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UPPER BOUND FOR THIRD HANKEL DETERMINANT OF A CLASS

OF ANALYTIC FUNCTIONS

S. VERMA1, R. KUMAR1∗, G.MURUGUSUNDARAMOORTHY2, §

Abstract. We establish upper bounds for second Hankel determinant, the Fekete-Szegö
functional and third Hankel determinant for normalized analytic functions f ∈ Wβ(α, γ),

Wβ(α, γ) =

{
f : Re

(
(1− α+ 2γ)

f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)

)
> β

}
,

where α, γ ≥ 0 and β < 1. Also, we show that these bounds reduce to the bounds of
some well-known classes for particular choices of parameters α, γ and β.

Keywords: Analytic functions, Coefficient inequalities, Hankel determinant, Fekete-
Szegö.
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1. Introduction and Definitions

Let A be the class of normalized analytic functions f , defined in the unit disc E = {z :
|z| < 1} and given by

f(z) = z +

∞∑
n=2

anz
n. (1)

Let S be the subclass of A consisting of functions univalent in E.

Recently, Ali et al. [2] defined a classWβ(α, γ) of normalized analytic functions defined
in E such that function f ∈ Wβ(α, γ) satisfy the condition

Re

(
(1− α+ 2γ)

f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)

)
> β,
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for all z ∈ E. Here α, γ ≥ 0 and β < 1. For various choices of α, γ and β, the class
Wβ(α, γ) unify some well-known subclasses of S as mentioned below:

(1) For α = 1, γ = 0 and β = 0, the classWβ(α, γ) reduces to the well-known class R,

R =
{
f ∈ A : Re(f ′(z)) > 0

}
,

see [12]. The members of class R are close-to-convex and hence univalent in E (see
[5, 12]).

(2) For α = 1 + 2γ and β = 0, the class Wβ(α, γ) reduces to the class Rγ , where

Rγ =
{
f ∈ A : Re

(
f ′(z) + γzf ′′(z)

)
> 0
}
.

It is well-known that R1 is a subclass of S∗, the class of univalent starlike functions
in E. Also, R1 6⊂ K, the class of univalent convex functions in E (see [17]).

(3) For α = γ = 0, the class Wβ(α, γ) reduces to the class Tβ, where

Tβ =

{
f ∈ A : Re

(
f(z)

z

)
> β

}
.

(4) For γ = 0, the class Wβ(α, γ) reduces to the class

Pβ(α) =

{
f ∈ A : Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> β

}
.

One can see that Pβ(α1) ⊂ Pβ(α2) for α1 > α2 ≥ 0. Therefore, for α ≥ 1, 0 ≤ β < 1,
Pβ(α) ⊂ Pβ(1) = {f ∈ A : Ref ′(z) > 0} and hence Pβ(α) is univalent class (see [5, 12])

In 1976, Noonan and Thomas [15] defined the qth Hankel determinant Hq(n) of f for
q ≥ 1 and n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1... an+q−1

an+1 ...
...

...
an+q−1 ... an+2q−2

∣∣∣∣∣∣∣∣∣ .

In literature, much attention has been given to find upper bounds for the Hankel deter-
minant whose elements are the coefficients of univalent functions, see e.g. [6, 8, 9, 16, 18].
The correct order of growth for Hq(n) when f ∈ S is as yet unknown [16], whereas exact
bounds have been obtained in the case q = 2 and n = 2 for a variety of subclasses of S,
most of these stemming from the method used in [11]. In 2007, Babalola [3] studied the
third Hankel determinant H3(1) for some subclasses of analytic functions. By definition,
H3(1) is given by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ .
For f ∈ A,

H3(1) = a3
(
a2a4 − a23

)
+ a4 (a2a3 − a4) + a5

(
a3 − a22

)
, a1 = 1.

By triangle inequality,

|H3(1)| ≤ |a3|
∣∣a2a4 − a23∣∣+ |a4| |a2a3 − a4|+ |a5|

∣∣a3 − a22∣∣ . (2)

Here,
∣∣a3 − a22∣∣ is the well-known Fekete-Szegö functional and |a2a4 − a23| is the second

hankel determinant H2(2). In this paper, we will establish upper bounds for H2(2), Fekete-
Szegö functional and H3(1) for f ∈ Wβ(α, γ). We will also show that these bounds reduce
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to the bounds of some well-known classes for particular choices of parameters.

Let P be the family of all functions p(z) given by

p(z) = 1 + p1z + p2z
2 + . . .

analytic in E for which Re (p(z)) > 0 for z ∈ E. It is well-known that for p ∈ P, |pk| ≤ 2
for each k ≥ 1.
Following lemma due to Libera and Zlotkiewicz [10, 11] is instrumental in proving our
main result.

Lemma 1.1. Let p(z) = 1 + p1z + p2z
2 + · · · belongs to P. Then

2p2 = p1
2 + x(4− p12) and

4p3 = p1
3 + 2xp1(4− p12)− x2p1(4− p12) + 2ζ(1− |x|2)(4− p12)

for some x, ζ such that |x| ≤ 1 and |ζ| ≤ 1.

The following two lemmas due to Ali [1] are also required to prove our results.

Lemma 1.2. If p(z) = 1 + p1z + p2z
2 + . . . belongs to P, then∣∣p2 − vp21∣∣ ≤ 2 max {1, |2v − 1|}.

Lemma 1.3. Let p(z) = 1 + p1z+p2z
2 + . . . belongs to P. If 0 ≤ B ≤ 1 and B(2B− 1) ≤

D ≤ B, then ∣∣p3 − 2Bp1p2 +Dp31
∣∣ ≤ 2.

We use the notations introduced in [2]. Let µ ≥ 0 and ν ≥ 0 satisfy

µ+ ν = α− γ and µν = γ. (3)

• When γ = 0, then µ is chosen to be 0, in this case, ν = α ≥ 0.

• When α = 1 + 2γ, then µ+ ν = 1 + γ = 1 + µν or (µ− 1)(1− ν) = 0.
i. For γ > 0, then choosing µ = 1 gives ν = γ.

ii. For γ = 0, then µ = 0 and ν = α = 1.

Theorem 1.1. Let 0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1 satisfy (3). If f ∈ Wβ(α, γ) with 0 ≤ β < 1,
then

H2(2) ≤ 4 (1− β)2

(1 + 2µ)2 (1 + 2ν)2
. (4)

Proof. Since f ∈ Wβ(α, γ), therefore(
(1− α+ 2γ)f(z)z + (α− 2γ)f ′(z) + γzf ′′(z)− β

)
1− β

∈ P.

There exist p(z) ∈ P, where p(z) = 1 + p1z + p2z
2 + . . ., such that

(1− α+ 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β = (1− β) p(z).

In view of (3) the above equation becomes

(1 + µν − µ− ν)
f(z)

z
+ (µ+ ν − µν)f ′(z) + µνzf ′′(z)− β = (1− β) p(z). (5)
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Substituting p(z) = 1 +
∑∞

n=1 pnz
n and f(z) = z +

∑∞
n=2 anz

n in (5), we get

(1− β)+
∞∑
n=2

[
µνn2 + (µ+ ν − 2µν)n+ (1 + µν − µ− ν)

]
anz

n−1 = (1− β)

(
1 +

∞∑
n=1

pnz
n

)
.

Equivalently,

(1− β) +

∞∑
n=2

(1 + (n− 1)µ) (1 + (n− 1)ν) anz
n−1 = (1− β)

(
1 +

∞∑
n=1

pnz
n

)
.

On equating the corresponding coefficients, we have

a2 =
(1− β)

(1 + µ) (1 + ν)
p1

a3 =
(1− β)

(1 + 2µ) (1 + 2ν)
p2

a4 =
(1− β)

(1 + 3µ) (1 + 3ν)
p3

a5 =
(1− β)

(1 + 4µ) (1 + 4ν)
p4.

(6)

Let L = (1 + µ) (1 + ν) (1 + 3µ) (1 + 3ν) and M = (1 + 2µ)2 (1 + 2ν)2. Note that for
0 ≤ µ ≤ 1 and 0 ≤ ν ≤ 1,

M > 0, L > 0, M − L ≥ 0 and M − 2L < 0.

Using (6) together with the values of L and M , the second hankel determinant becomes

H2(2) = |a2a4 − a23| = (1− β)2
∣∣∣∣p1p3L − p22

M

∣∣∣∣ =
(1− β)2

LM

∣∣Mp1p3 − Lp22
∣∣ .

Making use of Lemma 1.1 the above equation becomes

H2(2) =
(1− β)2

4LM

∣∣(M − L) p41 + 2 (M − L) p21x
(
4− p21

)
−Mp21

(
4− p21

)
x2

−Lx2
(
4− p21

)2
+ 2Mp1

(
4− p21

) (
1− |x|2

)
ζ
∣∣∣ .

Now, without loss of generality, normalise p1 so that p1 = p, for 0 ≤ p ≤ 2. Using the
triangle inequality, we get

H2(2) ≤ (1− β)2

4LM

{
(M − L) p4 + 2 (M − L) p2 |x|

(
4− p2

)
+Mp2

(
4− p2

)
|x|2

+L |x|2
(
4− p2

)2
+ 2Mp

(
4− p2

) (
1− |x|2

)}
:=

(1− β)2

4LM
φ (|x|) .

Differentiating φ (|x|) with respect to |x|, we have

φ′ (|x|) = 2 (M − L) p2
(
4− p2

)
+ 2|x|

(
4− p2

)
(2− p) (2L− p (M − L)) .
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One can see that for 0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1 and 0 ≤ p ≤ 2, φ′ (|x|) ≥ 0. Thus φ (|x|) ≤ φ (1)
and hence

H2(2) ≤ (1− β)2

4LM

{
(M − L) p4 + 2 (M − L) p2

(
4− p2

)
+Mp2

(
4− p2

)
+ L

(
4− p2

)2}
:=

(1− β)2

4LM
g(p).

Solving g′(p) = 0 we have

p = 0, p =

√
3M − 4L

M − L
and p = −

√
3M − 4L

M − L
.

Since 3M − 4L < 0 for 0 ≤ µ, ν ≤ 1, therefore g(p) has only one critical point at p = 0.
Further

g′′(p)
∣∣
p=0

= 8 (3M − 4L) < 0.

Thus g(p) attains its maximum value at p = 0, i.e. g(p) ≤ g(0) ∀ p ∈ [0, 2]. Hence

H2(2) ≤ (1− β)2

4LM
16L =

4 (1− β)2

M
=

4 (1− β)2

(1 + 2µ)2 (1 + 2ν)2
.

This completes the proof of Theorem 1.1. �

For particular values of α and γ, we will get various known results from Theorem 1.1.
Letting α = γ = 0 (which means µ = ν = 0) in Theorem 1.1, we obtain the following
result of Hayami and Owa [7].

Corollary 1.1. If f ∈ A satisfies

Re
f(z)

z
> β

with 0 ≤ β < 1, then

H2(2) ≤ 4 (1− β)2.

If γ = β = 0, then µ = 0 and ν = α = 1, we get the following result of Janteng et. al.
[8].

Corollary 1.2. If f ∈ A satisfies Ref ′(z) > 0 then H2(2) ≤ 4
9 .

If α = 1 + 2γ with γ > 0 and µ = 1 then ν = γ > 0. In this case, we get the following
result obtained by Mohamed et. al. [13].

Corollary 1.3. If f ∈ A satisfies Re (f ′(z) + γzf ′′(z)) > 0 for γ ≥ 0 then

H2(2) ≤ 4

9(1 + 2γ)2
.

If γ = β = 0, then µ = 0 and ν = α > 0, we get the result due to Murugusundaramoor-
thy and Magesh [14].

Corollary 1.4. If f ∈ A satisfies Re
(

(1− α)f(z)z + αf ′(z)
)
> 0 then

H2(2) ≤ 4

(1 + 2α)2
.

Theorem 1.2. Let 0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1 satisfy (3). If f ∈ Wβ(α, γ) with 0 ≤ β < 1,
then ∣∣a3 − a22∣∣ ≤ 2 (1− β)

(1 + 2µ) (1 + 2ν)
. (7)
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Proof. In the view of (6), one can see that∣∣a3 − a22∣∣ =

∣∣∣∣(1− β)
p2

(1 + 2µ)(1 + 2ν)
− (1− β)2

p21
(1 + µ)2(1 + ν)2

∣∣∣∣ . (8)

Let Q = (1 + 2µ) (1 + 2ν) and R = (1 + µ)2 (1 + ν)2. Note that for 0 ≤ µ ≤ 1 and
0 ≤ ν ≤ 1,

Q > 0, R > 0, R−Q ≥ 0 and R− 2Q > 0.

Using Q and R, the equation (8) becomes∣∣a3 − a22∣∣ =
(1− β)

Q

∣∣∣∣p2 − (1− β)Q

R
p21

∣∣∣∣ .
Letting v = (1−β)Q

R in Lemma 1.2, we get∣∣∣∣p2 − (1− β)Q

R
p21

∣∣∣∣ ≤ 2 max

{
1,

∣∣∣∣2(1− β)Q

R
− 1

∣∣∣∣}
= 2 max

{
1,

∣∣∣∣2(1− β)Q−R
R

∣∣∣∣}.
Since R−Q ≥ 0 and 0 ≤ β < 1, therefore −R < 2(1− β)Q−R ≤ 2Q−R ≤ 0, and so∣∣∣∣2(1− β)Q−R

R

∣∣∣∣ ≤ 1.

Thus ∣∣∣∣p2 − (1− β)Q

R
p21

∣∣∣∣ ≤ 2 max

{
1,

∣∣∣∣2(1− β)Q−R
R

∣∣∣∣} = 2.

Hence ∣∣a3 − a22∣∣ =
(1− β)

Q

∣∣∣∣p2 − (1− β)Q

R
p21

∣∣∣∣ ≤ 2(1− β)

Q
=

2 (1− β)

(1 + 2µ) (1 + 2ν)
.

�

Taking various permissible values of α, γ and β, we obtain several special cases of above
result.

Remark 1.1.

i. For α = γ = 0, that is µ = ν = 0, Theorem 1.2 yields a particular case of Theorem
3.1 in [7].

ii. For γ = β = 0 with µ = 0 and ν = α = 1, Theorem 1.2 gives a result of Babalola
and Opoola [4].

Theorem 1.3. Let 0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1 satisfy (3). If f ∈ Wβ(α, γ) with 0 ≤ β < 1,
then

|a4 − a2a3| ≤
2(1− β)

(1 + 3µ) (1 + 3ν)
. (9)

Proof. In the view of (6), one can see that

|a4 − a2a3| =
∣∣∣∣ (1− β)p3
(1 + 3µ)(1 + 3ν)

− (1− β)2p1p2
(1 + µ)(1 + ν)(1 + 2µ)(1 + 2ν)

∣∣∣∣ .
Let S = (1 + 3µ) (1 + 3ν) and T = (1+µ)(1+ν)(1+2µ)(1+2ν). Note that for 0 ≤ µ, ν ≤ 1,

S > 0, T > 0 and T − S ≥ 0. (10)
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Thus

|a4 − a2a3| =
(1− β)

S

∣∣∣∣p3 − (1− β)S

T
p1p2

∣∣∣∣ .
Applying Lemma 1.3 with 2B = (1−β)S

T and D = 0, we have∣∣∣∣p3 − (1− β)S

T
p1p2

∣∣∣∣ ≤ 2,

provided
0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B.

Using (10) and the fact that 0 ≤ β < 1, we have

0 < B =
(1− β)S

2T
≤ 1

2
< 1.

Consequently, for D = 0 we have

B(2B − 1) ≤ D ≤ B.
Finally, in the view of Lemma 1.3, we have

|a4 − a2a3| =
(1− β)

S

∣∣∣∣p3 − (1− β)S

T
p1p2

∣∣∣∣ ≤ 2(1− β)

S
=

2(1− β)

(1 + 3µ) (1 + 3ν)
.

This completes the proof of Theorem 1.3. �

Setting γ = β = 0 with µ = 0 and ν = α = 1 in Theorem 1.3, we get Theorem 3.1 of
[3].

In the view of (4), (6), (7) and (9), one can see that for f ∈ Wβ(α, γ) with 0 ≤ β < 1,
we have the following information:

|a3| ≤
2(1− β)

(1 + 2µ) (1 + 2ν)
,

|a4| ≤
2(1− β)

(1 + 3µ) (1 + 3ν)
,

|a5| ≤
2(1− β)

(1 + 4µ) (1 + 4ν)
.

∣∣a2a4 − a23∣∣ ≤ 4(1− β)2

(1 + 2µ)2 (1 + 2ν)2
,

∣∣a3 − a22∣∣ ≤ 2(1− β)

(1 + 2µ) (1 + 2ν)
,

|a4 − a2a3| ≤
2(1− β)

(1 + 3µ)(1 + 3ν)
.

Substituting all these values in (2), we have

|H3(1)| ≤ 8(1− β)3

(1 + 2µ)3 (1 + 2ν)3
+

4(1− β)2

(1 + 3µ)2 (1 + 3ν)2
+

4(1− β)2

(1 + 2µ) (1 + 2ν) (1 + 4µ)(1 + 4ν)
.

Theorem 1.4. Let 0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1 satisfy (3). If f ∈ Wβ(α, γ) with 0 ≤ β < 1,
then

|H3(1)| ≤ 8(1− β)3

(1 + 2µ)3 (1 + 2ν)3
+

4(1− β)2

(1 + 3µ)2 (1 + 3ν)2
+

4(1− β)2

(1 + 2µ) (1 + 2ν) (1 + 4µ)(1 + 4ν)
.
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Remark 1.2. Setting γ = β = 0 with µ = 0 and ν = α = 1 in Theorem 1.4, we get
Corollary 3.2 of [3].
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