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FIXED POINT RESULTS IN Ab-METRIC SPACE

M. K. PATEL1∗, J. P. SHARMA1, G. M. DEHERI2, §

Abstract. We derive some fixed point results in Ab- metric space in which map need
not be continuous. In addition, we find fixed point and common fixed theorems having
rational expressions in the contractive condition. Our results extend and improve various
results from the current existing literature. Also, we provide examples.
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1. Introduction and Preliminaries

Many authors generalized Banach contraction principle via using different forms of
contractive conditions in various generalized metric spaces ([1], [2], [3], [4], [9], [10], [11],
[12], [15], [20]). Such generalizations are established via contractive conditions formulated
by rational terms (see, [17], [18], [19]).
In 2012, A three dimensional metric space was introduced by Sedghi et al. [5], and it is
called S-metric space, which is defined by modifying D-metric and G-metric spaces.

Definition 1.1. [5] Let X be a nonempty set, An S-metric on X is a function S : X3 →
[0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0;
(2) S(x, y, z) = 0 if and only if x = y = z;
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then (X,S) is called S-metric space.

After that, Kim et al. [8] derived common fixed point theorem for two single-valued
mappings in S-metric spaces. In the same year (2016), Nizar and Nabil [6] introduced the
concept of Sb- metric space which is a combination of b-metric space and S-metric space.
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Definition 1.2. Let X be a nonempty set and let s ≥ 1, An Sb-metric on X is a function
Sb : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) Sb(x, y, z) = 0 if and only if x = y = z;
(2) Sb(x, x, y) = Sb(y, y, x) ;
(3) Sb(x, y, z) ≤ s[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].

Then (X,S) is called Sb-metric space.

Remark 1.1. Note that, the class of Sb -metric space is larger than the class of S-metric
spaces. In fact, every S-metric space is an Sb-metric space with s = 1. However, the
converse is not always true.

In definition of Sb-metric space, condition(2) is not true in general. In order to make a
general one, Y. Rohen et al. [7] modified as follows:

Definition 1.3. [7] Let X be a nonempty set and let s ≥ 1, An Sb-metric on X is a
function Sb : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) Sb(x, y, z) = 0 if and only if x = y = z;
(2) Sb(x, y, z) ≤ s[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].

Then (X,S) is called Sb-metric space.

Recently Mustafa et al. [20] introduced Sp-metric space, at which he replace constant
s by one variable continuous increasing function in the definition (1.3) and derived some
results in that space. In 2015, Abbas et al. [13] introduced the notion of A-metric space
which is a generalization of S-metric space and defined it as follows:

Definition 1.4. Let X be a nonempty set and the function A : Xn → [0,∞) that satisfies
the following conditions, for all x1, x2, ..., xn, a ∈ X,

(1) A(x1, x2, ..., xn) ≥ 0;
(2) A(x1, x2, ..., xn) = 0 if and only if x1 = x2 = ... = xn;
(3) A(x1, x2, ..., xn) ≤

A(x1, x1, .., x1(n−1)
, a) +A(x2, x2, .., x2(n−1)

, a) + . . .+A(xn, xn, ...xn(n−1)
, a).

Then (X,A) is called an A-metric space.

Example 1.1. Let X = R and A(x1, x2, x3, ..., xn) = |x1−xn|+|x2−xn|+...+|xn−1−xn|.
Then, (X,A) is an A-metric space.

Manoj et al. [14] introduced the Ab-metric space, which is a combination of A-metric
space and Sb-metric space and defined as below:

Definition 1.5. Let X be a nonempty set and let s ≥ 1, the function Ab : Xn → [0,∞)
that satisfies, for all x1, x2, ..., xn, a ∈ X,

(1) Ab(x1, x2, ..., xn) ≥ 0;
(2) Ab(x1, x2, ..., xn) = 0 if and only if x1 = x2 = ... = xn;
(3) Ab(x1, x2, ..., xn) ≤

s[Ab(x1, x1, .., x1(n−1)
, a) +Ab(x2, x2, .., x2(n−1)

, a) + . . .+Ab(xn, ..., xn(n−1)
, a)].

Then (X,Ab) is called an Ab-metric space.

Remark 1.2. (i) Sb-metric space is the particular case of Ab-metric space with n = 3.
(ii) Every A-metric space will be Ab-metric space with s = 1. However the converse

need not be true.
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Example 1.2. [14] Let X = [1,∞) and Ab : Xn → [0,∞) defined by

Ab(x1, x2, ..., xn−1, xn) =
n∑
i=1

∑
i<j

|xi − xj |2 ;∀xi ∈ X, i = 1, 2, ..., n

Then, (X,Ab) is an Ab-metric space with s = 2.

Example 1.3. [14] Let X = R and Ab : Xn → [0,∞) defined by

Ab(x1, x2, ..., xn−1, xn) = |
2∑
i=n

xi − (n− 1)x1|2 + |
3∑
i=n

xi − (n− 2)x2|2 + . . .

+|
n−3∑
i=n

xi − 3xn−3|2 + |
n−2∑
i=n

xi − 2xn−2|2 + |xn − xn−1|2

for all xi ∈ X, i = 1, 2, ..., n. Then, (X,Ab) is an Ab-metric space with s = 2.

Example 1.4. Let X = R and Ab(x1, x2, ..., xn) = |x1−xn|2+|x2−xn|2+. . .+|xn−1−xn|2.

Proof.

Ab(x1, x2, ..., xn) = |x1 − xn|2 + |x2 − xn|2 + . . .+ |xn−1 − xn|2

≤ 2{|x1 − a|2 + |xn − a|2}+ . . .+ 2{|xn−1 − a|2 + |xn − a|2}
≤ 2(n− 1){|x1 − a|2 + |x2 − a|2 + . . .+ |xn − a|2}
= 2[Ab(x1, x1, ..., a) +Ab(x2, x2, ..., a) + . . .+Ab(xn, xn, ..., a)]

Hence, (X,Ab) is an Ab-metric space with s = 2. �

Lemma 1.1. [14] Let (X,Ab) be an Ab-metric space with s ≥ 1. Then for all x, y ∈ X,

Ab(x, x, ..., x, y) ≤ sAb(y, y, ..., y, x).

The concepts of convergence, Cauchy sequence and completeness in an Ab-metric space
are defined in similar manner.

Definition 1.6. [14] Let (X,Ab) be an Ab-metric space and {xn} be a sequence in X.
Then

(i) A sequence {xn} is called convergent if and only if there exists u ∈ X such that
Ab(xn, xn, ..., xn, u)→ 0 as n→∞. So, we can write limn→∞ xn = u.

(ii) A sequence {xn} is called a Cauchy sequence if and only if
limn→∞Ab(xn, xn, ..., xn, xm)→ 0.

(iii) (X,Ab) is said to be a complete Ab- metric space if every Cauchy sequence {xn}
is convergent to a point u ∈ X.

In our last result, The following lemma will be helpful to mange discontinuity of the
Ab-metric space.

Lemma 1.2. Let (X,Ab) be an Ab-metric space with s ≥ 1, then we have the following:

(i) Suppose that {xn} and {yn} are sequences in X such that xn → x, yn → y and the
elements of {x, y, xn, yn : n ∈ N}are totally distinct. Then, we have

s−2Ab(x, x, ..., x, y) ≤ lim
n→∞

inf Ab(xn, xn, ..., xn, yn) ≤ lim
n→∞

supAb(xn, xn, ..., xn, yn)

≤ s2Ab(x, x, ..., x, y).
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(ii) Let {xn} be a Cauchy sequence in X converging to x. If xn has infinitely many
distinct terms, then

s−2Ab(x, x, ..., x, y)) ≤ lim
n→∞

inf Ab(xn, xn, ..., xn, y) ≤ lim
n→∞

supAb(xn, xn, ..., xn, y)

≤ s2Ab(x, x, ..., x, y),

for all y ∈ X with x 6= y.

Proof. (i) Using the second condition from the definition of Ab-metric space, we have

Ab(x, x, ..., x︸ ︷︷ ︸
(N-1) terms

, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) +Ab(y, y, ..., y, xn)]

≤ s(N − 1)Ab(x, x, ..., x, xn)

+s2[(N − 1)Ab(y, y, ..., y, yn) +Ab(xn, xn, ..., xn, yn)],

And

Ab(xn, xn, ..., xn, yn) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x)) +Ab(yn, yn, ..., yn, x)]

≤ s(N − 1)Ab(xn, xn, ..., xn, x)

+s2[(N − 1)Ab(yn, ..., yn, y) +Ab(x, ..., x, y)].

Taking the lower limit as n → ∞ in the first inequality and upper limit in the
second inequality, we obtain our required result.

(ii) Using the second condition from the definition of Ab-metric space, we get

Ab(x, x, ..., x, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) +Ab(y, y, ..., y, xn)]

≤ s(N − 1)Ab(x, x, ..., x, xn)

+s2[(N − 1)Ab(y, y, ..., y, y) +Ab(xn, xn, ..., xn, y)].

That is

Ab(x, x, ..., x, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) + sAb(xn, xn, ..., xn, y)], (1)

And

Ab(xn, xn, ..., xn, y) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x)) +Ab(y, y, ..., y, x)]. (2)

From lemma 1.1, one obtain

Ab(xn, xn, ..., xn, y) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x)) + sAb(x, x, ..., x, y)]

. Taking the lower limit as n → ∞ in the equation (1) and upper limit in the
equation (2), we obtain desired result.

�

Manoj ughade et al. [14] proved the following theorem for continuous map.

Theorem 1.1. Let (X,Ab) be a complete Ab-metric space. Let f be a continuous self map
satisfying the following:

Ab(fx
1, fx2, ..., fxn) ≤ ψ(Ab(x

1, x2, ..., xn)),

for all x1, x2, ..., xn ∈ X, where ψ : [0,+∞)→ [0,+∞) is an increasing function such that
limk→∞ ψ

k(t) = 0, for each fixed t > 0. Then f has a unique fixed point in X.
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Motivated by [14], in this paper we present an important results of Ab-metric space and
then we obtain Banach type contraction principle and Kannan type fixed point theorem
as corollaries. At last, we derive fixed point theorem having rational terms, which is the
answer to the open problem given in [16]. Moreover, we find common fixed point theorems
for four maps which involving rational terms. Our results extend and generalize several
results from the existing literature especially the results of Manoj et al. [14]. In addition,
we provide examples for the justification of our results.

2. Main results

Let us recall the following definitions.

Definition 2.1. [23] Let X be a non-empty set and T1, T2 : X → X. If w = T1x = T2x
for some x ∈ X, then x is called a coincidence point of T1 and T2, and w is called a point
of coincidence of T1 and T2.

Definition 2.2. [21] Let X be a non-empty set and T1, T2 : X → X. The pair {T1, T2} is
said to be weakly compatible if T1T2t = T2T1t, whenever T1t = T2t for some t in X.

Now, we start with the main result of our paper in which map need not be continuous.
Also note that throughout the paper, N ≥ 2.

Theorem 2.1. Let (X,Ab) be a complete Ab-metric space with s ≥ 1. Let T be a self map
satisfying the following:

Ab(Tu1, Tu2, ..., TuN )

≤ λ1[Ab(u1, u1, ..., Tu1) +Ab(u2, u2, ..., Tu2) + ...+Ab(uN , uN , ..., TuN )]

+λ2Ab(u1, u2, ..., uN )

+λ3[Ab(u1, u1, ..., Tu2) +Ab(u2, u2, ..., Tu3) + ...+Ab(uN , uN , ..., Tu1)],

(3)

for all u1, u2, ..., uN ∈ X, where λ1, λ2 and λ3 are non negative real numbers such that
0 < αλ1 + βλ2 + γλ3 < 1; and,
α = s(N − 1)2 + 1, β = s(N − 1), γ = s(N − 1)(N − 2) + s2(N − 1)2 + s. Then T has a
unique fixed point in X.

Note: Here α ≥ 2, β ≥ 1, γ ≥ 2 ; for any value of s and N . So, according to the value
of α, β, γ ; one can choose λ1, λ2 and λ3 such that 0 < αλ1 + βλ2 + γλ3 < 1 .

Proof. Let us define sequence {yn} as Tyn = yn+1. From definition of Ab-metric space
and for n > m, we have

Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym) ≤ s2Ab(ym, ym, ..., ym︸ ︷︷ ︸
(N-1) terms

, ym+1)

+s3(N − 1)Ab(ym+1, ym+1, ..., ym+1︸ ︷︷ ︸
(N-1) terms

, ym+2)

+s4(N − 1)2Ab(ym+2, ym+2, ..., ym+2︸ ︷︷ ︸
(N-1) terms

, ym+3)

+s5(N − 1)3Ab(ym+3, ym+3, ..., ym+3︸ ︷︷ ︸
(N-1) terms

, ym+4)

+s5(N − 1)4Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym+4).
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Continuing in similar way, we obtain

Ab(yn, yn, ..., ym) ≤ s2Ab(ym, ym, ..., ym+1)

+s3(N − 1)Ab(ym+1, ym+1, ..., ym+2)

+s4(N − 1)2Ab(ym+2, ym+2, ..., ym+3)

+s5(N − 1)3Ab(ym+3, ym+3, ..., ym+4)

+s6(N − 1)4[Ab(ym+4, ..., ym+5) + (N − 1)Ab(yn, yn, ..., ym+4)].

We arrive at

Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym) ≤
n−m∑
i=1

Si+1(N − 1)i−1Ab(ym+i−1, ym+i−1, ..., ym+i−1︸ ︷︷ ︸
(N-1) terms

, ym+i). (4)

Again using definition of Ab-metric space and the contractive condition, one gets

Ab(Tyn−1, T yn−1, ..., T yn−1, T yn)

≤ λ1[(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn, yn, ..., yn, yn+1)]

+λ2Ab(yn−1, yn−1, ..., yn−1, yn)

+λ3[{(N − 2) + s(N − 1)}Ab(yn−1, ..., yn−1, yn) + sAb(yn, ..., yn, yn+1)].

That implies

Ab(yn, yn, ..., yn, yn+1) ≤
λ1(N − 1) + λ2 + λ3[N − 2 + s(N − 1)]

1− λ1 − λ3s
Ab(yn−1, ..., yn−1, yn).

That is
Ab(yn, yn, ..., yn, yn+1) ≤ µ Ab(yn−1, yn−1, ..., yn−1, yn), (5)

where, µ = λ1(N−1)+λ2+λ3[N−2+s(N−1)]
1−λ1−λ3s .

Then, the equation (5) results in

Ab(yn, yn, ..., yn, yn+1) ≤ µnAb(y0, y0, ..., y0, y1).
This yields the follows by the use of equation(4),

Ab(yn, yn, ..., ym) ≤
n−m∑
i=1

si+1(N − 1)i−1µm+i−1Ab(y0, y0, ..., y1). (6)

Let , ai = si+1(N − 1)i−1µm+i−1. Then,

lim
i→∞

ai
ai+1

=
1

s(N − 1)µ

Since, αλ1 + βλ2 + γλ3 < 1; where, α = s(N − 1)2 + 1, β = s(N − 1),
γ = s(N − 1)(N − 2) + s2(N − 1)2 + s.
We have

{s(N − 1)2 + 1}λ1 + s(N − 1)λ2 + {s(N − 1)(N − 2) + s2(N − 1)2 + s}λ3 < 1

=⇒ s(N − 1)2λ1 + s(N − 1)λ2 + {s(N − 1)(N − 2) + s2(N − 1)2}λ3 < 1− λ1 − λ3s

=⇒ (N − 1)λ1 + λ2 + {(N − 2) + s(N − 1)}λ3 <
1− λ1 − λ3s
s(N − 1)

=⇒ (N − 1)λ1 + λ2 + {(N − 2) + s(N − 1)}λ3
1− λ1 − λ3s

<
1

s(N − 1)

=⇒ µ <
1

s(N − 1)
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This yields, limi→∞
ai
ai+1

> 1. Therefore utilizing the ratio test,
∑
ai is convergent.

So, from the equation(6), we conclude that

lim
n,m→∞

Ab(yn, yn, ..., ym)→ 0.

Hence, {yn} is a Cauchy sequence. With the use of completeness, one gets

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Again by contractive condition, one finds that

Ab(Tyn−1, Tyn−1, ..., T y) ≤ λ1[(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(y, y, ..., Ty)]

+λ2[Ab(yn−1, yn−1, ..., yn−1, y)]

+λ3[(N − 2)Ab(yn−1, yn−1, ..., yn) +Ab(yn−1, yn−1, ..., T y)]

+λ3Ab(y, y, ..., yn)

Taking limit both sides, we arrive at (1− λ1 − λ3)Ab(y, y, ..., Ty) ≤ 0.
Here, 1− λ1 − λ3 > 0 as 0 < αλ1 + βλ2 + γλ3 < 1. Hence, y = Ty.
Suppose y∗ is another fixed point of T, then one can come across

Ab(Ty∗, T y∗, ...., T y) ≤ (λ2 + λ3)Ab(y∗, y∗, ..., y∗, y) + λ3Ab(y, y, ..., y∗).
With the use of lemma (1.1), we have

(1− λ2 − (1 + s)λ3)Ab(y∗, y∗, ..., y) ≤ 0. (7)

If (1− λ2 − (1 + s)λ3) < 0, then 1 < λ2 + (1 + s)λ3. That implies

αλ1 + βλ2 + γλ3 < λ2 + (1 + s)λ3,

which is not possible for any value of s and N . So, (1− λ2 − (1 + s)λ3) > 0.
Therefore from (7), we have

Ab(y∗, y∗, ..., y) = 0.

Hence, y is the unique fixed point of T in X. �

If we put λ2 = 0 and λ3 = 0 in the previous theorem (2.1), then we have Kannan
theorem as corollary.

Corollary 2.1. Let (X,Ab) be a complete Ab-metric space. Let T be a self map satisfying
the following:

Ab(Tu1, Tu2, ..., TuN )]) ≤ λ[Ab(u1, u1, ..., Tu1)+Ab(u2, ..., Tu2)+...+Ab(uN , uN , ..., TuN )]
(8)

∀u1, u2, ..., un ∈ X and 0 < λ < 1
1+s(N−1)2 . Then T has a unique fixed point in X.

Proof. Here max { 1
1+s(N−1)2 } = 1

2 .

Let us define sequence {yn} as Tyn = yn+1. With the same process adopted in previous
theorems, one observes that {yn} is a Cauchy sequence and hence convergent to y(say),
So, finally one can write

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Now our claim is to prove that y is the fixed point of T . So, by contractive condition, one
gets

Ab(Tyn−1, T yn−1, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λAb(y, y, ..., y, Ty).

Letting limit n→∞, we have

(1− λ)Ab(y, y, ..., y, Ty) ≤ 0.
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Since, λ < 1
2 . Therefore, Ab(y, y, ..., y, Ty) = 0.

That is y = Ty. It is easy to prove that, T has a unique fixed point in X. �

Example 2.1. Let X = R− (−1, 1)∪{0}∪{16} and Ab(x1, x2, x3, x4) = |x1−x4|2 + |x2−
x4|2 + |x3 − x4|2. Then, it is clear from example (1.4) that (X,Ab) is an Ab-metric space
with s = 2. Define T : X → X by

T (x) =

{
1
6 ; if x = 0, 16
0, ; otherwise

Here, T is discontinuous at {16} and 0. Now, we have following possibilities:

Case 1: xi = 1
6 or 0 ; i = 1, 2, 3, 4

we have Ab(Tx1, Tx2, Tx3, Tx4) = 0. It is trivially true.
Case 2: xi 6= 1

6 and 0 ; i = 1, 2, 3, 4. It is trivially true.

Case 3: xi 6= 1
6 , 0 ; i = 1, 2, 3 and x4 = 0

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0, 0, 0,
1
6) = 3

36 , Ab(x1, x1, x1, Tx1) = 3|x1|2,

Ab(x2, x2, x2, Tx2) = 3|x2|2, Ab(x3, x3, x3, Tx3) = 3|x3|2 Ab(x4, x4, x4, Tx4) = 3
36

From contractive condition, one observe that

3

36
≤ 3λ{|x1|2 + |x2|2 + |x3|2 +

1

36
}.

Case 4: xi 6= 1
6 , 0 ; i = 1, 2 and x3 = 0, x4 = 0

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0, 0,
1
6 ,

1
6) = 2

36 , Ab(x1, x1, x1, Tx1) = 3|x1|2,

Ab(x2, x2, x2, Tx2) = 3|x2|2, Ab(x3, x3, x3, Tx3) = 3
36 , Ab(x4, x4, x4, Tx4) = 3

36
From contractive condition, one gets

3

36
≤ 3λ{|x1|2 + |x2|2 +

1

36
+

1

36
}.

Case 5: x1 6= 1
6 , 0 and xi = 0 ; i = 2, 3, 4

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0,
1
6 ,

1
6 ,

1
6) = 1

36 , Ab(x1, x1, x1, Tx1) = 3|x1|2,
Ab(x2, x2, x2, Tx2) = 3

36 Ab(x3, x3, x3, Tx3) = 3
36 , Ab(x4, x4, x4, Tx4) = 3

36
This implies

3

36
≤ 3λ{|x1|2 +

1

36
+

1

36
+

1

36
}.

Case 6: x1 = 1
6 and xi 6= 0, {16} ; i = 2, 3, 4

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6 , 0, 0, 0) = 1

36 , Ab(x1, x1, x1, Tx1) = 0 ,

Ab(x2, x2, x2, Tx2) = 3|x2|2 Ab(x3, x3, x3, Tx3) = 3|x3|2, Ab(x4, x4, x4, Tx4) = 3|x4|2
We arrive at

1

36
≤ 3λ{0 + |x2|2 + |x3|2 + |x4|2}.

Case 7: x1 = 1
6 , x2 = 1

6 and xi 6= 0, {16} ; i = 3, 4

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6 ,

1
6 , 0, 0) = 2

36 Ab(x1, x1, x1, Tx1) = 0,

Ab(x2, x2, x2, Tx2) = 0 Ab(x3, x3, x3, Tx3) = 3|x3|2, Ab(x4, x4, x4, Tx4) = 3|x4|2
We have

2

36
≤ 3λ{|x3|2 + |x4|2}.

Case 8: x1, x2, x3 = 1
6 and x4 6= 0, {16}.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6 ,

1
6 ,

1
6 , 0) = 3

36 Ab(x1, x1, x1, Tx1) = 0,
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Ab(x2, x2, x2, Tx2) = 0 Ab(x3, x3, x3, Tx3) = 0, Ab(x4, x4, x4, Tx4) = 3|x4|2
So,

2

36
≤ 3λ{|x4|2}.

So, for 0 < λ < 1
19 , all the above cases are satisfied. Hence, all the condition required in

Theorem (2.1) are satisfied. Thus, 1
6 is the unique fixed point of T in X at which map is

discontinuous.

Remark 2.1. In next results, Continuity of the Ab−metric space is not necessary.

If we put λ1 = 0 and λ2 = 0 in the theorem (2.1), we have following result.

Corollary 2.2. Let (X,Ab) be a complete Ab-metric space with s ≥ 1. Let T be a self
map satisfying the following:

Ab(Tu1, Tu2, ..., TuN ) ≤ λ[Ab(u1, u1, ..., Tu2)+Ab(u2, u2, ..., Tu3)+...+Ab(uN , uN , ..., Tu1)],
(9)

for all u1, u2, ..., uN ∈ X, where, 0 < λ < 1
s[1+(N−1){(N−2)+(N−1)s}] . Then T has a unique

fixed point in X.

Proof. With the same process adopted in previous theorem, one observes that {yn} is a
Cauchy sequence and hence convergent to y(say), So, one can write

lim
n→∞

Ab(yn, yn, ..., y) = 0.

From contractive condition, one finds that

Ab(Tyn−1, Tyn−1, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λAb(y, y, ..., y, yn).

Which together with (1.1), we have

Ab(yn, yn, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λsAb(yn, yn, ..., yn, y).

lim
n→∞

Ab(yn, yn, ..., T y) = 0.

Therefore, {yn} converges to both y and Ty. It must be the case y = Ty. Suppose y∗ is
another fixed point of T, then

Ab(Ty∗, Ty∗, ...., T y) ≤ λ[Ab(y∗, y∗, ..., y∗, y) + sAb(y∗, y∗, ..., y∗, y)].

[1− (1 + s)λ]Ab(y∗, y∗, ..., y∗, y) ≤ 0. (10)

If [1− (1 + s)λ] < 0, then

1

1 + s
< λ <

1

s[1 + (N − 1){(N − 2) + (N − 1)s}]
,

which is not possible for any N ≥ 2. That means [1− (1 + s)λ] > 0. Hence, from equation
(10), It easy to say that, y is the unique fixed point of T in X. �

If we put λ1 = 0 and λ3 = 0 in the theorem 2.1, then the theorem turns into Banach
type contractive condition. In a similar way, one can easily prove the following.

Corollary 2.3. Let (X,Ab) be a complete Ab-metric space. Let T be a self map satisfying
the following:

Ab(Tu1, Tu2, ..., TuN ) ≤ λAb(u1, u2, ..., uN ) ;∀u1, u2, ..., uN ∈ X. (11)

where, 0 < λ < 1
s(N−1) . Then T has a unique fixed point.

Proof. Here max { 1
s(N−1)} = 1. �
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Example 2.2. Let X = [0,∞) and Ab(x1, x2, x3, x4) = (max{x1, x2, x3} − x4)
2. It is

clear that (X,Ab) is an Ab-metric space with s = 2. Also define T : X → X by T (x) = x
4 .

We have

Ab(Tx1, Tx2, Tx3, Tx4) = (max{x1
4
,
x2
4
,
x3
4
} − x4

4
)2

and

Ab(x1, x2, x3, x4) = (max{x1, x2, x3} − x4)2

So, for 1
16 ≤ λ < 1

6 , the equation(11) is satisfied. Hence, 0 is the unique fixed point of T
in X.

In the sequel, we have following result which gives the answer to the open problem given
in paper by G. S. Saluja [16].

Theorem 2.2. Let (X,Ab) be a complete Ab-metric space. Let T be a self map satisfying
the following:

Ab(Tu1, Tu2, ..., TuN ) ≤ λ · M
∗

N∗
;∀u1, u2, ..., uN ∈ X,

where,

M∗ = [Ab(u1, u1, ..., Tu1) +Ab(u2, u2, ..., Tu2) + ...+Ab(uN , uN , ..., TuN )]Ab(u1, u2, ..., uN ),

N∗ = [Ab(u1, u1, ..., Tu2) + ...+Ab(uN−2, uN−2, ..., TuN−1)] +Ab(u1, u2, ..., uN )

+Ab(Tu1, Tu2, ..., TuN ),

0 < λ < 1
s(N−1) and N∗ 6= 0. Then T has a unique fixed point in X.

Proof. Let us define sequence {yn} as Tyn = yn+1. Using definition of Ab-metric space
and the contractive condition, one can see that

Ab(Tyn−1, T yn−1, ..., T yn−1, T yn) ≤ λ ·

{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn, yn, ..., yn, yn+1)]Ab(yn−1, ..., yn−1, yn)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn, ..., yn, yn+1)
}

yielding there by

Ab(yn, yn, ..., yn, yn+1) ≤ λnAb(y0, y0, ..., y0, y1).

With the same process adopted in previous theorems, one observes that {yn} is a Cauchy
sequence and hence convergent to y(say). That is limn→∞Ab(yn, yn, ..., y) = 0
Again using contractive condition, we have

Ab(Tyn−1, T yn−1, ..., T yn−1, T y) ≤

λ{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(y, y, ..., y, Ty)]Ab(yn−1, yn−1, ..., yn−1, y)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn−1, yn−1, ..., yn−1, y) +Ab(yn, yn, ..., yn, T y)
}.

That is

Ab(yn, yn, ..., yn, T y) ≤

λ{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(y, y, ..., y, Ty)]Ab(yn−1, yn−1, ..., yn−1, y)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) +Ab(yn−1, yn−1, ..., yn−1, y) +Ab(yn, yn, ..., yn, T y)
}.

Taking limit both sides , we conclude that Ab(y, y, ..., Ty) = 0. Hence y = Ty. It is easy
to check that, T has a unique fixed point in X. �

At last, we find common fixed point theorem for the setting of four maps.
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Theorem 2.3. Let (X,Ab) be a complete Ab-metric space with coefficient s ≥ 1 . Let S,
T , A and B be self mappings of X such that TX ⊆ AX,SX ⊆ BX and

Ab(Su1, Su2, .., SuN−1, TuN ) ≤
λAb(Au1, Au2, .., AuN−1, BuN ) + µAb(Au1, Au2, ..., AuN−1, Su1)Ab(BuN , ..., BuN , TuN )

1 +Ab(Au1, Au2, ..., AuN−1, BuN )

;for all u1, u2, ..., uN ∈ X where, 0 < s(N − 1)λ+ µ < 1. If one of the ranges AX or BX
is a closed subset of (X,Ab), then

(i) A and S have a coincidence point.
(ii) B and T have a coincidence point.

Moreover, if the pairs {A,S} and {B, T} are weakly compatible, then A,B, T and S have
a unique common fixed point in X.

Proof. Let x0 ∈ X. Since TX ⊆ AX, there exists x1 ∈ X such that Ax1 = Tx0, and
SX ⊆ BX, there exists x2 ∈ X such that Bx2 = Sx1. Continuing this process, we can
construct sequences {xn} and {yn} in X defined by

y2n = Ax2n+1 = Tx2n, y2n+1 = Bx2n+2 = Sx2n+1 ∀n ∈ N
Using contractive condition, one can see that

Ab(Sx2n+1, Sx2n+1, ..., Sx2n+1, Tx2n+2) ≤
λAb(Ax2n+1, ..., Ax2n+1, Bx2n+2) + µ · l∗

1 +Ab(Ax2n+1, Ax2n+1, ..., Ax2n+1, Bx2n+2)
.

where,

l∗ = Ab(Ax2n+1, ..., Ax2n+1, Sx2n+1)Ab(Bx2n+2, Bx2n+2, ..., Tx2n+2)

Which yields

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤
λAb(y2n, y2n, ..., y2n, y2n+1) + µ ·m∗

1 +Ab(y2n, y2n, ..., y2n, y2n+1)
,

where,
m∗ = Ab(y2n, y2n, ..., y2n, y2n+1)Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2),

Which results in

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤ λAb(y2n, ..., y2n, y2n+1) + µAb(y2n+1, ..., y2n+1, y2n+2).

We arrive at

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤
λ

1− µ
Ab(y2n, y2n, ..., y2n, y2n+1). (12)

Similarly, one gets

Ab(y2n+2, y2n+2, ..., y2n+2, y2n+3) ≤
λ

1− µ
Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2). (13)

Therefore, from (12) and (13),

Ab(yn, yn, ..., yn, yn+1) ≤
λ

1− µ
Ab(yn−1, yn−1, ..., yn−1, yn).

Likewise,

Ab(yn, yn, ..., yn, yn+1) ≤ [
λ

1− µ
]2Ab(yn−2, yn−2, ..., yn−2, yn−1).

Continuing this process, one arrives at

Ab(yn, yn, ..., yn, yn+1) ≤ [
λ

1− µ
]nAb(y0, y0, ..., y0, y1).
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Say, h = λ
1−µ and with the use of the equation (4),

Ab(yn, yn, ..., ym) ≤
n−m∑
i=1

si+1(N − 1)i−1hm+i−1Ab(y0, y0, ..., y1). (14)

Let, ai = si+1(N − 1)i−1hm+i−1. Then

lim
i→∞

ai
ai+1

=
1

s(N − 1)h

Since, s(N − 1)λ + µ < 1. We have limi→∞
ai
ai+1

> 1. By Ratio test, {yn} is a Cauchy

sequence and hence convergent to y(say). That means

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Thus, one finds that

lim
n→∞

Sx2n+1 = lim
n→∞

Bx2n+2 = lim
n→∞

Tx2n = lim
n→∞

Ax2n+1 = y. (15)

Now without loss of generality, one can suppose that AX is a closed subset of (X,Ab).
From the equation (15), there exists z ∈ X such that y = Az. Employing the definition
of Ab-metric space, we have

Ab(Sz, Sz, ..., Sz, y) ≤ s[(N − 1)Ab(Sz, Sz, ..., Sz, Tx2n) +Ab(y, y, ..., y, Tx2n)]

From the contractive condition,

Ab(Sz, Sz, ..., Sz, y)

≤ s(N − 1){λAb(Az, ..., Az,Bx2n) + µAb(Az, ..., Az, Sz)Ab(Bx2n, ..., Bx2n, Tx2n)

1 +Ab(Az, ..., Az,Bx2n)
}

+sAb(y, y, ..., y, Tx2n).

From lemma 1.2 (ii) and letting limit supremum both sides, one obtains

Ab(Sz, Sz, ..., Sz, y) = 0.

That is, y = Sz = Az. Since, SX ⊆ BX, there exists w ∈ X such that Bw = y.
Again using contractive condition, one arrives at

Ab(y, y, ..., y, Tw) = Ab(Sz, Sz, ...Sz, Tw) = 0.

Thus, y = Tw = Bw = Sz = Az. That is, A and S have coincidence point z and B and
T have coincidence point w.
Let, A and S are weakly compatible, So we have

Ay = ASz = SAz = Sy.

Now our claim is to prove Sy = y.

Ab(Sy, Sy, ..., Sy, y) = Ab(Sy, Sy, ..., Sy, Tw)

≤ λAb(Ay, ..., Ay,Bw) + µAb(Ay, ..., Ay, Sy)Ab(Bw, ..., Bw, Tw)

1 +Ab(Ay, ..., Ay,Bw)
,

which results in

Ab(Sy, Sy, ..., Sy, y) = 0.

Therefore, Sy = y = Ay. Similarly, B and T are weakly compatible, one concludes that
Ty = y = By. Finally, we have Sy = Ay = Ty = By = y . So, y is the common fixed
point of S, T , A and B. It is easy to check that y is the unique common fixed point. �
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3. Future work

It is observed that, fixed point and common fixed point results in Ab-metric space can
be derive for Wardowski F-contraction for discontinuous map and even without taking
continuity of the metric space.

Acknowledgement. The authors are grateful to the reviewer for their valuable sugges-
tions.

References

[1] Kannan, R., (1968), Some results on fixed points, Bull. Cal. Math. Soc., 60, pp. 71-76.
[2] Mlaiki, N., (2018), Extended Sb-metric spaces, Journal of Mathematical Analysis, 9 (1), pp. 124-135.
[3] Ozgur, N. Y., Tas, N., (2017), Some new contractive mappings on S-metric spaces and their relationships

with the mapping, Math Sci., 11, pp. 7-16.
[4] Saluja, G. S., (2020), Fixed point theorems on cone S-metric spaces using implicit relation, CUBO- A

Mathematical Journal, 22 (2), pp. 273-289.
[5] Sedghi, S., Shobe, N., Aliouche, A., (2012), A generalization of fixed point theorems in S-metric spaces,

Mat. Vesnik, 64, pp. 258-266.
[6] Souayah, N., Mlaiki, N., (2016), A fixed point theorem in Sb metric spaces, J. Math. Computer Sci.,

16, pp. 131-139.
[7] Rohen, Y., Dosenovic, T., Radenovic, S., (2017), A Note on the paper- A Fixed Point Theorems in

Sb-Metric spaces, Filomat, 31 (11), pp. 3335-3346.
[8] Kim, J. K., Sedghi, S., Gholidahneh, A., Rezaee, M. M., (2016), Fixed Point Theorems in S-Metric

Spaces, East Asian Mathematical Journal, 32 (5), pp. 677-684.
[9] Kim, J. K., Sedghi, S., Shobkolaei, N.,(2015), Common Fixed Point Theorems for the R-weakly Com-

muting Mappings in S-metric Spaces, J. Comput. Anal. Appl., 19, pp. 751-759.
[10] Sedghi, S., Dung, N., (2014), Fixed point theorems on S-metric spaces, Mat. Vensnik, 66, pp. 113-124.
[11] Sedghi, S., Altun, I., Shobe, N., Salahshour, M. A., (2014), Some Properties of S-metric Spaces and

Fixed Point Results, Kyungpook Math. J., 54, pp. 113-122.
[12] Sedghi, S., Shobe, N., Dosenovic, T., (2015), Fixed point results in S-metric spaces, Nonlinear Func-

tional Analysis and Appl., 20, pp. 55-67.
[13] Abbas, M., Ali, B., Suleiman, Y. I., (2015), Generalized coupled common fixed point results in partially

ordered A-metric spaces, Fixed Point Theory and Applications, 64.
[14] Ughade, M., Turkoglu, D., Singh, S., Daheriya, R., (2016), Some Fixed Point Theorems in Ab-Metric

Space, British Journal of Mathematics and Computer Science, 19(6), pp. 1-24.
[15] Bakhru, A., Gupta, R., Ughade, M., (2021), Coincidence points and common fixed points of expansive

mappings in Ab-metric spaces, South East Asian J. of Mathematics and Mathematical Sciences, 17
(1), pp. 383-396.

[16] Saluja, G. S., (2021), Some fixed point results under contractive type mappings in cone Sb-metric
spaces, Palestine Journal of Mathematics, 10(2), pp. 547–561.

[17] Latif, A., Kadelburg, Z., Parvaneh, V., Roshan, J., (2015), Some fixed point theorems for G-rational
Geraghty contractive mappings in ordered generalized b-metric spaces, J. Nonlinear Sci. Appl., 8, pp.
1212-1227.

[18] Shahkoohi, R., Razani, A., (2014), Some fixed point theorems for rational Geraghty contractive map-
pings in ordered b-metric spaces, J. Inequal. Appl., 373.

[19] Saluja, G. S., (2016), On Common Fixed Point Theorems With Rational Expressions in Cone b-Metric
Spaces, International J. Math. Combin., 1, pp. 65-75.

[20] Mustafa, Z., Shahkoohi, R. J., Parvaneh, V., Kadelburg, Z., Jaradat, M. M. M., (2019), Ordered
Sp-metric spaces and some fixed point theorems for contractive mappings with application to periodic
boundary value problems, Journal of Fixed Point Theory and Applications, 16.

[21] Jungck, G., Rhodes, B. E., (1998), Fixed points for set valued functions without continuity, Indian.
J. Pur. Appl. Math., 29, pp. 227-238.

[22] Ciric, L., Samet, B., Aydi, H., Vetro, C., (2011), Common fixed points of generalized contractions on
partial metric spaces and an application, Applied Mathematics and Computation, 218, pp. 2398-2406.

[23] Jungck, G., (1986), Compatible mappings and common fixed points, Int. J. Math. Sci., 9, pp. 771-779.



M. K. PATEL, J. P. SHARMA, G. M. DEHERI: FIXED POINT RESULTS IN AB-METRIC SPACE 1525

[24] Choudhury, B. S., Metiya, N., (2010), The point of coincidence and common fixed point for a pair of
mappings in cone metric spaces, Computers and Mathematics with Applications, 60 (6), pp. 1686-1695.

Mittal. K. Patel graduated from Hemchandracharya North Gujarat University,
Gujarat, India in 2008. She received her M.Sc. and M.phil (Maths) degrees from
Sardar Patel University in 2010 and 2012 respectively. At present, she is pursuing
her Ph.D degree at The Maharaja Sayajirao University of Baroda, and near to submit
her thesis. Her research interests are in Fixed Point Theory and Applications.

Dr. Jaita. P. Sharma is an assistant professor in the department of applied math-
ematics, Faculty of Technology and Engineering, The Maharaja Sayajirao University
of Baroda, India.

Dr. G. M. Deheri was attached with Department of Mathematics, Sardar Patel
University, Vallabh Vidhyanagar, Gujarat, India. Now, he is retired. To his credit,
he has a large experience of around 32-years in teaching at post graduate level. He
is a vigorous researcher in the area of Functional Analysis and Tribology, and he
has published more than 250 research papers in reputed national and international
journals. He has also won a few awards for the excellence in research.


