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THE HOMOGENEOUS ¢-DIFFERENCE OPERATOR AND THE
RELATED POLYNOMIALS

M. A. ARIF !, H. L. SAAD?**, §

ABSTRACT. We create the homogeneous g-difference operator E(a,b;6) as an extension
of the exponential operator F(bf). A new polynomials hy,(a,b,z|¢™") are defined as an
extension of the ¢~ *-Rogers-Szegd polynomial hn(a, b\qil). We provide an operator proof
of the generating function and its extension, Rogers formula and the invers linearization
formula, and Mehler’s formula for the polynomials h,(a,blg™"). The generating function
and its extension, Rogers formula and the invers linearization formula, and Mehler’s for-
mula for the polynomials hy,(a,b|qg™") are deduced by giving special values to parameters
of a new polynomial h,(a,b,z|qg™1).

Keywords: the homogeneous g-difference operator, the ¢~ !-Rogers-Szegd polynomial, the
generating function, the Rogers formula, the invers linearization formula, the Mehler’s
formula.
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1. INTRODUCTION

The notations in [8] will be utilized throughout this paper. We assume that |g| < 1.
The ¢-shifted factorial is defined as

o= { b if k=0,
U=\ 1—a)1—aq) - (1 —agkl), ifk=1,2,3, .
We also define

o0
(a; @)oo = [ [ (1 = ag").
k=0
For multiple g-shifted factorials, we’ll use the following notation:

(a1,a2,...,0m;@)n = (a1;9)n(a2;@)n - - (@m; @)ns

(a1,a2,. .., am;q)oo = (@15 9)00(a2; @)oo - - * (Am; @) oo-
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The generalized basic hypergeometric series ¢, is defined by

at,...,a
T¢S(a17"'va'r;b1a"-7bs;qax) = 'r‘¢s< bl br aQ7m>
1y:++9Us

—  (a1;Q)k - (ar; Q)i B (] k

= —1 q\2 ",
2 (¢ Ok (b159)k - -~ (bs; @), [( ) }

where ¢ # 0 when r > s+ 1 . Note that

9]
A1y ooy Qpg] (ala--'aarJrl;Q)n n
1q, T | = E T, x| < 1.
r1¢r < bi,....b, 4 > — (q,b1,---,br5q)n 2

The ¢-binomial coefficients are provided by

W

The Cauchy identity, as well as its special case, will be used frequently [§]

— (a;Q)k (a; ¢)oo
Yl T e W<t (1)
= (¢; ) $0)oo
0 (Z1)kg(5) gk
P )
k=0 q:9)k
Jackson’s transformation of 2¢; series is [8, Appendix III, equation (III.4)]
a,b _ (a759) a,c/b
2¢1< c 7q’$>_($5‘1)002¢2< ¢, azr ;q,0x ). (3)
We shall commonly utilize the following identities in this paper [8]:
(@ @ik = (a5 )n(aq"™; Q- (4)
—k
R N O () B L/ BT O
= a~F(—1)kq( . 5
(¢/a; @)k = a”"(=1)"q\2 (@ 0)w (5)
q;9)n Y _p
(070 = T gl ®

()= () o
(- () () ron

The Rogers-Szeg6 polynomials are defined by [6, 7, 13, 11]:

hn(a,blq) = Z M akon =k,

k=0
Chen and Liu [5] recalled the operator 6, which appeared in Roman work’s [12] as
follows:

Definition 1.1. The operator 6 is defined as follows:
flag™") — f(a)
0{f(a)} = ——F—

aq—!
The following identity is the Leibniz rule for the operator 6:
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Theorem 1.1. [5, 12]. For n > 0, we have
(@) = Y- [ Lr@neHatar ) (10)
k=0

The following identities are easy to verify:

Theorem 1.2. [5, 16, 15]. Let 6 be defined as in (9), then

0" {(at; )} = (—1)"(at; @)oo (11)
krgmy — (@ @n ok (5)—nk+k
e (¢ Dn—k ¢ ' (12)

In 1998, inspired by the Euler identity (2), Chen and Liu [5] defined the g-exponential
operator F(bf) as follows:

() (p0)"
q
E) Z (@G a)n (13)

n=0

In 2010, Liu [11] defined the ¢~!-Rogers-Szegd polynomials h,(a,blg~!) as follows:

n

(ablg™) =" [ } K2 =knghpn=k, (14)

k=0
Liu [11] proved the following results for hy,(a, blg™!):
Theorem 1.3. [11]. Let hy(a,blg™t) be defined as in (14), then
e The generating function for hy(a,blg™!) is
s _ng(%)
S bl S (ot b1 ) (15)
= (¢;q)

n

e The Mehler’s formula for hy(a,blg™t) is

(—t)"q(g) _ (act, adt, bet, bdt; q) oo
(4 Dn (abedt?/q; @)oo

> hala,blg™)ha(e,dla™) (16)
n=0

provided that |abedt?/q| < 1.

In 2020, Abdlhusein and Hussein [1] represented the ¢~!-Rogers-Szegd polynomials
hy(a,blg™!) by the operator E(bf) as follows:

E(b6) {a"} = hn(a,blg™"). (17)

Based on the operator representation (17), Abdlhusein and Hussein [1] retrieved the gen-
erating function for h,(a,blg~!) (15) and the Mehler’s formula for h,(a,blg~*) (16) and
found the following identities for hy(a,b|g™1):

Theorem 1.4. [1]. Let hy(a,blg™') be defined as in (14), then
o The extended generating function for q—'-Rogers-Szegd polynomials h,(a,blq™1) is

thk(a,blq_l)w = b"(at, bt; 9o 261 < qik’OQ/bt 14, at) . (18)
n=0 Y n
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e The Rogers formula for the q—'-Rogers-Szegd polynomials hy(a,blqg™t) is

Z thJrn a b|q_1)( () q;g)sm (—1)nq(g)tn

m=0n=0 (@:9)n
_ (as,bs,at, bt; q) oo
- (abSt/Q; Doo (19)
= -1 (—1)mq(?)sm(—1)"q(g)tn
R abSt/q’ E—:m;)h % bl hn(a,b1a™) (@3 Q)m (g @)n - (20)

Also, they derived the invers linearization formula as an applications of the Roger’s formula
(20) as follows:

hern(aa b|q_1)

min{m,n}
D S O R s AT s G 1
k=0

In 2020, Cao and et al. [3] built the new generalized Al-Salam-Carlitz polynomials as

follows:
< a,b,c >
d,e
n (z,ylg) =

" ] (—1)kgk(k—n) a,b,c; -
Z [k:| (-1) Q(d7e;(§)k Q)kx kyk_ (22)

In 2021, Arjika and Mahaman [2] constructed the following generalized trivariate ¢-Hahn
polynomials as follows:

k=0

v (2, 2lg) = (-1 B S m (~1)%q®) (@ Q)i Py, 2)2". (23)

k=0

In 2021, Cao and et al. [4] constructed the following generalized trivariate g-Hahn poly-
nomials as follows:

< ac’lf):ec > - a, b, c; Q) &
2 e =3 }d e e 24

In 2021, Srivastava and Arjika [14] a family of generalized g-hypergeometric polynomials
is defined by

w2l = (-0 O Y [ [0 @] T man ot e

(a1,az,...,a;;q)k
(b1,b2,...,bs;q)k

The following is how our paper is structured: In section 2, we construct the homogeneous
g-difference operator E(a, b;0) and then establish some of its identities, which will be
useful in the next sections. We construct a new polynomials hy,(a,b,z|¢~!) and derive its
generating function and its extension in section 3, then deduce the generating function and
its extension for hy,(a,b|qg~!). In section 4, we obtain the Rogers formula for hy,(a,b, z|q™1),
and then we deduce the Rogers formula for h,(a,blg™!). We derive Mehler’s formula for
hn(a,b, z|g~1) and then infer the Mehler formula for hy,(a,b|g™!) in section 5.

where a = (a1, ag,...,a,), b= (b1,ba,...,bs) and Wi(a,b) =
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2. SOME OPERATOR IDENTITIES FOR THE OPERATOR E(a, b;0)

The homogeneous g-difference operator E(a, b; ) is presented in this section, and some
of its operator identities are discovered.

Definition 2.1. Let 0 be defined as in (9), we define the homogeneous q-difference operator
E(a,b;0) as follows:

E(a,b;0) i d (b)*. (26)

=0

Setting a = 0 in (26), we are led to g-exponential operator E(bf) defined by Chen
and Liu [5] in (13). This means that the operator E(bf) is a special case of the operator

E(a,b;0).
Throughout out this paper, we assume that the operator 6 acts on the variable b.

Theorem 2.1. Let the operator E(a,x;@) be defined as in (26), then
E(a, x;0) {(bt, bs;q)e0 }

. .- (_1)nq(g)(x;Q)n n zq",q/bs .
—(bt,bs,q)w;) o (as) 2¢1< 4 Oq ,q,atbs/q>. (27)

Proof.
E(a, x’@){(bt bs; @)oo }

= Zq ”" a"0" {(bt, bs; 4)sc }
B q

— nz;)q xc)”a i:[:]( % (bt; q) G”k{bsq ) oo} (by using (11))

me {06:0)0c} 0" {(bsa7¥50)oc } by using (10))

k=0
n+k x7 e
= ;)Z)q e ;’; (=6)* (bt )oc { (543 @)oc |
( (m ) (x n. ) an+l<: B
_ q'2 0)n(q"; Ok VE(— sy
= ()~ kzo,;) % Q)k(g; On (=) (~ea™)
X (bsq "3 q)oo (byusing()and (11))
T an+k
ST q(q)ng(qf DR gy (s ()
k=0n=0 vamn

xq_(k )(q/bS'q)k(bS'q) (by using (5))
= (bt,0s;¢) ZZ (25 9)n xq q ( )”(atbs)k(q/bs;q)kq(g)ﬂL(g)*”k*k”*(g)*k

k=0n=0

- (bt,bS;q)wi(_l) q() nf: ik q Q/bs Dk (atbs  g)"

n=0 (q q k=0
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> (—1)q(3) (2 as)” xq" S
= (bt7bs;q)ooz( D" (3 )n(as) 2¢1< a"a/b ;q,atbs/q>.

= (¢ D)n 0
O
Setting s = 0 in equation (27), we get the following corollary:
Corollary 2.1. Let the operator E(a,x; 0) be defined as in (26), then
E(a,2;0) {(bt; q)oc} = (bt )oc 161 < ”g 14, at> : (28)

Theorem 2.2. Let the operator E(a,x;0) be defined as in (26), then
B(a,2:6) {b" (bt ) |

X 1\n (g) T at)™ =k ra™
T g q(q'(q)’ Dnlal)” g, ( T Oqo’q/bt g, at). (29)
n=0 vmn ’

Proof.
E(a :10'9) {bk(bt'q) }

= q n g {bk(bt;q)oo}

s (n) nan n

_ Zq ZH@J{b’f}enﬂ{btq 7 q)sot  (by using (10))
n=0

7=0
q\2/(T;q)n q;9 k]()kJrn] s
< (4 0);(a: e P TH96" I {(btg 7 q)c}  (by using (12))

n

(]

n=0 j=
[e’olNee] (”‘2”‘) z;q)n jan+j : s

-3 (q> q<)q o <§-qqi3 g {0t i) )
j=0n=0 ’ ’

S (2)+(2)+W(a:' Yo (zq™: q);a" (q: q)n
_ q s On(2q";39); Gk g (3)-hits
jZOnZ:% (¢:0)i (¢ D)n (¢; Dr—j v

X (1) (00 (by wsing (4), (7) and (11)
_ ZZ xq acq Q)aﬂ (4 Dk bk—j(_t)n

pfowart (@D (G Dk-

wq(3)+2( )—kﬂﬂ(bt; @)oo (q/bt: q)j(—bt)jq‘@)‘j (by using (5))

X (_1\n (g) T at)”
— (bt;q) Z( 1) Q(q( 7Q)n( t)

;O

n=

0
= (—1)7q) (wqn, q/bt; q);(at) (q;)uq™
XJZ: (¢;); (¢ @)k~ ’

e 2 (1)) (@ ) n(at)” X (~1)7qB) (aqm, /bt q) (at)]
-0 (bt’Q)ooz% (@ @)n ]z(:) (4:9);

n=
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x(=1)7q~ @) (g*;,q); (by using (6))

= V(btiq)eo (_1)nq((2q)_(§); @n{at)” 3¢2 < q_k’fgqg a/bt ;q,at> .

n=0

3. GENERATING FUNCTION FOR hy,(a,b,z|qg"!)

Polynomials h,(a,b,z|g”!) are defined in this section. The generating function and
its extension for the polynomials h,(a,b,z|g~!) generated by employing the operator
E(a,x;ﬁ). We offer some specific values for the parameters in the generating function
as well as its extension for the polynomials h,(a, b, z|¢~!) to obtain the generating func-

tion and its extension for the polynomials hy,(a,bjg™!).

Definition 3.1. We define the polynomials hy(a,b,x|q~!) as follows:

_ " n _n _
ha(a,b, zlq 1>=2qu2 Cat " @, (30)
k=0

e By choosing # = 0 in equation (30), we get the ¢~ '-Rogers-Szegd polynomials
hn(a,blg™") (14).
e Upon setting b = ¢ = d = e = 0 and (a,z,y) = (z,b,—a), the new general-

a, b, c )
ized Al-Salam-Carlitz polynomials ¢n< de (x,y|q) defined in (22) reduce to
the polynomials h,(a, b, z|g™1).
e By choosing (a,z,y,2) = (x,b,0,a), the generalized trivariate g-Hahn polynomials
W) (2, y, 2|q) defined in (23) reduce to the polynomials hy,(a, b, z|qg ).
e Forb=c=d=e=0and (a,z,y,2) = (z,b,0, —a) in equation (24), we get

<:U,0,0

AN ><b,o, —alg) = (=1)"q3) iy (a, b,xlg 7).

e When r = s = 1, by = 0, and (a1,2,y,2) = (z,b,0,a), the generalized ¢-
hypergeometric polynomials \Ilgla’b) (z,y,2|q) defined in (25) reduce to the poly-
nomials h,(a, b, z|g™!).

Proposition 3.1. Let the operator E(a,x;0) be defined as in (26), then
E(a,;0) {b"} = hn(a,b,lg™"). (31)
Proof.

k

Makek {b"}  (by using (26))

kzzo (a3 )k
2

E(a,a30) ("} =

¢ (23 9)ra* (¢:9)n i g(5) b+
@Ok (€ @)n—k

n —n, n—
= qu2 k(2 q)pa o "



1544 TWMS J. APP. AND ENG. MATH. V.13, N.4, 2023

0

By substituting = 0 in equation (31), we obtain equation (17), as described in Abdl-
husein and Hussein’s [1].

Theorem 3.1 (Generating function for h,(a, b, z|q~1)). Let the polynomials hy(a,b, z|qg~!)
be defined as in (30), then

& 1y .
> halabyalg ™) S — brig)n 101 ( ! ;q,at> | (32)
TL:O 9 n
Proof.

— b zla-? (—1)nq 2)m

i ng(3)gn

Z (a,2;0) {b"} (();’)n (by using (31))

Cawn S w

= B(a,2;0) {(tt;q)oc}  (by using (2))

— @i non (g at). (by wing (25)
]

We recover the generating function for polynomials hy,(a, blg~!) found by Liu [11] (equa-
tion (15)) by setting = 0 in the generating function for polynomials hy,(a,b, z|g~') (32).

Theorem 3.2 (Extended generating function for h,(a,b,z|qg™')). Let the polynomials
hn(a,b,x|g™1) be defined as in (30), then

- -1 (—1)nq(g)tn
;hn+k(a’b’x’q ) (q;q)

> at)” =k 2g™. q/bt
thOoZ ) On(at) 3¢2<q ’:f)qo’q/ ;q,at>~ (33)
n=0 n ’
Proof.

ihmrk(a, b, x|q71)ﬂ
n=0

Ly —1)ng(B)gn
= ZE(@, x;0) {bm'k} (}()Jg)t (by using (31))
=0 I n

f o [ (1) ey
E(a,z;0) {b ; (¢ Dn }
B(a,2:0) {

(-1

k
a,2:0) {0t g} (by using (2))

ng(3) (21 4. (at)” g
1703 (3 9)u(at) 3¢2<q ,ﬂgqovq/bt;q,at). (by using (29))

[ee)

AT

= (¢ Dn
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(|
Setting k£ = 0 in (33), we get the generating function (32).

Setting = 0 in the extended generating function for the polynomials h,(a, b, z|¢™!)
(33), we recover the extended generating function for the polynomials h,,(a, b|g~') obtained
by Abdlhusein and Hussein [1] (equation (18)).

4. ROGERS FORMULA FOR hy(a,b, z|g™!)

We will provide an operator approach to Rogers formula for the polynomials h,,(a, b, z|g )
in this section. By incorporating special values for variables in the Rogers formula for
hn(a,b,z|g”!), the Rogers formula for the ¢~ '-Rogers-Szegd polynomials hy,(a,blg™!) is
obtained.

Theorem 4.1 (Rogers formula for h,(a,b,z|¢~1)). Let the polynomials hy(a,b,xz|q~!) be
deﬁned as in (30), then

(= > Bln (—1ymg(5)sm

n=0m=0

N (—1)”q(3)(w;q)n(a8)” xq",q/bs
= (ot bs,q>oo;) @ m( 1 Oq ,q,atbs/q) (34)

2. (z;q)x(atbs/q)*

Z) (¢ Dk

(—1)gB)en (—1)mg(5) g
(¢ @)n (@@)m

x Z Z hn(a, b, 2q" g ) (a, b, 2q" g ) (35)
n=0m=0

Proof. By using (31), we get

NG > Bl (—1ymg(5)sm

n=0m=0

(
a, x; pm
- RZOW;)E o) {b } (4 Dm
e ‘ 9] (—1)nq(2)(bt)n > (_1)mq(7;) (bs)m
= FE(a,x;0) {T;) (¢ D)n mz_:o (¢ Q)m

= E(a,x;0) {(bt,bs;q)oc}  (by using (2

> (—1)nq(3) x; as)” xq" S
:(bt,bs;q)ooz( D" (3 ) (as) 2¢1< e bq/b ;q,atbs/q>.

= (¢ Dn

~—
~—

(by using (27))

Hence the proof of (34) is completed.
To prove (35), replace a = xq", b = q/bs, ¢ = 0 and = = atbs/q, respectively, in
Jackson’s transformations [8, Appendix III, equation (III.4)] (equation (3)), we get

TL’ b
261 < v OQ/ ° ;q,atbS/q>
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(atbszq" /q; @)oo zq"™, 0
(atbs/q,q)oo 2¢2 O,atbszqn/q 4, a

(atbszq™/q; @)oo xq"
= * t
(atbs/aia)e "'\ atbszqr/q PO

_ (athseg"[g:0)s g~ (1)) (24" 0)n(at)" (36)
(atbs/q; @)oo “= (¢ Q)m(atbszq™/q; @)m
Substitute (36) into (34), we get
BN A GO
Z Z intm(a,, g (¢ D (¢ D)m

n=0m=0

o & (1)) (@59)n(as)” (atbswg” /q, - () (2q"; q)m(at)™
= (nbsa) n;) (¢ @)n (atbs/q; @)oo mz m(atbszq™/q; q)m

o & (0D (@5 g)ulas) S <—1>mq<2"><an;q>m<at>m
= nbsi0) ,;) (@ @)n (@ D

m=0

> rgtm. atbs/a)k
« 3 OB (i wing (1)

& (@ qelatbs/a)F X (—1)"q3) (2gF; g)u(at)”
=2 sor Q)OOZ% (4 9)n

(—1)"gB)en (~1)mg(5) s
(45 Dn (G Dm

x Z Z hn(a,b,26"|q ™" hin (a,b,2¢" g7

O

Setting x = 0 in the Rogers formulas for the polynomials h,(a,b,z|g~!) (34) and (35),
we recover Rogers formulas for the polynomials hy(a,blg™t) (19) and (20) derived by
Abdlhusein and Hussein [1].

Corollary 4.1 (The inverse linearization formula for hy,(a,b,z|¢~1)). We have

min{m,n}

— mpn —nk—m
hin(bzlg™) = > MW = (g @) (ab) (.0
k=0
X hm—k(a,b,2¢" | Yhp_k(a, b, 2¢™|q"). (37)

Proof. From equation (35),we get

5 S gl gy CPADT CHNE 55 55 55 (ot

== S @)n (¢ @)m et i L (¢ @)k

(~1)ngEentk (—1ymg(s
(¢ @)n ¢ Qm

X hun(a, b, 24" g~ ) hn(a, b, g™ ™q)
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Comparing the coefficients of t"s™ in equation (38), we get
(=1)"q) (=1)"q%)
(G Dn (G Dm

(z; )x(ab/q)"
Whm k(a,b,xq \q

hm+n(a7 b7 ‘T|q71)

(—1)n k("2 (1ym—kg(™:")
(6 Dn—k (@ Dm—r

1

tnqg

TL k(a“) b7 xqm’q)

k=0

—k
)*q m
) S L Bk (a, b, 2¢" g Rk (@, b, 2¢™|q)

[
~ OM%%

—1)"q ( JH(a) ek (_ymg(5)+(3) tHhmk
(@ Ot (¢ Dm—r

(by using (8))
Hence

hm+n(a, bax’qil)
" ) [ k2 —nk—mk k ky,—1 my —1
= > |pllle (4 )k (ad)* (5 Q) kP (a, b, 26" | Y hn—r(a, b,2q™ g ).
k=0
U
Setting = 0 in the inverse linearization formula for the polynomials h,,(a, b, x|¢~1) (37),

we recover the inverse linearization formula for the polynomials h,(a,b|g~') obtained by
Abdlhusein and Hussein [1] (equation (21)).

5. MEHLER'S FORMULA FOR hy(a, b, z|g™!)

We will show an operator approach to Mehler’s formula for the polynomials hy,(a, b, z|g~!)
in this section. The Miller’s formula for the ¢~ !-Rogers-Szeg” o polynomials h,(a, b|g™!) is
obtained by supplying special values for variables in the Mehler’s formula for h,(a, b, z|g~1).

Theorem 5.1 (The Mehler’s formula for h,(a, b, z|q~1)). Let the polynomials hy,(a,b,x|q™!)
be defined as in (30), then

> ab.xlo™! c — ( 1)”@[()
;)hn( b, zlg (e, d, ylg )7(%%
(bdt; @)oo ZZ D* Mg ) QUG )"(bct)k(adt)"
k= On 0 s @)k(45 @)n
X 369 < 7 xg OQ/ bt dt) (39)

Proof. By using (31), we get

Zhn(a, b, z|g ) (e, d, y’q_l)_qi
n=0

=" Ea,2;60) {0"} hule, d.yla ™) —

~ (¢ 9)n

amg{zhcdy,q <>q<><bt>}
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— Blaast) { (@bt 101 ( i) | (o wsing (32)

= E(a, ;0) {(dbt; @)oo 3 (_1)kq(2)(y;Q)k(cbt)k}

= (G

b (ct)*E(a,;6) {bk(dbt; q)oo} (by using (2))

kq(g) (y’ ) e n (2

(D (b (—1"¢D @ a1
N kzo (5 9) et (bt Q)OO,; T

—k n
X 3¢9 ( ¢",zq", q/bdt 1 q, adt> (by using (29))

— (bt g i i (=1)¥q@)6) (g )i (3.0)a (bet) (adt)"

== (4 0)k(q; @)n
—k zq™, q/bdt
X 3¢ ( e ’Jjg dQ/ ;g5 adt>

O

Setting z = 0 and y = 0 in Mehler’s formula for the polynomials hy,(a,b, z|g~!) (39), we
recover Mehler’s formula for the polynomials h,(a, blg~t) obtained by Liu [11] (equation
(16)) as follows:

Corollary 5.1. Let hy,(a,blg™!) be defined as in (14), then

> _ _ (—1)_1q(g)t” (act, adt, bet, bdt; q) oo
o (a,blg™ (e, dlg™? =
nz% (bl )t =00, (abedt?/4; q)oo

provided that |abedt?/q| < 1.

Proof. Setting x = 0 and y = 0 in (39), we get

ihn(a, b‘q_l)hn(c, d\q_l)w

= (¢ @)n
e T a5 )
_ (bdt;q)ooki:oni.;(_(2];;:?;2;(2) bet)* (adt)™ zkjo ’q/bdt Drm iy
— (bdt7adt;q)m§(_(j]?l;;]:2) bet)* Zk: m(—nmq(?)—mW(adm
(bdt, adt; q)oo f: f:( 1)26;”;;1:%”1) (bet)F+m (_1)mq($)(k+m>mW(adt)m
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= (bdt, adt; q) o f: i

ke g (§)+(5) ke

(bct)k (_1)mq(7;)f(lc+m)m

m=0 k=0 q q)
X W(abcdﬁ)m (by using (7))
= (bdt, adt; q)oo Z (9/bdt; )m (abedt? /q) mi bct)k

m=0 (q’ q) =0
_ (bdt,adt,bet, act; q) oo
— (abedt?/q;q)oo

(by using (1) and (2))

6. CONCLUSIONS

(1) The operator E(a,b;0) is an extension of the operator E(bf).

(2) The polynomials hy(a, b, z|g~!) is an extension of the ¢~ !-Rogers-Szegd polynomi-
als hy(a,blg™h).

(3) The identities of the polynomials hy,(a,b, z|¢g~') are an extension of the identities
of the polynomials ¢~!-Rogers-Szegd polynomials hy,(a,blg™t).
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