented object. The training of the CNNs is performed by a gradient descent (GD)

algorithm which minimizes the loss function, and the gradients are calculated with

backpropagation algorithm.

In basic terms, training has two phases; forward pass and backward pass. In the

forward pass, we send an image as the input to the CNN, and we obtain a result from

the output layer. This output is then checked for correctness. This is done by

comparing the real label of the input image and the class label predicted by the CNN.

If both labels are the same, no weight update is required. However, if the labels are

found to be different, then the weights in all layers must be updated one by one so

that the amount of error between the output and the correct label is minimized

(Rumelhart, Hinton, Williams, 1986).

𝐶𝐸(𝑦, �̂�) = −∑(𝑦𝑖) ⋅ log 𝑦�̂�

𝑁

𝑖=1

 (2.5)

The backpropagation starts with the prediction of the label of a particular input

data. After this prediction is made by the network, the error between the actual and

predicted labels is calculated by a loss function. This loss function is typically

categorical cross entropy (Equation 2.5) for scenarios where CNN is labeling more

than two classes of objects.

 𝑊𝑡+1 = 𝑊𝑡 − 𝜂 ∗ ∇𝑔𝑡
(𝑊) (2.6)

We do not know which connections in the network is responsible for this error

which is called credit assignment problem. Thus, the error is distributed to all of the

units in the network by adjusting the weights by calculating partial derivatives of the

19

errors with respect to the weights according to chain rule until we reach the input

layer. The backpropagation algorithm ends when the stopping criteria is met. This

stopping criterion could be reaching a specific loss value, a specific number of

training epochs or monitoring the validation error rate. Since the weight updates are

done in the opposite direction of the gradient (Equation 2.6) and the value of

gradients depend on the weights, the performance of the backpropagation is strongly

related to the weight initialization method (Sutskever, Martens, Dahl, Hinton, 2013).

The learning rate is a hyperparameter whose value should be carefully determined. If

the value of η is too small, the weight updates will be small and the convergence

would take a long time. On the other hand, if the value of η is large, weight updates

might occur in a manner that misses the convergence point by fluctuating around it or

in extreme cases instead of converging system might diverge.

Stochastic Gradient Descent (SGD) is the most commonly used training

algorithm in CNNs which updates the weights after each training input compared to

gradient descent which only applies one weight update by calculating gradients for

whole dataset. Because of a single update which requires calculation of all gradients,

the gradient descent can be very slow for big datasets. Compared to gradient descent,

SGD is much faster because of the gradient calculations per training sample that

prevent re-calculation of same gradients over and over as opposed to gradient

descent. However, this means that SGD weight updates does not converge to the

local/global minima as smoothly as gradient descent. To introduce the smoothness of

GD, learning rate annealing is applied to SGD. Both the smoothness of GD and the

speed of SGD can be achieved by using mini-batched SGD for training of the CNN

where weight updates are calculated for mini-batches of n training samples. The size

of the mini-batches depends on the application of CNN. However, there are still

problems that need to be addressed in training the network. Selection of initial

learning rate value, the annealing schedule or SGD getting stuck at some sub optimal

local minima or saddle points (Dauphin et al., 2014) where the gradients are close to

zero and it is not possible to escape such a point.

 △ 𝑊𝑡 =
𝜂

√∑ 𝑔𝜏
2𝑡

𝜏=1

𝑔𝑡 (2.7)

20

SGD optimization techniques are implemented to fix the problems of SGD.

One of those optimization schemes is introducing momentum(Qian, 1999) which

tries to lessen the oscillations to speed up the training. Another method is applying

weight updates in a way (Equation 2.7) that allows usage of higher learning rates for

less frequent patterns and smaller learning rates for frequent patterns. This is

achieved by automatically adjusting the learning rate based on the past gradients

computed for the weights. This method is called Adagrad (Duchi, Hazan, Singer,

2011) and removes the manual learning annealing process. However, the learning

rate might get very small during training epochs since this method takes all past

gradients into account while calculating the new learning rate. This would lead to not

learning anything at all.

△ 𝑊𝑡 = −

𝑅𝑀𝑆[△ 𝑊]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 (2.8)

The solution for this problem is proposed in another SGD optimization method

called Adadelta (Zeiler, 2012) which is actually a variant of Adagrad. As opposed to

Adagrad, Adadelta only takes the past gradients in a small window of fixed size for

the calculations instead of all past gradients. Another advantage of Adadelta is that

the weight updates does not require a global learning rate value to be set since it is

not used in weight update rule as can be observed in Equation 2.8.

21

CHAPTER 3

3. LITERATURE SURVEY

3.1 Initial Steps

Neural networks have a long history starting from the first description of an

artificial neuron by McCulloch and Pitts (McCulloch, Pitts, 1943). Although its

evolution was first disrupted by Minsky and Papert’s work (Minsky, Papert, 1969) ,

then by technical limitations on training them, it has become the most thriving

research topic due to the technological advances in the recent couple of years.

The concept of artificial neuron was first described by McCulloch and Pitts

(Minsky, Papert, 1969) in 1943. The aim of this work was mathematically explaining

how the cells in brain works together. This artificial neuron model takes and

aggregates one or more binary inputs and applies a linear threshold gate to these

inputs to form a binary output. The artificial neuron described here could be used to

build networks and solve simple logical expressions containing logical AND, OR or

NOT operators. However, this model could only apply some logical operations on

the given input and could not learn from experience as in human brain. Later in 1949,

a supervised learning algorithm, known as Hebb’s rule (Hebb, 1949) today, was

proposed. Hebb proposed theories on the learning and memorization mechanisms of

the brain. He theorized that if a neuron is responsible of activation of another neuron,

then that neuron’s efficiency should be increased with some mechanism. At that time

there was not any evidence about the neuronal activity happening between the

neurons which is known as synaptic plasticity today. The synaptic plasticity is the

biological process of strengthening (long-termpotentiation (Lomo,1966)) or

weakening (long-term depression (Albus, 1971) (Ito, Sakurai, Tongroach, 1982))

22

of synapses due to the neuronal activity volume between two neurons. If the volume

of synaptic communication between two neurons increases, the synapses are

strengthened. In 1958, Rosenblatt (Rosenblatt, 1958) combined the McCulloch-Pitts

neuron model with Hebb’s ideas and formed Perceptron. In essence, Perceptron

changed the way how the inputs are handled to achieve learning with McCulloch-

Pitts neurons. Originally McCulloch-Pitts neurons can only accept binary inputs.

However, the inputs are associated with adjustable weights in Perceptron. The

adjustment on the weights is applied in supervised fashion based on the ideas of

Hebb. However, as in McCulloch-Pitts, Perceptron can only work with linearly

separable functions and cannot solve XOR as stated in Papert and Minsky’s book

(Minsky, Papert, 1969) Perceptrons: An Introduction to Computational Geometry in

1969. They demonstrated that it is not possible to classify patterns of nonlinearly

separable classes with single layer neural network Perceptron. Actually, this was an

oversight of the capability of Perceptrons. Today we know that it is possible to solve

nonlinear problems with multilayer Perceptrons. The research on neural networks

was slowed down with the limitations mentioned by Papert and Minsky until the

proposal of backpropagation algorithm (Rumelhart et al., 1986).

3.2 Backpropagation Era

In modern artificial neural networks, the training is performed with error back-

propagation. Even though error backpropagation was first suggested in 1974 (P.

Werbosö J. Paul John, 1974) and later applied to an ANN by Werbos (P. J. Werbos,

1982), it became widely known through Rumelhard and Zipser’s work (Rumelhardö

Zipser, 1985). They showed that when error backpropagation was applied to

multilayer neural networks, good internal representations could be discovered.

Before the error backpropagation was adopted, domain experts handcrafted features

that were specially crafted for the specific task at hand for use in ANNs. The slow

process of handcrafting the required features was no longer the issue with the

introduction of error backpropagation. Applying backpropagation to ANNs enabled

hidden layers to automatically learn these handcrafted features.

Denker et al. (Denker et al., 1989) proposed a neural network which applied

convolution operation in 1989. However, the filters used in the convolution operation

were handcrafted based on Hubel and Wiesel’s work (Hubel, Wiesel, 1959). The

23

handcrafted filters were designed specifically for detecting zip code digits. A similar

work by LeCun et al. (Lecun et al., 1989) was also proposed a neural network which

included convolutional layers for zip code recognition in the same year as Denker et

al.. The difference between Denker et al. and Lecun et al. was how the convolutional

filters were obtained. Lecun et al. obtained the convolutional filters with

backpropagation training as opposed to handcrafting. Lecun et al.’s network had

three hidden layers and to lower the computational cost of the training, a subset of

connections within the convolutional layers were discarded. The performance of

Lecun et al.’s network was greater than the state-of-the-art at its time of publication.

Eventually in 1998, Lecun et al. (LeCun et al., 1998) proposed an updated

convolutional neural network architecture named LeNet-5. This network was deeper

than its predecessor with a depth of seven layers. This new network’s architecture

was an alternating set of convolutional and subsampling layers which was connected

to fully connected layers. To test the performance of this new architecture, a new

dataset called MNIST (LeCun, Cortes, 2010) was created. MNIST only included

handwritten digits which were picked from different NIST datasets. Today, this

dataset is one of the most popular datasets for benchmarking CNNs.

3.2.1 Fundamental Deep Learning Problem

Introduction of backpropagation training made it possible to train multilayered

neural networks. However, it was also the reason that the neural networks research

hindered. When backpropagation training made it possible to train the hidden layers,

it was seen that the more layers the neural networks had, the training of network

became harder or impossible. Thus, the expectation that adding more and more layers

to the network would provide better performance was not met. The reason for this

training behavior, fundamental deep learning problem, was explained by Hochreiter

(Hochreiter, 1991) in his 1991 PhD dissertation. The backpropagation of the errors

was not effectively training the first layers on a multilayered neural network due to

the vanishing or exploding gradients. In case of vanishing gradients, it was shown

that the error signal got smaller and smaller until it made the weight updates

insignificantly small on shallow layers of the network. This behavior slowed down

the updates and eventually made it impossible to train the most important filters that

were on the shallow layers.

24

3.2.2 Revival of the Neural Networks Research

A greedy unsupervised training scheme was proposed by Hinton et al. (Hinton,

Osindero, Teh, 2006) in 2006 which was not affected by the vanishing gradient

problem. This new algorithm was a combination of wake-sleep algorithm (Hinton,

Dayan, J Frey, M Neal, 1995) and contrastive divergence learning (Hinton, 2002) and

applied to Restricted Boltzmann Machines (Smolensky, 1986). It was shown that

greedy learning of the initial weights with pre-training overcame the vanishing

gradient problem and made it possible to train deep networks with backpropagation.

This led to the revival of neural networks research. Even though the shortcomings,

the neural networks research kept building on backpropagation training.

3.2.3 GPU Era

With the utilization of Graphical Processing Unit (GPU) instead of Central

Processing Unit (CPU) for training, it was seen that it is possible to add more layers

to the neural networks and train them relatively faster due to the architectural design

of GPUs. The possibility of adding more layers sparked interest in the neural

networks research once again in the 2010s. However, adding more layers comes with

the fundamental deep learning problem. Thus, the research has been focused on

creating mechanisms to avoid this problem since then.

In 2010, it was shown that plain multilayered neural networks can be trained

with backpropagation on GPUs (Cireşan, Meier, Gambardella, Schmidhuber, 2010)

with a better performance than the state-of-the-art of that time. This was managed

with adding more neurons and more layers to plain ANN. To be able to train the

network data augmentation techniques were applied to MNIST dataset. No new

techniques were applied other than usage of GPU. After this demonstration, Cireşan

et al. (Cireşan, Meier, Masci, Gambardella, Schmidhuber, 2011) proposed that CNNs

could be trained on GPUs without introducing any new training techniques. The

GPU implementation of backpropagation training improved the performance on

CIFAR10 (Krizhevsky, 2009) and MNIST datasets.

A new milestone was set in neural networks in 2012. An eight layered CNN

model called Alexnet (Krizhevsky et al., 2012) which was trained on GPUs was

shown to outperform all of the state-of-the-art machine learning approaches with its

remarkable recognition performance on the ImageNet (Deng et al., 2009) dataset.

25

Alexnet was built on LeNet concepts with more layers. Since the architecture was

deeper than its predecessor and still uses backpropagation, it has to deal with the

fundamental deep learning problem. The solution was the introduction of avoidance

mechanisms that were built around the backpropagation’s flaw. Thus, a new

activation function which could avoid vanishing gradient problem associated with

sigmoid or hyperbolic tangent functions were implemented. The non-linearity was

provided with ReLU (Nair, Hinton, 2010) since its gradient was non-saturating

which allowed faster convergence. ReLU made it possible to have sparsity of

activations which helped with training accuracy and time. However, with such a

large network (62 million parameters), overfitting was inevitable. Dropout (N.

Srivastava et al., 2014) applied to the hidden neurons and data augmentation

techniques were applied to training images to avoid overfitting.

Replacement of sigmoid and hyperbolic tangent with ReLU helped with the

vanishing gradient problem. However, ReLU was not the perfect solution. ReLU

units tend to die if their gradients become zero. The function f (x) = max(0, x) clearly

sets the activation values below zero to zero, where the gradient also becomes zero.

If this happens on a neuron, that neuron stops responding to stimuli, and its training

permanently stops. This behavior is known as the dying ReLU problem. A predefined

slope for negative values is proposed in order to avoid dead neurons in the network.

This variation of ReLU is called Leaky ReLU (Maas et al., 2013). Another variation

of ReLU was proposed by He et al. (He, Zhang, Ren, Sun, 2016) where the slope is

learned as a network parameter. This variation is known as parametric ReLU

(PReLU) (He et al., 2015).

Various initialization schemes have been proposed since Alexnet to avoid

vanishing/exploding gradient issue. This issue is the fundamental roadblock on

achieving convergence on deeper architectures. Glorot et al. (Glorot, Bengio, 2010)

proposed a normalized initialization method that took into account the number of

input and output connections to each neuron. This initialization technique allowed

addition of more layers where the activation function was a sigmoid like function.

However, Glorot et al.’s initialization technique was not adequate for networks with

ReLU activation functions. He at al. (He et al., 2015) proposed an initialization

scheme that allowed very deep networks, which use parametric ReLU as

nonlinearity, to converge.

26

Another side effect of using backpropagation training was pointed by Ioffe et

al. as internal covariate shift. It was shown that the weight updates during the back-

propagation training changes the weights in a way that would move the inputs of the

activation function to saturated regions. As explained in Section 2.1.1.1, when the

input moves the sigmoid-like activation functions to their saturated regions, the

learning slows down or stops. Ioffe et al. proposed a batch normalization scheme to

further augment the weights at a normalization step. Inputs to the activation function

were updated with batch normalization method to fix variance and the mean of the

layer to avoid the saturated regions of the nonlinearity.

As the CNNs got deeper, the various mechanisms to avoid the weakening of

the signal across the layers became insufficient and the training error kept getting

bigger with addition of more layers. He et al.(He et al., 2016) proposed skip

connections to avoid this problem. Skip connection allowed feeding the output of a

layer to some deeper layer rather than just feeding the next layer. The result of adding

skip connection was strengthening of the output signal in deeper layer. Since the

signal was not as weak as it got with networks without skip connections, He et al.

managed to add more layers before network performance drops. A similar network

was proposed by Srivastava et al. (Srivastava, Greff, Schmidhuber, 2015a, 2015b)

called Highway networks. The difference was that the highway networks used data-

dependent parametric gating functions in skip connections.

Often overlooked problem in deep architectures is that going deeper means

more and more hyperparameters required to configure the models. In current

research, CNNs are defined with hyperparameters like number of filters, number of

layers, learning rate, momentum, number epochs, batch size, etc. These

hyperparameters need to be tuned carefully to achieve the optimal performance on

the task. The tuning of these hyperparameters is another research topic. Grid

Search(GS) is the easiest to implement hyperparameter optimization technique where

a subset of hyperparameter space is searched (Bengio, 2012) for the optimal

performance. However, it is a computationally expensive optimization method

(Kaneko, Funatsu, 2015) and the sheer number of hyperparameters used in CNNs

make it unsuitable. Even if the number of hyperparameters was not high, GS is found

to be stuck at local optima (Keerthi, Lin, 2003). Another method is employing

random searches in the hyperparameter space with RS. A combination of GS and RS

is proposed in different works (Hinton, 2010; Larochelle et al., 2007; Yann et al.,

27

1998). Hutter (Hutter, 2009) showed that the computationally less expensive SMBO

more effectively finds the best solution than RS. Bayesian optimization is shown to

be appropriate to optimize(Snoek et al., 2012) CNN hyperparameters since Bayesian

approach is suitable for black box type functions. Another approach on

hyperparameter optimization on ANNs (Akı, Erkoç, Eskil, 2017) is using a reduced

set that will speed up the search for the best parameter values.

As mentioned in LeCun et al. (LeCun, Bengio, Hinton, 2015), the interest in

deep networks was revived with Hinton et al.’s unsupervised approach (Hinton et al.,

2006). However, the remarkable results of supervised approaches led the research in

a purely supervised manner by inventing new ways to circumvent the vanishing

gradient problem. LeCun et al. (LeCun et al., 2015) anticipated that unsupervised

learning will become more important in the future. As they mention, an infant’s brain

processes information and extracts concepts purely by observation and not by being

taught by a supervisor.

3.2.4 Unsupervised Learning with Backpropagation

While supervised learning remains the dominant focus of research on deep net-

works, there has also been significant exploration of unsupervised learning within

this field. It is worth mentioning that even though the following studies that are

discussed under this title are all categorized under unsupervised learning topic, they

still employ backpropagation. We can categorize unsupervised methods into self-

supervised learning, cluster-based learning, and generative models.

In self-supervised learning, the use of pretext tasks allows for the replacement

of data labels with pseudo-labels. Dosovitskiy et al. (Dosovitskiy, Springenberg,

Riedmiller, Brox, 2014) generate surrogate classes by first selecting random im- age

patches and then applying transformations to the randomly sampled patches. The

transformations can be one of rotation, translation, contrast manipulation or scaling

operations. The patches may contain whole object or object parts. After the trans-

formations, these surrogate classes are labeled with pseudo-labels. The pseudo-labels

are used in backpropagation training instead of the real labels. Thus, the CNN learns

to classify the surrogate classes. Another pretext task is usage of relative positions of

image patches. This method involves cutting the images into pieces to create a jig-

saw. Both (Doersch, Gupta, Efros, 2015) and (Noroozi, Favaro, 2016) utilizes this

pretext task. They train their networks to master puzzle-solving. Image colorization

28

is utilized by (Larsson, Maire, Shakhnarovich, 2016, 2017; Zhang, Isola, Efros,

2016). In contrast, the approach proposed by (Pathak, Krahenbuhl, Donahue, Darrell,

Efros, 2016) utilizes image in-painting, where the prediction of pixels is based on the

information of neighboring pixels. Tracking video frames is also utilized for motion

cues in (Misra, Zitnick, Hebert, 2016; Wang, He, Gupta, 2017). Jaehoon et al.

(Jaehoon et al., 2018) procure drivable space and surface normals from stereo

images. These data then used to produce pseudo ground truth. Finally, to determine

the quality of an image, ranking is used as a pretext task in (Liu, Weijer, Bagdanov,

2019).

Gaussian Mixture Models (GMM) and k-means (Macqueen, 1967) is

commonly used in cluster-based unsupervised learning methods. The objective of the

cluster-based algorithms is generating clusters that can be used for pseudo-labeling

the training samples. Training of the network is performed through backpropagation

using the assigned pseudo-labels. As a result, the performance of the trained network

depends on the clustering performance. Yang et al. (Yang, Parikh, Batra, 2016)

performs agglomerative clustering on the output of a CNN. Based on the cluster

labels, they update both the clusters and the CNN weights on each backward pass.

This is repeated until they reach a stopping criterion. A very similar approach is

proposed by (Liao, Schwing, Zemel, Urtasun, 2016). Xie et al. (Xie, Girshick,

Farhadi, 2016) proposes deep embedded clustering (DEC) method where input

images mapped to feature space by using stacked auto encoders (SAE). To initialize

the cluster centroids, k-means clustering is applied on the outputs of SAE. They

further refine the clusters by applying Kullback-Leibler (KL) divergence. In another

work (Xu, McCord, 2021), spatial vector outputs from a randomly initialized CNN

are used to generate clusters by applying GMM. CNN weights are updated by using

the cluster assignments. Finally, the features are obtained from the trained CNN.

Mahon et al. (Mahon, Lukasiewicz, 2021) trains a couple of auto encoders(AE) in

parallel. During the training process, they selectively choose the mutually agreed

cluster pseudo-labels. ClusterFit (Yan, Misra, Gupta, Ghadiyaram, Mahajan, 2020)

employs self-supervised learning method from (Noroozi, Favaro, 2016) and (Gidaris,

Singh, Komodakis, 2018) to train ResNet-50 (He et al., 2016) with the ImageNet

(Deng et al., 2009) dataset. They create clusters from another dataset by using k-

means along with the pretrained network and assign pseudo-labels to these clusters.

They end up with a new dataset with the pseudo-labels generated by clustering

29

process. This dataset is utilized to train a new network which has the same

architecture with Resnet-50 from scratch with backpropagation with the objective of

minimizing cross-entropy.

Generative Adversarial Networks (GAN) and AEs are unsupervised methods

that aim to train models on input data to generate outputs close to inputs. AEs

objective is to minimize the reconstruction error between the input training data and

their respective reconstructed output. To minimize the error, parameters of the AEs

are updated iteratively using gradient descent. In (Masci, Meier, Cireşan,

Schmidhuber, 2011), Convolutional Auto Encoder (CAE) is proposed as a weight

initialization method for CNNs. CAE is used to obtain localized features from the

training data. Later, these feature representations are used as the initial values of a

CNN. Another application of CAE (Hou, Yan, 2018) is fingerprint verification.

Vincent et al. (Vincent, Larochelle, Lajoie, Bengio, Manzagol, 2010) uses stacked

denoising AEs which is able to learn edges resembling to Gabor filters. Using this

method is shown to perform better on MNIST dataset compared to ordinary stacked

AEs. In (Makhzani, Frey, 2014), k-sparse AE is proposed. In this method,

reconstruction is performed by only using the top-k units instead of using all hidden

units which allows better accuracy. While AEs aim to learn the latent representations

of the input data to better reconstruction in a single network, GANs (Goodfellow et

al., 2014) utilizes two networks. The two networks are the generative network and

adversary network. While the adversary model aims to differentiate between real and

generated data, the generative model’s objective is to deceive the discriminative

model. In (Chen et al., 2016), to learn meaningful representations without any label

information, mutual information is maximized between the noise variables of the

GAN and the observations. Synthetically generated images can be also used to

extract features by using GAN (Ren, Lee, 2018). DCGAN (Radford, Metz, Chintala,

2016) is a GAN architecture that uses transposed convolutional network for

unsupervised feature extraction.

To summarize, we can divide the unsupervised research into three primary

categories: self-supervised learning, cluster-based learning and generative networks.

Although we mention the works in this section as unsupervised, all of them still

utilize backpropagation for training, whereas our proposal suggests training without

backpropagation. By utilizing pretext tasks or clustering methods, the self-supervised

and cluster-based learning approaches mentioned earlier designate pseudo-labels to

30

the training data. The models are trained using backpropagation, leveraging the

pseudo-labels derived from the aforementioned methods. Generative models consist

of two networks. The objective of the generative model is to produce new images

that closely resemble the original training images to deceive the discriminative

model. On the other hand, the discriminative model’s goal is to differentiate between

generated and real data. During the training process, both the generative and

discriminative models employ backpropagation for optimization.

3.3 Neocognitron

The roots of CNN architecture dates back to 1980. Fukushima (Fukushima,

1980) proposed a network called Neocognitron which can be trained without back-

propagation. While building the Neocognitron architecture, Fukushima implemented

the simple and complex cells discovered by Hubel and Wiesel (Hubel, Wiesel, 1959)

as alternating layers. With implementing this hierarchical structure, Fukushima

managed to extract features through simple cells, while he achieved translation

invariance with complex cells. Fukushima proposed supervised and unsupervised

learning approaches (Fukushima, 2013, 2016; Fukushima, Hayashi, Léveillé, 2014;

Fukushima, Wake, 1991) for training Neocognitron architecture throughout the years

following its first introduction.

One of those learning schemes that Fukushima proposed for training of

Neocognitron was an unsupervised competitive learning scheme known as Winner-

Take-All (WTA) (Fukushima, 2003). Based on Hubel and Weisel’s work, Fukushima

implemented simple and complex cells as cell planes in the layers. Upon presenting a

visual stimulus to the system, the simple cells engage in competitive interactions to

encode the input. Among the simple cells, the one with the strongest response to the

input stimulus emerges as the representative within its corresponding cell plane.

Through the self-organizing mechanism facilitated by the Winner-Takes-All (WTA)

algorithm, the simple cell planes exhibit selective sensitivity towards specific

features. This self-organization process relies on a similarity threshold, which

regulates the creation of new filters within the WTA algorithm.

Another unsupervised learning method proposed by Fukushima is known as

Add-if-Silent(AiS) (Fukushima, 2013). According to the AiS rule, if all post-synaptic

simple cells are silent (not stimulated at a predefined rate), a new cell is generated

31

and added to the layer. The input stimulus vector that triggered the generation of a

new cell is assigned as the weights of the new cell. The connections to this new cell

cannot be changed after the initial values were set. However, since weight updates

never occur for the cells, as the training progresses, the number of cell planes

steadily grows until the entire feature space is effectively spanned by the reference

vectors.

Fukushima’s work is intriguing, as it seeks for visually observable and

meaningful cues in the training set as opposed to random initialization of both the

number of neurons and their weights and stochastic search towards error

minimization, which is the common practice of supervised approaches. As in very

early neural network research, we are looking for spatial features that make up

simple components of complex objects in the image domain. For this reason, it is

both reasonable and intuitive to look into the training images to generate and train

new features. Our approach follows this school of thought, which has been strangely

ignored in neural network research. ………………………………………………….

32

CHAPTER 4

4. APPROACH

4.1 Introduction

In this work, we propose an unsupervised backpropagationless learning

algorithm that was inspired by Fukushima’s Neocognitron to train the convolutional

layers of CNNs. Our approach (Erkoç, Eskil, 2023) leverages competition of neurons

in a convolutional neural network to represent the training samples, hence

Competitive Convolutional Neural Network (CCNN). A CCNN is initially empty at

the beginning of the training, i.e., there are no neurons/filters defined. Training

proceeds layer-wise, the first input stimulus becoming the first filter for the layer.

From this point on, we calculate the similarity of the next input stimulus with the

filters that are extracted and assigned to the layer. If there is a representative feature

of this input in the layer, i.e., the highest similarity result is greater than a similarity

threshold, we carry out a weighted update on the weights of the winner filter in

contrast to the AiS rule of Fukushima. Otherwise, we conclude that the layer does not

possess a representative feature, hence we generate a new filter for the layer and use

the particular stimulus to initialize the filter’s weights. Since all of the filters in

CCNN are discovered and weight updates are carried with this competitive self-

organizing scheme, convolutional layers neither require backpropagation of errors

nor a predefined number of filters hyperparameter defined per layer. The process of

filter creation and weight adjustments is done in an unsupervised fashion because the

decision is based on the similarity of input sample with the previously extracted

filters of the current layer instead of backpropagation of error based on a label

information.

33

Contrary to the conventional CNN approach, the approach that will be

presented here does not require selecting a suitable value for the number of filters

hyperparameter of convolutional layers. The filters are discovered in a self-

organizing way from the training set images in a single epoch. Proposed training

method makes sure that the filters are initialized and trained with a completely

unsupervised self-organized scheme. This approach enables us to entirely disregard

the filter initialization techniques mentioned in previous sections, as well as the need

for training the filters through back-propagation. This results in much fewer epochs

of training compared to general CNN approach.

The proposed algorithm is a two-stage filter extraction method. The initial step

involves extracting filter candidates from the input data using the center of gravity as

a criterion. The next step is to select the filters among the among them using a

predefined similarity threshold. The process is depicted in Figure 4.1. The following

Figure 4.1 The proposed unsupervised backpropagationless filter extraction

method. Images/feature maps are converted to candidates from which the filters are

discovered without label information. Any filter candidate 𝑐𝑖 can become a new

filter for the current layer if the maximum similarity value is less than a preset

threshold. If not, filter with the highest similarity’s weights is updated.

34

sections will discuss the method in detail. In Section 4.2, we will discuss

convolutional filter discovery scheme of CCNN and in Section 4.2.2, the training of

the convolutional layers of the CCNN model is discussed.

4.2 Convolutional Filter Discovery

Typically, the number of filters per convolutional layer is predetermined as a

hyperparameter during the model construction process. Since the training of the

CNN is the next step after the model building, the filters are actually filled with

random numbers from a distribution according to one of the suitable initialization

techniques mentioned in Section 2.1.1. The randomly initialized filters then need to

be trained to be able to extract meaningful patterns from the images for correct

predictions. However, the number of filters is a hyperparameter that needs to be

tuned to give the best results since it is not known how many features are needed in

each convolutional layer for optimal performance. Another problem here stems from

the random initialization of the filters. Because of the randomness of initialization,

some number of epochs (that is not known know beforehand) of backpropagation is

performed so that the filters can become good feature extractors.

The approach proposed here is a filter extraction scheme where filters are

discovered in the training space without the knowledge of the contents and labels of

the given data. The input space is analyzed in an unsupervised fashion to discover

filters for the current convolutional layer. The process involves competition and

relies on a similarity threshold, which is determined through a grid search in

increments of 0.1 within the range of [0, 1], where 0 indicates no similarity and 1

represents an exact match. Based on the similarity threshold value, filter discovery

scheme either generates a new filter from this candidate filter and adds it to the

convolutional layer or updates an already extracted filter that belongs to this

convolutional layer. The input filter candidates for the discovery of the filters are

prepared from the training images of the given dataset with a process explained in

Section 4.2.1. After the inputs are prepared, the filter discovery algorithm is run for

only a single epoch. When this epoch is completed, the current convolution layer

training is complete and there will be no updates on this layer anymore. This process

is repeated for each convolutional layer in CCNN model. The implementation of this

approach is a hybrid of CPU and GPU tasks. The filter discovery scheme is

35

implemented entirely on the CPU, while the convolution and maxpooling operations

are performed on the GPU for efficient processing. After the filter discovery for the

whole system is completed, the CCNN is built and only the fully connected layers

undergo training on GPU.

4.2.1 Center of Gravity Based Candidate Filter Extraction

The purpose of convolutional layers is to apply convolution operation to the

images. In convolution operation, filters are slid on the input image with a specific

stride. At each step, convolution operation is applied on a receptive field sized

windows on the input image. The aim of the approach that is presented here is

discovering the filters from the input images. Thus, the training images are cut into

receptive field sized patches with strides of 1 as discussed in (Erkoç, Eskil, 2022).

The stride value is selected as the same value that will be used with the CCNN model

for convolutions. In this study, CCNN models are all defined with stride value of 1 in

convolutional layers. Since the proposed CCNN model is based on the discovery of

the filters, the key to the high performance is based on how the images are

transformed into filter candidates. The remaining paragraphs of this section explains

the algorithm of choosing the appropriate filter candidates for CCNN model in the

perspective of MNIST dataset. Although, the explanation is based on the MNIST

dataset, all steps of the proposed algorithm are applicable as it is on other datasets.

Proposed algorithm processes each image in the training set one by one. When

an image from the training set is selected, it is first cut into small filter size × filter

size patches with strides of 1 which forms a set of filter candidates. However, a very

large number of filter candidates are obtained even with a small dataset like MNIST.

Moreover, the candidates obtained with this simple process often include no useful

information (e.g., background). The proposed algorithm’s running time is affected by

the sheer number of candidate filters that are obtained with this simple process. The

higher the number of the candidates, the longer it takes to calculate similarities. For

example,

Each MNIST (LeCun, Cortes, 2010) image’s dimensions is 28 × 28. If the filter

size is selected as 5 × 5 pixels, then the number of candidate filters that is added to

candidate filter set from just one image can be up to 567. Since there are 50000

training images processed by the proposed algorithm, the number of candidate filters

obtained from MNIST training set images can reach up to nearly 17 million. The

36

number of candidates depends on the size of the filters and the number of training

images in the dataset. The number of image patches can be larger than 17 million if

the size of the filters is reduced from 5 × 5 pixel filters to 3 × 3 pixel filters or just by

using another dataset which has more training images than MNIST. The filter

extraction process cannot be fast if all of the possible image patches are used as filter

candidates in the filter discovery scheme proposed here. Therefore, an elimination

procedure is employed on the image patches to guarantee that the size of the

candidate set remains within an acceptable range, while retaining essential

information.

Whenever an image is picked from the training set, the process shown in

Algorithm 4.1 is used to extract the candidate filters. The image patches are cut out

with specific stride and shape by using Python library NumPy’s as_strided function.

After the execution of as_strided function, we obtain a set of patches which contains

(𝑛 − 𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 + 1)2 patches assuming that the image dimensions are n × n. This set

contains all possible image patches that can be extracted from that image. However,

not all of these patches enclose valuable information. Thus, the patches which have

variance value of 0 are discarded because these patches do not contain useful data.

Even with this initial elimination, most of the remaining patches in the set do not

contain meaningful patterns if closely inspected. Some of the features are on the

sides or corners of the filter while the middle part of the filter is all black. This is

caused by including the patches that are cut out from the images in strides of 1

37

throughout the image. While the window is slid through the image, several pieces

that contains the same feature in different positions are cut out from the image and

added to the candidate filters set. Sometimes the candidate filter window can just

capture a couple of pixels from that feature in its corner.

The second elimination removes those kind of image patches from the

candidate filters set by just including the features that are positioned in the middle of

the patch window. This is accomplished by computing the Center of Gravity (CoG)

per image patch. If the determined CoG value is situated at a distance of up to ±0.5

pixels from the CoG of the image patch in both the horizontal and vertical axes, the

image patch is considered as a viable filter candidate. Otherwise, the current image

patch is discarded from the candidate filter set. CoG based elimination scheme

significantly reduces the number of candidate filters. These two elimination methods

applied on the image patches can be seen as an attention mechanism rather than a

preprocessing step. They ensure that focus is directed towards the features that are

relevant for extracting the crucial elements from the training images. After the

extraction of filters is completed, the filter weights are stored in a file to be later used

in CCNN model.

4.2.2 Unsupervised Learning Algorithm for Convolutional Layers of CCNN

Architecture

By executing the first step of the proposed method, we obtain the filter

candidates set. The next phase involves the identification of filters from the pool of

candidates. The aim is to start from a blank slate and dynamically discovering filters

from the training images for each convolutional layer.

The training algorithm described in Algorithm 4.2 operates on a layer-by-layer

basis, ensuring that the next convolutional layer is trained only once all possible

filters have been discovered for the previous layer. The process starts from the input

layer. The input layer L directly fed with the raw training images I from the selected

dataset. The training images I is processed by Algorithm 4.1 and the candidate

patches are stored in C. The discovery of the first filter is a special case since the

convolutional layer start with no filters. The algorithm relies on the similarity

between a candidate filter patch and convolutional layer filters. Thus, the first

candidate filter patch in 𝑪𝟎 directly becomes the first discovered filter for the empty

38

convolutional layer and added as a filter to this layer. Supporter count (vote) variable

�⃗� , which is crucial for the weight update rule of the proposed approach, for this

filter is also set as 1. The number of supporters represents the frequency with which

the related filter is selected as the representative (winner) for another candidate filter

patch. The number of filters η for this layer is incremented by 1.

After the special case of discovering the first filter of the current convolutional

layer, the algorithm incorporates a competitive method to discover the remaining

filters. All of the previously discovered convolutional layer filters competes to be the

representative of the remaining input candidate filters. The competition is based on a

similarity threshold and a similarity score. For each candidate filter patch, a

similarity score between the candidate and the filters of the convolutional layer is

calculated. If the filter and candidate are both vectors in the training space, then the

similarity between them can be calculated with dot product. The filter vectors and the

39

candidate vector normalized and dot product calculated between the unit vectors. The

calculated dot products are then stored in vector 𝑆 . The values inside the vector 𝑆 is

the similarity scores of each filter to the current candidate. Since the filters are

competing, the winner filter is the one which holds the highest similarity score.

However, just winning is not enough to be the representative of this candidate filter

patch. The similarity score also must be higher than the user specified similarity

threshold. If the score 𝑆𝑗⃗⃗⃗ is greater than the similarity threshold value, that means the

candidate filter is similar enough to the winner filter. The pattern in the candidate

filter 𝑪𝒊 is observed in the past. Thus, a new feature is not encountered but a

supporter of the winner filter is found among the candidates. Since a new supporter is

found for the winner filter, the winner filter adjusts its weights according to weight

update rule in Equation 4.1 and the algorithm increases the supporter count

associated with the filter by one (Equation 4.2).

𝐖𝐣

𝐋 = 𝐖𝐣
𝐋 +

𝐂𝐢 − 𝐖𝐣
𝐋

V⃗⃗ j
L + 1

 (4.1)

�⃗� 𝑗

𝐿 = �⃗� 𝑗
𝐿 + 1 (4.2)

If the highest score in 𝑆𝑗⃗⃗⃗ is below the similarity threshold value, it indicates that

the candidate filter 𝑪𝒊 contains a previously unobserved pattern according to the

algorithm. Consequently, 𝑪𝒊 is acknowledged as a novel filter for the current

convolutional layer, and its supporter count is set to 1. This procedure is iterated for

each candidate filter until the entire set is evaluated, signifying the completion of the

filter search for the current layer L. Once all the candidates have been processed, the

discovered filters undergo a normalization routine as the final step in the proposed

algorithm. As part of the normalization procedure, the filter weights are stretched to

fit within the range of [-1, 1]. Subsequently, the positive and negative filter weights

are individually updated using Equations (4.3) and (4.4) respectively. Finally, the

weights of the discovered filters are stored in a file upon the completion of Algorithm

4.2.

40

𝐖𝐣

𝐋(+)
← 𝐖𝐣

𝐋(+)
/ |∑𝑾𝒋

𝑳(+)
| (4.1)

𝐖𝐣

𝐋(−)
← 𝐖𝐣

𝐋(−)
/ |∑𝑾𝒋

𝑳(−)
| (4.2)

The Algorithm 4.2 is also applied to the subsequent convolutional layers in the

CCNN model. After the input layer, the process of extracting the filters from the data

slightly changes. The input data must now be the output of the previous

convolutional and pooling layers. Thus, except for the input layer, proposed

algorithm must obtain the feature maps from the previous layer’s output. However, to

do this, we first start by creating a Keras Sequential model. The convolutional layers

added with Conv2D layer of Keras. The normal operation for Conv2D constructor is

to get various input parameters the number of filters, weight initialization method,

activation function, bias value, convolution type, stride value, etc. and create the

convolutional layer. The weights of the filters are initialized randomly according to

the selected initialization scheme. However, in CCNN approach, the filters are

discovered before the CCNN model is built in Keras. Thus, the count of discovered

filters is set as the number of filters. The discovered filters are also at their trained

form, so they should not neither be initialized nor trained. Consequently, the filter

weights of the convolutional layer are determined by utilizing the output of the

Algorithm 4.2 and setting them using the set_weights method in Keras. After the

weights of the filters are set, the trainable parameter of the filters is set the False to

prevent the training of convolutional layer. If the CCNN model includes a max

pooling layer after the convolutional layer, it is created and appended to the

Sequential model.

41

CHAPTER 5

5. EXPERIMENTS

The proposed method is evaluated on different CCNN model architectures.

Handwritten digit datasets MNIST (LeCun, Cortes, 2010) and EMNIST-Digits (Co-

hen, Afshar, Tapson, van Schaik, 2017), handwritten Japanese character dataset

Kuzushiji-MNIST (Clanuwat et al., 2018), and fashion items dataset Fashion-MNIST

(Xiao, Rasul, Vollgraf, 2017) are utilized in the experiments. The following sections

discuss the model architecture, the experiment settings, the datasets, performance

metrics, experiment results and misclassified test samples.

5.1 Model Types

In the experiments, four different model types are utilized. The models are

called type A, B, C and D. Table 5.1 shows the general structure of the layers in the

CCNN models. We do not know the number of filters hyperparameter value in

advance so the number of filters will be different for each parameter setup per

dataset. Thus, the final models will be unique to the parameter settings. The max

pooling layers are configured to halve the input. Since our algorithm only touches the

feature extractor part of the CNN architecture, the classifier part of the models is all

set as the same. We configured two fully connected layers separated by a dropout

layer.

42

5.2 Experiment Setup

All models types (Table 5.1) in our experiments are implemented with Keras.

The deep learning backend is configured as Theano (Theano Development Team,

2016). We use Sequential model of Keras to build the CCNN models in Table 5.1.

After applying our algorithm, we obtain the filter weights for the convolutional

layers. These weights are used for initializing the convolutional layers in the

Sequential model. However, we freeze the weights so that they become untrainable

by Keras.

Table 5.1 CCNN networks that are used in the experiments with various datasets.

Convolutional layers either use 5 × 5 or 3 × 3 filters. Maxpooling is applied on the

feature maps on 2 × 2 windows with strides of 2. The size of the convolutional filters

is denoted with n while the maxpooling window size is shown with m.

Convolutional layer convolution mode is set as same to use zero-padding in

during the convolution operations. This ensures the preservation of input data

dimensions. Pooling layers are configured to apply max pooling operation on 2 × 2

windows with strides of 2. This allows dimensions of the inputs to be halved. Keras

trains only the fully connected layers for 50 epochs. Two fully connected layers of

1000 and 500 neurons separated by a Dropout layer with a 50% drop rate in between

is configured. The activation function used in the experiments is ReLU. The only

exception is the output layer where we used Softmax. The output layer is configured

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Classifier

A
Conv

𝑛𝑥𝑛

MaxPool

𝑚𝑥𝑚

Conv

𝑛𝑥𝑛
- -

D
en

se
 (

1
0
0
0

)

D
ro

p
o
u
t

(5
0
%

)

D
en

se
 (

5
0
0

)

O
u
tp

u
t

(1
0
) B

Conv

𝑛𝑥𝑛

Conv

𝑛𝑥𝑛

MaxPool

𝑚𝑥𝑚
- -

C
Conv

𝑛𝑥𝑛

MaxPool

𝑚𝑥𝑚

Conv

𝑛𝑥𝑛

MaxPool

𝑚𝑥𝑚

Conv

𝑛𝑥𝑛

D
Conv

𝑛𝑥𝑛

Conv

𝑛𝑥𝑛

MaxPool

𝑚𝑥𝑚

Conv

𝑛𝑥𝑛

Conv

𝑛𝑥𝑛

43

with 10 units. Loss is calculated with categorical cross-entropy and the weights of

the fully connected layers are updated with Adadelta (Zeiler, 2012). We used an entry

level desktop computer for the experiments which carries a 3.6 GHz Intel Core i7

7700 CPU and a single GTX1050 GPU with 2GBs of VRAM.

5.3 Datasets

The following sections will introduce the datasets that are used in the

experiments. Note that the datasets are used as it is. We do not apply preprocessing to

the dataset or increase the training set image count by using data augmentation.

5.3.1 MNIST

MNIST is a collection of labeled handwritten digits images. The dataset

comprises a training set containing 60000 images and a separate test set containing

10000 images. In our experiments, we partitioned the training set into 50,000 training

images and 10,000 validation images. The validation set was randomly chosen and

extracted from the original training set. It is important to note that both the training

and validation sets exhibit an imbalanced class distribution, resulting in varying

sample counts across different classes due to random sampling performed during the

separation of the validation sets.

5.3.2 EMNIST-Digits

EMNIST-Digits is a collection of handwritten digit images, similar to the

original MNIST dataset, but with an extended range of characters. EMNIST-Digits

consists of 10 classes representing the digits 0-9 as in MNIST. It provides a larger

and more diverse set of handwritten digit samples in contrast to the original MNIST

dataset. The EMNIST-Digits consists of 240000 training and 40000 test images. In

the training set, the last 40000 images have been specifically designated as a

validation set (Cohen et al., 2017). This validation set has been organized in a way

that ensures a balanced distribution of classes.

44

5.3.3 Kuzushiji-MNIST

The Kuzushiji-MNIST dataset is tailored to capture the distinct features of old

cursive Japanese handwriting. It consists of ten distinct hiragana classes. Each

hiragana character in cursive Japanese can have multiple variations since they are

derived from different kanji characters. As a result, each class in the dataset is

represented by several characters that exhibit entirely different writing styles. Due to

the substantial intraclass variations, this dataset poses a significant challenge in

contrast to the original MNIST dataset. The image counts for the training, validation,

and test sets in Kuzushiji-MNIST is identical to the original MNIST dataset. A

validation set is generated by randomly selecting and separating a portion from the

original training set. Consequently, both the training and validation sets exhibit an

imbalanced distribution of classes, with varying numbers of samples across different

classes.

5.3.4 Fashion-MNIST

Fashion-MNIST is a dataset designed as a substitute for MNIST, but with a

focus on fashion-related images. It comprises a training set containing 50000 images

and a distinct test set consisting of 10000 images. To ensure consistency with the

MNIST dataset, we follow the same procedure to partition the Fashion-MNIST

dataset into training, validation, and test sets.

5.4 Performance Metrics

Performance metrics accuracy, precision, recall, specificity and F1-score are

calculated with Equations 5.1-5.5. For calculating these metrics for a class 𝑐𝑖, we use

the following definitions:

• True Positive (TP): the count of images belonging to class 𝑐𝑖 that are

accurately recognized as class 𝑐𝑖;

• True Negative (TN): the count of images belonging to other classes and are

correctly identified as other classes;

• False Positive (FP): the count of images belonging to other classes but are

incorrectly identified as class 𝑐𝑖;

45

• False Negative (FN): the count of images belonging to classes ci but

incorrectly identified as other classes.

In addition, we provide a comprehensive assessment by reporting the overall

accuracy of all the models.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (5.1)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.2)

𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.3)

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.4)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.5)

5.5 Experiment Details

To evaluate the performance of our proposed method, we run experiments by

using different values of similarity threshold. The similarity threshold value is chosen

within the range of [0, 1], representing the spectrum from dissimilar to exact match.

The threshold values are determined through a grid search process with steps of 0.1.

This approach restricts the search space to the specific values listed as: 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Performance is adversely affected when the similarity

threshold is set below 0.5, as setting the similarity threshold too low leads to a

considerable reduction in the number of filters obtained from the datasets. We

deliberately refrain from employing any preprocessing or data augmentation

techniques to evaluate our proposed algorithm in isolation. Each model type is used

for each dataset. A total of five training runs are conducted for each individual

model, and only the performance metrics of the top-performing CCNN model are

reported in the following sections. …………………………………………………...

46

CHAPTER 6

6. RESULTS

6.1 MNIST Experiment Results

Each model listed in Table 5.1 are evaluated using different combinations of

similarity thresholds. The experiments reveal that 5 × 5 filters yield higher accuracy

compared to smaller 3 × 3 filters. Among these models, Model A exhibits the highest

classification performance achieved on the MNIST dataset, achieving an accuracy of

99.19%, as presented in Table 6.1. The process of extracting filters for the

convolutional layers and the top-performing model is trained in a time frame of 30

minutes.

Table 6.1 Extracted filter counts and the test accuracy of individual models on

MNIST dataset.

Model

Type

Similarity

T1 T2

Threshold (T)

T3 T4

Fil

FC1

lter Cou

FC2

unt (FC)

FC3 FC4

Accuracy(%)

A 0.6 0.5 - - 97 54 - - 99.19

B 0.6 0.5 - - 97 117 - - 99.18

C 0.6 0.6 0.7 - 97 120 67 - 98.34

D 0.6 0.5 0.6 0.7 97 117 101 145 97.45

47

Out of the 10000 test images, the model makes 81 incorrect predictions. The

confusion matrix, shown in Table 6.2, provides an overview of the model’s

performance. It is noteworthy that the digit class that is most accurately predicted by

the model is 1, while the most commonly confused class is 9.

Table 6.2 The confusion matrix represents the performance of Model A on the MNIST

dataset.

48

Table 6.3 Performance metrics of Model type A for individual classes of MNIST

dataset.

6.2 EMNIST-Digits Experiment Results

Similar to the results obtained in the MNIST experiments, employing a filter

size of 5 × 5 leads to improved accuracy for the EMNIST-Digit experiments. Once

again, Model type A remains the best performing model, achieving an accuracy of

99.39% as presented in Table 6.4. ……………………………………………………

Classes Accuracy(%) Precision Recall Specificity F1-score

0 99.87 0.9929 0.9939 0.9992 0.9934

1 99.86 0.9921 0.9956 0.9990 0.9938

2 99.84 0.9913 0.9932 0.9990 0.9923

3 99.83 0.9911 0.9921 0.9990 0.9916

4 99.87 0.9949 0.9919 0.9995 0.9934

5 99.84 0.9921 0.9899 0.9992 0.9910

6 99.81 0.9896 0.9906 0.9989 0.9901

7 99.86 0.9922 0.9942 0.9991 0.9932

8 99.82 0.9928 0.9887 0.9992 0.9907

9 99.78 0.9901 0.9881 0.9989 0.9891

49

Table 6.4 Extracted filter counts and the test accuracy of individual models on

EMNIST-Digits dataset.

Out of the 40000 test images, our model makes 244 incorrect predictions. The

corresponding confusion matrix can be found in Table 6.5. It is noteworthy that the

digit 6 is the class with the highest accuracy in predictions, while digit 8 poses the

most significant challenge for the model, as indicated in Table 6.6.

Model

Type

Similarity

T1 T2

Threshold (T)

T3 T4

Fil

FC1

lter Cou

FC2

unt (FC)

FC3 FC4

Accuracy(%)

A 0.6 0.5 - - 145 116 - - 99.39

B 0.5 0.5 - - 78 161 - - 99.38

C 0.6 0.5 0.7 - 145 116 101 - 99.11

D 0.5 0.5 0.6 0.5 78 161 148 114 98.94

Table 6.5 The confusion matrix represents the performance of Model A on the

EMNIST-Digits dataset.

50

Table 6.6 Performance metrics of Model type A for individual classes of EMNIST-

Digits dataset.

6.3 Kuzushiji-MNIST Experiment Results

In the case of the Kuzushiji-MNIST dataset, a filter size of 3 × 3 proves to be

more effective compared to the use of a 5 × 5 filter size employed with the MNIST

and EMNIST-Digit datasets. The highest level of test accuracy is observed in model

type B with 95.03%, as presented in Table 6.7. ……………………………………

Classes Accuracy(%) Precision Recall Specificity F1-score

0 99.92 0.9955 0.9960 0.9995 0.9958

1 99.92 0.9958 0.9958 0.9995 0.9958

2 99.87 0.9910 0.9955 0.9990 0.9933

3 99.87 0.9965 0.9905 0.9996 0.9935

4 99.89 0.9960 0.9930 0.9996 0.9945

5 99.87 0.9940 0.9925 0.9993 0.9933

6 99.89 0.9930 0.9963 0.9992 0.9946

7 99.90 0.9950 0.9953 0.9994 0.9951

8 99.85 0.9950 0.9900 0.9994 0.9925

9 99.83 0.9881 0.9950 0.9987 0.9915

51

Table 6.7 Extracted filter counts and the test accuracy of individual models on

Kuzushiji-MNIST dataset.

In the test set predictions, a total of 497 errors are observed. The corresponding

confusion matrix for the best model can be found in Table 6.8.

Model

Type

Similarity

T1 T2

Threshold (T)

T3 T4

Fil

FC1

lter Cou

FC2

unt (FC)

FC3 FC4

Accuracy(%)

A 0.6 0.5 - - 51 48 - - 94.62

B 0.6 0.5 - - 51 67 - - 95.03

C 0.6 0.6 0.5 - 51 133 43 - 94.90

D 0.6 0.5 0.5 0.4 51 67 140 193 93.55

Table 6.8 The confusion matrix represents the performance of Model B on the

Kuzushiji-MNIST dataset.

52

Class 3 is the class with the highest accuracy in predictions, while class 2 poses

the most significant challenge for the model, as evidenced by a recall of 0.91, as

indicated in Table 6.9.

Table 6.9 Performance metrics of Model type B for individual classes of Kuzushiji-

MNIST dataset.

6.4 Fashion-MNIST Experiment Results

In the Fashion-MNIST experiments, it is observed that utilizing a filter size of

3× 3 yields improved results compared to the use of 5 × 5 filters. Model type B

emerges as the top-performing model, achieving an accuracy of 90.11%, as depicted

in Table 6.10. …………………………………………………………………………

Classes Accuracy(%) Precision Recall Specificity F1-score

0 99.16 0.9636 0.9520 0.9960 0.9578

1 98.99 0.9527 0.9460 0.9948 0.9493

2 98.40 0.9277 0.9110 0.9921 0.9193

3 98.99 0.9245 0.9790 0.9911 0.9510

4 98.71 0.9325 0.9390 0.9924 0.9357

5 99.23 0.9792 0.9430 0.9978 0.9608

6 99.11 0.9479 0.9640 0.9941 0.9559

7 99.36 0.9766 0.9590 0.9974 0.9677

8 99.10 0.9452 0.9660 0.9938 0.9555

9 99.01 0.9564 0.9440 0.9952 0.9502

53

Table 6.10 Extracted filter counts and the test accuracy of individual models on

Fashion-MNIST dataset.

Table 6.11 The confusion matrix represents the performance of Model B on the

Fashion-MNIST dataset. The classes are assigned to numbers ranging from 0 to 9. In

order, the class labels correspond to Tshirt/top, Trouser, Pullover, Dress, Coat, San-

dal, Shirt, Sneaker, Bag, and Ankle boot.

Model

Type

Similarity

T1 T2

Threshold (T)

T3 T4

Fil

FC1

lter Cou

FC2

unt (FC)

FC3 FC4

Accuracy(%)

A 0.7 0.7 - - 92 48 - - 88.80

B 0.7 0.6 - - 92 40 - - 90.11

C 0.7 0.7 0.6 - 92 48 44 - 85.55

D 0.7 0.7 0.5 0.5 92 62 47 18 86.92

54

Table 6.12 Performance metrics of Model type B for individual classes of Fashion-

MNIST dataset.

6.5 Filters Discovered via Proposed Unsupervised Process

6.5.1 MNIST Dataset

Figure 6.1 illustrates the filters obtained from the first layer of Model A trained

with MNIST dataset. The extracted filters demonstrate noticeable directed edges and

curves. These filters extracted through proposed algorithm effectively represent the

visual characteristics inherent in the dataset, as depicted in Figure 6.1.One intriguing

finding is that a number of our features exhibited convergence towards Gabor-like

filters, which have been extensively studied and employed in various research

studies.

Classes Accuracy(%) Precision Recall Specificity F1-score

Tshirt/top 97.06 0.8368 0.8770 0.9810 0.8565

Trouser 99.66 0.9899 0.9760 0.9989 0.9829

Pullover 96.46 0.8337 0.8070 0.9821 0.8201

Dress 98.02 0.8878 0.9180 0.9871 0.9027

Coat 96.38 0.8282 0.8050 0.9814 0.8164

Sandal 99.63 0.9859 0.9770 0.9984 0.9814

Shirt 94.91 0.7508 0.7350 0.9729 0.7428

Sneaker 99.19 0.9483 0.9720 0.9941 0.9600

Bag 99.55 0.9732 0.9820 0.9970 0.9776

Ankle boot 99.36 0.9737 0.9620 0.9971 0.9678

55

6.5.2 EMNIST-Digits Dataset

Figure 6.1 First layer filters of Model A trained with MNIST dataset.

Figure 6.2 First layer filters of Model A trained with EMNIST-Digits dataset.

56

The EMNIST dataset serves as an extended version of the MNIST dataset,

which is why certain filters extracted from the training set of EMNIST-Digits (refer

to Figure 6.2) are either identical or highly similar to those depicted in Figure 6.1.

6.5.3 Kuzushiji-MNIST Dataset

In the experiments conducted on the Kuzushiji-MNIST dataset, utilizing 3 × 3

filters for filter extraction yields higher classification accuracy when compared to 5 ×

5 filters. Figure 6.3 displays the filters obtained from the training set for the initial

convolutional layer. From the extracted filters, one can observe the presence of

directed edges and fragments of curved strokes.

6.5.4 Fashion-MNIST Dataset

The filters obtained from the Fashion-MNIST dataset capture notable features

such as directed edges and corners. In comparison, the MNIST and EMNIST-Digits

datasets have a higher number of filters that effectively capture smooth curves,

reflecting the prevalence of curved characteristics in the digits as opposed to the

fashion items present in the Fashion-MNIST dataset. The extracted filters are

visually represented in Figure 6.4.

Figure 6.3 First layer filters of Model B trained with Kuzushiji-MNIST dataset.

57

6.5.5 Extracted Filters in Subsequent Layers

Visualizing the filters in the initial convolutional layer is straightforward since

their input weights correspond to specific features and can be easily reshaped to

reconstruct images. However, as we delve deeper into subsequent layers, the weights

no longer directly map to the input pixels. Therefore, a method is employed to

visualize the features in these deep layers, allowing for a more comprehensive

understanding of the features extracted by our algorithm.

Once the training process is completed, the trained model is employed to

generate feature maps for each image in the training set at a designated layer. For

Figure 6.4 First layer filters of Model B trained with Fashion-MNIST dataset.

Figure 6.5 The visualization illustrates the collection of 54 features obtained from

the MNIST training images using Model type A in the second layer.

58

every training image, the pixel with the highest value across all feature maps is

identified and marked. The coordinates of this pixel are then traced back to the

original training image, and the corresponding region containing the feature that

most strongly activates the specific filter is highlighted. This process is exemplified

in Figure 6.5 using the MNIST dataset. The visualization in Figure 6.5 implies that

the filters are specialized in detecting features that progressively evolve to represent

more intricate characteristics. These intricate features correspond to various parts of

the digits, such as closed loops and curves, which are prevalent in digit

representations.

6.6 Samples with Incorrect Classification

6.6.1 Incorrectly Classified MNIST Samples

Model type A demonstrates exceptional performance in correctly classifying

digit 1 samples from the MNIST dataset, with only 5 misclassifications out of 1135

digit 1 samples in the test set.

The misclassified digit 1 samples are displayed in Figure 6.6. The second,

fourth, and fifth images are erroneously labeled as digit 6. We can attribute this to the

slight angle and curvature of the digit strokes, as well as the presence of artifacts in

the samples, which may have caused confusion in the prediction. The first and third

misclassified images are relatively straightforward for human observers to identify

correctly; however, the trained model assigns the labels 2 and 3 to them,

correspondingly. It is worth noting that these misclassifications may stem from the

presence of certain fundamental features shared with other digit 2 samples, leading to

an incorrect classification. Upon examining the top-2 predictions for each of these

test samples, it is observed that the second most probable prediction is digit 1, with a

confidence level very close to the top-1 prediction.

59

Figure 6.6 The test images belonging to digit class 1 from the MNIST dataset are

inaccurately classified by Model A. Among these images, the second, fourth, and

fifth samples are mistakenly labeled as 6, potentially due to the presence of artifacts

and curved elements within the images

Figure 6.7 The test images belonging to digit class 9 from the MNIST dataset are

inaccurately labeled by Model A.

60

The model’s weakest performance is observed in the classification of digit 9 in

the MNIST test set. The model demonstrates a tendency to assign varying labels in

accordance with distinct writing styles. For images with a small loop diameter, the

model tends to assign labels of either digit 1 or 7, determined by the length of the

loop, as the loop feature becomes less distinguishable or entirely obscured during the

convolution and pooling operations. The first image in the second row presents an

intriguing case where the lower half of the digit is clipped, leading to an image that is

unidentifiable. All predictions for digit 4 are assigned to unconventional digit 9

samples. Among these, only one is correctly identified as digit 9 by a human

observer.

6.6.2 Incorrectly Classified EMNIST-Digits Samples

Our model achieves the highest prediction accuracy when classifying samples

from the EMNIST-Digits test set that belong to the digit 6. However, there are

instances where our model incorrectly predicts the labels, as depicted in Figure 6.8.

Out of the 4000 test samples consisting of the digit 6, our model makes 15 incorrect

Figure 6.8 Misclassified images from the digit class 6 in the EMNIST-Digits

dataset, as predicted by Model A.

61

predictions. Interestingly, some of these mispredicted samples bear no resemblance

to the digit 6 at all. In fact, one of the samples even contains a two-digit number 66

instead of a single digit 6. The presence of rotation and missing parts, caused by

cropping, influence the model to favor predicting digit 4. Additionally,

mispredictions of digit 0 are also common. Upon analyzing the top-2 predictions, we

observe that digit 6 is the subsequent prediction in 12 out of 15 cases.

The digit class 8 exhibits the poorest prediction performance, as Model A

incorrectly labels 40 out of 4000 digit 8 images from the EMNIST-Digits test set. In

Figure 6.9, we can observe several mispredicted images that lack crucial parts of the

digit, making correct classification challenging. Notably, digit 8 is frequently

misclassified as digit 9. Upon closer inspection, it becomes evident that 4 of these

mispredicted images lack a loop in the lower half of the digit 8. This absence of a

prominent curve in the expected location is a common characteristic of these

inaccurate predictions. Moreover, some of the misclassified samples do not even

resemble digit 8 in any discernible way. Interestingly, when considering the top 2

predictions, digit 8 emerges as the second most likely prediction for 22 out of the

mispredicted images.

Figure 6.9 The test images belonging to digit class 8 from the EMNIST-Digits

dataset are inaccurately labeled by Model A.

62

6.6.3 Incorrectly Classified Kuzushiji-MNIST Samples

Among all the classes, our best model attains the highest classification

performance on class 3 with only 21 prediction errors. However, there is a frequent

confusion between class 3 and class 2, leading to mislabeling during testing. The

images depicted in Figure 6.10 exhibit features that bear resemblance to other

classes, which further complicates the prediction process. Class 3 emerges as the

runner-up prediction for 13 of the misclassified images.

Class 2 poses the greatest confusion for the model, as it frequently

misclassifies class 2 images as class 3. Upon closer examination of the mislabeled

images, it becomes apparent that many of them exhibit features reminiscent of class

2 samples (Figure 6.11). It is worth noting that for 55 of these samples, the second

most accurate prediction corresponds to the correct class.

Figure 6.10 Misclassified images from the class 3 in the Kuzushiji-MNIST

dataset, as predicted by Model B.

63

6.6.4 Incorrectly Classified Fashion-MNIST Samples

The model achieves its best performance when encountering samples from the

Bag class. Out of the 1000 test images of bags, 18 are misclassified. Figure 6.12

displays some of these mislabeled test samples belonging to the Bag class. For

instance, in the first row, the second image is incorrectly predicted as a Pullover. The

bag image contains two elements that resemble long sleeves, which could have led to

the misleading prediction in this particular case. The model frequently confuses Bag

class images with Dress class images. Upon examining the second-best predictions

Figure 6.11 The test images belonging to digit class 2 from the Kuzushiji-MNIST

dataset are inaccurately labeled by Model B.

64

for these images, only 2 are correctly identified. Since the Fashion-MNIST images

are derived by downsampling colored fashion articles into the MNIST format, many

details and features of the objects are lost. The utilization of higher-resolution images

could potentially alleviate some of the errors observed in the tests.

The Shirt class poses the greatest challenge for the model, with 265 test

samples misclassified. Figure 6.13 displays some of the incorrectly predicted Shirt

images. The model often confuses Shirt samples with those from the T-shirt/Top

class. Upon closer inspection, it becomes apparent that the model has learned to

associate fashion articles lacking sleeves or with shorter sleeves with the T-shirt/Top

category. Analyzing the top-2 predictions reveals that 196 out of the 265

misclassified samples are correctly identified as Shirts. ……………………………..

Figure 6.12 The test images belonging to the Bag class that were misclassified.

Figure 6.13 The mislabeled test images from the Shirt class, which were incorrectly

classified as similar classes by Model B.

65

CHAPTER 7

7. DISCUSSION

Our method employs a unique training approach for the convolutional layers,

utilizing unsupervised learning without the use of backpropagation. In contrast, the

fully connected layers are trained using a supervised approach. Unlike previous

studies that either trained the network entirely in a supervised manner, or relied on

unsupervised learning with pseudo-label backpropagation, or a combination of

unsupervised feature learning for initialization with supervised backpropagation, our

method offers distinct advantages. In comparison to supervised methods, our

approach does not require any labels for training the convolutional layers since we do

not employ backpropagation in the training process. Moreover, our method has the

advantage of extracting filters without the need for prior domain knowledge. This

sets it apart from self-supervised learning methods that rely on the crafting of pretext

tasks, which necessitates domain knowledge for satisfactory performance. While our

method may resemble unsupervised pre-training, which is typically used for weight

initialization, we do not utilize the extracted filters for initialization. This is because

we steer clear of supervised training in the convolutional layers. …………………...

66

Table 7.1 Comparison between previous works and our method for the number of

epochs of training needed for convolutional filters, whether data augmentation and

ensemble of networks are used. The legend of the table: ✓: applied, × : not applied,

NA: no information available.

7.1 Comparison of Performance Against Other Studies

We evaluate the performance of our proposed method and compare it with un-

supervised (Table 7.2), mixed (Table 7.3), and supervised (Table 7.4) approaches. In

contrast to our method, other approaches utilize data augmentation, ensembles, and

substantial number of training epochs combined with backpropagation to improve

their results. A summary of these methods can be found in Table 7.1.

7.1.1 Comparison of Performance Against Unsupervised Studies

The highest reported classification accuracy achieved by unsupervised methods

for the MNIST dataset is 99.21% (Mahon, Lukasiewicz, 2021), as indicated in Table

7.2. This accuracy is obtained by leveraging an ensemble of 15 AEs which form

clusters. These clusters are associated with k-sets of pseudo-labels, and a consensus

function picks the points that are assigned the same pseudo-label in all k-sets for

training a Multilayer Perceptron (MLP) using pseudo-labels. The potency of this

technique resides in the combined force of the AEs in the ensemble. However, when

a single AE is used instead of an ensemble, the accuracy drops to 98.02%, which is

Method Data Augmentation Ensemble Backpropagation Epochs

HVC (Byerly, Kalganova, Dear, 2021) ✓ ✓ ✓ 300

DropConnect (Wan, Zeiler, Zhang, LeCun,, Fergus, 2013) ✓ ✓ ✓ 1000

MCDNN (Ciresan, Meier, Schmidhuber, 2012) ✓ ✓ ✓ 800

OptConv+Log+Perc (Pad et al., 2020) ✓ × ✓ 1000

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) ✓ ✓ ✓ NA

SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) ✓ × ✓ NA

CAE (Masci, Meier, Cires¸an, Schmidhuber, 2011) × × ✓ NA

Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) NA × ✓ 200

SPC-best ensemble(Mahon, Lukasiewicz, 2021) × ✓ ✓ NA

SPC-best single (Mahon, Lukasiewicz, 2021) × × ✓ NA

k-Sparse AE (Makhzani, Frey, 2014) NA × ✓ 5000

Disentangled (Agarap, Azcarraga, 2020) × × ✓ 50

Ours × × × 1

Ours ensemble × ✓ × 1

Ours init. + train × × ×(init.) + ✓(train) 1 (init.) + 50 (train)

67

inferior to our proposed method. To ensure a fair comparison, we construct an

ensemble comprising the top-3 performing Model type A networks obtained from our

proposed method. This ensemble achieves a higher accuracy of 99.28% on the test

set compared to (Mahon, Lukasiewicz, 2021).

A different unsupervised approach, known as the k-sparse AE (Makhzani, Frey,

2014), explores a training method where the extracted features are held constant, and

a logistic regression classifier is trained based on these features. Nonetheless, this

method achieves a comparatively lower accuracy of only 98.65% on the MNIST

dataset.

Table 7.2 Comparison of the proposed method with other unsupervised studies.

 SPC-best achieves the highest unsupervised classification accuracy of 67.94%

on the Fashion-MNIST dataset. Other unsupervised methods, which yield lower

accuracy, are not included in Table 7.2.

As far as our knowledge extends, there are no existing unsupervised studies

conducted on the EMNIST-Digits or Kuzushiji-MNIST datasets in the literature.

7.1.2 Comparison of Performance Against Mixed Studies

Masci et al. (Masci et al., 2011) employ a CAE to extract features in an

unsupervised manner, which are then utilized to initialize a CNN. Subsequently, the

CNN undergoes end-to-end training in a supervised manner, achieving a

classification accuracy of 99.29%. Although there are similarities between this

method and our proposed approach, we differ in the utilization of extracted features.

Unlike Masci et al., we neither use the features for initialization nor subject them to

Method MNIST F-MNIST

SPC-best ensemble (Mahon, Lukasiewicz, 2021) 99.21 67.94

SPC-best single (Mahon, Lukasiewicz, 2021) 98.02 59.23

k-sparse AE (Makhzani, Frey, 2014) 98.65 -

Ours 99.19 90.11

Ours ensemble 99.28 90.43

68

further training. Another related method (Makhzani, Frey, 2014) achieves an

accuracy of 99.03% by extracting features using a sparsity constraint on the AE,

followed by fine-tuning in a supervised manner.

Table 7.3 Comparison of the proposed method with other mixed studies.

 To ensure a fair comparison between our algorithm and the mixed studies

(Makhzani, Frey, 2014; Masci et al., 2011), we employ the filters obtained from our

algorithm to initialize the convolutional filters. Subsequently, we fine-tune the CNN

model A (as shown in Table 5.1) using backpropagation. The performance of this

model, referred to as “Ours init. + train,” is reported in Table 7.3. We achieve a

higher accuracy than the mixed studies, attaining an accuracy of 99.43% on the

MNIST test set.

The top performance among the mixed methods on the Fashion-MNIST dataset

is documented in (Agarap, Azcarraga, 2020). They achieve an accuracy of 85.60% by

training an AE and employing k-means clustering with a soft nearest neighbor loss,

which relies on data labels. In comparison, our “Ours init. + train” model achieves a

performance that surpasses (Agarap, Azcarraga, 2020) by 6.33% without utilizing

data augmentation.

7.1.3 Comparison of Performance Against Supervised Studies

The current highest accuracy achieved for the MNIST dataset is 99.83%,

accomplished through the supervised training of capsule networks (Byerly,

Kalganova, Dear, 2021). We mention this result to highlight the highest classification

accuracy attained among all methods for MNIST. However, our architecture differs

Method MNIST F-MNIST

CAE (Masci, Meier, Cireşan, Schmidhuber, 2011) 99.29 -

Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) 99.03 -

Disentangled (Agarap, Azcarraga, 2020) 96.20 85.60

Ours 99.19 90.11

Ours init. + train 99.43 91.93

69

from (Byerly et al., 2021) and does not involve capsules, making a direct comparison

inappropriate. Similar in architecture, DropConnect (Wan, Zeiler, Zhang, LeCun,

Fergus, 2013) and MCDNN (Ciresan, Meier, Schmidhuber, 2012) methods both

present outcomes achieved by utilizing ensembles of networks with the aid of data

augmentation. In the absence of data augmentation, the performance of

DropConnect’s 5-network ensemble decreases to 99.43% after training for 1000

epochs. In contrast, our model offers a compelling alternative with a simpler

architecture, omitting the need for an ensemble. It trains much faster, requiring just a

single epoch to train the convolutional layers, while still achieving an accuracy of

99.19%.

Table 7.4 Comparison of the proposed method with other supervised studies.

The current highest performance achieved on the EMNIST-Digits dataset is

reported by the supervised OptConv+Log+Perc method (Pad et al., 2020), achieving

an accuracy of 99.43%. This method applies a large optical convolution with

logarithmic activation followed by perceptron training on the images. The study

presented in (Pad et al., 2020) relies on a specialized camera setup to attain its

optimal performance, in contrast to our study which utilizes the raw dataset images.

Unlike our approach, data augmentation is applied during training in (Pad et al.,

2020). Our highest-performing model attains an accuracy of 99.39% on the

EMNIST-Digits test set, as demonstrated in Table 6.4. This accuracy value is on par

with the current leading performance. To ensure a fair comparison, when we continue

training the extracted filters, we notice that our model achieves a higher accuracy of

99.63%, surpassing the accuracy of (Pad et al., 2020). ……………………………

Method MNIST EMNIST-Digits K-MNIST F-MNIST

HVC (Byerly, Kalganova, Dear, 2021) 99.83 - - 93.89

DropConnect (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.79 - - -

DropConnect no aug. (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.43 - - -

MCDNN 35-net (Ciresan, Meier, Schmidhuber, 2012) 99.77 - - -

MCDNN 1-net (Ciresan, Meier, Schmidhuber, 2012) 99.53 - - -

OptConv+Log+Perc (Pad et al., 2020) - 99.43 - -

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.78 - 99.05 94.34

CAMNet3 no aug. (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.47 - 97.48 93.00

SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) - - - 96.41

Ours 99.19 99.39 95.03 90.11

Ours init. + train 99.43 99.63 96.48 91.93

70

Model B achieves the highest performance on the Kuzushiji-MNIST dataset,

with an accuracy of 95.03% (refer to Table 6.7). This accuracy is comparable to the

performance of a simple CNN, which achieves 95.12% accuracy as reported in the

original Kuzushiji-MNIST paper (Clanuwat et al., 2018). Unlike the MNIST dataset,

Kuzushiji-MNIST exhibits significant intraclass variations, where samples belonging

to the same class may not resemble each other. This inherent variation poses a

challenge for classification, especially without data augmentation. The current state-

of-the-art accuracy on the Kuzushiji-MNIST dataset is 99.05%, achieved by

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019). However,

CAM-Net3 differs significantly from our architecture. It is a multipath CNN that

dynamically routes data flow to different parallel networks based on image content.

This unique design of CAMNet3 allows it to better capture the intraclass variation

present in Kuzushiji-MNIST compared to the conventional CNN architecture used in

our experiments. By utilizing the filters extracted from the unsupervised training

phase to initialize the convolutional layers and then applying backpropagation, we

achieve a performance boost in the model, resulting in an accuracy of 96.48%

without the need for data augmentation.

In contrast to MNIST, the Fashion-MNIST dataset presents more intricate

features, greater intraclass variations, and similarities between classes. Consequently,

we anticipate a decline in classification performance compared to that of MNIST.

The current state-of-the-art accuracy achieved on the Fashion-MNIST dataset is

attained by a supervised network, reaching an accuracy of 96.41% (Foret, Kleiner,

Mobahi, Neyshabur, 2021). The approach in (Foret et al., 2021) incorporates Wide-

Res-Net-28-10 (Zagoruyko, Komodakis, 2016) and Shake-Shake (Gastaldi, 2017)

regularization techniques, along with data augmentation methods.

7.2 Proof of Linear Independence of the Extracted Filters

The proposed algorithm claims to extract enough number of filters that are

necessary to cover the feature space spanned by the given dataset. To prove this

claim, it is important to analyze the extracted filters. It can be proved that the set of

the extracted filters span the dataset’s feature space by proving that the filters are

linearly independent.

71

Gram-Schmidt orthogonalization process is defined over linearly independent

set of vectors to form an orthogonal basis. Whenever there exist an unnecessary (i.e.,

linearly dependent) vector in a given set, Gram-Schmidt orthogonalization process

outputs zero vector. The goal of the Gram-Schmidt process is to construct an

orthogonal set. Thus, a linearly dependent vector does not contribute to the

orthogonal basis because it lies in the subspace spanned by the previous vectors. In

practical terms, if there exist a set of linearly independent vectors {𝑣1, 𝑣2, … , 𝑣𝑛}, and

one of the vectors 𝑣𝑘 is linearly dependent on the previous vectors, the Gram-

Schmidt process would produce an orthogonal set {𝑢1, 𝑢2, … , 𝑢𝑘−1, 𝑢𝑘+1, … , 𝑢𝑛},

where 𝑢𝑘+1 corresponds to the vector that was originally after 𝑣𝑘.

𝑢𝑖 = 𝑣𝑖 − ∑
𝑢𝑘 ⋅ 𝑣𝑖

‖𝑢𝑘‖2
𝑢𝑘

𝑖−1

𝑘=1

 (7.1)

After obtaining the filters through Algorithm 4.2, we apply Gram-Schmidt

orthogonalization process by using Equation 7.1 for each convolutional layer. The

orthogonal basis formed by applying the process does not omit any of the original

filters. Thus, we conclude that the set of filters obtained by running Algorithm 4.2 is

linearly independent. The absence of a zero-vector output from the process proves

that our claims are correct.

7.3 Proof of Independence over the Order of Candidate Processing for Filter

Extraction

Algorithm 4.2 takes each candidate from the candidates set and compares its

similarity against the filters of the current layer. One might ask whether the order of

processing the candidates can impact the filter extraction and overall performance of

the proposed algorithm. To alleviate this concern, we designed further experiments

where the candidates set is shuffled just after the set is obtained from the input

images. To do this, we integrated a shuffle mechanism into the Algorithm 4.2

between step 5 and 6. For each image, we obtain the candidates set and then shuffle

the contents of the set. Thus, the order of the candidates that are processed at each

run of the algorithm is now random.

72

After adding shuffling of the candidates to the Algorithm 4.2, we repeat the

best performing experiment 50 times for each dataset mentioned in Section 5.3 to

observe whether there is a significant impact on the outcome due to the order of

Figure 7.1 Boxplot of the number of filters extracted from MNIST dataset for both

layers of Model A with candidate shuffling.

Table 7.5 Comparison of best performing model filter counts and test accuracy

before and after addition of candidate shuffling. The median of the 50 runs of the

experiments is also presented.

73

processing the candidates. We represent the distribution of the number of filters

extracted for each layer as a boxplot in Figure 7.1, 7.2, 7.3 and 7.4 for MNIST,

EMNIST-Digits, Kuzushiji MNIST and Fashion MNIST datasets respectively. The

number of filters for each layer in the best performing models per dataset is very

close to median of the shuffled candidate set experiments as shown in Table 7.5. We

also observed that the test accuracy of the models does not fluctuate much as shown

in Figure 7.5, 7.6, 7.7, 7.8. The variation in test accuracy across 50 runs with

candidate shuffling is insignificant. Thus, we conclude that the impact of order of

processing the candidates for filter extraction is negligible due to similar results

obtained in the experiments.

asd

Figure 7.2 Boxplot of the number of filters extracted from EMNIST-Digits dataset

for both layers of Model A with candidate shuffling.

74

Figure 7.3 Boxplot of the number of filters extracted from Kuzushiji-MNIST dataset

for both layers of Model B with candidate shuffling.

Figure 7.4 Boxplot of the number of filters extracted from Fashion MNIST dataset

for both layers of Model B with candidate shuffling.

75

Figure 7.5 Boxplot of the test accuracy distribution of Model A over 50 runs on

MNIST dataset with candidate shuffling.

Figure 7.6 Boxplot of the test accuracy distribution of Model A over 50 runs on

EMNIST-Digits dataset with candidate shuffling.

76

Figure 7.7 Boxplot of the test accuracy distribution of Model B over 50 runs on

Kuzushiji-MNIST dataset with candidate shuffling.

Figure 7.8 Boxplot of the test accuracy distribution of Model B over 50 runs on

Fashion MNIST dataset with candidate shuffling.

77

7.4 Comparison to Low-Capacity CNN

To gauge the performance of a low-capacity CNN against our proposed

models, we used lower similarity thresholds of 0.3 and 0.4. With these lower

threshold values, the number of filters extracted from the datasets dramatically drops.

For MNIST dataset, with 0.4 similarity threshold on Model A produces 23 and 21

filters for the convolutional layers respectively. The test accuracy of the model drops

to 98.95%. A CNN model which has the same architecture and parameter count is

constructed as the low-capacity CNN and trained in supervised manner with MNIST

dataset for 50 epochs. The low-capacity CNN achieved 99.21% test accuracy. When

we repeat the same comparison procedure on the other datasets, we again observed

that low-capacity CNN to perform 1 - 1.3% better than our method. The self-

organization of the filters in the proposed method relies on higher similarity

thresholds to capture more distinct features as we have already discussed them in

Chapter 6. Thus, it was expected to observe a drop in the classification performance

in our models. Low-capacity CNN models we trained seem to benefit from the fully

supervised training scheme but still there is not a huge performance margin between

the two approaches. …………………………………………………………………..

78

CHAPTER 8

8. CONCLUSION

Convolutional Neural Networks have become an indispensable tool for image

classification, computer vision and deep learning tasks in the last decade. This can be

attributed to how they are designed. CNN architecture is built around imitating the

mammal visual system. This architecture is made up from convolutional layers,

pooling layers, and fully connected layers which are developed based on the findings

on the visual cortex of mammals. The combination of these layers enabled automatic

extraction of the features from inputs to detect patterns in the data which eliminated

the need for an expert to extract the features. However, training a CNN relies on the

availability of a carefully constructed large labeled dataset because the training

process involves the exposure of labeled images to the network, followed by a

comparison of its predictions with the ground truth labels which is then used to

update the weights of the network via propagating the error signal backward in the

network. This process is iteratively repeated for a substantial number of epochs to

continuously update the weights until the desired performance is achieved. Thus, the

CNN gradually learns from the labeled data via backpropagation of errors to

recognize the patterns and to make correct predictions. However, it has not been

proved that the brain learns through backpropagation. Even though we build layers

based on the visual cortex structures, we rely on an unnatural learning procedure.

Backpropagation implies that the individual neurons in the visual cortex must store

the input data of the forward pass and then wait for the input data to move through all

neurons in the brain so that the connections to other neurons can be updated based on

backward pass of the derivatives of the errors. ……………………………………...

79

Even though the supervised training of CNNs is allowing state-of-the-art

results, its success depends on the availability of a large labeled dataset. There are a

couple of risks related to the usage of labeled datasets. The presence of biased or

mislabeled data in labeled datasets is a huge concern in the successful training of the

network. If there are mislabeled data in the dataset, the propagated error would be

incorrect and this would lead to improper updates on the network parameters,

negatively impacting the network performance via erroneous predictions. Similarly,

if the dataset contains bias in the representation of the classes, the network could

learn the bias between the classes which would lead to biased predictions.

Furthermore, gathering a large labeled dataset is a time-consuming and expensive. It

is also prone to labeling errors. Another risk that should be mentioned is not having a

sufficient number of samples in the labeled dataset. This could easily be a bottleneck

for the training of the network which could prevent the network from generalizing

well. Gradient based backpropagation algorithm requires large amount of data to

effectively train the network. These risks might be alleviated by carefully curating

the data to prevent biases or mislabeled data which would require a domain expert.

However, it is not easy to deploy domain experts to curate a large labeled dataset due

to monetary costs. Moreover, applicability of labels could not be possible in every

domain. Thus, it is imperative to search for alternative unsupervised learning

paradigms to remove the dependence on labeled data and backpropagation. Recently,

Hinton also pointed out that the backpropagation should be replaced with another

learning algorithm that is plausible with how the brain works. His alternative

approach to backpropagation removes the backward pass of the backpropagation

training with two forward passes by using the data labels as positive or negative for

weight updates. However, his proposal still uses derivatives and labels. This

dissertation introduces an alternative algorithm for unsupervised training of CNNs

(Erkoç, Eskil, 2023), specifically targeting the convolutional layers, without relying

on backpropagation. In Chapter 4, we proposed our algorithm. The training process

of the algorithm involves extracting novel features from a training set and iteratively

adjusting their weights, all in a single pass through the training set, without the need

for data labels. The entire filter extraction process is unsupervised and does not

require backpropagation. Each convolutional layer is assumed empty (i.e., no filters)

at the start of the process. The process starts with obtaining a set of filter candidates

from a given image dataset. Following the formation of candidates set, the first

80

candidate is selected as the first discovered filter for the current convolutional layer

because there are not any filters to compare against. The remaining filters are

subsequently identified from the pool of candidates using a similarity metric. The

similarity metric is calculated as the dot product of the candidates against the already

discovered filters of the current convolutional layer. The calculated similarity is then

compared against a similarity threshold which is a value from [0 − 1] which

corresponds to not similarity to identical scale. If the calculated similarity is lower

than the similarity threshold, then we accept this candidate as a new filter because

there is a feature in the candidate that is not similar to any discovered filters.

However, if the calculated similarity is higher than the similarity threshold, the

candidate is not a new observation. Thus, we find the filter that has the highest

similarity score to this candidate and update the weights of this filter with the

candidate’s. This process is repeated until the algorithm consumes all training

images. We showed that the proposed unsupervised algorithm alleviates the need for

labeled data to train the convolutional layers.

In supervised approaches, it is imperative to provide the number of filters of a

convolutional layer and initialize them appropriately before the training starts. After

the initialization of the filters, the backpropagation training for a large number of

epochs commences. However, the determined number of filters might not be enough

for representing the features in the dataset. In this case, hyperparameter optimization

techniques are typically utilized to determine the appropriate number of filters for the

convolutional layers. However, our proposed algorithm does not need the number of

filters hyperparameter to be set before the training because this hyperparameter value

is automatically determined by the filter extraction process. The self-discovery of the

filters with the proposed algorithm also eliminates the need to initialize the filter

weights with a proper weight initialization method. Furthermore, since the filter

weights are not initialized with random values from a distribution, they do not

require weight updates through backpropagation on multiple epochs. The proposed

algorithm only looks at the images in the dataset once to obtain candidates so

multiple forward and backward passes of the same data is no longer required to train

the convolutional layers.

The experiments outlined in Chapter 5 reveal encouraging outcomes on diverse

datasets without relying on data preprocessing, augmentation, or intricate

architectures. These findings highlight the possibility of training convolutional layers

81

using an unsupervised backpropagationless approach, where the training set images

are processed in a single pass, eliminating the need for extensive iterations as

required by supervised approaches. Moreover, the obtained results are on par with

the state-of-the-art achieved through supervised learning, employing a simpler and

more straightforward model that is easier to train.

Backpropagation alternatives for training neural networks is a novel research

area that is gaining interest. Currently, our proposed algorithm is the only method

which both omits data labels and backpropagation to train CNNs. Most of the

research in this area is based on the recent forward-forward algorithm by Hinton

(Geoffrey E. Hinton, 2022) which is still calculating derivatives based on data labels.

We showed that it is possible to train the feature extractor part of the CNN

architecture with a backpropagation free approach that does not use any labels.

However, there are still open issues that needs to be solved in the future. As a future

work, we should investigate how we can improve the classification performance

when there are too many intraclass variations. Another future direction that can be

investigated is the detection of anomalies in an unsupervised setting. Currently, the

proposed algorithm produces good results with grayscale images, and it is an

important direction for this research to extend this work to color images.

Furthermore, we only applied grid search for similarity threshold optimization. It

would be interesting to investigate the impact of hyperparameter optimization on

hyperparameters like filter_size and number of layers over the proposed CCNN

architecture.

82

REFERENCES

Agarap, A. F., Azcarraga, A. P. (2020) Improving k-means clustering performance

with disentangled internal representations. In 2020 international joint

conference on neural networks (ijcnn) (pp. 1-8) doi:

10.1109/IJCNN48605.2020.9207192.

Akı, K. K. E., Erkoc ,̧ T., Eskil, M. T. (2017). Subset selection for tuning of hyper-

parameters in artificial neural networks. In 2017 24th ieee international

conference on electronics, circuits and systems (icecs) (pp. 144–147).

Albus, J. S. (1971). A theory of cerebellar function. Mathematical biosciences, 10(1-

2), 25–61.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700

LECTU, 437–478. doi:10.1007/978-3-642-35289-8-26. arXiv: 1206.5533

Byerly, A., Kalganova, T., Dear, I. (2021). No routing needed between capsules.

Neurocomputing, 463, 74–80. doi:10.1016/j.neucom.2021.08.064

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P. (2016).

Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. In D. D. Lee, U. Luxburg, R. Garnett, M.

Sugiyama, and I. Guyon (Eds.), Nips’16: Proc. 30th int. conf. neural inf.

process. syst. (pp. 2180– 2188). Red Hook, NY, USA: Curran Associates.

Ciresan, D., Meier, U., Schmidhuber, J. (2012). Multi-column deep neural networks

for image classification. In proceedings of the 25th ieee conference on

computer vision and pattern recognition (cvpr) (pp. 3642–3649).

Cireşan, D. C., Meier, U., Gambardella, L. M., Schmidhuber, J. (2010). Deep, big,

simple neural nets for handwritten digit recognition. Neural Computation,

22(12), 3207–3220. doi:10.1162/neco_a_00052

Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M., Schmidhuber, J. (2011).

Flexible, high performance convolutional neural networks for image

classification. In Proceedings of the twenty-second international joint

conference on artificial intelligence – volume two (pp. 1237-1242). Barcelona,

Catalonia, Spain: AAAI. ……………………………………………………….

83

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.

(2018). Deep learning for classical japanese literature. CoRR,

abs/1812.01718.arXiV:1812.01718.

Cohen, G., Afshar, S., Tapson, J., van Schaik, A. (2017). Emnist: Extending mnist to

handwritten letters. In 2017 int. joint conf. neural netw. (ijcnn) (pp. 2921–

2926). Anchorage, AK, USA: IEEE.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y. (2014).

Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, K. Q. Weinberger (Eds.), Advances in neural information

processing systems 27 (pp. 2933–2941). Curran Associates.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 ieee conference on computer

vision and pattern recognition (pp. 248–

255).doi:10.1109/CVPR.2009.5206848

Denker, J., R. Gardner, W., Graf, H., Henderson, D., E. Howard, R., Hubbard, W.,

Jackel, L. D., Baird, H, Guyon, I. (1988). Neural network recognizer for hand-

written zip code digits. In D. Touretzky (Ed.), Advances in neural information

processing systems, 1 (pp. 323–331), Morgan-Kaufmann.

Doersch, C., Gupta, A., Efros, A. A. (2015). Unsupervised visual representation

learning by context prediction. In L. O’Conner (Ed.), Proc. 2015 ieee int. conf.

comput. vis. (iccv) (pp. 1422–1430). Los Alamitos, CA, USA: IEEE Comput.

Soc.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., Brox, T. (2014). Discriminative

unsupervised feature learning with convolutional neural networks. In Z.

Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.),

Proc. 27th int. conf. neural inf. process. syst., 1, (pp. 766–774). Cambridge,

MA, USA: MIT.

Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research,

12(61), 2121–2159.

Erkoç, T., Eskil, M. T. (2022). Unsupervised similarity based convolutions for hand-

written digit classification. In 2022 30th signal process. commun. appl. conf.

(siu) (pp. 1–4). doi:10.1109/SIU55565.2022.9864689

Erkoç, T., Eskil, M. T. (2023). A novel similarity based unsupervised technique for

training convolutional filters. IEEE Access, 11, 49393–49408. doi:10.1109/

ACCESS.2023.3277253

Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B. (2021). Sharpness-aware

minimization for efficiently improving generalization. Paper presented at the

meeting of 10th int. conf. learn. representations (iclr 2021), Vienna, Austria.

84

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36, 193–202.

Fukushima, K. (2003). Neocognitron for handwritten digit recognition.

Neurocomputing, 51, 161–180. doi:10.1016/S0925-2312(02)00614-8

Fukushima, K. (2013). Training multi-layered neural network neocognitron. Neural

Networks, 40, 18–31. doi:10.1016/j.neunet.2013.01.001

Fukushima, K. (2016). Margined winner-take-all: New learning rule for pattern

recognition. In 2016 international joint conference on neural networks (ijcnn)

(pp. 977–984). doi:10.1109/IJCNN.2016.7727304

Fukushima, K., Hayashi, I., Léveillé, J. (2014). Neocognitron trained by winner-kill-

loser with triple threshold. Neurocomputing, 129, 78–84.

doi:10.1016/j.neucom. 2012.05.038

Fukushima, K., Wake, N. (1991). Handwritten alphanumeric character recognition by

the neocognitron. IEEE Transactions on Neural Networks, 2(3), 355–365.

doi:10.1109/72.97912

Gastaldi, X. (2017). Shake-shake regularization. CoRR, abs/1705.07485. arXiv:

1705.07485.

Gidaris, S., Singh, P., Komodakis, N. (2018). Unsupervised representation learning

by predicting image rotations. Paper presented at the meeting of 6th int. conf.

learn. representations (iclr 2018), Vancouver, Canada.

Glorot, X., Bengio, Y. (2010). Understanding the difficulty of training deep feed-

forward neural networks. Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics (AISTATS), 9, 249–256.

doi:10.1.1.207.2059

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Bengio, Y. (2014). Generative adversarial nets. In Z. GhahramaniIn Z.

Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Q. Weinberger (Eds.),

Nips’14: Proc. 27th int. conf. neural inf. process. syst., 2, pp. 2672–2680).

Cambridge, MA, USA:MIT

He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the

2015 ieee international conference on computer vision (iccv) (pp. 1026–1034).

doi:10. 1109/ICCV.2015.123

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image

recognition. In 2016 ieee conference on computer vision and pattern

recognition (cvpr) (pp. 770–778). doi:10.1109/CVPR.2016.90

Hebb, D. (1949). The Organization of Behavior. A neuropsychological theory. The

Organization of Behavior, 911(1), 335. doi:10.2307/1418888

85

Hinton, G. E., Dayan, P., J Frey, B., M Neal, R. (1995) The “wake-sleep” algorithm

for unsupervised neural networks. Science, 268, 1158–61.

doi:10.1126/science.7761831

Hinton, G. E. (2002) Training products of experts by minimizing contrastive

divergence. Neural Computation, 14(8), 1771–1800. doi:10 . 1162 /

089976602760128018

Hinton, G. E. (2010) A Practical Guide to Training Restricted Boltzmann Machines A

Practical Guide to Training Restricted Boltzmann Machines. Computer, 9(3), 1.

doi:10.1007/978-3-642-35289-8 32

Hinton, G. E. (2022). The forward-forward algorithm: Some preliminary

investigations. doi:10.48550/ARXIV.2212.13345

Hinton, G. E., Osindero, S., Teh, Y.-W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18(7), 1527–1554. doi:10.1162/

neco.2006.18.7.1527

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen, (Doctoral

dissertation), Institut für Informatik, Tech. Univ. Munich, Munich.

Hou, B., Yan, R. (2018). Convolutional auto-encoder based deep feature learning for

finger-vein verification. In 2018 ieee int. symp. med. meas. appl. (memea) (pp.

1–5). doi:10.1109/MeMeA.2018.8438719

Hubel, D. H., Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s

striate cortex. Journal of Physiology, 148, 574–591. doi:10.1113/jphysiol.2009.

174151

Hutter, F. (2009). Automated Configuration of Algorithms for Solving Hard

Computational Problems (Doctoral dissertation), The Faculty of Graduate

Studies, The University Of British Columbia, Vancouver.

doi:10.14288/1.0051652.

Ito, M., Sakurai, M., Tongroach, P. (1982). Climbing fibre induced depression of

both mossy fibre responsiveness and glutamate sensitivity of cerebellar

purkinje cells. The Journal of Physiology, 324(1), 113–134.

Jaehoon, C., Kim, Y., Jung, H., Oh, C., Youn, J., Sohn, K. (2018). Multi-task self-

supervised visual representation learning for monocular road segmentation. In

L. O’Conner (Ed.), 2018 ieee int. conf. multimedia expo (icme) (pp. 1–6). Los

Alamitos, CA, USA: IEEE Comput. Soc.

Kaneko, H., Funatsu, K. (2015). Fast optimization of hyperparameters for support

vector regression models with highly predictive ability. Chemometrics and

Intelligent Laboratory Systems, 142, 64–69.

doi:10.1016/j.chemolab.2015.01.001

Keerthi, S. S., Lin, C.-J. (2003). Asymptotic Behaviors of Support Vector Machines

with Gaussian Kernel. Neural Computation, 15(7), 1667–1689. doi:10 . 1162 /

089976603321891855

86

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Technical Report TR-2009, University of Toronto, Toronto.

Krizhevsky, A., Sutskever, I., Geoffrey E., H. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. Advances in Neural Information

Processing Systems 25 (NIPS2012), 1–9. doi:10.1109/5.726791. arXiv:

1102.0183

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y. (2007). An empirical

evaluation of deep architectures on problems with many factors of variation.

Proceedings of the 24th international conference on Machine learning - ICML

’07, (2006), 473–480. doi:10.1145/1273496.1273556

Larsson, G., Maire, M., Shakhnarovich, G. (2016). Learning representations for

automatic colorization. In B. Leibe, J. Matas, N. Sebe, and M. Welling (Eds.),

Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 577–593). Cham: Springer In-

ternational.

Larsson, G., Maire, M., Shakhnarovich, G. (2017). Colorization as a proxy task for

visual understanding. In L. O’Conner (Ed.), 2017 ieee conf. comput. vis.

pattern recognit. (cvpr) (pp. 840–849). Los Alamitos, CA, USA: IEEE

Comput. Soc.

LeCun, Y., Bengio, Y., Hinton, G. E. (2015). Deep learning. Nature, 521, 436–44.

doi:10.1038/nature14539

Lecun, Y., Boser, B., Denker, J., Henderson, D., E. Howard, R., Hubbard, W., Jackel,

L. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1, 541–551. doi:10.1162/neco.1989.1.4.541

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323.

doi:10.1109/5.726791. arXiv: 1102.0183

LeCun, Y., Cortes, C. (2010). MNIST handwritten digit database. [Dataset] Retrieved

from http://yann.lecun.com/exdb/mnist/

Liao, R., Schwing, A., Zemel, R., Urtasun, R. (2016). Learning deep parsimonious

representations. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett

(Eds.), Nips’16: Proc. 30th int. conf. neural inf. process. syst. (pp. 5083–5091).

Red Hook, NY, USA: Curran Associates Inc.

Liu, X., Weijer, J., Bagdanov, A. D. (2019). Exploiting unlabeled data in cnns by

self-supervised learning to rank. IEEE Trans. Pattern Anal. and Mach. Intell.,

41, 1862–1878. doi:10.1109/TPAMI.2019.2899857

Lomo, T. (1966). Frequency potentiation of excitatory synaptic activity in dentate

area of hippocampal formation. In Acta physiologica scandinavica (p. 128).

Blackwell Science; Oxford, UK.

Maas, A. L., Hannun, A. Y., Ng, A. Y. (2013). Rectifier nonlinearities improve neural

network acoustic models. Paper presented at the meeting of icml workshop on

87

deep learning for audio, speech and language processing, Atlanta, Georgia,

USA.

Macqueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In 5th berkeley symp. math. statist. probability (pp. 281–297).

Mahon, L., Lukasiewicz, T. (2021). Selective pseudo-label clustering. In Edelkamp,

S., Möller, R. Rueckert, E. (Eds.), Ki 2021: Advances in artif. intell. Vol. LNAI

12873, (pp. 158–178). Cham: Springer International.

Makhzani, A., Frey, B. J. (2014). K-sparse autoencoders. In Bengio, Y. and LeCun, Y.

(Eds.), 2nd int. conf. learn. representations, iclr 2014, banff, ab, canada, april

14-16, 2014, conf. track proc. Retrieved from http://arxiv.org/abs/1312.5663

Masci, J., Meier, U., Cires¸an, D., Schmidhuber, J. (2011). Stacked convolutional

auto-encoders for hierarchical feature extraction. In Honkela, T., Duch, W.,

Girolami, M., and Kaski, S. (Eds.), Artif. neural netw. mach. learn. – icann

2011 Vol. LNCS 6791, (pp. 52–59). Berlin, Heidelberg: Springer Berlin

Heidelberg.

McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

doi:10. 1007/BF02478259. arXiv: arXiv:1011.1669v3

Minsky, M., Papert, S. (1969). Perceptrons: An introduction to computational

geometry. Cambridge, MA, USA: MIT.

Misra, I., Zitnick, C. L., Hebert, M. (2016). Shuffle and learn: Unsupervised learning

using temporal order verification. In Leibe, B., Matas, J., Sebe, N., and

Welling, M. (Eds.), Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 527–544).

Cham: Springer International.

Nair, V., E. Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of ICML 27, 807–814.

Noroozi, M., Favaro, P. (2016). Unsupervised learning of visual representations by

solving jigsaw puzzles. In Leibe, B., Matas, J., Sebe, N., and Welling, M.

(Eds.), Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 69–84). Cham: Springer

Inter- national.

Pad, P., Narduzzi, S., Kündig, C., Türetken, E., Bigdeli, S. A., Dunbar, L. A. (2020).

Efficient neural vision systems based on convolutional image acquisi- tion. In

O’Conner, L. (Ed.), 2020 ieee/cvf conf. comput. vis. pattern recognit. (cvpr)

(pp. 12282–12291). doi:10.1109/CVPR42600.2020.01230

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. A. (2016). Context

encoders: Feature learning by inpainting. In O’Conner, L. (Ed.), 2016 ieee

conf. comput. vis. pattern recognit. (cvpr) (pp. 2536–2544). Los Alamitos, CA,

USA: IEEE Comput. Soc.

88

Qian, N. (1999). On the momentum term in gradient descent learning algorithms.

Neural Networks, 12(1), 145–151. doi:https:// doi. org/ 10 . 1016 / S0893 -

6080(98) 00116-6

Radford, A., Metz, L., Chintala, S. (2016). Unsupervised representation learning with

deep convolutional generative adversarial networks. In Bengio, Y. and LeCun,

Y. (Eds.), 4th int. conf. learn. representations, iclr 2016, san juan, puerto rico,

may 2-4, 2016, conf. track proc. Retrieved from

http://arxiv.org/abs/1511.06434

Ren, Z., Lee, Y. (2018). Cross-domain self-supervised multi-task feature learning

using synthetic imagery. In 2018 ieee/cvf conf. comput. vis. pattern recognit.

(cvpr) (pp. 762–771). Los Alamitos, CA, USA: IEEE Comput. Soc.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6), 386–408. doi:10 .

1037/h0042519

Rumelhard, D., Zipser, D. (1985). Feature discovery by competitive learning.

Cognitive Science, 9, 75–112. doi:10.1016/S0010-4825(96)00018-2

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533–536. doi:10.1038/323533a0.

arXiv: arXiv:1011.1669v3

Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1556. arXiv: 1409 . 1556. Retrieved

from http://arxiv.org/abs/1409.1556

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory. Parallel Distributed Processing Explorations in the

Microstructure of Cognition, 1(1), 194–281.

Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. In Proceedings of the 25th international

conference on neural information processing systems (pp. 2951–2959). Lake

Tahoe, Nevada: Curran Associates.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56), 1929–1958.

Srivastava, R. K., Greff, K., Schmidhuber, J. (2015a). Highway networks. arXiv:

1505.00387

Srivastava, R. K., Greff, K., Schmidhuber, J. (2015b). Training very deep networks.

In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. and Garnett, R.

(Eds.), Advances in neural information processing systems 28 (pp. 2377–2385).

Curran Associates.

Sutskever, I., Martens, J., Dahl, G., Hinton, G. E. (2013). On the importance of

initialization and momentum in deep learning. In Dasgupta, S. McAllester, D.

89

(Eds.), Proceedings of the 30th international conference on machine learning,

28, (pp. 1139–1147). Atlanta, Georgia, USA: PMLR.

Theano Development Team. (2016). Theano: A python framework for fast

computation of mathematical expressions. CoRR, abs/1605.02688. arXiv:

1605.02688

Tissera, D., Kahatapitiya, K., Wijesinghe, R., Fernando, S., Rodrigo, R. (2019).

Context-aware multipath networks. Preprint at http://arxiv.org/abs/1907.11519.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of Machine Learning Research,

11(110), 3371–3408.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R. (2013). Regularization of

neural networks using dropconnect. Icml, 1, 109–111. arXiv: 1509.08985

Wang, X., He, K., Gupta, A. K. (2017). Transitive invariance for self-supervised

visual representation learning. In L. O’Conner (Ed.), 2017 ieee int. conf.

comput. vis. (iccv) (pp. 1338–1347). Los Alamitos, CA, USA: IEEE Comput.

Soc.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences, Ph.D. Dissertation, Harvard University, Cambridge.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In

Drenick, R. F. Kozin, F. (Eds.), System modeling and optimization (pp. 762–

770). Berlin, Heidelberg: Springer Berlin Heidelberg.

Xiao, H., Rasul, K., Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for

benchmarking machine learning algorithms. CoRR, abs/1708.07747. arXiv:

1708.07747. Retrieved from https://arxiv.org/abs/ 1708.07747.

Xie, J., Girshick, R., Farhadi, A. (2016). Unsupervised deep embedding for

clustering analysis. In Balcan, M. F. and Weinberger, K. Q. (Eds.), Proc. 33rd

int. conf. mach. learn., 48, (pp. 478–487). New York, NY, USA: PMLR.

Xu, Y., McCord, R. (2021). Costa: Unsupervised convolutional neural network

learning for spatial transcriptomics analysis. BMC Bioinformatics, 22. Article

number: 397. doi:10.1186/s12859-021-04314-1

Yan, X., Misra, I., Gupta, A., Ghadiyaram, D., Mahajan, D. (2020). Clusterfit:

Improving generalization of visual representations. In 2020 ieee/cvf conf.

comput. vis. pattern recognit. (cvpr) (pp. 6508–6517). Los Alamitos, CA, USA:

IEEE Comput. Soc.

Yang, J., Parikh, D., Batra, D. (2016). Joint unsupervised learning of deep repre-

sentations and image clusters. In 2016 ieee conf. comput. vis. pattern recognit.

(cvpr) (pp. 5147–5156). Los Alamitos, CA, USA: IEEE Comput. Soc.

90

Yann, L., Bottou, L., Orr, G. B., Müller, K.-R. (1998). Efficient BackProp. In:

Montavon, G., Orr, G. B., Müller, K. R. (eds) Neural Networks: Tricks of the

Trade. Lecture Notes in Computer Science, vol 7700, pp 9–48. Springer, Berlin,

Heidelberg.

Zagoruyko, S., Komodakis, N. (2016). Wide residual networks. Wide residual

networks. In Richard, E. R. H., Wilson, C. and Smith, W. A. P. (Eds.),

Proceedings of the british machine vision conference (bmvc) (pp. 87.1–87.12).

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,

abs/1212.5701. arXiv: 1212.5701. Retrieved from http://arxiv.org/abs/1212.

5701

Zeiler, M. D., Fergus, R. (2014). Visualizing and understanding convolutional net-

works. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689

LNCS(PART 1), 818–833. doi:10.1007/978-3-319-10590-1 53. arXiv:

1311.2901

Zhang, R., Isola, P., Efros, A. A. (2016). Colorful image colorization. In B. Leibe, B.,

Matas, J., Sebe, N. Welling, M. (Eds.), Comput. vis. - eccv 2016 Vol. LNCS

9910, (pp. 649–666). Cham: Springer International…………………………..

91

CURRICULUM VITAE

