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OBJECT RECOGNITION WITH COMPETITIVE 

CONVOLUTIONAL NEURAL NETWORKS 

ABSTRACT 

In recent years, Artificial Intelligence (AI) has achieved impressive results, often sur- 

passing human capabilities in tasks involving language comprehension and visual 

recognition. Among these, computer vision has experienced remarkable progress, 

largely due to the introduction of Convolutional Neural Networks (CNNs). CNNs are 

inspired by the hierarchical structure of the visual cortex and are designed to detect 

patterns, objects, and complex relationships within visual data. One key advantage is 

their ability to learn directly from pixel values without the need for domain expertise, 

which has contributed to their popularity. These networks are trained using supervised 

backpropagation, a process that calculates gradients of the network’s parameters 

(weights and biases) with respect to the loss function. While backpropagation enables 

impressive performance with CNNs, it also presents certain drawbacks. One such 

drawback is the requirement for large amounts of labeled data. When the available data 

samples are limited, the gradients estimated from this limited information may not 

accurately capture the overall data behavior, leading to suboptimal parameter updates. 

However, obtaining a sufficient quantity of labeled data poses a challenge. Another 

drawback is the requirement of careful configuration of hyperparameters, including the 

number of neurons, learning rate, and network architecture. Finding optimal values for 

these hyperparameters can be a time-consuming process. Furthermore, as the 

complexity of the task increases, the network architecture becomes deeper and more 

complex. To effectively train the shallow layers of the network, one must increase the 

number of epochs and experiment with solutions to prevent vanishing gradients. 

Complex problems often require a greater number of epochs to learn the intricate 

patterns and features present in the data. It’s important to note that while CNNs aim to 

mimic the structure of the visual cortex, the brain’s learning mechanism does not 

necessarily involve back-propagation. Although CNNs incorporate the layered 

architecture of the visual cortex, the reliance on backpropagation introduces an 

artificial learning procedure that may not align with the brain’s actual learning process. 
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Therefore, it is crucial to explore alternative learning paradigms that do not rely on 

backpropagation. 

In this dissertation study, a unique approach to unsupervised training for CNNs is 

explored, setting it apart from previous research. Unlike other unsupervised methods, 

the proposed approach eliminates the reliance on backpropagation for training the 

filters. Instead, we introduce a filter extraction algorithm capable of extracting dataset 

features by processing images only once, without requiring data labels or backward 

error updates. This approach operates on individual convolutional layers, gradually 

constructing them by discovering filters. To evaluate the effectiveness of this 

backpropagation-free algorithm, we design four distinct CNN architectures and 

conduct experiments. The results demonstrate the promising performance of training 

without backpropagation, achieving impressive classification accuracies on different 

datasets. Notably, these outcomes are attained using a single network setup without 

any data augmentation. Additionally, our study reveals that the proposed algorithm 

eliminates the need to predefine the number of filters per convolutional layer, as the 

algorithm automatically determines this value. Furthermore, we demonstrate that filter 

initialization from a random distribution is unnecessary when backpropagation is not 

employed during training. 

 

Keywords: Convolutional Neural Networks, Unsupervised Learning, Feature 

Extraction
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REKABETÇİ EVRİŞİMLİ SİNİR AĞLARI İLE NESNE TANIMA 

ÖZET 

Son yıllarda Yapay Zeka (YZ) dili anlama ve görsel tanımayı içeren görevlerde 

genellikle insan yeteneklerini geride bırakarak etkileyici sonuçlar elde etti. Bunların 

arasında, bilgisayarla görme, büyük ölçüde Evrişimli Sinir Ağlarının (ESA) ortaya 

çıkması ile dikkate değer bir ilerleme kaydetti. ESAlar, görsel korteksin hiyerarşik 

yapısından ilham alarak görsel verilerdeki kalıpları, nesneleri ve karmaşık ilişkileri 

tespit etmek icin tasarlanmıştır. En önemli avantajlarından biri, popülerliklerine 

katkıda bulunan, bir uzmana ihtiya. Duymadan doğrudan piksel değerlerinden 

öğrenme yetenekleridir. Bu ağlar, kayıp fonksiyonuna göre ağ parametrelerinin 

(ağrılıklar ve eğilimler) gradyanlarını hesaplayan denetimli geri yayılım ile eğitilir. 

Geri yayılım, ESAlarda etkileyici bir performans sağlarken, bazı dezavantajlar da 

getirir. Bu dezavantajlardan biri büyük miktarlarda etiketlenmiş veri gereksinimidir. 

Mevcut veri örnekleri sınırlı olduğunda, bu sınırlı bilgiden hesaplanan gradyanlar , 

genel veri davranışını doğru bir şekilde yakalayamayabilir ve bu da yetersiz 

parameter güncellemelerine yol açar. Bununla birlikte, yeterli miktarda etiketlenmiş 

veri elde etmek bir zorluk teşkil etmektedir. Diğer nir dezavantaj nöron sayısı, 

öğrenme hızı ve ağ mimarisi dahil olmak üzere hiperparametrelerin dikkatli bir 

şekilde yapılandırılması gerekliliğidir. Bu hiperparametreler için en uygun değerleri 

bulmak zaman alıcı bir süreç olabilir. Ayrıca, görevin karmaşıklığı arttıkça ağ 

mimarisi daha derin ve karmaşık bir hale gelir. Ağın sığ katmanlarını etkili bir 

şekilde eğitmek için, epok sayısı artırılmalı ve kaybolan gradyanları önlemek için 

çözümler üretilmelidir. Karmaşık problemler, verilerde bulunan karmaşık kalıpları ve 

özellikleri öğrenmek için genellikle daha fazla sayıda epok gerektirir. ESAlar görsel 

korteksin yapısını taklit etmeyi amaçlasa da, beynin öğrenme mekanizmasının 

mutlaka geri yayılımı içermediğini not etmek önemlidir. ESAlar görsel korteksin 

katmanlı mimarisini içermelerine rağmen, geri yayılıma dayanan öğrenme, beynin 

gerçek öğrenme süreciyle uyumlu olmayabilen yapay bir öğrenme prosedürü sunar. 

Bu nedenle, geri yayılıma dayanmayan alternatif öğrenme paradigmalarını keşfetmek 

önem teşkil etmektedir. 
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Bu tez çalışmasında, önceki araştırmalardan farklı olarak ESAlar için denetimsiz 

eğitime yönelik benzersiz bir yaklaşım araştırılmaktadır. Önerilen yaklaşım diğer 

denetimsiz yöntemlerin aksine, filtrelerin eğitimi için geri yayılmaya olan bağlılığı 

kaldırır. Geri yayılım ile öğrenme yerine, veri etiketleri veya geriye dönük hata 

güncellemeleri gerektirmeden görüntüleri yalnızca bir kez işleyerek veri kümesi 

özelliklerini çıkarabilen bir filtre çıkarma algoritması sunuyoruz. Bu yaklaşım 

bireysel Evrişimli katmanlar üzerinde çalışır ve filtreleri eğitim örnekleri üzerinden 

keşfederek evrişim katmanının filtrelerini kademeli olarak oluşturur. Bu geri 

yayılımsız algoritmanın etkinliğini değerlendirmek için dört farklı ESA mimarisi 

tasarladık ve deneyler yaptık. Sonuçlar, farklı veri kümelerinde etkileyici 

sınıflandırma doğrulukları elde ederek, geri yayılım olmadan eğitimin mümkün 

olabileceğini göstermektedir. Özellikle, bu sonuçlara herhangi bir veri arttırımı 

olmadan vet ek bir ağ kullanılarak ulaşılmıştır. Ek olarak, çalışmamızda önerilen 

algoritma, evrişim katmanı başına filtre sayısını önceden belirleme ihtiyacını ortadan 

kaldırmaktadır çünkü algoritmamız bu değeri otomatik olarak belirlemektedir. 

Ayrıca, eğitim sırasında geri yayılım kullanılmadığından rastgele bir dağılımdan 

filtrelere ilkdeğer verilmesinin gereksiz olduğunu da bu çalışma ile gösterdik. 

 

Anahtar Kelimeler: Evrişimli Sinir Ağları, Denetimsiz Öğrenme, Özellik Çıkarma
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CHAPTER 1 

1. INTRODUCTION 

In recent years, CNNs have emerged as the predominant approach for image 

classification tasks. Even though it gained popularity in recent years, the history of 

CNNs dates back to 1959. Hubel and Weisel (Hubel, Wiesel, 1959) discovered the 

presence of alternating set of neurons in the visual cortex of a cat that fire when an 

oriented edge stimulus is presented. Fukushima (Fukushima, 1980) proposed the first 

CNN architecture that was based on the findings of Hubel and Weisel (Hubel, 

Wiesel, 1959). Unlike the majority of modern CNN implementations, Neocognitron 

deviated from using gradient-based algorithms for training. Later in 1998 (LeCun, 

Bottou, Bengio, Haffner, 1998), LeCun et. al proposed a CNN architecture that is 

similar to Neocognitron but trained with the backpropagation algorithm, which has 

become the standard for CNNs today. Many different CNN architectures 

(Krizhevsky, Sutskever, Geoffrey E., 2012; Simonyan Zisserman, 2014; Zeiler 

Fergus, 2014) were proposed since LeNet. Most of the architectures proposed in the 

literature are similar; they consist of several convolutional, pooling and fully 

connected layers and they are trained through gradient-based backpropagation. 

A CNN can be considered as a network that is composed of a feature extractor 

and a classifier. The feature extractor implements convolutional and pooling layers 

while the classifier part consists of fully connected and softmax layers. Each of these 

layers should be carefully preconfigured to achieve reasonable results with training. 

The hyperparameters that have to be initialized only for the convolutional layer 

include the number of filters and filter size in each layer, stride, activation function 

and the learning rate. There is unfortunately no rule of thumb for selecting the right 

value for the hyperparameters of a network. Each application domain requires 
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specific settings to attain the optimal architecture, which are generally obtained 

through empirical hyperparameter optimization methods. 

In traditional CNN implementations, specification of the network architecture 

is followed by initialization of the weights of the entire network from a specific 

distribution, often without any regard to the input domain (Glorot, Bengio, 2010; He, 

Zhang, Ren, Sun, 2015). The expectation of a researcher in this stage is to 

coincidentally initialize a set of neurons at such points in the search space that a 

gradient based walk will progress their weights to some optima. Since it is 

coincidental, the researcher has no other choice than generating a superfluous 

number of neurons at each layer to be able to span the search space. Moreover, the 

experiments will produce varying results, some of which are subpar due to 

circumstantial starting points in the search space. Thus, decision on the number of 

neurons/features and the initialization of them in the convolutional layers of CNN are 

problems that needs a less tedious process than hyperparameter optimization 

methods. 

The convolutional layers of CNN architectures serve for one purpose only; 

extraction of good features to be fed to a classifier. In visual analysis of images, these 

features are cues that involve edges, corners and patterns, all visually observable and 

meaningful. These visual cues are building blocks of all objects which are to be 

assembled in incremental complexity from shallow to deep layers of CNN. In the 

past, these features were handcrafted to reach better classification results. However, 

in current CNN architecture, the features are initialized with a random distribution as 

mentioned in the previous paragraph. Then, they are trained through gradient based 

backpropagation algorithm to some convergence point which is generally reached 

after a couple of hundreds of epochs. Moreover, gradient based approaches lose a 

leverage of great significance by random initialization of weights and stochastic 

search during training, since visual cues in the training set are overlooked. If the 

random initialization of the features in convolutional layers could be eliminated, 

training the features with a gradient based training algorithm could be discarded. 

This would allow less time spent on training the overall CNN model while obtaining 

domain specific visual cues. 

The utilization of backpropagation for training of the CNN introduces the 

credit assignment problem. In neural networks, we do not know which neuron made 

the correct/incorrect decision to reach the current classification result. Hence, we do 
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not know which neuron’s weight should be updated with the error signal. Our 

approach to creation of a deep convolutional network and its training for feature 

extraction is based purely on observations, hence it is not vulnerable to the credit 

assignment problem like traditional CNNs that are trained by backpropagation. As 

aforementioned, in traditional CNN implementations the network is built with a 

number of neurons per layer, its weights are initialized from a random distribution 

and the entire network is trained through backpropagation. The backpropagation 

algorithm updates the weights of the network incrementally and depending on the 

partial derivative of the error on the weights. Since backpropagation is a gradient 

based approach, it takes multiple epochs for the neurons to converge to meaningful 

filters. This is inherent of the approach since all that is observable is the gradient of 

the hyperplane on the search space towards the direction that minimizes the error. We 

are forced to take small steps since a large step might lead to divergence, making 

training impossible. 

Backpropagation based training is also vulnerable to the problem of exploding 

or vanishing gradients (Hochreiter, 1991) which impacts the learning process in deep 

networks. It is shown that when the gradient of the error is small in the last layer, it 

diminishes to infinitesimal values until the backpropagation reaches to the first layer. 

Since the value of the gradient gets smaller as backpropagation approaches to the 

first layer, training the shallow layers of deep networks through pure 

backpropagation is difficult in deep networks. Combined with the weakened error 

signal, deep architectures challenge us with an exemplary version of the credit 

assignment problem. We cannot correctly distribute and backpropagate the error to 

shallow layers, hence producing subpar features at early and simple stages of image 

processing. Thus, the quality of the patterns learned in the deeper layers is hampered 

and the classification performance deteriorates. Skip connections in Residual 

networks (He et al., 2015) were proposed as a work around for the gradual vanishing 

of the gradients which adds more complexity to the CNN architectures. 

In this work, we introduce Competitive Convolutional Neural Network 

(CCNN); an unsupervised deep learning architecture and training algorithm that 

extracts a sufficient number of features that span the input domain. We neither 

predefine the number of neurons nor initialize them with random values from a 

distribution as in conventional CNNs. The filters in our model are discovered within 

a single epoch using an unsupervised approach that utilizes competitive learning and 
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a filter discovery rule. This new approach does not add more complexity to the 

traditional CNN models since we do not propose new layer or connection types. 

1.1. Contributions 

Our contributions to the literature with this work are 3-fold. First, we propose 

an architecture and an unsupervised training algorithm that eliminate the need for 

setting the number of filters in layers before the training commences. The proposed 

method starts with empty layers and builds them gradually to discover the sufficient 

number of features to represent the complexity of the input domain, in increasing 

levels of abstraction from shallow to deep layers. 

Our second contribution is to eliminate pre-training initialization of network 

weights. This follows from the fact that in our approach training starts with an empty 

network. We create and initialize new neurons as needed; a decision made through 

the similarity of the observation (input at a specific layer) to the features represented 

by the existing neurons. The new neuron that is to represent a new feature is 

initialized to resemble the input sample. Thus, creation and initialization of a new 

neuron is not random anymore, but rather dependent on the observations, i.e., the 

input domain. 

Our third contribution in this work is an unsupervised training algorithm that is 

a robust, effective and fast feature extractor. This algorithm searches for clusters in 

input, finding simple to complex features layer by layer. It is not prone to credit 

assignment problem as it is purely unsupervised. It is very fast, often converging in 

one epoch per layer. This new training algorithm allows us to completely eliminate 

the backpropagation training for the convolutional layers of the model. 

1.2. Organization of This Thesis 

The motivation and the aim of this thesis is given in the previous sections. The 

remainder of this dissertation is structured as follows: 

• Chapter 2 - Convolutional Neural Networks: This chapter will introduce the 

reader to the concepts of Convolutional Neural Networks. It will provide necessary 

information on the topic, so the reader can easily follow the approach in this work. 
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• Chapter 3 - Literature Survey: In this chapter, a brief literature survey on the 

topics covered in this thesis will be presented. 

• Chapter 4 - Approach: The proposed CNN architecture and the unsupervised 

training algorithm for the discovery of the features to be used in the convolutional 

layers will be discussed in detail in this chapter. 

• Chapter 5 - Experiments: In this chapter, experiment setup, CCNN models, 

datasets and the performance metrics used in the experiments are described. Then, 

how experiments are conducted will be discussed. 

• Chapter 6 - Results: The results of the experiments detailed in the previous 

chapter is discussed in this chapter. 

• Chapter 7 - Discussion: In this chapter, the results of the new approach are 

compared with the previous studies. 

• Chapter 8 - Conclusion: In the last chapter of the thesis, a conclusion will be 

shared with possible new directions this research may lead to.
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CHAPTER 2 

2. CONVOLUTIONAL NEURAL NETWORKS 

 

CNN is a type of multilayer feed-forward Artificial Neural Network (ANN) 

which is based on the structure of animal visual cortex (Hubel, Wiesel, 1959). Due to 

its hierarchical layered architecture inspired by the visual cortex of animals, CNNs 

are well-suited for visual classification tasks. In basic terms, a CNN consists of 

several different kinds of layers that learn features from training images 

hierarchically and predicts the class of a given test image based on the learned 

features in the images. Convolution and Pooling layers are the key layers in learning 

the features from training images while Fully Connected layers act as classifiers 

(Figure2.1).

Figure 2.1 A typical Convolutional Neural Network 
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2.1 Convolutional Neural Network Architecture 

2.1.1 Convolutional Layer 

The purpose of convolutional layer is detecting high level features from given 

visual data so that the classifier can classify that data into specific classes according 

to the particular features detected in the given data. Prior to the usage of CNNs, the 

features had to be hand crafted by the field experts who has domain expertise on that 

particular task. The hand crafting of features is a daunting task since every variation 

in illumination, position, scale and variations in same class of objects must be 

considered during the feature creation process. The solution to this is creating a 

feature detection pipeline which resembles the animal visual cortex that could start 

by learning basic features like lines and edges and hierarchically building more 

complex features (Figure 2.2) to classify images. To be able to work with this kind of 

pipeline, we need to be able to extract local features from the given data. 

Convolutional layers perform this task with filters. However, for each possible 

feature in the given data, we need to define a filter of specific size. This specific size 

of the filter ensures that the feature that we are trying to extract is within some local 

area which is called receptive field in the given data. Conventionally, the filters are 

defined in sizes of 3 × 3, 5 × 5, 7 × 7 or 11 × 11 depending on the visual task at hand. 

Figure 2.2 CNNs can recognize high level concepts like face by hierarchically 

building feature detectors starting from basic edge like shapes to complex features 

like eyes. 
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Since we need one filter per feature, the number of filters - which we do not 

know beforehand - in a convolutional layer must also be defined during the 

construction of the convolutional layer. The number of filters on a convolutional 

layer is a hyperparameter. This hyperparameter’s value needs to be selected with 

hyperparameter optimization techniques to achieve good classification performance. 

One of the easiest such hyperparameter optimization method is Grid Search (GS), 

where a subset of hyperparameter space is searched (Bengio, 2012) for the optimal 

performance. However, it is not a suitable optimization technique since the number 

of hyperparameters in the CNNs are too large which renders GS a computationally 

expensive optimization method (Kaneko, Funatsu, 2015), and GS is often stuck at 

some local optima (Keerthi, Lin, 2003). For the optimization of hyperparameters, a 

combination of GS and Random Search (RS) is proposed by in works (Larochelle, 

Erhan, Courville, Bergstra, Bengio, 2007;Yann, Bottou, Orr, Müller, 1998; Hinton, 

2010) whereas it is argued (Hutter, 2009) that Sequential Model Based 

Optimization(SMBO) more effectively finds the best solution than RS. It is shown 

that CNN hyperparameters can be effectively tuned (Snoek, Larochelle, Adams, 

2012) with a Bayesian approach. Regardless of the method of optimization, 

hyperparameter values need to be optimized for achieving the optimal performance 

from CNN. 

The last step in defining feature extracting filters is setting the weights of said 

filters. However, in CNNs we do not handcraft the features, so the filters should be 

initialized with some values. Initializing the filters in convolutional layers is an 

important task, since it affects the ability to learn features from the training data. If 

the values of the weights are initialized too small or too big, the learning from the 

training data will be either too slow or will not happen at all. This situation is called 

vanishing/exploding gradients since learning depends on the backpropagation of 

errors which is calculated based on these weight values. Thus, just randomly 

initializing the filter weights is not enough. Initializing the weights of the filters 

requires some initialization technique that allows CNN to learn from the data in an 

acceptable time. The commonly used weight initialization techniques are Gaussian 

initialization where the weights are initialized from a zero-mean Gaussian 

distribution with a standard deviation of 0.01 (Krizhevsky et al., 2012), Glorot 

(Glorot, Bengio, 2010) initialization technique in which the weights are initialized 

based on the incoming and outgoing connection counts and He(He et al., 2015) 
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initialization method which is a variant of Glorot that allows very deep networks to 

be built. Choosing one of those initialization methods depends on which activation 

function is used in the convolutional layer. 

2.1.1.1 Activation Function 

Activation functions are used to introduce non-linearity to the neural network 

models so that the model can generalize well by deciding whether its related neuron 

will fire or not. It would not be possible to correctly classify objects that belong to 

the same class that have intra-class variations with a linear model. Thus, non-

linearity is introduced to the ANNs through activation functions like sigmoid, 

hyperbolic tangent (tanh) and Rectified Linear Units (ReLU) (Nair, Hinton, 2010) 

which add generalization capability to ANNs. Instead of sigmoid or hyperbolic 

tangent, ReLU and its variants like PReLU or Leaky ReLU is utilized in deep 

architectures. The reason behind this selection is based on the vanishing gradients 

problem. With the increasing depth of the network in CNNs, very small gradients are 

obtained from both sigmoid and tanh functions in backward pass of the training 

which slows down the learning until a point where learning becomes impossible. 

They also get saturated on the both positive and negative sides and the gradients 

become very close to zero for very small or big weight values which again affects the 

weight updates in the backward pass of the training phase. ReLU can be described as 

a piece-wise function which acts as a linear function for positive inputs whereas it 

acts non-linearly for negative inputs by setting the negative values to zero. 

Computation cost of the ReLU is small compared to sigmoid or tanh since these 

functions involve exponentiation operations. The lack of exponentiation in ReLU 

Figure 2.3 Sigmoid, hyperbolic tangent and ReLU activation function curves 

shown. ReLU is most popular activation function in CNNs. 
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reduces the cost of complex derivation operation which accelerates the training. This 

allows the addition of more layers to the network since the computation cost freed up 

from the derivation equations can be invested in increasing the capacity of the 

network. Compared to sigmoid and tanh, ReLU do not saturate except for the 

negative values. This leads to the downside of using ReLU which is called dying 

ReLU problem. When a large gradient flow updates the weight of a neuron in a way 

that it starts generating negative responses to stimuli, we encounter dying ReLU 

problem. There is no way to recover from this situation when ReLU is the chosen 

activation function and some neurons might end up dead (i.e., no contribution to 

learning). This problem is addressed with the ReLU variants PReLU (He et al., 2015) 

and Leaky ReLU(Maas, Hannun, Ng, 2013) where instead of zeroing out the 

negative response to the stimuli, both of these activation functions have a small slope 

to the curve in the negative side of the original ReLU function as can be seen in 

Figure 2.4. This small slope allows for a small gradient to flow for negative 

responses of the neurons instead of completely shutting them down with the cost of 

introducing another parameter into the calculations. 

2.1.1.2 Convolution Operation 

The aim of convolution operation is filtering out specific patterns from the 

image which are crucial for identifying the object that is present in the image. Thus, 

the convolution operation takes an input image and a filter/kernel. The kernel is used 

to search for the pattern locally in the image by applying the convolution operation 

Figure 2.4 PReLU and Leaky ReLU activation function curves. PReLU and Leaky 

ReLU allows a small gradient for negative values whereas original ReLU strictly 

sets the negative values to zero. 



11 
 

shown in Equation 2.1. The convolution operation is repeated for each kernel K 

defined in the convolutional layer for the same input image I. 

 

 𝐾 ∗ 𝐼 =  ∑∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚𝑖𝑗 − 𝑛)

𝑛𝑚

 (2.1) 

 

Starting from the top left of the image, the convolution operation is performed 

on the image I. The result is a single value which denotes the likelihood of the 

presence of that pattern at that specific location which the current kernel is seeking in 

the image. Then, the kernel is moved in the horizontal direction. The amount of 

movement is called stride and, it is a parameter that should be predetermined. If the 

stride is 1 pixel, the kernel is moved in the horizontal direction 1 step. When the 

horizontal locations are exhausted, the kernel is moved in the vertical direction 

according to the stride parameter. This is repeated until all possible locations on the 

given image is spanned by the kernel as seen in Figure 2.5. 

Figure 2.5 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3 

filter with a stride of 1 pixel. 
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As it can be observed from Figure 2.5, applying convolution to the image 

changes its dimensions. If we apply another layer of convolution, the image will 

further shrink to 2 × 2 dimensions. The information at the borders of images is 

rapidly lost in this fashion. Instead of losing data in a rapid fashion, we would like to 

preserve data even after convolution operation. To be able to preserve as much as we 

can, padding is applied to the images before convolution operation. In CNNs, 

padding is generally just adding zeros around the image as if we are framing a 

portrait. The size of the padding is calculated with Equation 2.2 for stride of 1 pixel 

and filter size k. The dimensions of the output of the convolution operation can be 

calculated with Equation 2.3. Figure 2.6 shows convolution operation with the same 

image padded with 1 pixel of zeros on each side of the image. 

 

 
𝑃 =  

𝑘 − 1

2
 (2.2) 

 
𝑂 = (𝐼ℎ − 𝑘 + 1 + 2𝑃, 𝐼𝑤 − 𝑘 + 1 + 2𝑃) (2.3) 

Figure 2.6 Visualization of convolution operation on with a 5 × 5 image and a 3 × 3 

filter with a stride of 1 pixel and zero padding of 1 pixel as per Equation 2.2. Green 

background is padding while the image data is shown with light blue background. 
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The output of convolution operation is another matrix that is called feature map 

or activation map since moving the filter over the image and calculating convolution 

maps all possible locations that this particular feature might be present (i.e., map of 

filter activation). One feature map per filter is generated for the same image I which 

means that if there are K filters in the convolutional layer, the number of feature 

maps generated for image I would be K. However, the actual output of the 

convolutional layer is not the raw feature maps. The chosen non-linearity/activation 

function is applied to these feature maps as seen in Figure 2.7. If the activation 

funciton is ReLU, the result is called rectified feature maps (Zeiler, Fergus, 2014). 

2.1.2 Pooling Layer 

Pooling operation is employed in CNNs to downsample the images so that the 

number of equations can be restricted to a manageable number. This dimension 

reduction also introduces spatial invariance to the CNNs. Another advantage of using 

pooling layer is that it allows the next layer to focus on a larger receptive field while 

maintaining the same filter size as the previous convolutional layer. This leads to 

detecting more complex features compared to the earlier layers. 

Figure 2.7 Convolution layer applies convolution operation to the input images. The 

feature maps are then introduced to non-linearity with activation function. 
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Similar to defining a filter in the convolutional layer, a window size is defined 

for pooling. This window size is the local data that will be pooled down to a single 

value. Pooling window starts from the top left of the image as in the convolution 

operation and pooling is applied to the pixels in that region of the image. After the 

pooling is applied, the pooling window is shifted in the horizontal direction 

according to the stride value. When all the horizontal positions are exhausted, the 

pooling window is moved in the vertical direction according to the stride value. The 

most commonly used pooling types are max and average pooling. In max pooling the 

maximum value inside the pooling window is the output of the pooling operation 

whereas in average pooling the average of all values inside the pooling window is the 

output of the pooling operation. Max pooling preserves the feature that has the most 

activation and removes the surrounding features in the pooling window by ruling 

them out as noise while average pooling takes all of the information into account 

during the pooling process including the noise. This is why max pooling performs 

better than average pooling in classification tasks with CNNs. Figure 2.8 shows how 

both max and average pooling operations are applied on the same input with stride of 

Figure 2.8 Visualization of max pooling operation on with a 4 × 4 image with 2 × 2 

window size and strides of 2. 
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1 and windows size of 2 × 2. The dimensions of the image are halved because of the 

pooling window size. 

2.1.3 Fully Connected Layer 

The convolutional and pooling layers extracts the patterns that could be useful 

in classifying the image while fully connected layers(Figure 2.9) learn how to 

combine these features to define a specific class. Thus, we can call the fully 

connected layers as the classifier part of the CNNs while the other half of the 

network works as a feature extractor. The feature maps are three-dimensional data 

which need to be connected to fully connected layer which only accepts single 

dimensional data. Flatten operation is applied on the feature maps and the flattened 

feature maps are connected to fully connected layers. The number of fully connected 

layers and how many neurons these layers will include are all hyperparameters that 

needs to be tuned with optimization techniques. The neurons (Figure 2.10) in the 

fully connected layers are the same as ANN neurons. Each neuron has weights 

connected to them and an activation function is applied to the output of the neuron. 

Figure 2.9 Fully connected layers learn the relations between the high-level 

patterns. 



16 
 

Fully connected layers are prone to overfitting during the training due to the 

immense number of connections between the neurons. A regularization technique 

called Dropout (N. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, 2014) 

is applied to avoid overfitting during the training of the fully connected layers. 

Dropout randomly selects some neurons in the fully connected layers and disables 

that neuron with a probability of p to receive or transmit signal temporarily for the 

current iteration of the training as seen in Figure 2.11. The neuron that is disabled in 

one training iteration might become active in the next one since the neuron to be 

dropped out is re-selected on each iteration. The probability p is a hyperparameter 

that needs to be configured. If the value is set as 0.3, it means that 30% of the 

neurons will be dropped in each iteration of the training. 

Figure 2.10 Single neuron in Fully Connected Layer. 

Figure 2.11 Neurons dropped out with dropout regularization technique do not 

receive or transmit signal. Dropout with probability p = 0.5 is applied to the neurons. 
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2.1.4 Output Layer 

Output layer is the last layer of a CNN. This layer is actually another fully 

connected layer but a special layer since this is where the predictions are made by 

CNN. The number of neurons is determined by the number of classes in the dataset. 

Thus, each neuron represents a class. The activation function in this layer is Softmax. 

Softmax makes sure that the activation value of each one of these neurons is in (0, 1) 

interval and the total of the activations of the neurons in the output layer does not 

exceed 1. The Softmax value is calculated with Equation 2.4. 

 

 
𝜎(𝑧)𝑖 =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (2.4) 

 

The activation amount for each neuron in this layer represents the belief that 

how much the given sample image resembles the specific class represented by the 

neurons. The neuron with the maximum activation determines the class of the image. 

As an example, assume that there is a CNN model which is trained to recognize cats 

and dogs as in Figure 2.12. The Softmax function turns the amount of the stimuli 

these two neurons receive into a probability distribution. The network believes that 

this input image belongs to cat class with 77% confidence while the confidence of 

the network is 23% for this image belonging to the dog class. Since the highest 

confidence value belongs to the cat neuron, this image is labeled as cat. At this point 

the predicted label and the actual label of the image is compared and if the labels do 

Figure 2.12 Output Layer in a CNN. 



18 
 

not match, the error is calculated to update the weights of the network. The training 

is explained in detail in the next section. 

2.1.5 Training of CNN 

As mentioned in the previous sections, CNNs consist of convolutional and 

fully connected layers which are initialized with a pre-defined initialization method. 

After initialization, the weights of the filters in convolutional layers and the neurons 

in the fully connected layers need to be trained to be able to identify the class of the 

presented object. The training of the CNNs is performed by a gradient descent (GD) 

algorithm which minimizes the loss function, and the gradients are calculated with 

backpropagation algorithm. 

In basic terms, training has two phases; forward pass and backward pass. In the 

forward pass, we send an image as the input to the CNN, and we obtain a result from 

the output layer. This output is then checked for correctness. This is done by 

comparing the real label of the input image and the class label predicted by the CNN. 

If both labels are the same, no weight update is required. However, if the labels are 

found to be different, then the weights in all layers must be updated one by one so 

that the amount of error between the output and the correct label is minimized 

(Rumelhart, Hinton, Williams, 1986). 

 

𝐶𝐸(𝑦, �̂�) =  −∑(𝑦𝑖) ⋅ log 𝑦�̂�

𝑁

𝑖=1

 (2.5) 

 

The backpropagation starts with the prediction of the label of a particular input 

data. After this prediction is made by the network, the error between the actual and 

predicted labels is calculated by a loss function. This loss function is typically 

categorical cross entropy (Equation 2.5) for scenarios where CNN is labeling more 

than two classes of objects. 

 

 𝑊𝑡+1 = 𝑊𝑡 − 𝜂 ∗ ∇𝑔𝑡
(𝑊) (2.6) 

 

We do not know which connections in the network is responsible for this error 

which is called credit assignment problem. Thus, the error is distributed to all of the 

units in the network by adjusting the weights by calculating partial derivatives of the 
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errors with respect to the weights according to chain rule until we reach the input 

layer. The backpropagation algorithm ends when the stopping criteria is met. This 

stopping criterion could be reaching a specific loss value, a specific number of 

training epochs or monitoring the validation error rate. Since the weight updates are 

done in the opposite direction of the gradient (Equation 2.6) and the value of 

gradients depend on the weights, the performance of the backpropagation is strongly 

related to the weight initialization method (Sutskever, Martens, Dahl, Hinton, 2013). 

The learning rate is a hyperparameter whose value should be carefully determined. If 

the value of η is too small, the weight updates will be small and the convergence 

would take a long time. On the other hand, if the value of η is large, weight updates 

might occur in a manner that misses the convergence point by fluctuating around it or 

in extreme cases instead of converging system might diverge. 

Stochastic Gradient Descent (SGD) is the most commonly used training 

algorithm in CNNs which updates the weights after each training input compared to 

gradient descent which only applies one weight update by calculating gradients for 

whole dataset. Because of a single update which requires calculation of all gradients, 

the gradient descent can be very slow for big datasets. Compared to gradient descent, 

SGD is much faster because of the gradient calculations per training sample that 

prevent re-calculation of same gradients over and over as opposed to gradient 

descent. However, this means that SGD weight updates does not converge to the 

local/global minima as smoothly as gradient descent. To introduce the smoothness of 

GD, learning rate annealing is applied to SGD. Both the smoothness of GD and the 

speed of SGD can be achieved by using mini-batched SGD for training of the CNN 

where weight updates are calculated for mini-batches of n training samples. The size 

of the mini-batches depends on the application of CNN. However, there are still 

problems that need to be addressed in training the network. Selection of initial 

learning rate value, the annealing schedule or SGD getting stuck at some sub optimal 

local minima or saddle points (Dauphin et al., 2014) where the gradients are close to 

zero and it is not possible to escape such a point. 

 

 △ 𝑊𝑡 =
𝜂

√∑ 𝑔𝜏
2𝑡

𝜏=1

𝑔𝑡 (2.7) 
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SGD optimization techniques are implemented to fix the problems of SGD. 

One of those optimization schemes is introducing momentum(Qian, 1999) which 

tries to lessen the oscillations to speed up the training. Another method is applying 

weight updates in a way (Equation 2.7) that allows usage of higher learning rates for 

less frequent patterns and smaller learning rates for frequent patterns. This is 

achieved by automatically adjusting the learning rate based on the past gradients 

computed for the weights. This method is called Adagrad (Duchi, Hazan, Singer, 

2011) and removes the manual learning annealing process. However, the learning 

rate might get very small during training epochs since this method takes all past 

gradients into account while calculating the new learning rate. This would lead to not 

learning anything at all. 

 

 
△ 𝑊𝑡 = −

𝑅𝑀𝑆[△ 𝑊]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 (2.8) 

 

The solution for this problem is proposed in another SGD optimization method 

called Adadelta (Zeiler, 2012) which is actually a variant of Adagrad. As opposed to 

Adagrad, Adadelta only takes the past gradients in a small window of fixed size for 

the calculations instead of all past gradients. Another advantage of Adadelta is that 

the weight updates does not require a global learning rate value to be set since it is 

not used in weight update rule as can be observed in Equation 2.8.
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CHAPTER 3 

3. LITERATURE SURVEY 

3.1 Initial Steps 

Neural networks have a long history starting from the first description of an 

artificial neuron by McCulloch and Pitts (McCulloch, Pitts, 1943). Although its 

evolution was first disrupted by Minsky and Papert’s work (Minsky, Papert, 1969) , 

then by technical limitations on training them, it has become the most thriving 

research topic due to the technological advances in the recent couple of years. 

The concept of artificial neuron was first described by McCulloch and Pitts 

(Minsky, Papert, 1969) in 1943. The aim of this work was mathematically explaining 

how the cells in brain works together. This artificial neuron model takes and 

aggregates one or more binary inputs and applies a linear threshold gate to these 

inputs to form a binary output. The artificial neuron described here could be used to 

build networks and solve simple logical expressions containing logical AND, OR or 

NOT operators. However, this model could only apply some logical operations on 

the given input and could not learn from experience as in human brain. Later in 1949, 

a supervised learning algorithm, known as Hebb’s rule (Hebb, 1949) today, was 

proposed. Hebb proposed theories on the learning and memorization mechanisms of 

the brain. He theorized that if a neuron is responsible of activation of another neuron, 

then that neuron’s efficiency should be increased with some mechanism. At that time 

there was not any evidence about the neuronal activity happening between the 

neurons which is known as synaptic plasticity today. The synaptic plasticity is the 

biological process of strengthening (long-termpotentiation (Lomo,1966)) or 

weakening (long-term depression (Albus, 1971) (Ito, Sakurai, Tongroach, 1982)) 
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of synapses due to the neuronal activity volume between two neurons. If the volume 

of synaptic communication between two neurons increases, the synapses are 

strengthened. In 1958, Rosenblatt (Rosenblatt, 1958) combined the McCulloch-Pitts 

neuron model with Hebb’s ideas and formed Perceptron. In essence, Perceptron 

changed the way how the inputs are handled to achieve learning with McCulloch-

Pitts neurons. Originally McCulloch-Pitts neurons can only accept binary inputs. 

However, the inputs are associated with adjustable weights in Perceptron. The 

adjustment on the weights is applied in supervised fashion based on the ideas of 

Hebb. However, as in McCulloch-Pitts, Perceptron can only work with linearly 

separable functions and cannot solve XOR as stated in Papert and Minsky’s book 

(Minsky, Papert, 1969) Perceptrons: An Introduction to Computational Geometry in 

1969. They demonstrated that it is not possible to classify patterns of nonlinearly 

separable classes with single layer neural network Perceptron. Actually, this was an 

oversight of the capability of Perceptrons. Today we know that it is possible to solve 

nonlinear problems with multilayer Perceptrons. The research on neural networks 

was slowed down with the limitations mentioned by Papert and Minsky until the 

proposal of backpropagation algorithm (Rumelhart et al., 1986). 

3.2 Backpropagation Era 

In modern artificial neural networks, the training is performed with error back- 

propagation. Even though error backpropagation was first suggested in 1974 (P. 

Werbosö J. Paul John, 1974) and later applied to an ANN by Werbos (P. J. Werbos, 

1982), it became widely known through Rumelhard and Zipser’s work (Rumelhardö 

Zipser, 1985). They showed that when error backpropagation was applied to 

multilayer neural networks, good internal representations could be discovered. 

Before the error backpropagation was adopted, domain experts handcrafted features 

that were specially crafted for the specific task at hand for use in ANNs. The slow 

process of handcrafting the required features was no longer the issue with the 

introduction of error backpropagation. Applying backpropagation to ANNs enabled 

hidden layers to automatically learn these handcrafted features. 

Denker et al. (Denker et al., 1989) proposed a neural network which applied 

convolution operation in 1989. However, the filters used in the convolution operation 

were handcrafted based on Hubel and Wiesel’s work (Hubel, Wiesel, 1959). The 
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handcrafted filters were designed specifically for detecting zip code digits. A similar 

work by LeCun et al. (Lecun et al., 1989) was also proposed a neural network which 

included convolutional layers for zip code recognition in the same year as Denker et 

al.. The difference between Denker et al. and Lecun et al. was how the convolutional 

filters were obtained. Lecun et al. obtained the convolutional filters with 

backpropagation training as opposed to handcrafting. Lecun et al.’s network had 

three hidden layers and to lower the computational cost of the training, a subset of 

connections within the convolutional layers were discarded. The performance of 

Lecun et al.’s network was greater than the state-of-the-art at its time of publication. 

Eventually in 1998, Lecun et al. (LeCun et al., 1998) proposed an updated 

convolutional neural network architecture named LeNet-5. This network was deeper 

than its predecessor with a depth of seven layers. This new network’s architecture 

was an alternating set of convolutional and subsampling layers which was connected 

to fully connected layers. To test the performance of this new architecture, a new 

dataset called MNIST (LeCun, Cortes, 2010) was created. MNIST only included 

handwritten digits which were picked from different NIST datasets. Today, this 

dataset is one of the most popular datasets for benchmarking CNNs. 

3.2.1 Fundamental Deep Learning Problem 

Introduction of backpropagation training made it possible to train multilayered 

neural networks. However, it was also the reason that the neural networks research 

hindered. When backpropagation training made it possible to train the hidden layers, 

it was seen that the more layers the neural networks had, the training of network 

became harder or impossible. Thus, the expectation that adding more and more layers 

to the network would provide better performance was not met. The reason for this 

training behavior, fundamental deep learning problem, was explained by Hochreiter 

(Hochreiter, 1991) in his 1991 PhD dissertation. The backpropagation of the errors 

was not effectively training the first layers on a multilayered neural network due to 

the vanishing or exploding gradients. In case of vanishing gradients, it was shown 

that the error signal got smaller and smaller until it made the weight updates 

insignificantly small on shallow layers of the network. This behavior slowed down 

the updates and eventually made it impossible to train the most important filters that 

were on the shallow layers. 
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3.2.2 Revival of the Neural Networks Research 

A greedy unsupervised training scheme was proposed by Hinton et al. (Hinton, 

Osindero, Teh, 2006) in 2006 which was not affected by the vanishing gradient 

problem. This new algorithm was a combination of wake-sleep algorithm (Hinton, 

Dayan, J Frey, M Neal, 1995) and contrastive divergence learning (Hinton, 2002) and 

applied to Restricted Boltzmann Machines (Smolensky, 1986). It was shown that 

greedy learning of the initial weights with pre-training overcame the vanishing 

gradient problem and made it possible to train deep networks with backpropagation. 

This led to the revival of neural networks research. Even though the shortcomings, 

the neural networks research kept building on backpropagation training. 

3.2.3 GPU Era 

With the utilization of Graphical Processing Unit (GPU) instead of Central 

Processing Unit (CPU) for training, it was seen that it is possible to add more layers 

to the neural networks and train them relatively faster due to the architectural design 

of GPUs. The possibility of adding more layers sparked interest in the neural 

networks research once again in the 2010s. However, adding more layers comes with 

the fundamental deep learning problem. Thus, the research has been focused on 

creating mechanisms to avoid this problem since then. 

In 2010, it was shown that plain multilayered neural networks can be trained 

with backpropagation on GPUs (Cireşan, Meier, Gambardella, Schmidhuber, 2010) 

with a better performance than the state-of-the-art of that time. This was managed 

with adding more neurons and more layers to plain ANN. To be able to train the 

network data augmentation techniques were applied to MNIST dataset. No new 

techniques were applied other than usage of GPU. After this demonstration, Cireşan 

et al. (Cireşan, Meier, Masci, Gambardella, Schmidhuber, 2011) proposed that CNNs 

could be trained on GPUs without introducing any new training techniques. The 

GPU implementation of backpropagation training improved the performance on 

CIFAR10 (Krizhevsky, 2009) and MNIST datasets. 

A new milestone was set in neural networks in 2012. An eight layered CNN 

model called Alexnet (Krizhevsky et al., 2012) which was trained on GPUs was 

shown to outperform all of the state-of-the-art machine learning approaches with its 

remarkable recognition performance on the ImageNet (Deng et al., 2009) dataset. 



25 
 

Alexnet was built on LeNet concepts with more layers. Since the architecture was 

deeper than its predecessor and still uses backpropagation, it has to deal with the 

fundamental deep learning problem. The solution was the introduction of avoidance 

mechanisms that were built around the backpropagation’s flaw. Thus, a new 

activation function which could avoid vanishing gradient problem associated with 

sigmoid or hyperbolic tangent functions were implemented. The non-linearity was 

provided with ReLU (Nair, Hinton, 2010) since its gradient was non-saturating 

which allowed faster convergence. ReLU made it possible to have sparsity of 

activations which helped with training accuracy and time. However, with such a 

large network (62 million parameters), overfitting was inevitable. Dropout (N. 

Srivastava et al., 2014) applied to the hidden neurons and data augmentation 

techniques were applied to training images to avoid overfitting. 

Replacement of sigmoid and hyperbolic tangent with ReLU helped with the 

vanishing gradient problem. However, ReLU was not the perfect solution. ReLU 

units tend to die if their gradients become zero. The function f (x) = max(0, x) clearly 

sets the activation values below zero to zero, where the gradient also becomes zero. 

If this happens on a neuron, that neuron stops responding to stimuli, and its training 

permanently stops. This behavior is known as the dying ReLU problem. A predefined 

slope for negative values is proposed in order to avoid dead neurons in the network. 

This variation of ReLU is called Leaky ReLU (Maas et al., 2013). Another variation 

of ReLU was proposed by He et al. (He, Zhang, Ren, Sun, 2016) where the slope is 

learned as a network parameter. This variation is known as parametric ReLU 

(PReLU) (He et al., 2015). 

Various initialization schemes have been proposed since Alexnet to avoid 

vanishing/exploding gradient issue. This issue is the fundamental roadblock on 

achieving convergence on deeper architectures. Glorot et al. (Glorot, Bengio, 2010) 

proposed a normalized initialization method that took into account the number of 

input and output connections to each neuron. This initialization technique allowed 

addition of more layers where the activation function was a sigmoid like function. 

However, Glorot et al.’s initialization technique was not adequate for networks with 

ReLU activation functions. He at al. (He et al., 2015) proposed an initialization 

scheme that allowed very deep networks, which use parametric ReLU as 

nonlinearity, to converge. 
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Another side effect of using backpropagation training was pointed by Ioffe et 

al. as internal covariate shift. It was shown that the weight updates during the back- 

propagation training changes the weights in a way that would move the inputs of the 

activation function to saturated regions. As explained in Section 2.1.1.1, when the 

input moves the sigmoid-like activation functions to their saturated regions, the 

learning slows down or stops. Ioffe et al. proposed a batch normalization scheme to 

further augment the weights at a normalization step. Inputs to the activation function 

were updated with batch normalization method to fix variance and the mean of the 

layer to avoid the saturated regions of the nonlinearity. 

As the CNNs got deeper, the various mechanisms to avoid the weakening of 

the signal across the layers became insufficient and the training error kept getting 

bigger with addition of more layers. He et al.(He et al., 2016) proposed skip 

connections to avoid this problem. Skip connection allowed feeding the output of a 

layer to some deeper layer rather than just feeding the next layer. The result of adding 

skip connection was strengthening of the output signal in deeper layer. Since the 

signal was not as weak as it got with networks without skip connections, He et al. 

managed to add more layers before network performance drops. A similar network 

was proposed by Srivastava et al. (Srivastava, Greff, Schmidhuber, 2015a, 2015b) 

called Highway networks. The difference was that the highway networks used data-

dependent parametric gating functions in skip connections. 

Often overlooked problem in deep architectures is that going deeper means 

more and more hyperparameters required to configure the models. In current 

research, CNNs are defined with hyperparameters like number of filters, number of 

layers, learning rate, momentum, number epochs, batch size, etc. These 

hyperparameters need to be tuned carefully to achieve the optimal performance on 

the task. The tuning of these hyperparameters is another research topic. Grid 

Search(GS) is the easiest to implement hyperparameter optimization technique where 

a subset of hyperparameter space is searched (Bengio, 2012) for the optimal 

performance. However, it is a computationally expensive optimization method 

(Kaneko, Funatsu, 2015) and the sheer number of hyperparameters used in CNNs 

make it unsuitable. Even if the number of hyperparameters was not high, GS is found 

to be stuck at local optima (Keerthi, Lin, 2003). Another method is employing 

random searches in the hyperparameter space with RS. A combination of GS and RS 

is proposed in different works (Hinton, 2010; Larochelle et al., 2007; Yann et al., 
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1998). Hutter (Hutter, 2009) showed that the computationally less expensive SMBO 

more effectively finds the best solution than RS. Bayesian optimization is shown to 

be appropriate to optimize(Snoek et al., 2012) CNN hyperparameters since Bayesian 

approach is suitable for black box type functions. Another approach on 

hyperparameter optimization on ANNs (Akı, Erkoç, Eskil, 2017) is using a reduced 

set that will speed up the search for the best parameter values. 

As mentioned in LeCun et al. (LeCun, Bengio, Hinton, 2015), the interest in 

deep networks was revived with Hinton et al.’s unsupervised approach (Hinton et al., 

2006). However, the remarkable results of supervised approaches led the research in 

a purely supervised manner by inventing new ways to circumvent the vanishing 

gradient problem. LeCun et al. (LeCun et al., 2015) anticipated that unsupervised 

learning will become more important in the future. As they mention, an infant’s brain 

processes information and extracts concepts purely by observation and not by being 

taught by a supervisor. 

3.2.4 Unsupervised Learning with Backpropagation 

While supervised learning remains the dominant focus of research on deep net- 

works, there has also been significant exploration of unsupervised learning within 

this field. It is worth mentioning that even though the following studies that are 

discussed under this title are all categorized under unsupervised learning topic, they 

still employ backpropagation. We can categorize unsupervised methods into self-

supervised learning, cluster-based learning, and generative models. 

In self-supervised learning, the use of pretext tasks allows for the replacement 

of data labels with pseudo-labels. Dosovitskiy et al. (Dosovitskiy, Springenberg, 

Riedmiller, Brox, 2014) generate surrogate classes by first selecting random im- age 

patches and then applying transformations to the randomly sampled patches. The 

transformations can be one of rotation, translation, contrast manipulation or scaling 

operations. The patches may contain whole object or object parts. After the trans- 

formations, these surrogate classes are labeled with pseudo-labels. The pseudo-labels 

are used in backpropagation training instead of the real labels. Thus, the CNN learns 

to classify the surrogate classes. Another pretext task is usage of relative positions of 

image patches. This method involves cutting the images into pieces to create a jig- 

saw. Both (Doersch, Gupta, Efros, 2015) and (Noroozi, Favaro, 2016) utilizes this 

pretext task. They train their networks to master puzzle-solving. Image colorization 
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is utilized by (Larsson, Maire, Shakhnarovich, 2016, 2017; Zhang, Isola, Efros, 

2016). In contrast, the approach proposed by (Pathak, Krahenbuhl, Donahue, Darrell,  

Efros, 2016) utilizes image in-painting, where the prediction of pixels is based on the 

information of neighboring pixels. Tracking video frames is also utilized for motion 

cues in (Misra, Zitnick, Hebert, 2016; Wang, He, Gupta, 2017). Jaehoon et al. 

(Jaehoon et al., 2018) procure drivable space and surface normals from stereo 

images. These data then used to produce pseudo ground truth. Finally, to determine 

the quality of an image, ranking is used as a pretext task in (Liu, Weijer,  Bagdanov, 

2019). 

Gaussian Mixture Models (GMM) and k-means (Macqueen, 1967) is 

commonly used in cluster-based unsupervised learning methods. The objective of the 

cluster-based algorithms is generating clusters that can be used for pseudo-labeling 

the training samples. Training of the network is performed through backpropagation 

using the assigned pseudo-labels. As a result, the performance of the trained network 

depends on the clustering performance. Yang et al. (Yang, Parikh,  Batra, 2016) 

performs agglomerative clustering on the output of a CNN. Based on the cluster 

labels, they update both the clusters and the CNN weights on each backward pass. 

This is repeated until they reach a stopping criterion. A very similar approach is 

proposed by (Liao, Schwing, Zemel, Urtasun, 2016). Xie et al. (Xie, Girshick,  

Farhadi, 2016) proposes deep embedded clustering (DEC) method where input 

images mapped to feature space by using stacked auto encoders (SAE). To initialize 

the cluster centroids, k-means clustering is applied on the outputs of SAE. They 

further refine the clusters by applying Kullback-Leibler (KL) divergence. In another 

work (Xu, McCord, 2021), spatial vector outputs from a randomly initialized CNN 

are used to generate clusters by applying GMM. CNN weights are updated by using 

the cluster assignments. Finally, the features are obtained from the trained CNN. 

Mahon et al. (Mahon, Lukasiewicz, 2021) trains a couple of auto encoders(AE) in 

parallel. During the training process, they selectively choose the mutually agreed 

cluster pseudo-labels. ClusterFit (Yan, Misra, Gupta, Ghadiyaram, Mahajan, 2020) 

employs self-supervised learning method from (Noroozi, Favaro, 2016) and (Gidaris, 

Singh, Komodakis, 2018) to train ResNet-50 (He et al., 2016) with the ImageNet 

(Deng et al., 2009) dataset. They create clusters from another dataset by using k-

means along with the pretrained network and assign pseudo-labels to these clusters. 

They end up with a new dataset with the pseudo-labels generated by clustering 
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process. This dataset is utilized to train a new network which has the same 

architecture with Resnet-50 from scratch with backpropagation with the objective of 

minimizing cross-entropy. 

Generative Adversarial Networks (GAN) and AEs are unsupervised methods 

that aim to train models on input data to generate outputs close to inputs. AEs 

objective is to minimize the reconstruction error between the input training data and 

their respective reconstructed output. To minimize the error, parameters of the AEs 

are updated iteratively using gradient descent. In (Masci, Meier, Cireşan,  

Schmidhuber, 2011), Convolutional Auto Encoder (CAE) is proposed as a weight 

initialization method for CNNs. CAE is used to obtain localized features from the 

training data. Later, these feature representations are used as the initial values of a 

CNN. Another application of CAE (Hou, Yan, 2018) is fingerprint verification. 

Vincent et al. (Vincent, Larochelle, Lajoie, Bengio, Manzagol, 2010) uses stacked 

denoising AEs which is able to learn edges resembling to Gabor filters. Using this 

method is shown to perform better on MNIST dataset compared to ordinary stacked 

AEs. In (Makhzani, Frey, 2014), k-sparse AE is proposed. In this method, 

reconstruction is performed by only using the top-k units instead of using all hidden 

units which allows better accuracy. While AEs aim to learn the latent representations 

of the input data to better reconstruction in a single network, GANs (Goodfellow et 

al., 2014) utilizes two networks. The two networks are the generative network and 

adversary network. While the adversary model aims to differentiate between real and 

generated data, the generative model’s objective is to deceive the discriminative 

model. In (Chen et al., 2016), to learn meaningful representations without any label 

information, mutual information is maximized between the noise variables of the 

GAN and the observations. Synthetically generated images can be also used to 

extract features by using GAN (Ren, Lee, 2018). DCGAN (Radford, Metz,  Chintala, 

2016) is a GAN architecture that uses transposed convolutional network for 

unsupervised feature extraction. 

To summarize, we can divide the unsupervised research into three primary 

categories: self-supervised learning, cluster-based learning and generative networks. 

Although we mention the works in this section as unsupervised, all of them still 

utilize backpropagation for training, whereas our proposal suggests training without 

backpropagation. By utilizing pretext tasks or clustering methods, the self-supervised 

and cluster-based learning approaches mentioned earlier designate pseudo-labels to 
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the training data. The models are trained using backpropagation, leveraging the 

pseudo-labels derived from the aforementioned methods. Generative models consist 

of two networks. The objective of the generative model is to produce new images 

that closely resemble the original training images to deceive the discriminative 

model. On the other hand, the discriminative model’s goal is to differentiate between 

generated and real data. During the training process, both the generative and 

discriminative models employ backpropagation for optimization. 

3.3 Neocognitron 

The roots of CNN architecture dates back to 1980. Fukushima (Fukushima, 

1980) proposed a network called Neocognitron which can be trained without back- 

propagation. While building the Neocognitron architecture, Fukushima implemented 

the simple and complex cells discovered by Hubel and Wiesel (Hubel, Wiesel, 1959) 

as alternating layers. With implementing this hierarchical structure, Fukushima 

managed to extract features through simple cells, while he achieved translation 

invariance with complex cells. Fukushima proposed supervised and unsupervised 

learning approaches (Fukushima, 2013, 2016; Fukushima, Hayashi, Léveillé, 2014; 

Fukushima, Wake, 1991) for training Neocognitron architecture throughout the years 

following its first introduction. 

One of those learning schemes that Fukushima proposed for training of 

Neocognitron was an unsupervised competitive learning scheme known as Winner-

Take-All (WTA) (Fukushima, 2003). Based on Hubel and Weisel’s work, Fukushima 

implemented simple and complex cells as cell planes in the layers. Upon presenting a 

visual stimulus to the system, the simple cells engage in competitive interactions to 

encode the input. Among the simple cells, the one with the strongest response to the 

input stimulus emerges as the representative within its corresponding cell plane. 

Through the self-organizing mechanism facilitated by the Winner-Takes-All (WTA) 

algorithm, the simple cell planes exhibit selective sensitivity towards specific 

features. This self-organization process relies on a similarity threshold, which 

regulates the creation of new filters within the WTA algorithm. 

Another unsupervised learning method proposed by Fukushima is known as 

Add-if-Silent(AiS) (Fukushima, 2013). According to the AiS rule, if all post-synaptic 

simple cells are silent (not stimulated at a predefined rate), a new cell is generated 
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and added to the layer. The input stimulus vector that triggered the generation of a 

new cell is assigned as the weights of the new cell. The connections to this new cell 

cannot be changed after the initial values were set. However, since weight updates 

never occur for the cells, as the training progresses, the number of cell planes 

steadily grows until the entire feature space is effectively spanned by the reference 

vectors. 

Fukushima’s work is intriguing, as it seeks for visually observable and 

meaningful cues in the training set as opposed to random initialization of both the 

number of neurons and their weights and stochastic search towards error 

minimization, which is the common practice of supervised approaches. As in very 

early neural network research, we are looking for spatial features that make up 

simple components of complex objects in the image domain. For this reason, it is 

both reasonable and intuitive to look into the training images to generate and train 

new features. Our approach follows this school of thought, which has been strangely 

ignored in neural network research.  ………………………………………………….
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CHAPTER 4 

4. APPROACH 

4.1 Introduction 

In this work, we propose an unsupervised backpropagationless learning 

algorithm that was inspired by Fukushima’s Neocognitron to train the convolutional 

layers of CNNs. Our approach (Erkoç, Eskil, 2023) leverages competition of neurons 

in a convolutional neural network to represent the training samples, hence 

Competitive Convolutional Neural Network (CCNN). A CCNN is initially empty at 

the beginning of the training, i.e., there are no neurons/filters defined. Training 

proceeds layer-wise, the first input stimulus becoming the first filter for the layer. 

From this point on, we calculate the similarity of the next input stimulus with the 

filters that are extracted and assigned to the layer. If there is a representative feature 

of this input in the layer, i.e., the highest similarity result is greater than a similarity 

threshold, we carry out a weighted update on the weights of the winner filter in 

contrast to the AiS rule of Fukushima. Otherwise, we conclude that the layer does not 

possess a representative feature, hence we generate a new filter for the layer and use 

the particular stimulus to initialize the filter’s weights. Since all of the filters in 

CCNN are discovered and weight updates are carried with this competitive self-

organizing scheme, convolutional layers neither require backpropagation of errors 

nor a predefined number of filters hyperparameter defined per layer. The process of 

filter creation and weight adjustments is done in an unsupervised fashion because the 

decision is based on the similarity of input sample with the previously extracted 

filters of the current layer instead of backpropagation of error based on a label 

information.
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Contrary to the conventional CNN approach, the approach that will be 

presented here does not require selecting a suitable value for the number of filters 

hyperparameter of convolutional layers. The filters are discovered in a self-

organizing way from the training set images in a single epoch. Proposed training 

method makes sure that the filters are initialized and trained with a completely 

unsupervised self-organized scheme. This approach enables us to entirely disregard 

the filter initialization techniques mentioned in previous sections, as well as the need 

for training the filters through back-propagation. This results in much fewer epochs 

of training compared to general CNN approach. 

The proposed algorithm is a two-stage filter extraction method. The initial step 

involves extracting filter candidates from the input data using the center of gravity as 

a criterion. The next step is to select the filters among the among them using a 

predefined similarity threshold. The process is depicted in Figure 4.1. The following 

Figure 4.1 The proposed unsupervised backpropagationless filter extraction 

method. Images/feature maps are converted to candidates from which the filters are 

discovered without label information. Any filter candidate 𝑐𝑖 can become a new 

filter for the current layer if the maximum similarity value is less than a preset 

threshold. If not, filter with the highest similarity’s weights is updated. 
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sections will discuss the method in detail. In Section 4.2, we will discuss 

convolutional filter discovery scheme of CCNN and in Section 4.2.2, the training of 

the convolutional layers of the CCNN model is discussed. 

4.2 Convolutional Filter Discovery 

Typically, the number of filters per convolutional layer is predetermined as a 

hyperparameter during the model construction process. Since the training of the 

CNN is the next step after the model building, the filters are actually filled with 

random numbers from a distribution according to one of the suitable initialization 

techniques mentioned in Section 2.1.1. The randomly initialized filters then need to 

be trained to be able to extract meaningful patterns from the images for correct 

predictions. However, the number of filters is a hyperparameter that needs to be 

tuned to give the best results since it is not known how many features are needed in 

each convolutional layer for optimal performance. Another problem here stems from 

the random initialization of the filters. Because of the randomness of initialization, 

some number of epochs (that is not known know beforehand) of backpropagation is 

performed so that the filters can become good feature extractors. 

The approach proposed here is a filter extraction scheme where filters are 

discovered in the training space without the knowledge of the contents and labels of 

the given data. The input space is analyzed in an unsupervised fashion to discover 

filters for the current convolutional layer. The process involves competition and 

relies on a similarity threshold, which is determined through a grid search in 

increments of 0.1 within the range of [0, 1], where 0 indicates no similarity and 1 

represents an exact match. Based on the similarity threshold value, filter discovery 

scheme either generates a new filter from this candidate filter and adds it to the 

convolutional layer or updates an already extracted filter that belongs to this 

convolutional layer. The input filter candidates for the discovery of the filters are 

prepared from the training images of the given dataset with a process explained in 

Section 4.2.1. After the inputs are prepared, the filter discovery algorithm is run for 

only a single epoch. When this epoch is completed, the current convolution layer 

training is complete and there will be no updates on this layer anymore. This process 

is repeated for each convolutional layer in CCNN model. The implementation of this 

approach is a hybrid of CPU and GPU tasks. The filter discovery scheme is 
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implemented entirely on the CPU, while the convolution and maxpooling operations 

are performed on the GPU for efficient processing. After the filter discovery for the 

whole system is completed, the CCNN is built and only the fully connected layers 

undergo training on GPU. 

4.2.1 Center of Gravity Based Candidate Filter Extraction 

The purpose of convolutional layers is to apply convolution operation to the 

images. In convolution operation, filters are slid on the input image with a specific 

stride. At each step, convolution operation is applied on a receptive field sized 

windows on the input image. The aim of the approach that is presented here is 

discovering the filters from the input images. Thus, the training images are cut into 

receptive field sized patches with strides of 1 as discussed in (Erkoç, Eskil, 2022). 

The stride value is selected as the same value that will be used with the CCNN model 

for convolutions. In this study, CCNN models are all defined with stride value of 1 in 

convolutional layers. Since the proposed CCNN model is based on the discovery of 

the filters, the key to the high performance is based on how the images are 

transformed into filter candidates. The remaining paragraphs of this section explains 

the algorithm of choosing the appropriate filter candidates for CCNN model in the 

perspective of MNIST dataset. Although, the explanation is based on the MNIST 

dataset, all steps of the proposed algorithm are applicable as it is on other datasets. 

Proposed algorithm processes each image in the training set one by one. When 

an image from the training set is selected, it is first cut into small filter size × filter 

size patches with strides of 1 which forms a set of filter candidates. However, a very 

large number of filter candidates are obtained even with a small dataset like MNIST. 

Moreover, the candidates obtained with this simple process often include no useful 

information (e.g., background). The proposed algorithm’s running time is affected by 

the sheer number of candidate filters that are obtained with this simple process. The 

higher the number of the candidates, the longer it takes to calculate similarities. For 

example, 

Each MNIST (LeCun, Cortes, 2010) image’s dimensions is 28 × 28. If the filter 

size is selected as 5 × 5 pixels, then the number of candidate filters that is added to 

candidate filter set from just one image can be up to 567. Since there are 50000 

training images processed by the proposed algorithm, the number of candidate filters 

obtained from MNIST training set images can reach up to nearly 17 million. The 
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number of candidates depends on the size of the filters and the number of training 

images in the dataset. The number of image patches can be larger than 17 million if 

the size of the filters is reduced from 5 × 5 pixel filters to 3 × 3 pixel filters or just by 

using another dataset which has more training images than MNIST. The filter 

extraction process cannot be fast if all of the possible image patches are used as filter 

candidates in the filter discovery scheme proposed here. Therefore, an elimination 

procedure is employed on the image patches to guarantee that the size of the 

candidate set remains within an acceptable range, while retaining essential 

information. 

Whenever an image is picked from the training set, the process shown in 

Algorithm 4.1 is used to extract the candidate filters. The image patches are cut out 

with specific stride and shape by using Python library NumPy’s as_strided function. 

After the execution of as_strided function, we obtain a set of patches which contains 

(𝑛 − 𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 + 1)2 patches assuming that the image dimensions are n × n. This set 

contains all possible image patches that can be extracted from that image. However, 

not all of these patches enclose valuable information. Thus, the patches which have 

variance value of 0 are discarded because these patches do not contain useful data. 

Even with this initial elimination, most of the remaining patches in the set do not 

contain meaningful patterns if closely inspected. Some of the features are on the 

sides or corners of the filter while the middle part of the filter is all black. This is 

caused by including the patches that are cut out from the images in strides of 1 
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throughout the image. While the window is slid through the image, several pieces 

that contains the same feature in different positions are cut out from the image and 

added to the candidate filters set. Sometimes the candidate filter window can just 

capture a couple of pixels from that feature in its corner. 

The second elimination removes those kind of image patches from the 

candidate filters set by just including the features that are positioned in the middle of 

the patch window. This is accomplished by computing the Center of Gravity (CoG) 

per image patch. If the determined CoG value is situated at a distance of up to ±0.5 

pixels from the CoG of the image patch in both the horizontal and vertical axes, the 

image patch is considered as a viable filter candidate. Otherwise, the current image 

patch is discarded from the candidate filter set. CoG based elimination scheme 

significantly reduces the number of candidate filters. These two elimination methods 

applied on the image patches can be seen as an attention mechanism rather than a 

preprocessing step. They ensure that focus is directed towards the features that are 

relevant for extracting the crucial elements from the training images. After the 

extraction of filters is completed, the filter weights are stored in a file to be later used 

in CCNN model. 

4.2.2 Unsupervised Learning Algorithm for Convolutional Layers of CCNN 

Architecture 

By executing the first step of the proposed method, we obtain the filter 

candidates set. The next phase involves the identification of filters from the pool of 

candidates. The aim is to start from a blank slate and dynamically discovering filters 

from the training images for each convolutional layer. 

The training algorithm described in Algorithm 4.2 operates on a layer-by-layer 

basis, ensuring that the next convolutional layer is trained only once all possible 

filters have been discovered for the previous layer. The process starts from the input 

layer. The input layer L directly fed with the raw training images I from the selected 

dataset. The training images I is processed by Algorithm 4.1 and the candidate 

patches are stored in C. The discovery of the first filter is a special case since the 

convolutional layer start with no filters. The algorithm relies on the similarity 

between a candidate filter patch and convolutional layer filters. Thus, the first 

candidate filter patch in 𝑪𝟎 directly becomes the first discovered filter for the empty 



38 
 

convolutional layer and added as a filter to this layer. Supporter count (vote) variable 

�⃗�  , which is crucial for the weight update rule of the proposed approach, for this 

filter is also set as 1. The number of supporters represents the frequency with which 

the related filter is selected as the representative (winner) for another candidate filter 

patch. The number of filters η for this layer is incremented by 1. 

After the special case of discovering the first filter of the current convolutional 

layer, the algorithm incorporates a competitive method to discover the remaining 

filters. All of the previously discovered convolutional layer filters competes to be the 

representative of the remaining input candidate filters. The competition is based on a 

similarity threshold and a similarity score. For each candidate filter patch, a 

similarity score between the candidate and the filters of the convolutional layer is 

calculated. If the filter and candidate are both vectors in the training space, then the 

similarity between them can be calculated with dot product. The filter vectors and the 
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candidate vector normalized and dot product calculated between the unit vectors. The 

calculated dot products are then stored in vector 𝑆 . The values inside the vector 𝑆  is 

the similarity scores of each filter to the current candidate. Since the filters are 

competing, the winner filter is the one which holds the highest similarity score. 

However, just winning is not enough to be the representative of this candidate filter 

patch. The similarity score also must be higher than the user specified similarity 

threshold. If the score 𝑆𝑗⃗⃗⃗   is greater than the similarity threshold value, that means the 

candidate filter is similar enough to the winner filter. The pattern in the candidate 

filter 𝑪𝒊 is observed in the past. Thus, a new feature is not encountered but a 

supporter of the winner filter is found among the candidates. Since a new supporter is 

found for the winner filter, the winner filter adjusts its weights according to weight 

update rule in Equation 4.1 and the algorithm increases the supporter count 

associated with the filter by one (Equation 4.2). 

 

 
𝐖𝐣

𝐋 = 𝐖𝐣
𝐋 +

𝐂𝐢 − 𝐖𝐣
𝐋

V⃗⃗ j
L + 1

 (4.1) 

 
�⃗� 𝑗

𝐿 = �⃗� 𝑗
𝐿 + 1 (4.2) 

 

If the highest score in 𝑆𝑗⃗⃗⃗   is below the similarity threshold value, it indicates that 

the candidate filter 𝑪𝒊 contains a previously unobserved pattern according to the 

algorithm. Consequently, 𝑪𝒊 is acknowledged as a novel filter for the current 

convolutional layer, and its supporter count is set to 1. This procedure is iterated for 

each candidate filter until the entire set is evaluated, signifying the completion of the 

filter search for the current layer L. Once all the candidates have been processed, the 

discovered filters undergo a normalization routine as the final step in the proposed 

algorithm. As part of the normalization procedure, the filter weights are stretched to 

fit within the range of [-1, 1]. Subsequently, the positive and negative filter weights 

are individually updated using Equations (4.3) and (4.4) respectively. Finally, the 

weights of the discovered filters are stored in a file upon the completion of Algorithm 

4.2. 
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𝐖𝐣

𝐋(+)
← 𝐖𝐣

𝐋(+)
/ |∑𝑾𝒋

𝑳(+)
| (4.1) 

 
𝐖𝐣

𝐋(−)
← 𝐖𝐣

𝐋(−)
/ |∑𝑾𝒋

𝑳(−)
| (4.2) 

 

The Algorithm 4.2 is also applied to the subsequent convolutional layers in the 

CCNN model. After the input layer, the process of extracting the filters from the data 

slightly changes. The input data must now be the output of the previous 

convolutional and pooling layers. Thus, except for the input layer, proposed 

algorithm must obtain the feature maps from the previous layer’s output. However, to 

do this, we first start by creating a Keras Sequential model. The convolutional layers 

added with Conv2D layer of Keras. The normal operation for Conv2D constructor is 

to get various input parameters the number of filters, weight initialization method, 

activation function, bias value, convolution type, stride value, etc. and create the 

convolutional layer. The weights of the filters are initialized randomly according to 

the selected initialization scheme. However, in CCNN approach, the filters are 

discovered before the CCNN model is built in Keras. Thus, the count of discovered 

filters is set as the number of filters. The discovered filters are also at their trained 

form, so they should not neither be initialized nor trained. Consequently, the filter 

weights of the convolutional layer are determined by utilizing the output of the 

Algorithm 4.2 and setting them using the set_weights method in Keras. After the 

weights of the filters are set, the trainable parameter of the filters is set the False to 

prevent the training of convolutional layer. If the CCNN model includes a max 

pooling layer after the convolutional layer, it is created and appended to the 

Sequential model.
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CHAPTER 5 

5. EXPERIMENTS 

The proposed method is evaluated on different CCNN model architectures. 

Handwritten digit datasets MNIST (LeCun, Cortes, 2010) and EMNIST-Digits (Co-

hen, Afshar, Tapson, van Schaik, 2017), handwritten Japanese character dataset 

Kuzushiji-MNIST (Clanuwat et al., 2018), and fashion items dataset Fashion-MNIST 

(Xiao, Rasul, Vollgraf, 2017) are utilized in the experiments. The following sections 

discuss the model architecture, the experiment settings, the datasets, performance 

metrics, experiment results and misclassified test samples. 

5.1 Model Types 

In the experiments, four different model types are utilized. The models are 

called type A, B, C and D. Table 5.1 shows the general structure of the layers in the 

CCNN models. We do not know the number of filters hyperparameter value in 

advance so the number of filters will be different for each parameter setup per 

dataset. Thus, the final models will be unique to the parameter settings. The max 

pooling layers are configured to halve the input. Since our algorithm only touches the 

feature extractor part of the CNN architecture, the classifier part of the models is all 

set as the same. We configured two fully connected layers separated by a dropout 

layer.
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5.2 Experiment Setup 

All models types (Table 5.1) in our experiments are implemented with Keras. 

The deep learning backend is configured as Theano (Theano Development Team, 

2016). We use Sequential model of Keras to build the CCNN models in Table 5.1. 

After applying our algorithm, we obtain the filter weights for the convolutional 

layers. These weights are used for initializing the convolutional layers in the 

Sequential model. However, we freeze the weights so that they become untrainable 

by Keras.  

Table 5.1 CCNN networks that are used in the experiments with various datasets. 

Convolutional layers either use 5 × 5 or 3 × 3 filters. Maxpooling is applied on the 

feature maps on 2 × 2 windows with strides of 2. The size of the convolutional filters 

is denoted with n while the maxpooling window size is shown with m. 

Convolutional layer convolution mode is set as same to use zero-padding in 

during the convolution operations. This ensures the preservation of input data 

dimensions. Pooling layers are configured to apply max pooling operation on 2 × 2 

windows with strides of 2. This allows dimensions of the inputs to be halved. Keras 

trains only the fully connected layers for 50 epochs. Two fully connected layers of 

1000 and 500 neurons separated by a Dropout layer with a 50% drop rate in between 

is configured. The activation function used in the experiments is ReLU. The only 

exception is the output layer where we used Softmax. The output layer is configured 
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with 10 units. Loss is calculated with categorical cross-entropy and the weights of 

the fully connected layers are updated with Adadelta (Zeiler, 2012). We used an entry 

level desktop computer for the experiments which carries a 3.6 GHz Intel Core i7 

7700 CPU and a single GTX1050 GPU with 2GBs of VRAM. 

5.3 Datasets 

The following sections will introduce the datasets that are used in the 

experiments. Note that the datasets are used as it is. We do not apply preprocessing to 

the dataset or increase the training set image count by using data augmentation. 

5.3.1 MNIST 

MNIST is a collection of labeled handwritten digits images. The dataset 

comprises a training set containing 60000 images and a separate test set containing 

10000 images. In our experiments, we partitioned the training set into 50,000 training 

images and 10,000 validation images. The validation set was randomly chosen and 

extracted from the original training set. It is important to note that both the training 

and validation sets exhibit an imbalanced class distribution, resulting in varying 

sample counts across different classes due to random sampling performed during the 

separation of the validation sets. 

5.3.2 EMNIST-Digits 

EMNIST-Digits is a collection of handwritten digit images, similar to the 

original MNIST dataset, but with an extended range of characters. EMNIST-Digits 

consists of 10 classes representing the digits 0-9 as in MNIST. It provides a larger 

and more diverse set of handwritten digit samples in contrast to the original MNIST 

dataset. The EMNIST-Digits consists of 240000 training and 40000 test images. In 

the training set, the last 40000 images have been specifically designated as a 

validation set (Cohen et al., 2017). This validation set has been organized in a way 

that ensures a balanced distribution of classes. 
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5.3.3 Kuzushiji-MNIST 

The Kuzushiji-MNIST dataset is tailored to capture the distinct features of old 

cursive Japanese handwriting. It consists of ten distinct hiragana classes. Each 

hiragana character in cursive Japanese can have multiple variations since they are 

derived from different kanji characters. As a result, each class in the dataset is 

represented by several characters that exhibit entirely different writing styles. Due to 

the substantial intraclass variations, this dataset poses a significant challenge in 

contrast to the original MNIST dataset. The image counts for the training, validation, 

and test sets in Kuzushiji-MNIST is identical to the original MNIST dataset. A 

validation set is generated by randomly selecting and separating a portion from the 

original training set. Consequently, both the training and validation sets exhibit an 

imbalanced distribution of classes, with varying numbers of samples across different 

classes. 

5.3.4 Fashion-MNIST 

Fashion-MNIST is a dataset designed as a substitute for MNIST, but with a 

focus on fashion-related images. It comprises a training set containing 50000 images 

and a distinct test set consisting of 10000 images. To ensure consistency with the 

MNIST dataset, we follow the same procedure to partition the Fashion-MNIST 

dataset into training, validation, and test sets. 

5.4 Performance Metrics 

Performance metrics accuracy, precision, recall, specificity and F1-score are 

calculated with Equations 5.1-5.5. For calculating these metrics for a class 𝑐𝑖, we use 

the following definitions: 

• True Positive (TP): the count of images belonging to class 𝑐𝑖 that are 

accurately recognized as class 𝑐𝑖; 

• True Negative (TN): the count of images belonging to other classes and are 

correctly identified as other classes; 

• False Positive (FP): the count of images belonging to other classes but are 

incorrectly identified as class 𝑐𝑖; 
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• False Negative (FN): the count of images belonging to classes ci but 

incorrectly identified as other classes. 

In addition, we provide a comprehensive assessment by reporting the overall 

accuracy of all the models. 

 

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (5.1) 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.2) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.3) 

 
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.4) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.5) 

 

5.5 Experiment Details 

To evaluate the performance of our proposed method, we run experiments by 

using different values of similarity threshold. The similarity threshold value is chosen 

within the range of [0, 1], representing the spectrum from dissimilar to exact match. 

The threshold values are determined through a grid search process with steps of 0.1. 

This approach restricts the search space to the specific values listed as: 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Performance is adversely affected when the similarity 

threshold is set below 0.5, as setting the similarity threshold too low leads to a 

considerable reduction in the number of filters obtained from the datasets. We 

deliberately refrain from employing any preprocessing or data augmentation 

techniques to evaluate our proposed algorithm in isolation. Each model type is used 

for each dataset. A total of five training runs are conducted for each individual 

model, and only the performance metrics of the top-performing CCNN model are 

reported in the following sections.  …………………………………………………...
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CHAPTER 6 

6. RESULTS 

6.1 MNIST Experiment Results 

Each model listed in Table 5.1 are evaluated using different combinations of 

similarity thresholds. The experiments reveal that 5 × 5 filters yield higher accuracy 

compared to smaller 3 × 3 filters. Among these models, Model A exhibits the highest 

classification performance achieved on the MNIST dataset, achieving an accuracy of 

99.19%, as presented in Table 6.1. The process of extracting filters for the 

convolutional layers and the top-performing model is trained in a time frame of 30 

minutes. 

Table 6.1 Extracted filter counts and the test accuracy of individual models on 

MNIST dataset. 

Model 

Type 

Similarity 

T1 T2 

Threshold (T) 

T3 T4 

Fil 

FC1 

lter Cou 

FC2 

unt (FC) 

FC3 FC4 

 
Accuracy(%) 

A 0.6 0.5 - - 97 54 - - 99.19 

B 0.6 0.5 - - 97 117 - - 99.18 

C 0.6 0.6 0.7 - 97 120 67 - 98.34 

D 0.6 0.5 0.6 0.7 97 117 101 145 97.45 
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Out of the 10000 test images, the model makes 81 incorrect predictions. The 

confusion matrix, shown in Table 6.2, provides an overview of the model’s 

performance. It is noteworthy that the digit class that is most accurately predicted by 

the model is 1, while the most commonly confused class is 9.

Table 6.2 The confusion matrix represents the performance of Model A on the MNIST 

dataset. 
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Table 6.3 Performance metrics of Model type A for individual classes of MNIST 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

6.2  EMNIST-Digits Experiment Results 

Similar to the results obtained in the MNIST experiments, employing a filter 

size of 5 × 5 leads to improved accuracy for the EMNIST-Digit experiments. Once 

again, Model type A remains the best performing model, achieving an accuracy of 

99.39% as presented in Table 6.4.  ……………………………………………………

      

Classes Accuracy(%) Precision Recall Specificity F1-score 

0 99.87 0.9929 0.9939 0.9992 0.9934 

1 99.86 0.9921 0.9956 0.9990 0.9938 

2 99.84 0.9913 0.9932 0.9990 0.9923 

3 99.83 0.9911 0.9921 0.9990 0.9916 

4 99.87 0.9949 0.9919 0.9995 0.9934 

5 99.84 0.9921 0.9899 0.9992 0.9910 

6 99.81 0.9896 0.9906 0.9989 0.9901 

7 99.86 0.9922 0.9942 0.9991 0.9932 

8 99.82 0.9928 0.9887 0.9992 0.9907 

9 99.78 0.9901 0.9881 0.9989 0.9891 
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Table 6.4 Extracted filter counts and the test accuracy of individual models on 

EMNIST-Digits dataset. 

 

Out of the 40000 test images, our model makes 244 incorrect predictions. The 

corresponding confusion matrix can be found in Table 6.5. It is noteworthy that the 

digit 6 is the class with the highest accuracy in predictions, while digit 8 poses the 

most significant challenge for the model, as indicated in Table 6.6. 

Model 

Type 

Similarity 

T1 T2 

Threshold (T) 

T3 T4 

Fil 

FC1 

lter Cou 

FC2 

unt (FC) 

FC3 FC4 

 
Accuracy(%) 

A 0.6 0.5 - - 145 116 - - 99.39 

B 0.5 0.5 - - 78 161 - - 99.38 

C 0.6 0.5 0.7 - 145 116 101 - 99.11 

D 0.5 0.5 0.6 0.5 78 161 148 114 98.94 

Table 6.5 The confusion matrix represents the performance of Model A on the 

EMNIST-Digits dataset. 
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Table 6.6 Performance metrics of Model type A for individual classes of EMNIST- 

Digits dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

6.3  Kuzushiji-MNIST Experiment Results 

In the case of the Kuzushiji-MNIST dataset, a filter size of 3 × 3 proves to be 

more effective compared to the use of a 5 × 5 filter size employed with the MNIST 

and EMNIST-Digit datasets. The highest level of test accuracy is observed in model 

type B with 95.03%, as presented in Table 6.7.  ……………………………………

      

Classes Accuracy(%) Precision Recall Specificity F1-score 

0 99.92 0.9955 0.9960 0.9995 0.9958 

1 99.92 0.9958 0.9958 0.9995 0.9958 

2 99.87 0.9910 0.9955 0.9990 0.9933 

3 99.87 0.9965 0.9905 0.9996 0.9935 

4 99.89 0.9960 0.9930 0.9996 0.9945 

5 99.87 0.9940 0.9925 0.9993 0.9933 

6 99.89 0.9930 0.9963 0.9992 0.9946 

7 99.90 0.9950 0.9953 0.9994 0.9951 

8 99.85 0.9950 0.9900 0.9994 0.9925 

9 99.83 0.9881 0.9950 0.9987 0.9915 
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Table 6.7 Extracted filter counts and the test accuracy of individual models on 

Kuzushiji-MNIST dataset. 

 

 

 

 

 

 

 

In the test set predictions, a total of 497 errors are observed. The corresponding 

confusion matrix for the best model can be found in Table 6.8.  

Model 

Type 

Similarity 

T1 T2 

Threshold (T) 

T3 T4 

Fil 

FC1 

lter Cou 

FC2 

unt (FC) 

FC3 FC4 

 
Accuracy(%) 

A 0.6 0.5 - - 51 48 - - 94.62 

B 0.6 0.5 - - 51 67 - - 95.03 

C 0.6 0.6 0.5 - 51 133 43 - 94.90 

D 0.6 0.5 0.5 0.4 51 67 140 193 93.55 

Table 6.8 The confusion matrix represents the performance of Model B on the 

Kuzushiji-MNIST dataset. 
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Class 3 is the class with the highest accuracy in predictions, while class 2 poses 

the most significant challenge for the model, as evidenced by a recall of 0.91, as 

indicated in Table 6.9. 

Table 6.9 Performance metrics of Model type B for individual classes of Kuzushiji- 

MNIST dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

6.4  Fashion-MNIST Experiment Results 

In the Fashion-MNIST experiments, it is observed that utilizing a filter size of 

3× 3 yields improved results compared to the use of 5 × 5 filters. Model type B 

emerges as the top-performing model, achieving an accuracy of 90.11%, as depicted 

in Table 6.10.  …………………………………………………………………………

      

Classes Accuracy(%) Precision Recall Specificity F1-score 

0 99.16 0.9636 0.9520 0.9960 0.9578 

1 98.99 0.9527 0.9460 0.9948 0.9493 

2 98.40 0.9277 0.9110 0.9921 0.9193 

3 98.99 0.9245 0.9790 0.9911 0.9510 

4 98.71 0.9325 0.9390 0.9924 0.9357 

5 99.23 0.9792 0.9430 0.9978 0.9608 

6 99.11 0.9479 0.9640 0.9941 0.9559 

7 99.36 0.9766 0.9590 0.9974 0.9677 

8 99.10 0.9452 0.9660 0.9938 0.9555 

9 99.01 0.9564 0.9440 0.9952 0.9502 
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Table 6.10 Extracted filter counts and the test accuracy of individual models on 

Fashion-MNIST dataset. 

 

 

 

 

 

 

 

 

Table 6.11 The confusion matrix represents the performance of Model B on the 

Fashion-MNIST dataset. The classes are assigned to numbers ranging from 0 to 9. In 

order, the class labels correspond to Tshirt/top, Trouser, Pullover, Dress, Coat, San- 

dal, Shirt, Sneaker, Bag, and Ankle boot. 

Model 

Type 

Similarity 

T1 T2 

Threshold (T) 

T3 T4 

Fil 

FC1 

lter Cou 

FC2 

unt (FC) 

FC3 FC4 

 
Accuracy(%) 

A 0.7 0.7 - - 92 48 - - 88.80 

B 0.7 0.6 - - 92 40 - - 90.11 

C 0.7 0.7 0.6 - 92 48 44 - 85.55 

D 0.7 0.7 0.5 0.5 92 62 47 18 86.92 
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Table 6.12 Performance metrics of Model type B for individual classes of Fashion- 

MNIST dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

6.5  Filters Discovered via Proposed Unsupervised Process 

6.5.1 MNIST Dataset 

Figure 6.1 illustrates the filters obtained from the first layer of Model A trained 

with MNIST dataset. The extracted filters demonstrate noticeable directed edges and 

curves. These filters extracted through proposed algorithm effectively represent the 

visual characteristics inherent in the dataset, as depicted in Figure 6.1.One intriguing 

finding is that a number of our features exhibited convergence towards Gabor-like 

filters, which have been extensively studied and employed in various research 

studies. 

      

Classes Accuracy(%) Precision Recall Specificity F1-score 

Tshirt/top 97.06 0.8368 0.8770 0.9810 0.8565 

Trouser 99.66 0.9899 0.9760 0.9989 0.9829 

Pullover 96.46 0.8337 0.8070 0.9821 0.8201 

Dress 98.02 0.8878 0.9180 0.9871 0.9027 

Coat 96.38 0.8282 0.8050 0.9814 0.8164 

Sandal 99.63 0.9859 0.9770 0.9984 0.9814 

Shirt 94.91 0.7508 0.7350 0.9729 0.7428 

Sneaker 99.19 0.9483 0.9720 0.9941 0.9600 

Bag 99.55 0.9732 0.9820 0.9970 0.9776 

Ankle boot 99.36 0.9737 0.9620 0.9971 0.9678 
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6.5.2 EMNIST-Digits Dataset 

Figure 6.1 First layer filters of Model A trained with MNIST dataset. 

Figure 6.2 First layer filters of Model A trained with EMNIST-Digits dataset. 



56 
 

The EMNIST dataset serves as an extended version of the MNIST dataset, 

which is why certain filters extracted from the training set of EMNIST-Digits (refer 

to Figure 6.2) are either identical or highly similar to those depicted in Figure 6.1. 

6.5.3 Kuzushiji-MNIST Dataset 

In the experiments conducted on the Kuzushiji-MNIST dataset, utilizing 3 × 3 

filters for filter extraction yields higher classification accuracy when compared to 5 × 

5 filters. Figure 6.3 displays the filters obtained from the training set for the initial 

convolutional layer. From the extracted filters, one can observe the presence of 

directed edges and fragments of curved strokes. 

6.5.4 Fashion-MNIST Dataset 

The filters obtained from the Fashion-MNIST dataset capture notable features 

such as directed edges and corners. In comparison, the MNIST and EMNIST-Digits 

datasets have a higher number of filters that effectively capture smooth curves, 

reflecting the prevalence of curved characteristics in the digits as opposed to the 

fashion items present in the Fashion-MNIST dataset. The extracted filters are 

visually represented in Figure 6.4. 

Figure 6.3 First layer filters of Model B trained with Kuzushiji-MNIST dataset. 
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6.5.5 Extracted Filters in Subsequent Layers 

Visualizing the filters in the initial convolutional layer is straightforward since 

their input weights correspond to specific features and can be easily reshaped to 

reconstruct images. However, as we delve deeper into subsequent layers, the weights 

no longer directly map to the input pixels. Therefore, a method is employed to 

visualize the features in these deep layers, allowing for a more comprehensive 

understanding of the features extracted by our algorithm. 

Once the training process is completed, the trained model is employed to 

generate feature maps for each image in the training set at a designated layer. For 

Figure 6.4 First layer filters of Model B trained with Fashion-MNIST dataset. 

Figure 6.5 The visualization illustrates the collection of 54 features obtained from 

the MNIST training images using Model type A in the second layer. 
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every training image, the pixel with the highest value across all feature maps is 

identified and marked. The coordinates of this pixel are then traced back to the 

original training image, and the corresponding region containing the feature that 

most strongly activates the specific filter is highlighted. This process is exemplified 

in Figure 6.5 using the MNIST dataset. The visualization in Figure 6.5 implies that 

the filters are specialized in detecting features that progressively evolve to represent 

more intricate characteristics. These intricate features correspond to various parts of 

the digits, such as closed loops and curves, which are prevalent in digit 

representations. 

6.6 Samples with Incorrect Classification 

6.6.1 Incorrectly Classified MNIST Samples 

Model type A demonstrates exceptional performance in correctly classifying 

digit 1 samples from the MNIST dataset, with only 5 misclassifications out of 1135 

digit 1 samples in the test set. 

The misclassified digit 1 samples are displayed in Figure 6.6. The second, 

fourth, and fifth images are erroneously labeled as digit 6. We can attribute this to the 

slight angle and curvature of the digit strokes, as well as the presence of artifacts in 

the samples, which may have caused confusion in the prediction. The first and third 

misclassified images are relatively straightforward for human observers to identify 

correctly; however, the trained model assigns the labels 2 and 3 to them, 

correspondingly. It is worth noting that these misclassifications may stem from the 

presence of certain fundamental features shared with other digit 2 samples, leading to 

an incorrect classification. Upon examining the top-2 predictions for each of these 

test samples, it is observed that the second most probable prediction is digit 1, with a 

confidence level very close to the top-1 prediction. 
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Figure 6.6 The test images belonging to digit class 1 from the MNIST dataset are 

inaccurately classified by Model A. Among these images, the second, fourth, and 

fifth samples are mistakenly labeled as 6, potentially due to the presence of artifacts 

and curved elements within the images 

Figure 6.7 The test images belonging to digit class 9 from the MNIST dataset are 

inaccurately labeled by Model A. 
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The model’s weakest performance is observed in the classification of digit 9 in 

the MNIST test set. The model demonstrates a tendency to assign varying labels in 

accordance with distinct writing styles. For images with a small loop diameter, the 

model tends to assign labels of either digit 1 or 7, determined by the length of the 

loop, as the loop feature becomes less distinguishable or entirely obscured during the 

convolution and pooling operations. The first image in the second row presents an 

intriguing case where the lower half of the digit is clipped, leading to an image that is 

unidentifiable. All predictions for digit 4 are assigned to unconventional digit 9 

samples. Among these, only one is correctly identified as digit 9 by a human 

observer. 

6.6.2 Incorrectly Classified EMNIST-Digits Samples 

Our model achieves the highest prediction accuracy when classifying samples 

from the EMNIST-Digits test set that belong to the digit 6. However, there are 

instances where our model incorrectly predicts the labels, as depicted in Figure 6.8. 

Out of the 4000 test samples consisting of the digit 6, our model makes 15 incorrect 

Figure 6.8 Misclassified images from the digit class 6 in the EMNIST-Digits 

dataset, as predicted by Model A. 
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predictions. Interestingly, some of these mispredicted samples bear no resemblance 

to the digit 6 at all. In fact, one of the samples even contains a two-digit number 66 

instead of a single digit 6. The presence of rotation and missing parts, caused by 

cropping, influence the model to favor predicting digit 4. Additionally, 

mispredictions of digit 0 are also common. Upon analyzing the top-2 predictions, we 

observe that digit 6 is the subsequent prediction in 12 out of 15 cases. 

The digit class 8 exhibits the poorest prediction performance, as Model A 

incorrectly labels 40 out of 4000 digit 8 images from the EMNIST-Digits test set. In 

Figure 6.9, we can observe several mispredicted images that lack crucial parts of the 

digit, making correct classification challenging. Notably, digit 8 is frequently 

misclassified as digit 9. Upon closer inspection, it becomes evident that 4 of these 

mispredicted images lack a loop in the lower half of the digit 8. This absence of a 

prominent curve in the expected location is a common characteristic of these 

inaccurate predictions. Moreover, some of the misclassified samples do not even 

resemble digit 8 in any discernible way. Interestingly, when considering the top 2 

predictions, digit 8 emerges as the second most likely prediction for 22 out of the 

mispredicted images. 

Figure 6.9 The test images belonging to digit class 8 from the EMNIST-Digits 

dataset are inaccurately labeled by Model A. 
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6.6.3 Incorrectly Classified Kuzushiji-MNIST Samples 

Among all the classes, our best model attains the highest classification 

performance on class 3 with only 21 prediction errors. However, there is a frequent 

confusion between class 3 and class 2, leading to mislabeling during testing. The 

images depicted in Figure 6.10 exhibit features that bear resemblance to other 

classes, which further complicates the prediction process. Class 3 emerges as the 

runner-up prediction for 13 of the misclassified images. 

Class 2 poses the greatest confusion for the model, as it frequently 

misclassifies class 2 images as class 3. Upon closer examination of the mislabeled 

images, it becomes apparent that many of them exhibit features reminiscent of class 

2 samples (Figure 6.11). It is worth noting that for 55 of these samples, the second 

most accurate prediction corresponds to the correct class. 

Figure 6.10 Misclassified images from the class 3 in the Kuzushiji-MNIST 

dataset, as predicted by Model B. 
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6.6.4 Incorrectly Classified Fashion-MNIST Samples 

The model achieves its best performance when encountering samples from the 

Bag class. Out of the 1000 test images of bags, 18 are misclassified. Figure 6.12 

displays some of these mislabeled test samples belonging to the Bag class. For 

instance, in the first row, the second image is incorrectly predicted as a Pullover. The 

bag image contains two elements that resemble long sleeves, which could have led to 

the misleading prediction in this particular case. The model frequently confuses Bag 

class images with Dress class images. Upon examining the second-best predictions 

Figure 6.11 The test images belonging to digit class 2 from the Kuzushiji-MNIST 

dataset are inaccurately labeled by Model B. 
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for these images, only 2 are correctly identified. Since the Fashion-MNIST images 

are derived by downsampling colored fashion articles into the MNIST format, many 

details and features of the objects are lost. The utilization of higher-resolution images 

could potentially alleviate some of the errors observed in the tests. 

The Shirt class poses the greatest challenge for the model, with 265 test 

samples misclassified. Figure 6.13 displays some of the incorrectly predicted Shirt 

images. The model often confuses Shirt samples with those from the T-shirt/Top 

class. Upon closer inspection, it becomes apparent that the model has learned to 

associate fashion articles lacking sleeves or with shorter sleeves with the T-shirt/Top 

category. Analyzing the top-2 predictions reveals that 196 out of the 265 

misclassified samples are correctly identified as Shirts.  ……………………………..

Figure 6.12 The test images belonging to the Bag class that were misclassified. 

Figure 6.13 The mislabeled test images from the Shirt class, which were incorrectly 

classified as similar classes by Model B. 
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CHAPTER 7 

7. DISCUSSION 

Our method employs a unique training approach for the convolutional layers, 

utilizing unsupervised learning without the use of backpropagation. In contrast, the 

fully connected layers are trained using a supervised approach. Unlike previous 

studies that either trained the network entirely in a supervised manner, or relied on 

unsupervised learning with pseudo-label backpropagation, or a combination of 

unsupervised feature learning for initialization with supervised backpropagation, our 

method offers distinct advantages. In comparison to supervised methods, our 

approach does not require any labels for training the convolutional layers since we do 

not employ backpropagation in the training process. Moreover, our method has the 

advantage of extracting filters without the need for prior domain knowledge. This 

sets it apart from self-supervised learning methods that rely on the crafting of pretext 

tasks, which necessitates domain knowledge for satisfactory performance. While our 

method may resemble unsupervised pre-training, which is typically used for weight 

initialization, we do not utilize the extracted filters for initialization. This is because 

we steer clear of supervised training in the convolutional layers.  …………………...
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Table 7.1 Comparison between previous works and our method for the number of 

epochs of training needed for convolutional filters, whether data augmentation and 

ensemble of networks are used. The legend of the table: ✓: applied, × : not applied, 

NA: no information available. 

7.1 Comparison of Performance Against Other Studies 

We evaluate the performance of our proposed method and compare it with un- 

supervised (Table 7.2), mixed (Table 7.3), and supervised (Table 7.4) approaches. In 

contrast to our method, other approaches utilize data augmentation, ensembles, and 

substantial number of training epochs combined with backpropagation to improve 

their results. A summary of these methods can be found in Table 7.1. 

7.1.1 Comparison of Performance Against Unsupervised Studies 

The highest reported classification accuracy achieved by unsupervised methods 

for the MNIST dataset is 99.21% (Mahon, Lukasiewicz, 2021), as indicated in Table 

7.2. This accuracy is obtained by leveraging an ensemble of 15 AEs which form 

clusters. These clusters are associated with k-sets of pseudo-labels, and a consensus 

function picks the points that are assigned the same pseudo-label in all k-sets for 

training a Multilayer Perceptron (MLP) using pseudo-labels. The potency of this 

technique resides in the combined force of the AEs in the ensemble. However, when 

a single AE is used instead of an ensemble, the accuracy drops to 98.02%, which is 

Method Data Augmentation Ensemble Backpropagation Epochs 

HVC (Byerly, Kalganova, Dear, 2021) ✓ ✓ ✓ 300 

DropConnect (Wan, Zeiler, Zhang, LeCun,, Fergus, 2013) ✓ ✓ ✓ 1000 

MCDNN (Ciresan, Meier, Schmidhuber, 2012) ✓ ✓ ✓ 800 

OptConv+Log+Perc (Pad et al., 2020) ✓ × ✓ 1000 

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) ✓ ✓ ✓ NA 

SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) ✓ × ✓ NA 

CAE (Masci, Meier, Cires¸an, Schmidhuber, 2011) × × ✓ NA 

Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) NA × ✓ 200 

SPC-best ensemble(Mahon, Lukasiewicz, 2021) × ✓ ✓ NA 

SPC-best single (Mahon, Lukasiewicz, 2021) × × ✓ NA 

k-Sparse AE (Makhzani,  Frey, 2014) NA × ✓ 5000 

Disentangled (Agarap, Azcarraga, 2020) × × ✓ 50 

Ours × × × 1 

Ours ensemble × ✓ × 1 

Ours init. + train × × ×(init.) + ✓(train) 1 (init.) + 50 (train) 
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inferior to our proposed method. To ensure a fair comparison, we construct an 

ensemble comprising the top-3 performing Model type A networks obtained from our 

proposed method. This ensemble achieves a higher accuracy of 99.28% on the test 

set compared to (Mahon, Lukasiewicz, 2021). 

A different unsupervised approach, known as the k-sparse AE (Makhzani, Frey, 

2014), explores a training method where the extracted features are held constant, and 

a logistic regression classifier is trained based on these features. Nonetheless, this 

method achieves a comparatively lower accuracy of only 98.65% on the MNIST 

dataset. 

Table 7.2 Comparison of the proposed method with other unsupervised studies. 

 

 

 

 

 

 

 

 

 SPC-best achieves the highest unsupervised classification accuracy of 67.94% 

on the Fashion-MNIST dataset. Other unsupervised methods, which yield lower 

accuracy, are not included in Table 7.2. 

As far as our knowledge extends, there are no existing unsupervised studies 

conducted on the EMNIST-Digits or Kuzushiji-MNIST datasets in the literature. 

7.1.2 Comparison of Performance Against Mixed Studies 

Masci et al. (Masci et al., 2011) employ a CAE to extract features in an 

unsupervised manner, which are then utilized to initialize a CNN. Subsequently, the 

CNN undergoes end-to-end training in a supervised manner, achieving a 

classification accuracy of 99.29%. Although there are similarities between this 

method and our proposed approach, we differ in the utilization of extracted features. 

Unlike Masci et al., we neither use the features for initialization nor subject them to 

Method MNIST F-MNIST 

SPC-best ensemble (Mahon, Lukasiewicz, 2021) 99.21 67.94 

SPC-best single (Mahon, Lukasiewicz, 2021) 98.02 59.23 

k-sparse AE (Makhzani, Frey, 2014) 98.65 - 

Ours 99.19 90.11 

Ours ensemble 99.28 90.43 
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further training. Another related method (Makhzani, Frey, 2014) achieves an 

accuracy of 99.03% by extracting features using a sparsity constraint on the AE, 

followed by fine-tuning in a supervised manner. 

Table 7.3 Comparison of the proposed method with other mixed studies. 

 

 

 

 

 

 

 

 

 To ensure a fair comparison between our algorithm and the mixed studies 

(Makhzani, Frey, 2014; Masci et al., 2011), we employ the filters obtained from our 

algorithm to initialize the convolutional filters. Subsequently, we fine-tune the CNN 

model A (as shown in Table 5.1) using backpropagation. The performance of this 

model, referred to as “Ours init. + train,” is reported in Table 7.3. We achieve a 

higher accuracy than the mixed studies, attaining an accuracy of 99.43% on the 

MNIST test set. 

The top performance among the mixed methods on the Fashion-MNIST dataset 

is documented in (Agarap, Azcarraga, 2020). They achieve an accuracy of 85.60% by 

training an AE and employing k-means clustering with a soft nearest neighbor loss, 

which relies on data labels. In comparison, our “Ours init. + train” model achieves a 

performance that surpasses (Agarap, Azcarraga, 2020) by 6.33% without utilizing 

data augmentation. 

7.1.3 Comparison of Performance Against Supervised Studies 

The current highest accuracy achieved for the MNIST dataset is 99.83%, 

accomplished through the supervised training of capsule networks (Byerly, 

Kalganova, Dear, 2021). We mention this result to highlight the highest classification 

accuracy attained among all methods for MNIST. However, our architecture differs 

Method MNIST F-MNIST 

CAE (Masci, Meier, Cireşan, Schmidhuber, 2011) 99.29 - 

Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) 99.03 - 

Disentangled (Agarap, Azcarraga, 2020) 96.20 85.60 

Ours 99.19 90.11 

Ours init. + train 99.43 91.93 
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from (Byerly et al., 2021) and does not involve capsules, making a direct comparison 

inappropriate. Similar in architecture, DropConnect (Wan, Zeiler, Zhang, LeCun, 

Fergus, 2013) and MCDNN (Ciresan, Meier, Schmidhuber, 2012) methods both 

present outcomes achieved by utilizing ensembles of networks with the aid of data 

augmentation. In the absence of data augmentation, the performance of 

DropConnect’s 5-network ensemble decreases to 99.43% after training for 1000 

epochs. In contrast, our model offers a compelling alternative with a simpler 

architecture, omitting the need for an ensemble. It trains much faster, requiring just a 

single epoch to train the convolutional layers, while still achieving an accuracy of 

99.19%. 

Table 7.4 Comparison of the proposed method with other supervised studies. 

The current highest performance achieved on the EMNIST-Digits dataset is 

reported by the supervised OptConv+Log+Perc method (Pad et al., 2020), achieving 

an accuracy of 99.43%. This method applies a large optical convolution with 

logarithmic activation followed by perceptron training on the images. The study 

presented in (Pad et al., 2020) relies on a specialized camera setup to attain its 

optimal performance, in contrast to our study which utilizes the raw dataset images. 

Unlike our approach, data augmentation is applied during training in (Pad et al., 

2020). Our highest-performing model attains an accuracy of 99.39% on the 

EMNIST-Digits test set, as demonstrated in Table 6.4. This accuracy value is on par 

with the current leading performance. To ensure a fair comparison, when we continue 

training the extracted filters, we notice that our model achieves a higher accuracy of 

99.63%, surpassing the accuracy of (Pad et al., 2020).  ……………………………

Method MNIST EMNIST-Digits K-MNIST F-MNIST 

HVC (Byerly, Kalganova, Dear, 2021) 99.83 - - 93.89 

DropConnect (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.79 - - - 

DropConnect no aug. (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.43 - - - 

MCDNN 35-net (Ciresan, Meier, Schmidhuber, 2012) 99.77 - - - 

MCDNN 1-net (Ciresan, Meier, Schmidhuber, 2012) 99.53 - - - 

OptConv+Log+Perc (Pad et al., 2020) - 99.43 - - 

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.78 - 99.05 94.34 

CAMNet3 no aug. (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.47 - 97.48 93.00 

SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) - - - 96.41 

Ours 99.19 99.39 95.03 90.11 

Ours init. + train 99.43 99.63 96.48 91.93 
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Model B achieves the highest performance on the Kuzushiji-MNIST dataset, 

with an accuracy of 95.03% (refer to Table 6.7). This accuracy is comparable to the 

performance of a simple CNN, which achieves 95.12% accuracy as reported in the 

original Kuzushiji-MNIST paper (Clanuwat et al., 2018). Unlike the MNIST dataset, 

Kuzushiji-MNIST exhibits significant intraclass variations, where samples belonging 

to the same class may not resemble each other. This inherent variation poses a 

challenge for classification, especially without data augmentation. The current state-

of-the-art accuracy on the Kuzushiji-MNIST dataset is 99.05%, achieved by 

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019). However, 

CAM-Net3 differs significantly from our architecture. It is a multipath CNN that 

dynamically routes data flow to different parallel networks based on image content. 

This unique design of CAMNet3 allows it to better capture the intraclass variation 

present in Kuzushiji-MNIST compared to the conventional CNN architecture used in 

our experiments. By utilizing the filters extracted from the unsupervised training 

phase to initialize the convolutional layers and then applying backpropagation, we 

achieve a performance boost in the model, resulting in an accuracy of 96.48% 

without the need for data augmentation. 

In contrast to MNIST, the Fashion-MNIST dataset presents more intricate 

features, greater intraclass variations, and similarities between classes. Consequently, 

we anticipate a decline in classification performance compared to that of MNIST. 

The current state-of-the-art accuracy achieved on the Fashion-MNIST dataset is 

attained by a supervised network, reaching an accuracy of 96.41% (Foret, Kleiner, 

Mobahi, Neyshabur, 2021). The approach in (Foret et al., 2021) incorporates Wide-

Res-Net-28-10 (Zagoruyko, Komodakis, 2016) and Shake-Shake (Gastaldi, 2017) 

regularization techniques, along with data augmentation methods. 

7.2 Proof of Linear Independence of the Extracted Filters 

The proposed algorithm claims to extract enough number of filters that are 

necessary to cover the feature space spanned by the given dataset. To prove this 

claim, it is important to analyze the extracted filters. It can be proved that the set of 

the extracted filters span the dataset’s feature space by proving that the filters are 

linearly independent. 
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Gram-Schmidt orthogonalization process is defined over linearly independent 

set of vectors to form an orthogonal basis. Whenever there exist an unnecessary (i.e., 

linearly dependent) vector in a given set, Gram-Schmidt orthogonalization process 

outputs zero vector. The goal of the Gram-Schmidt process is to construct an 

orthogonal set. Thus, a linearly dependent vector does not contribute to the 

orthogonal basis because it lies in the subspace spanned by the previous vectors. In 

practical terms, if there exist a set of linearly independent vectors {𝑣1, 𝑣2, … , 𝑣𝑛}, and 

one of the vectors 𝑣𝑘 is linearly dependent on the previous vectors, the Gram-

Schmidt process would produce an orthogonal set {𝑢1, 𝑢2, … , 𝑢𝑘−1, 𝑢𝑘+1, … , 𝑢𝑛}, 

where 𝑢𝑘+1 corresponds to the vector that was originally after 𝑣𝑘. 

 

 

𝑢𝑖 = 𝑣𝑖 − ∑
𝑢𝑘 ⋅ 𝑣𝑖

‖𝑢𝑘‖2
𝑢𝑘

𝑖−1

𝑘=1

 (7.1) 

 

After obtaining the filters through Algorithm 4.2, we apply Gram-Schmidt 

orthogonalization process by using Equation 7.1 for each convolutional layer. The 

orthogonal basis formed by applying the process does not omit any of the original 

filters. Thus, we conclude that the set of filters obtained by running Algorithm 4.2 is 

linearly independent. The absence of a zero-vector output from the process proves 

that our claims are correct. 

7.3 Proof of Independence over the Order of Candidate Processing for Filter 

Extraction 

Algorithm 4.2 takes each candidate from the candidates set and compares its 

similarity against the filters of the current layer. One might ask whether the order of 

processing the candidates can impact the filter extraction and overall performance of 

the proposed algorithm. To alleviate this concern, we designed further experiments 

where the candidates set is shuffled just after the set is obtained from the input 

images. To do this, we integrated a shuffle mechanism into the Algorithm 4.2 

between step 5 and 6. For each image, we obtain the candidates set and then shuffle 

the contents of the set. Thus, the order of the candidates that are processed at each 

run of the algorithm is now random. 
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After adding shuffling of the candidates to the Algorithm 4.2, we repeat the 

best performing experiment 50 times for each dataset mentioned in Section 5.3 to 

observe whether there is a significant impact on the outcome due to the order of 

Figure 7.1 Boxplot of the number of filters extracted from MNIST dataset for both 

layers of Model A with candidate shuffling. 

Table 7.5 Comparison of best performing model filter counts and test accuracy 

before and after addition of candidate shuffling. The median of the 50 runs of the 

experiments is also presented. 



73 
 

processing the candidates. We represent the distribution of the number of filters 

extracted for each layer as a boxplot in Figure 7.1, 7.2, 7.3 and 7.4 for MNIST, 

EMNIST-Digits, Kuzushiji MNIST and Fashion MNIST datasets respectively. The 

number of filters for each layer in the best performing models per dataset is very 

close to median of the shuffled candidate set experiments as shown in Table 7.5. We 

also observed that the test accuracy of the models does not fluctuate much as shown 

in Figure 7.5, 7.6, 7.7, 7.8. The variation in test accuracy across 50 runs with 

candidate shuffling is insignificant. Thus, we conclude that the impact of order of 

processing the candidates for filter extraction is negligible due to similar results 

obtained in the experiments. 

 

asd

Figure 7.2 Boxplot of the number of filters extracted from EMNIST-Digits dataset 

for both layers of Model A with candidate shuffling. 
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Figure 7.3 Boxplot of the number of filters extracted from Kuzushiji-MNIST dataset 

for both layers of Model B with candidate shuffling. 

Figure 7.4 Boxplot of the number of filters extracted from Fashion MNIST dataset 

for both layers of Model B with candidate shuffling. 



75 
 

 

Figure 7.5 Boxplot of the test accuracy distribution of Model A over 50 runs on 

MNIST dataset with candidate shuffling. 

Figure 7.6 Boxplot of the test accuracy distribution of Model A over 50 runs on 

EMNIST-Digits dataset with candidate shuffling. 
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Figure 7.7 Boxplot of the test accuracy distribution of Model B over 50 runs on 

Kuzushiji-MNIST dataset with candidate shuffling. 

Figure 7.8 Boxplot of the test accuracy distribution of Model B over 50 runs on 

Fashion MNIST dataset with candidate shuffling. 
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7.4 Comparison to Low-Capacity CNN 

To gauge the performance of a low-capacity CNN against our proposed 

models, we used lower similarity thresholds of 0.3 and 0.4. With these lower 

threshold values, the number of filters extracted from the datasets dramatically drops. 

For MNIST dataset, with 0.4 similarity threshold on Model A produces 23 and 21 

filters for the convolutional layers respectively. The test accuracy of the model drops 

to 98.95%. A CNN model which has the same architecture and parameter count is 

constructed as the low-capacity CNN and trained in supervised manner with MNIST 

dataset for 50 epochs. The low-capacity CNN achieved 99.21% test accuracy. When 

we repeat the same comparison procedure on the other datasets, we again observed 

that low-capacity CNN to perform 1 - 1.3% better than our method. The self-

organization of the filters in the proposed method relies on higher similarity 

thresholds to capture more distinct features as we have already discussed them in 

Chapter 6. Thus, it was expected to observe a drop in the classification performance 

in our models. Low-capacity CNN models we trained seem to benefit from the fully 

supervised training scheme but still there is not a huge performance margin between 

the two approaches.  …………………………………………………………………..
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CHAPTER 8 

8. CONCLUSION 

Convolutional Neural Networks have become an indispensable tool for image 

classification, computer vision and deep learning tasks in the last decade. This can be 

attributed to how they are designed. CNN architecture is built around imitating the 

mammal visual system. This architecture is made up from convolutional layers, 

pooling layers, and fully connected layers which are developed based on the findings 

on the visual cortex of mammals. The combination of these layers enabled automatic 

extraction of the features from inputs to detect patterns in the data which eliminated 

the need for an expert to extract the features. However, training a CNN relies on the 

availability of a carefully constructed large labeled dataset because the training 

process involves the exposure of labeled images to the network, followed by a 

comparison of its predictions with the ground truth labels which is then used to 

update the weights of the network via propagating the error signal backward in the 

network. This process is iteratively repeated for a substantial number of epochs to 

continuously update the weights until the desired performance is achieved. Thus, the 

CNN gradually learns from the labeled data via backpropagation of errors to 

recognize the patterns and to make correct predictions. However, it has not been 

proved that the brain learns through backpropagation. Even though we build layers 

based on the visual cortex structures, we rely on an unnatural learning procedure. 

Backpropagation implies that the individual neurons in the visual cortex must store 

the input data of the forward pass and then wait for the input data to move through all 

neurons in the brain so that the connections to other neurons can be updated based on 

backward pass of the derivatives of the errors.  ……………………………………...
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Even though the supervised training of CNNs is allowing state-of-the-art 

results, its success depends on the availability of a large labeled dataset. There are a 

couple of risks related to the usage of labeled datasets. The presence of biased or 

mislabeled data in labeled datasets is a huge concern in the successful training of the 

network. If there are mislabeled data in the dataset, the propagated error would be 

incorrect and this would lead to improper updates on the network parameters, 

negatively impacting the network performance via erroneous predictions. Similarly, 

if the dataset contains bias in the representation of the classes, the network could 

learn the bias between the classes which would lead to biased predictions. 

Furthermore, gathering a large labeled dataset is a time-consuming and expensive. It 

is also prone to labeling errors. Another risk that should be mentioned is not having a 

sufficient number of samples in the labeled dataset. This could easily be a bottleneck 

for the training of the network which could prevent the network from generalizing 

well. Gradient based backpropagation algorithm requires large amount of data to 

effectively train the network. These risks might be alleviated by carefully curating 

the data to prevent biases or mislabeled data which would require a domain expert. 

However, it is not easy to deploy domain experts to curate a large labeled dataset due 

to monetary costs. Moreover, applicability of labels could not be possible in every 

domain. Thus, it is imperative to search for alternative unsupervised learning 

paradigms to remove the dependence on labeled data and backpropagation. Recently, 

Hinton also pointed out that the backpropagation should be replaced with another 

learning algorithm that is plausible with how the brain works. His alternative 

approach to backpropagation removes the backward pass of the backpropagation 

training with two forward passes by using the data labels as positive or negative for 

weight updates. However, his proposal still uses derivatives and labels. This 

dissertation introduces an alternative algorithm for unsupervised training of CNNs 

(Erkoç, Eskil, 2023), specifically targeting the convolutional layers, without relying 

on backpropagation. In Chapter 4, we proposed our algorithm. The training process 

of the algorithm involves extracting novel features from a training set and iteratively 

adjusting their weights, all in a single pass through the training set, without the need 

for data labels. The entire filter extraction process is unsupervised and does not 

require backpropagation. Each convolutional layer is assumed empty (i.e., no filters) 

at the start of the process. The process starts with obtaining a set of filter candidates 

from a given image dataset. Following the formation of candidates set, the first 
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candidate is selected as the first discovered filter for the current convolutional layer 

because there are not any filters to compare against. The remaining filters are 

subsequently identified from the pool of candidates using a similarity metric. The 

similarity metric is calculated as the dot product of the candidates against the already 

discovered filters of the current convolutional layer. The calculated similarity is then 

compared against a similarity threshold which is a value from [0 − 1] which 

corresponds to not similarity to identical scale. If the calculated similarity is lower 

than the similarity threshold, then we accept this candidate as a new filter because 

there is a feature in the candidate that is not similar to any discovered filters. 

However, if the calculated similarity is higher than the similarity threshold, the 

candidate is not a new observation. Thus, we find the filter that has the highest 

similarity score to this candidate and update the weights of this filter with the 

candidate’s. This process is repeated until the algorithm consumes all training 

images. We showed that the proposed unsupervised algorithm alleviates the need for 

labeled data to train the convolutional layers. 

In supervised approaches, it is imperative to provide the number of filters of a 

convolutional layer and initialize them appropriately before the training starts. After 

the initialization of the filters, the backpropagation training for a large number of 

epochs commences. However, the determined number of filters might not be enough 

for representing the features in the dataset. In this case, hyperparameter optimization 

techniques are typically utilized to determine the appropriate number of filters for the 

convolutional layers. However, our proposed algorithm does not need the number of 

filters hyperparameter to be set before the training because this hyperparameter value 

is automatically determined by the filter extraction process. The self-discovery of the 

filters with the proposed algorithm also eliminates the need to initialize the filter 

weights with a proper weight initialization method. Furthermore, since the filter 

weights are not initialized with random values from a distribution, they do not 

require weight updates through backpropagation on multiple epochs. The proposed 

algorithm only looks at the images in the dataset once to obtain candidates so 

multiple forward and backward passes of the same data is no longer required to train 

the convolutional layers. 

The experiments outlined in Chapter 5 reveal encouraging outcomes on diverse 

datasets without relying on data preprocessing, augmentation, or intricate 

architectures. These findings highlight the possibility of training convolutional layers 
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using an unsupervised backpropagationless approach, where the training set images 

are processed in a single pass, eliminating the need for extensive iterations as 

required by supervised approaches. Moreover, the obtained results are on par with 

the state-of-the-art achieved through supervised learning, employing a simpler and 

more straightforward model that is easier to train. 

Backpropagation alternatives for training neural networks is a novel research 

area that is gaining interest. Currently, our proposed algorithm is the only method 

which both omits data labels and backpropagation to train CNNs. Most of the 

research in this area is based on the recent forward-forward algorithm by Hinton 

(Geoffrey E. Hinton, 2022) which is still calculating derivatives based on data labels. 

We showed that it is possible to train the feature extractor part of the CNN 

architecture with a backpropagation free approach that does not use any labels. 

However, there are still open issues that needs to be solved in the future. As a future 

work, we should investigate how we can improve the classification performance 

when there are too many intraclass variations. Another future direction that can be 

investigated is the detection of anomalies in an unsupervised setting. Currently, the 

proposed algorithm produces good results with grayscale images, and it is an 

important direction for this research to extend this work to color images. 

Furthermore, we only applied grid search for similarity threshold optimization. It 

would be interesting to investigate the impact of hyperparameter optimization on 

hyperparameters like filter_size and number of layers over the proposed CCNN 

architecture.
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