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ABSTRACT

Separate-and-conquer type rule induction algorithms such as Ripper, solve a K > 2 class problem by
converting it into a sequence of K −1 two-class problems. As a usual heuristic, the classes are fed into
the algorithm in the order of increasing prior probabilities. Although the heuristic works well in prac-
tice, there is much room for improvement. In this paper, we propose a novel approach to improve this
heuristic. The approach transforms the ordering search problem into a quadratic optimization prob-
lem and uses the solution of the optimization problem to extract the optimal ordering. We compared
new Ripper (guided by the ordering found with our approach) with original Ripper (guided by the
heuristic ordering) on 27 datasets. Simulation results show that our approach produce rulesets that are
significantly better than those produced by the original Ripper. Keywords: rule induction, quadratic
programming, class ordering.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Rule induction algorithms learn a rule set from a training set.

A rule set is typically an ordered list of rules, where a rule con-

tains a conjunction of terms and a class code which is the label

assigned to an instance that is covered by the rule (Fürnkranz,

1999). The terms are of the form xi = v, xi < θ or xi ≥ θ,

depending on respectively whether the input feature xi is dis-

crete or continuous. There is also a default class assigned to

instances not covered by any rule. An example ruleset contain-

ing two rules for famous iris problem is:

If (x3 < 1.9) and (x4 ≥ 5.1) Then class = iris-setosa

Else

If (x3 < 4.7) Then class = iris-versicolor

Else class = iris-virginica

There are two main groups of rule learning algorithms.

Separate-and-conquer algorithms and divide-and-conquer al-

gorithms. Separate-and-conquer algorithms first find the best

rule that explains part of the training data. After separating

the examples those are covered by this rule, the algorithms

conquer remaining data by finding next best rules recursively.

Consequently, previously learned rules directly influence the

data of the other rules. Separate-and-conquer algorithms use

hill-climbing (Kurgan et al., 2006; Cohen, 1995), beam search
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(Theron and Cloete, 1996; Chisholm and Tadepalli, 2002), best

first search (Muggleton, 1995), genetic algorithms (Venturini,

1993), ant colony optimization (Martens et al., 2007; Olmo

et al., 2011), fuzzy rough set (Shen and Chouchoulas, 2002;

Bhatt and Gopal, 2008; Yi-Chung Hu, 2003), neural networks

(Hammer et al., 2002) to extract rules from data.

Divide-and-conquer algorithms greedily find the split that

best separates data in terms of some predefined impurity mea-

sure such as information gain, entropy, Gini index, etc. After

dividing examples according to the best split, the algorithms

conquer each part of the data by finding next best splits recur-

sively. In this case, previously learned splits in the parent nodes

directly influence the data of the descendant nodes. Divide-and-

conquer algorithms use stepwise-improvement (Breiman et al.,

1984; Murthy et al., 1994), neural networks (Guo and Gelfand,

1992), linear discriminant analysis (Yıldız and Alpaydın, 2000;

Loh and Shih, 1997; Gama, 1999), support vector machines

(Tibshirani and Hastie, 2007; Bennett and Blue, 1998) to learn

trees from data.

This paper is mainly related with the algorithms following

separate and conquer strategy. According to this strategy, when

a rule is learned for class Ci, the covered examples are removed

from the training set. This procedure proceeds until no exam-

ples remain from class Ci in the training set. If we have two

classes, we separate positive class from negative class. But if

we have K > 2 classes, as a heuristic, every class is classified in

the order of their increasing prior probabilities, i.e., in the order

of their sample size. The aim of this paper is (i) to determine
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If (x1 < 3) and (x2 < 1)

Then class = N

Else

If (x1 > 1.5) and (x2 < 1.5)

Then class = N

Else

If (x1 < 1.5)

Then class =  

Else

If (x1 > 3)

Then class =  

Else class = �

If (x1 < 1.5) and (x2 > 1)

Then class =  

Else

If (x1 > 3)

Then class =  

Else

If (x1 < 1.5)

Then class = N

Else class = �

Fig. 1. For two different class orderings, separation of data and learned

rulesets.

the effect of this ordering on the performance of the algorithms

and (ii) to propose a better algorithm for selecting the ordering.

Ripper, arguably one of the best algorithms following

separate-and-conquer strategy, learns rules to separate a posi-

tive class from a negative class. In the example above, Ripper

first learns rules to separate class iris-setosa from both classes

iris-versicolor and iris-virginica, then learn rules to separate

class iris-versicolor from class iris-virginica. The ordering of

classes is selected heuristically and may not be optimal in terms

of error and/or complexity. In Figure 1 we see an example

case, where two different orderings produce two different rule-

sets with the same error but different complexity, one composed

of four rules with six terms, other composed of three rules with

four terms. Although we prefer the second ordering, the heuris-

tic may lead us to the first ordering.

In this paper, we propose an algorithm to find the optimal

class ordering. Pairwise error approximation (PEA), assumes

that the error of an ordering is the sum of K(K − 1)/2 pairwise

errors of classes. We train a random set of orderings and use the

test error of them as training data to estimate the pairwise errors.

Given the estimated pairwise errors, the algorithm searches for

the optimal ordering exhaustively.

In the earlier version of this work (Ata and Yıldız, 2012),

we proposed unconstrained quadratic optimization for extract-

ing the optimal ordering; this present paper extends (i) the

quadratic optimization by both formulation and explanation, (ii)

the experiments significantly to include newer results on signif-

icantly more datasets. In the former publication, the quadratic

optimization is not constrained and therefore can be easily

(but sometimes wrongly in terms of pairwise error estimations)

solved by just taking derivatives. In this paper, we constrain

the quadratic optimization problem, and now the pairwise error

estimations must obey the constraints.

This paper is organized as follows: In Section 2, we explain

the rule induction algorithm Ripper. In Section 3 we explain

our novel PEA algorithm. We give our experimental results in

Section 4 and conclude in Section 5.

2. Ripper

Ripper learns rules from scratch starting from an empty rule

set. It has two phases: In the first phase, it builds an initial set

of rules, one at a time, and in the second phase, it optimizes the

rule set m times (Cohen, 1995).

1 Ruleset Ripper(D, π)

2 RS = {}

3 for p = 1 to K

4 Pos = πp, Neg = πp+1, . . ., πK

5 RS p = {}

6 DL = DescLen(RS ,Pos,Neg)

7 while D contains positive samples do

8 Divide D into Grow set G and Prune set P

9 r = GrowRule(G)

10 PruneRule(r, P)

11 DL’ = DescLen(RS p + r, Pos, Neg)

12 if DL’ > DL + 64

13 RS = PruneRuleSet(RS p + r, Pos, Neg)

14 return RS

15 else

16 RS p = RS p + r

17 Remove examples covered by r from D

18 for i = 1 to 2

19 OptimizeRuleset(RS p, D)

20 RS = RS + RS p

21 return RS

Fig. 2. Pseudocode for learning a ruleset using Ripper on dataset D accord-

ing to class ordering π

The pseudocode for learning ruleset from examples using

Ripper is given in Figure 2. When there are K > 2 classes,

the classes of the dataset are increasingly sorted according to

their prior probabilities resulting in permutation, π (Line 1). For

each class πp, its examples are considered as positive and the

examples of the remaining classes πp+1, ..., πK are considered

as negative (Line 4). Rules are grown (Line 9), pruned (Line

10) and added (Line 16) one by one to the rule set. If the recent

rule set’s description length is 64 bits more than the previous

rule set’s description length rule adding stops and the rule set

is pruned (Lines 12-14). The description length of a rule set is

the number of bits to represent all the rules in the rule set, plus

the description length of examples not covered by the rule set.

Ripper uses

DescLen = ||k|| + k log2

n

k
+ (n − k) log2

n

n − k
(1)

bits to send rule r with k conditions, where n is the number of

possible conditions that could appear in a rule and ||k|| is the
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1 Rule GrowRule(D)

2 r = {}

3 while r covers negative examples

4 Use exhaustive search to find best condition c

5 r = r ∪ c

6 return r

Fig. 3. Pseudocode for growing a rule using dataset D

1 Rule PruneRule(r, D)

2 improved = true

3 Mbest =M(r, D)

4 while improved do

5 improved = false

6 for each condition c in r

7 r = r − c

8 Mcurrent =M(r, D)

9 if (Mcurrent ≥ Mbest)

10 improved = true

11 cbest = c

12 Mbest = Mcurrent

13 r = r ∪ c

14 if improved

15 r = r − cbest

16 return r

Fig. 4. Pseudocode for pruning rule r using dataset D

number of bits needed to send the integer k (Cohen, 1995). If

there are no remaining positive examples (Line 7) rule adding

stops. After learning a rule set, it is optimized twice (Line 18).

Figure 3 shows the pseudocode of growing a rule. Learning

starts with an empty rule (Line 2), and conditions are added one

by one. At each iteration, the algorithm finds the condition with

maximum information gain on the dataset D (Line 4) by using

the information gain defined as follows

Gain(R′,R) = s

(

log2

N′+

N′
− log2

N+

N

)

(2)

where N is the number of examples, N+ is the number of true

positives covered by rule R and N′, N′+ represent the same de-

scriptions for the candidate rule R′. s is the number of true pos-

itives after adding the condition in R (Quinlan, 1993). When

the best condition is found, we add that condition to the rule

(Lines 5). We stop adding conditions to a rule when there are

no negative examples left in the grow set (Line 3).

The pseudocode for pruning a rule is given in Figure 4. We

search for a condition whose removal causes the most increase

in rule value metric (Lines 9-12) and if such a condition is

found, we remove it (Lines 14-15). Rule value metric is cal-

culated by

M(R,D) =
N+ − N−

N+ + N−
(3)

where N+ and N− are the number of positive and negative ex-

amples covered by R in the pruning set D. We stop pruning

when there is no more improvement in rule value metric (Line

4).

3. Pairwise Error Approximation

In the training of Ripper, the ordering of classes is selected

heuristically and may not be optimal in terms of error and/or

complexity. A common approach that is used in covering al-

gorithms is, training the classes in the order of their increas-

ing prior probabilities. At each iteration of the covering algo-

rithms, the examples (even false positives) covered by the rule

are removed from the training set. Removing examples during

the training, causes order dependencies between rules (Berthold

and Hand, 2003). The last learned rule is dependent on the pre-

vious rules and their covered examples.

Our proposed algorithm, pairwise error approximation, as-

sumes that the expected error of an ordering, that is, the ex-

pected error of the Ripper algorithm trained with that ordering,

is the sum of K(K − 1)/2 pairwise expected errors of classes.

The algorithm then tries to estimate the expected error contribu-

tion of each pair of classes. More formally, the expected error

of the Ripper algorithm with ordering π is defined as

Eπ =

K−1
∑

j=1

K
∑

k> j

eπ jπk
(4)

where π j represents j’ th class in permutation π and eπ jπk
repre-

sents the error contribution of separation of class π j from class

πk. For example, the expected error of the ordering N � (three

class problem) is defined as

EN � = eN + eN� + e � (5)

eπ jπk
contains two types of instances (See Figure 5):

• False positives, instances of class πk covered by the rules

of class π j, in other words, given class confusion matrix C,

the element ck j.

• False negatives, instances of class π j covered by the rules

of class πk, in other words, given class confusion matrix

C, the element c jk.
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Fig. 5. The expected error of the ordering N � and its components (ei j’s)

for a dataset with K = 3.
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1 PEA(D)

2 Ebest =∞

3 for i = 1 to T

4 π(i) = RandomOrdering()

5 Eπ(i) = Ripper(D, π(i))

6 QP = constructQuadraticProgram(π, Eπ)

7 solveQuadraticProgram(QP)

8 for i = 1 to K!

9 E = 0

10 for j = 1 to N

11 for k = j + 1 to N

12 E += e
π

(i)
j
π

(i)

k

13 if E < Ebest

14 Ebest = E

15 πbest = π(i)

16 return πbest

Fig. 6. Pseudocode of PEA for dataset D with K classes.

Since we can not estimate e jk from a single ordering, we run

Ripper algorithm T times with T random orderings π(i) and get

the test errors Eπ(i) . Average estimation error over T runs is then

defined as

Et =

∑T
i=1(Eπ(i) − Êπ(i) )2

T
(6)

An ordering with K classes has K(K−1)/2 different e jk pairs.

Since the number of all possible pairs is K(K - 1), each e jk will

appear T / 2 times in T random orderings approximately.

In order to minimize the average estimation error, we form

the following quadratic programming problem

Min.

T
∑

i=1

(Eπ(i) − Êπ(i) )2

s.t. Êπ(i) =

K−1
∑

j=1

K
∑

k> j

ê
π

(i)

j
π

(i)

k
∀i = 1, . . . , T

ê jk + êk j ≤
N j + Nk

N
∀ j, k = 1, . . . ,K

ê jk ≥ 0 ∀ j, k = 1, . . . ,K (7)

where ê jk’s are unknown variables and N j represents the num-

ber of examples of class j.

After solving the quadratic program, we have the error con-

tributions of all class pairs ê jk and can estimate the error of any

ordering π(i) using Equation 4 without actually running Ripper

with that ordering π(i). Not only that, we can also search all

possible class orderings to get the best ordering exhaustively

πbest = arg min
π(i)

Êπ(i) (8)

The pseudocode of PEA is given in Figure 6. The algo-

rithm tries to estimate the expected error contribution of each

pair of classes. There are K(K − 1) e jk pairs for a dataset

with K classes. It initially generates T random orderings (Line

4). Ripper is trained with these T orderings via 10-fold cross-

validation (Line 5). We construct the quadratic program QP

using the test errors of these T orderings (Line 6). After solv-

ing QP (Line 7), the best ordering is obtained by searching over

all possible orderings exhaustively (Lines 8-15).

The time complexity of PEA is O(TCdN log N) + O(Q) +

O(K!N2), where

• the time complexity of training T different Ripper’s with

T different orderings is O(TCdN log N) (Lines 3-5),

• the time complexity of solving quadratic program QP is

O(Q) (Line 7),

• the time complexity of searching the best ordering over all

possible orderings is O(K!N2) (Lines 8-15)

If the number of classes in a dataset is large (K > 15), search-

ing the best ordering exhaustively (Lines 8-15) becomes unfea-

sible. In those cases, one can resort to any heuristic algorithm

to solve the exhaustive search problem, which is actually a trav-

eling salesman problem with K cities. Note that, when we use

any heuristic algorithm, the ordering found may not be the best

ordering.

4. Experiments

4.1. Setup

We did our experiments on 24 data sets taken from UCI

repository (Blake and Merz, 2000). We also used 3 bioinfor-

matics datasets (leukemia1, leukemia2, srbct) which contain

cancer-related gene expression data (Statnikov et al., 2005).

The details of the datasets are given in Table 1. We use 10-

fold cross-validation to generate training and test sets and we

repeat experiments 10 times with different seeds to avoid the

randomness factor. For simple datasets, where the number of

classes is small (K ≤ 5), we did an exhaustive search over all

possible K! orderings. For complex datasets, where the num-

ber of classes is large (K > 5), we take T = 50, that is, we run

Ripper algorithm with 50 random orderings π(i).

4.2. Primary Assumption

In the first part of our experiments, we tested our primary as-

sumption, that is, the expected error of the Ripper algorithm

trained with any ordering, is the sum of K(K − 1)/2 pair-

wise expected errors of classes. Actually, this assumption can

be rephrased in another way, the pairwise expected errors of

classes (e jk) are nearly equal in all possible class orderings.

To validate our assumption, we calculate the actual e jk’s for

each ordering in each experiment using the confusion matrices

of the test results. Table 2 shows the average contribution of

pairwise errors (e jk) to the average test error for each ordering

on 3-class datasets. Each cell contains the average of 10×10 =

100 e jk’s. In order to test for equality, for each e jk and for each

experiment, we did 10-fold paired-t-test between each pairs of

ordering. The null hypothesis for the statistical test is:

H0(e jk, π
(u)
, π

(v)) : e jk in π(u) = e jk in π(v) (9)

For example, on 3-class datasets, there are 6 possible e jk’s, and

for each e jk, there are 3 possible orderings to choose from and
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Table 1. Details of the datasets. d: Number of attributes, K: Number of

classes, N: Sample size

Dataset d C N

balance 4 3 625

car 6 4 1728

cmc 9 3 1473

dermatology 34 6 366

ecoli 8 7 336

flags 26 8 194

glass 9 6 214

hayesroth 4 3 160

iris 4 3 150

leukemia1 5327 3 72

leukemia2 11225 3 72

nursery 8 5 12960

ocr 256 10 600

optdigits 64 10 3823

pendigits 16 10 7494

segment 19 7 2310

shuttle 9 7 58000

splice 60 3 3175

srbct 2308 4 83

tae 5 3 151

vehicle 18 4 846

wave 21 3 5000

wine 13 3 178

winequality 11 7 6497

yeast 8 10 1484

zipcodes 256 10 7291

zoo 16 7 101

we repeat the experiments 10 times, so there are a total of 6 ×

3 × 10 = 180 pairwise tests.

For 3-class datasets, on iris, leukemia1, leukemia2, and wine,

the assumption is almost correct, if we look the values in each

column on those datasets, the pairwise errors do not change

much from one ordering to another. Pairwise statistical tests

also agree with these results, namely, in 97, 88, 95, and 94

percent of the cases, the null hypothesis is accepted. On four

other datasets, the assumption is partially correct, on balance,

hayesroth, and splice, in 53, 52, 50 percent of the cases, the

null hypothesis is accepted. Lastly, three datasets, cmc, tae,

and wave do loosely satisfy the assumption; only 29, 32, and

33 percent of the cases, the null hypothesis is accepted.

For 4-class datasets, the situation is similar. On car dataset,

66 percent, on srbct dataset, 94 percent, and on vehicle dataset,

33 percent of the statistical tests between pairwise errors are

accepted. We can conclude that although there are exceptional

cases, in general, our assumption about pairwise errors is cor-

rect.

4.3. Accuracy of Pairwise-Error Estimation

In the second part of our experiments, we check if our estima-

tions of pairwise errors (ê jk) and their true values (e jk) match.

Tables 3 and 4 show the average contribution of pairwise errors

Table 2. Average contribution of pairwise errors on selected 3-class

datasets.

Set π e12 e13 e21 e23 e31 e32

balance

321 8.7 13.3 12.1

312 3.4 4.5 20.3

231 13.9 11.7 8.5

132 3.4 4.5 20.3

213 3.4 4.5 20.9

123 4.4 3.5 21.5

cmc

321 14.5 26.0 7.6

312 19.1 11.0 22.7

231 14.8 7.2 26.0

132 19.1 10.5 22.9

213 23.8 5.2 16.9

123 4.2 25.3 18.0

iris

321 0.7 0.0 5.7

312 0.1 0.0 5.8

231 2.5 4.9 1.0

132 0.1 0.0 5.5

213 0.3 0.4 6.5

123 0.1 0.0 5.6

splice

321 2.6 1.7 1.7

312 2.4 1.8 1.8

231 4.3 3.1 1.6

132 6.5 2.7 2.2

213 2.6 3.9 3.3

123 3.3 5.6 4.8

tae

321 28.3 28.4 5.2

312 29.5 4.1 30.4

231 28.4 5.0 28.4

132 29.6 4.3 30.9

213 33.2 0.7 32.3

123 0.6 33.1 32.4

wave

321 7.1 8.7 7.0

312 6.9 6.4 9.4

231 6.7 7.4 8.7

132 6.6 6.9 9.3

213 8.5 5.0 9.3

123 5.0 8.4 9.2

wine

321 4.3 1.0 2.9

312 4.5 0.3 2.9

231 7.6 2.4 1.1

132 5.1 1.0 5.2

213 0.7 4.3 5.5

123 3.8 2.0 3.5

(e jk) to the average test error, and their averaged estimated val-

ues (ê jk) found using quadratic programming on 4 and 3 class

datasets respectively.

For 3-class datasets, on iris, leukemia1, leukemia2, splice,

wave, and wine, the estimated and the true values of pairwise

errors are close to each other. On the other hand, on balance,

cmc, hayesroth, and tae, the estimated values are way off the

true values. For 4-class datasets, on car and srbct, the estima-

tion works well, whereas on vehicle at least 5 of the estimated
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Table 3. Average contribution of pairwise errors and their estimated values on 4-class datasets.

Dataset e12 e13 e14 e21 e23 e24 e31 e32 e34 e41 e42 e43

ê12 ê13 ê14 ê21 ê23 ê24 ê31 ê32 ê34 ê41 ê42 ê43

car 1.30 0.16 0.22 9.12 2.46 3.53 0.93 1.83 0.92 1.14 2.12 1.05

2.33 0.50 0.03 13.22 1.34 0.96 1.53 2.46 0.00 0.74 0.59 0.56

srbct 7.00 2.44 1.85 3.38 2.23 3.12 2.17 1.45 0.87 3.76 2.94 1.29

6.71 3.32 1.59 2.00 2.65 2.86 3.44 0.45 1.77 2.26 4.03 1.90

vehicle 3.25 2.44 3.11 6.37 5.79 15.23 1.84 1.90 1.52 6.07 15.28 5.71

10.39 17.20 0.58 12.35 3.65 0.05 17.38 1.45 0.48 1.61 0.58 3.44

Table 4. Average contribution of pairwise errors and their estimated values

on 3-class datasets.

Dataset e12 e13 e21 e23 e31 e32

ê12 ê13 ê21 ê23 ê31 ê32

balance 3.71 3.79 9.03 18.04 8.77 17.54

10.82 13.49 14.86 1.97 16.08 2.72

cmc 14.14 19.88 11.48 14.06 21.00 17.74

25.96 17.30 22.85 5.74 18.41 8.24

hayesroth 14.75 11.36 13.50 11.54 0.00 0.00

2.76 20.04 1.78 13.93 9.53 2.87

iris 0.13 0.09 1.21 5.64 0.35 5.66

0.87 1.95 1.80 3.32 2.72 2.29

leukemia1 3.56 6.15 2.53 2.38 8.40 5.34

3.64 3.11 2.50 3.93 5.26 10.36

leukemia2 4.39 9.41 2.29 3.98 6.25 2.32

3.22 8.00 2.92 7.33 2.69 4.82

splice 4.06 3.63 3.58 3.72 1.68 1.88

3.53 6.30 1.64 3.36 3.07 0.51

tae 19.90 23.54 19.12 23.24 20.29 22.16

22.85 34.85 21.91 8.83 32.04 8.04

wave 6.14 7.92 6.29 8.62 7.92 8.54

6.66 6.93 6.98 8.95 6.82 9.10

wine 4.43 1.20 5.38 3.81 0.79 3.67

1.68 5.53 2.65 2.70 3.94 2.37

values do not match the true values.

When we combine these results with the previous results, we

can say that, if the primary assumption is correct, our algorithm

estimates e jk’s well. If the primary assumption is loosely cor-

rect, there is a high chance that, the algorithm will fail to esti-

mate e jk’s. But note that, even if we fail to estimate e jk’s, our

algorithm may correctly estimate the expected error of order-

ings π(i).

4.4. Accuracy of Test Error Estimation

In the third part of our experiments, we compare the per-

formance of Ripper trained with our estimated best ordering

(πbest), found by using algorithm PEA in Figure 6, with the per-

formance of Ripper trained with heuristic ordering (πheuristic).

For simple datasets, we have the test errors of all possible

orderings, therefore we can position πbest according to πheuristic.

For each dataset, we assign ranks to all K! orderings so that the

best gets the rank of 1, the second gets the rank of 2, and so

on. We then calculate average ranks of both πbest and πheuristic

over 10 experiments. Table 5 shows those average ranks with

respect to all K! orderings. We also compare the rank perfor-

mances using Wilcoxon signed-rank test and show statistically

significant differences in boldface.

First of all, although the heuristic work well for some

datasets such as hayesroth, leukemia1, and splice, as the num-

ber of classes increases, the performance of πheuristic decreases,

which supports our motivation. For example, on balance, cmc,

tae, and wave, the number of possible orderings is 6 and the

rank of the heuristic ordering is larger than 3, worse than the

rank of a random ordering. When the number of classes in-

creases, on car and vehicle datasets, the number of possible

orderings is 24 and the rank of the heuristic ordering is near 20,

which is significantly worse than a random ordering, which will

have a rank of 12.

Second, since our algorithm is informed about all perfor-

mances of all orderings, as expected, the performance of πbest

is better than πheuristic. In 7 out of 14 datasets, Ripper algo-

rithm trained with πbest is assigned statistically significantly bet-

ter ranks than the Ripper algorithm trained with πheuristic.

For complex datasets, we take T = 50, that is, we run Ripper

algorithm with 50 random orderings π(i). In this case, since we

can not know the rank performance of Ripper trained with or-

derings πbest or πheuristic (K! is very large), we compare the test

errors of the algorithms trained with those orderings. Table 6

shows those average test errors. We also compare the expected

errors using paired-t test and show statistically significant dif-

ferences in boldface.

In this case, although PEA is only informed about a small

sample of performances of all orderings, it finds significantly

better orderings than the heuristic ordering. In 7 datasets out

of 13 datasets, Ripper algorithm trained with πbest is statisti-

cally significantly better than the Ripper algorithm trained with

πheuristic, where the reverse occur only on one dataset.

Another important point is, on equally distributed datasets,

where the number of instances in each class is the same, heuris-

tic ordering is the same as the random ordering, and in those

cases (segment, optdigits, pendigits), PEA is significantly supe-

rior compared to the heuristic ordering.
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Table 5. Average and standard deviation of the ranks of the Ripper algo-

rithm trained with the heuristic ordering and the best ordering found by

Quadratic Programming (QP) with respect to all K! orderings. Statisti-

cally significant differences are show in boldface.

Dataset Heuristic QP

balance 3.3 ± 1.3 2.1 ± 1.4

cmc 3.1 ± 0.7 1.2 ± 0.4

hayesroth 1.3 ± 0.7 1.5 ± 0.7

iris 2.0 ± 1.0 2.1 ± 1.1

leukemia1 1.5 ± 0.7 1.6 ± 0.8

leukemia2 1.9 ± 1.1 1.2 ± 0.4

splice 1.5 ± 0.5 1.5 ± 0.5

tae 4.9 ± 0.6 1.2 ± 0.4

wave 3.7 ± 1.9 1.0 ± 0.0

wine 2.1 ± 1.3 2.2 ± 1.4

car 18.2 ± 3.8 2.8 ± 2.7

srbct 6.8 ± 5.2 5.0 ± 4.3

vehicle 21.6 ± 2.6 4.9 ± 3.0

nursery 27.3 ± 10.4 25.1 ± 11.7

Table 6. Average and standard deviation of test errors of the Ripper algo-

rithm trained with the heuristic ordering and the best ordering found by

Quadratic Programming. Statistically significant differences are show in

boldface.

Dataset Heuristic QP

dermatology 7.75±0.88 3.71 ± 0.66

glass 36.18±2.02 36.20 ± 5.25

segment 6.54±0.34 4.89 ± 0.41

shuttle 0.04±0.01 0.02 ± 0.01

winequality 46.32±0.38 50.45 ± 3.25

zoo 12.37±1.47 9.80 ± 1.25

ecoli 19.41±0.59 20.08±2.01

flags 39.13±0.90 38.30±2.94

ocr 26.61±1.38 26.35±1.38

optdigits 11.08±0.47 8.98±0.45

pendigits 5.30±0.20 4.90±0.11

yeast 43.10±0.74 47.50±3.89

zipcodes 15.27±0.32 13.95±0.36

5. Conclusion

Current heuristic approach used in Ripper that orders the

classes in a dataset according to their sample sizes, usually does

not give the most accurate classification. In this paper, we pro-

pose a novel algorithm to improve this heuristic. Our proposed

algorithm PEA, although not guarantees to find a better order-

ing, is usually better than Ripper proper and can be improved

by including more random orderings in the optimization.

This study is an important step for understanding the impact

of the training ordering of classes on the performance and thus

can be extended via taking each ordering as a classifier and get

better classifiers by producing intelligent ensembles of these or-

derings. The ensemble idea is based on weak classifiers, which

are slightly better than random classifiers. Using PEA, we not

only can estimate best rule classifiers based on best orderings

they are trained upon, but also estimate ‘worse’ classifiers based

on worse orderings they are trained upon. Combining those

‘worse’ classifiers may lead us to better ensembles.
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