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COMPARISON BETWEEN NUMERICAL METHODS FOR

GENERALIZED ZAKHAROV SYSTEM

A. M. KAWALA1, H. K. ABDELAZIZ2∗, §

Abstract. In this paper, two numerical methods has been applied to numerically solve
the generalized Zakharov system (GZS). The spectral collocation method, which based
on two dimensional Legendre polynomials (LCM) and the well-known differential trans-
form method (DTM). Both of the proposed methods have high accuracy and have been
successfully compared with Adomian decomposition method.
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1. Introduction

The Zakharov system, which plays an important role in plasma physics, is a couple of
nonlinear partial differential equations, presented by Vladimir Zakharov[17]. In a general
form, it describes interactions between high frequency and low frequency waves. The most
important example involves interactions between the Langmuir and ion-acoustic waves in
plasma. Other physical applications can be found in [18, 19]. The Zakharov system
describes Langmuir waves propagation in ionized plasma as described in [3], consists of
a complex field ψ(x, t) representing the envelope of the high frequency electric field and
the plasma density measured from its equilibrium value symbolized by a real field w(x, t).
The real constant coefficient β can be a positive or negative number, and in the case of β
vanishing, the system is minimized to the classical Zakharov system of plasma physics.

i ∂tψ(x, t) + ∂xxψ(x, t)− 2β|ψ(x, t)|2ψ(x, t) + 2ψ(x, t)w(x, t) = 0,

∂ttw(x, t)− ∂xxw(x, t) + ∂xx(|ψ(x, t)|2) = 0.

Up to now, there are many methods have been proposed to solve this kind of systems. For
example, Glassey[12] presented finite difference scheme for the ZS in one-dimension, Chang
et al.[8] presented a difference scheme for the generalized ZS, Bao et al.[5] construct time
splitting spectral discretizatons method to solve the generalized ZS in one dimension, Wang
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[15] proposed F-expansion method to find wave solutions of the generalized ZS and Su
C.[14] present numerical comparison for several methods to get approximate solutions for
Zakharov system ZS in the subsonic limit regime. Spectral methods are a highly accurate
and efficient schemes compared with local methods. Based on the test functions choice, we
have three kinds of spectral methods, tau, Galerkin, and collocation methods. The idea
in these methods is to present an expression to the solution as a finite combination based
on orthogonal polynomials. Among these types of spectral methods, collocation method
[1, 2, 9] has become a common method to solve differential equations. Also it is very useful
to provide high accurate solutions to variable coefficient, and nonlinear problems. The
Legendre collocation method proposed in [4], and the well-known differential transform
method DTM [7, 13, 10, 11], will be applied to get an approximate solution for ZS, DTM is
one of the approximate methods which can be easily applied to many linear and nonlinear
problems, based on the Taylor series expansion, a certain transformation rules converts
the problem to a set of algebraic equations and the solution of these algebraic equations
represents the required solution of the problem. The paper is organized as follows. In
section 2 and 3, theoretical aspects of the method are discussed. In section 4, examples
with analytical solutions will be given to compare errors of the suggested method. Finally,
conclusions are given in section 5.

2. Legendre collocation method

The well-known Legendre polynomials are defined on the interval [-1, 1] and can be
determined with the recurrence formula

Pk+1 (x) =
2k + 1

k + 1
xPk (x)− k

k + 1
Pk−1 (x) , k = 1, 2, ..

whereP0(x) = 1 and P1(x) = x, and the orthogonality relation is∫ 1

−1
Pi(x)Pj(x)dx =

2

2j + 1
δij

any function of two variables u(x, t) which is infinitely differential in [-1,1]×[0,1] may be
expressed in terms of the double Legendre polynomials as

uNM (x, t) =
N∑
j=0

M∑
i=0

aijPi (t)Pj (x) = φ(t)TA φ(x)

with Legendre vector

φ(x) = [P0(x)P1(x). . .. . .PN (x)]

and Legendre coefficients matrix

A = (aij), 0 ≤ i ≤M, 0 ≤ j ≤ N,

aij =
(2i+ 1)

2

(2j + 1)

2

∫ 1

−1

∫ 1

−1
u(x, t)Pi(t)Pj(x)dtdx

Now, we will extend Legendre collocation method to numerically solve for GZS in complex
form:

iψt(x, t) + ψxx(x, t)− 2β|ψ(x, t)|2ψ(x, t) + 2ψ(x, t)w(x, t) = 0, (1)

wtt(x, t)− wxx(x, t) + (|ψ(x, t)|2)xx = 0. (2)
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with boundary and initial conditions

ψ(x, 0) = ψ1(x),
w(x, 0) = w1(x),
wt(x, 0) = w2(x).

(3)

ψ(−1, t) = ψ2(t), ψ(1, t) = ψ3(t),
w(−1, t) = w3(t), w(1, t) = w4(t).

(4)

the complex ZS (1) and (2) may be written as a system of three partial differential equa-
tions by splitting the complex function to real and imaginary parts as follows:

ψ(x, t) = u(x, t) + iv(x, t) (5)

ut(x, t) + vxx(x, t)− 2β(u2v + v3) + 2v(x, t)w(x, t) = 0,
−vt(x, t) + uxx(x, t)− 2β(v2u+ u3) + 2u(x, t)w(x, t) = 0,

wtt(x, t)− wxx(x, t) + (u2 + v2)xx = 0.
(6)

where u(x,t)and v(x,t) are real functions, also the boundary and initial condition(3) and
(4) will be:

u(x, 0) = f1(x), v(x, 0) = f2(x),
w(x, 0) = w1(x), wt(x, 0) = w2(x)
u(−1, t) = g1(t), u(1, t) = g2(t),
v(−1, t) = g3(t), v(1, t) = g4(t)
w(−1, t) = w3(t), w(1, t) = w4(t).

(7)

Now, we use Legendre polynomials to approximate u(x, t),v(x, t) and w(x, t) as:

uNM (x, t) =

N∑
j=0

M∑
i=0

aijPi(t)Pj(x) = φ(t)TAφ(x),

vNM (x, t) =
N∑
j=0

M∑
i=0

bijPi(t)Pj(x) = φ(t)TBφ(x),

wNM (x, t) =
N∑
j=0

M∑
i=0

cijPi(t)Pj(x) = φ(t)TCφ(x).

(8)

where A, B and C are unknown (N+1) × (M+1) matrices and the Legendre vector given
by

φ(x) = [P0(x)P1(x)P2(x). . .PN (x)]

and

φ(t) = [P0(t)P1(t)P2(t). . .PM (t)].

The first derivative of the vector φ(x) as expressed by [6]

d

dx
φ(x) = Dφ(x) = D(1)φ(x) (9)

where D is the (M+ 1)×(M+ 1) operational matrix of derivative given by D(1) = dij where

dij =

{
2j + 1 , j = i− k,

{
k = 1, 3, ..,m if m is odd

k = 1, 3, ..,m− 1 if m is even.

0, otherwise.

from (9) we can find the k-th derivative as follows:

dk

dxk
φ(x) = D(k)φ(x) = (D(1))kφ(x) (10)
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using (10) and (8), we can write

∂
∂tu(x, t) = φ(t)TDT

(1)Aφ(x), ∂∂xu(x, t) = φ(t)TAD(1)φ(x),
∂
∂tv(x, t) = φ(t)TDT

(1)Bφ(x), ∂∂xv(x, t) = φ(t)TBD(1)φ(x),
∂
∂tw(x, t) = φ(t)TDT

(1)Cφ(x), ∂∂xw(x, t) = φ(t)TCD(1)φ(x),
∂2

∂x2
u(x, t) = φ(t)TAD(2)φ(x), ∂

2

∂x2
v(x, t) = φ(t)TBD(2)φ(x),

∂2

∂x2
w(x, t) = φ(t)TCD(2)φ(x), ∂

2

∂t2
w(x, t) = φ(t)TDT

(2)Cφ(x).

(11)

By substituting (11) and (8) in GZS (6) and its initial and boundary conditions(7), we get

φ(t)TDT
(1)Aφ(x) + φ(t)TBD(2)φ(x)− 2β({φ(t)TAφ(x)}{φ(t)TAφ(x)}{(φ(t)TBφ(x)})

−2β({φ(t)TBφ(x)}{φ(t)TBφ(x)}{(φ(t)TBφ(x)}) + 2{φ(t)TBφ(x)}{(φ(t)TCφ(x)} = 0,
(12)

−φ(t)TDT
(1)Bφ(x) + φ(t)TAD(2)φ(x)− 2β({φ(t)TAφ(x)}{φ(t)TAφ(x)}{(φ(t)TAφ(x)})

−2β({φ(t)TBφ(x)}{φ(t)TBφ(x)}{(φ(t)TAφ(x)}) + 2{φ(t)TAφ(x)}{(φ(t)TCφ(x)} = 0,
(13)

φ(t)TDT
(2)Cφ(x)− φ(t)TCD(2)φ(x) + 2{φ(t)TADφ(x)}{(φ(t)TAD(2)φ(x)}

+2{φ(t)TBDφ(x)}{(φ(t)TBD(2)φ(x)}+ 2{φ(t)TAφ(x)}{(φ(t)TADφ(x)}
+2{φ(t)TBφ(x)}{(φ(t)TBDφ(x)} = 0.

(14)

with initial and boundary conditions,

φ(0)TAφ(x) = f1(x), φ(0)TBφ(x) = f2(x),
φ(0)TCφ(x) = w1(x), φ(0)TDT

(1)Cφ(x) = w2(x)

φ(t)TAφ(−1) = g1(t), φ(t)TAφ(1) = g2(t),
φ(t)TBφ(−1) = g3(t), φ(t)TBφ(1) = g4(t),
φ(t)TCφ(−1) = w3(t), φ(t)TCφ(1) = w4(t).

(15)

We can collocate(12-14) at suitable points to get 3(N + 1)× (M + 1) system of nonlinear
algebraic equations in the unknown coefficients aij , bijandcij the collocation points (xj , ti)
where ti, i = 0, 1, 2, 3, . . .,M are the roots of PM (t), and xj , j = 0, 1, 2, 3, . . ., N − 1, are
the roots of PN−1(x).
Throughout this paper, we use the Mathematica package to construct and solve the non-
linear algebraic system to get the coefficients aij , bij and cij .

3. Differential transform method

Consider a function w(x, y) is analytic and differentiated continuously with respect to
y, then

W (k, h) =
1

k!h!

(
∂k+hw(x, y)

∂kx∂ky

)
x = x0
y = y0

W(k, h) is the transformed function and w(x, y) represent the original function. The
differential inverse transform of W(k, h) is defined as follows:

w(x, y) =

∞∑
k=0

∞∑
h=0

W (k, h)(x− x0)k(y − y0)h. (16)

Combining (16) and (17)

w(x, y) =

∞∑
k=0

∞∑
h=0

1

k!h!

(
∂k+hw(x, y)

∂kx∂ky

)
(x− x0)k(y − y0)h. (17)
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Original Function Transformed Function
w (x, y) = u (x, y)± v (x, y) W (k, h) = U (k, h)± V (k, h)

w (x, y) = λu (x, y) W (k, h) = λu (k, h)

w (x, y) = ∂u(x,y)
∂x W (k, h) = (k + 1)U(k + 1, h)

w (x, y) = ∂u(x,y)
∂y W (k, h) = (h+ 1)U(k, h+ 1)

w (x, y) = ∂r+su(x,y)
∂rx∂sy

W (k, h) = (k + 1)(k + 2).....(k + r)
(h+ 1)(h+ 2)...(h+ s)U(k + r, h+ s)

w (x, y) = u (x, y) v (x, y) W (k, h) =
k∑
r=0

h∑
s=0

U (r, h− s)V (k − r, h)

for x0= 0 and y0= 0 equation (3.3) can be written as a finite series

w(x, y) =
n∑
k=0

m∑
h=0

W (k, h)xkyh. (18)

Theorems that are frequently used in the transformation procedure are introduced in the
following table.
Now,we will start applying DTM to get an approximate solution for generalized ZS, the
differential transform for u(x, t),v(x, t) and w(x, t) and equation (6) will be:

u(x, y) =
∑n

k=0

∑m
h=0 U(k, h)xkyh,

v(x, y) =
∑n

k=0

∑m
h=0 V (k, h)xkyh,

w(x, y) =
∑n

k=0

∑m
h=0W (k, h)xkyh.

(19)

(h + 1)U [k, h + 1] = −(k + 1)(k + 2)V [k + 2, h] + 2

k∑
r=0

k−r∑
l=0

h∑
s=0

h−s∑
p=0

U [r, h− s− p]V [l, s]U [k − r + l, p]

+2

k∑
r=0

k−r∑
l=0

h∑
s=0

h−s∑
p=0

U [r, h− s− p]U [l, s]U [k − r + l, p]− 2

k∑
r=0

h∑
s=0

V [r, h− s]W [k − r, s],

(20)

(h + 1)V [k, h + 1] = (k + 1)(k + 2)U [k + 2, h]− 2

k∑
r=0

k−r∑
l=0

h∑
s=0

h−s∑
p=0

V [r, h− s− p]V [l, s]V [k − r + l, p]

+2

k∑
r=0

k−r∑
l=0

h∑
s=0

h−s∑
p=0

V [r, h− s− p]U [l, s]V [k − r + l, p] + 2

k∑
r=0

h∑
s=0

U [r, h− s]W [k − r, s],

(21)

(h + 1)(h + 2)W [k, h + 2] = (k + 1)(k + 2)W [k + 2, h]− 2

k∑
r=0

h∑
s=0

(k − r + 1)(k − r + 2)U [k − r + 2, s]U [r, h− s]

−2

k∑
r=0

h∑
s=0

(k − r + 1)(k − r + 2)V [k − r + 2, s]V [r, h− s]− 2
k∑
r=0

h∑
s=0

(k − r + 1)(r + 1)V [k − r + 1, s]V [r + 1, h− s]

−2

k∑
r=0

h∑
s=0

(k − r + 1)(r + 1)U [k − r + 1, s]U [r + 1, h− s]

(22)

Using the differential transform of initial conditions (7) to start the recurrence relations
using (20),(21) and (22) and consequently substituting all the getting values of U[k,h],
V[k,h] and W[k,h] into equation (19) to get the approximate solutions for the three func-
tions u(x,t) , v(x,t) and w(x,t).

4. Implementation of the methods

In this part, Legendre collocation method and DTM will be applied for solving gener-
alized Zakharov system with two different values for β .
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Table 1. Error comparison for LCM, DTM and mADM [16] for GZS Ex.4.1

Legendre collocation method n=8 Differential Transform method n=7 mADM n=7 [16]
t ‖enw‖L∞ ‖en

ψ2‖L∞ ‖enw‖L∞ ‖en
ψ2‖L∞ ‖enw‖L∞ ‖en

ψ2‖L∞
x= 0.1 0.1 -6.0495E-12 5.1247E-13 1.3878E-15 -1.0743E-14 7.526E-11 2.0304E-12

0.2 1.8057E-11 8.0842E-12 4.2133E-14 -7.1403E-13 9.6091E-11 1.7588E-10
0.3 3.2905E-11 4.9447E-11 -4.0523E-15 -9.8200E-12 3.7703E-11 2.1360E-09
0.4 6.3849E-12 1.8376E-10 -2.6129E-12 -6.9295E-11 9.9827E-11 1.2273E-08
0.5 -1.0182E-10 4.9424E-10 -1.9376E-11 -3.2347E-10 1.8164E-10 4.7108E-08

x=0.2 0.1 -7.0745E-12 8.1548E-18 8.4377E-15 3.4104E-20 0.0000E+00 4.6803E-16
0.2 3.5119E-11 1.3121E-11 1.2140E-13 -8.1162E-13 1.0417E-10 1.2937E-10
0.3 5.7004E-11 8.3411E-11 5.5866E-13 -6.7999E-12 6.6652E-11 1.8295E-09
0.4 1.0361E-11 2.8741E-10 5.6372E-13 -4.1195E-11 3.7328E-11 1.1077E-08
0.5 -1.4598E-10 6.9663E-10 -5.7294E-12 -2.1316E-10 6.5701E-11 4.3627E-08

x=0.3 0.1 -3.3251E-12 -1.6791E-12 1.4932E-14 9.4220E-14 2.4740E-11 2.7984E-12
0.2 3.4449E-11 9.5256E-12 1.5848E-13 -5.7661E-13 2.4740E-11 7.0697E-11
0.3 4.6981E-11 8.8567E-11 8.2118E-13 -4.2938E-12 9.6091E-11 1.4621E-09
0.4 -8.0760E-12 3.2414E-10 2.9541E-12 -2.2890E-11 3.7703E-11 9.6930E-09
0.5 -1.4916E-10 7.7649E-10 7.8891E-12 -1.5765E-10 9.9827E-11 3.9695E-08

x=0.4 0.1 3.3212E-12 -3.3389E-12 1.4322E-14 3.8038E-13 4.1664E-11 6.3623E-12
0.2 9.6308E-12 1.2079E-15 1.0819E-13 2.8605E-18 0.0000E+00 1.3363E-13
0.3 1.0165E-12 6.7426E-11 7.0655E-13 -2.2981E-12 1.0417E-10 1.0340E-09
0.4 -2.8003E-11 2.9401E-10 4.6122E-12 -1.3061E-11 6.6652E-11 8.1202E-09
0.5 -4.7826E-11 7.3308E-10 2.2005E-11 -1.4384E-10 3.7328E-11 3.5314E-08

x=0.5 0.1 7.3328E-12 -3.0355E-12 6.1062E-16 1.5582E-12 9.6091E-11 1.0692E-11
0.2 -3.1373E-11 -8.8479E-12 -4.9127E-14 1.0292E-12 2.4740E-11 8.3107E-11
0.3 -4.8566E-11 3.1111E-11 2.3531E-13 -1.0438E-12 7.5260E-11 5.4526E-10
0.4 1.6656E-11 2.1129E-10 5.6073E-12 -9.3120E-12 3.9089E-12 6.3593E-09
0.5 2.5620E-10 5.8542E-10 3.5885E-11 -1.4929E-10 3.7703E-11 3.0485E-08

Example 4.1
Consider the GZS (1) and (2) with β=1 and the following initial conditions:

ψ(x, 0) =
√
3

40 tanh( x20)eix,
w(x, 0) = 1

3 −
1

1600 tanh
2( x20)

wt(x, 0) = 1
8000 tanh( x20)sech2( x20).

(23)

and boundary conditions

ψ(1, t) =
√
3

40 tanh( 1
20 −

t
10) ei(1−

203
600

t)

ψ(−1, t) =
√
3

40 tanh( 1
20 + t

10) ei(−1−
203
600

t)

w(1, t) = 1
3 −

1
1600 tanh

2( 1
20 −

t
10)

w(−1, t) = 1
3 −

1
1600 tanh

2( 1
20 + t

10)

(24)

with exact solution as given in [16]

ψ(x, t) =
√
3

40 tanh( 1
20(2t− x))ei(x−

203
600

t),
w(x, t) = 1

3 −
1

1600 tanh
2( 1

20(2t− x)).
(25)

Table 1 shows the error comparison for |ψ|2 and w using DTM, LCM and modified
Adomian decomposition method [16], the reason why we compare |ψ|2 instead |ψ|is that
we usually study the square of the module of the high-frequency electric field in plasma.
The calculated errors in Table 1 indicate a very good approximation with the actual
solution and the error grows higher as the x- distance value increases, and the DTM error
better than mADM with three digits and reaches 4 digits at some points,also LCM is
better than mADM with two digits.
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Figure 1.
(1a-1b) shows example 4.1 exact solution for |ψ|2 and w(x, t) with β=1.

Figure 2.
(2a-2b) shows example 4.1 approximate solution using Legendre collocation method with

n=m=8 and β=1, the numerical estimations for |ψ|2 and w(x, t) are found to be quite
accurate

Figure 3.
(3a-3b) shows example 4.1 approximate solution using Differential Transform method
with n=m=7 and β=1, the numerical estimations for |ψ|2 and w(x, t) are found to be

quite accurate

Figure 4.
(4a-4b) shows example 4.2 exact solution for |ψ|2 and w(x, t) with β=-10.
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Table 2. Error comparison for LCM, DTM and mADM [16] for GZS Ex.4.2

Legendre collocation method n=8 Differential Transform method n=7 mADM n=7 [16]
t ‖enw‖L∞ ‖en

ψ2‖L∞ ‖enw‖L∞ ‖en
ψ2‖L∞ ‖enw‖L∞ ‖en

ψ2‖L∞
x = 0.1 0.1 -2.4344E-10 -4.8707E-11 4.2143E-08 -4.7719E-06 1.5900E-11 2.4000E-10

0.2 -4.0441E-10 -8.7202E-10 3.4631E-07 -9.0056E-06 2.4000E-12 4.1300E-09
0.3 -3.2613E-10 -3.1754E-09 1.1570E-06 -1.1561E-05 3.2100E-11 2.2896E-08
0.4 2.2725E-10 -7.1455E-09 2.6129E-06 -1.1598E-05 4.6000E-12 8.0653E-08
0.5 1.6778E-09 -1.1986E-08 4.6522E-06 -8.1612E-06 4.6700E-11 2.2127E-07

x=0.2 0.1 -3.8439E-10 -1.4192E-10 4.9226E-08 -4.9408E-06 1.6300E-11 2.3700E-10
0.2 -5.4840E-10 -1.6873E-09 3.9414E-07 -9.4018E-06 3.2000E-11 4.0760E-09
0.3 -1.7712E-10 -5.8162E-09 1.2731E-06 -1.2116E-05 4.0100E-11 2.2635E-08
0.4 1.0485E-09 -1.2748E-08 2.7441E-06 -1.2134E-05 4.0300E-11 7.9769E-08
0.5 3.5158E-09 -2.0978E-08 4.5553E-06 -8.3681E-06 3.1800E-11 2.1884E-07

x=0.3 0.1 -3.1078E-10 -2.6425E-10 5.1679E-08 -4.8083E-06 1.5900E-11 2.3200E-10
0.2 -3.1216E-10 -2.4649E-09 4.0507E-07 -9.2317E-06 1.5900E-11 4.0190E-09
0.3 3.8443E-10 -8.1358E-09 1.2722E-06 -1.1975E-05 2.4000E-12 2.2359E-08
0.4 2.1139E-09 -1.7464E-08 2.6326E-06 -1.2057E-05 3.2100E-11 7.8838E-08
0.5 5.1443E-09 -2.8237E-08 4.0850E-06 -8.3476E-06 4.6000E-12 2.1630E-07

x=0.4 0.1 1.5067E-11 -3.7544E-10 4.8984E-08 -4.3614E-06 1.8000E-11 2.2600E-10
0.2 3.0666E-10 -3.0450E-09 3.7708E-07 -8.4925E-06 4.3700E-11 3.9580E-09
0.3 1.1880E-09 -9.7715E-09 1.1559E-06 -1.1148E-05 1.8000E-11 2.2070E-08
0.4 2.9206E-09 -2.0695E-08 2.3051E-06 -1.1340E-05 9.9000E-12 7.7866E-08
0.5 5.6101E-09 -3.2998E-08 3.3438E-06 -7.8976E-06 9.7000E-12 2.1365E-07

x=0.5 0.1 4.7814E-10 -4.2329E-10 4.1638E-08 -3.6154E-06 2.4000E-12 2.1900E-10
0.2 1.0185E-09 -3.2240E-09 3.1601E-07 -7.2351E-06 1.5900E-11 3.8940E-09
0.3 1.6927E-09 -1.0302E-08 9.4971E-07 -9.7082E-06 1.5900E-11 2.1767E-08
0.4 2.6152E-09 -2.1819E-08 1.8341E-06 -1.0056E-05 5.2400E-11 7.6851E-08
0.5 3.7701E-09 -3.4589E-08 2.4936E-06 -7.0445E-06 2.7900E-11 2.1089E-07

Figure 5.
(5a-5b) shows example 4.2 approximate solution using Legendre collocation method with
n=m=8 and β=-10, the numerical estimations for |ψ|2 and w(x, t) are found to be quite

accurate

Figure 6.
(6a-6b) shows example 4.2 approximate solution using Differential Transform method

with n=m=7 and β=-10, the numerical estimations for |ψ|2 and w(x, t) are found to be
quite accurate

Example 4.2
Consider the GZS (1) and (2) with β=-10 and the following initial conditions:

ψ(x, 0) = 1
10

√
3
29sech( x10) eix,

w(x, 0) = 83
1000 −

1
2900sech

2( x10)
wt(x, 0) = − 1

7250 tanh( x10)sech2( x10)

(26)
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and boundary conditions

ψ(1, t) = 1
10

√
3
29sech( 1

10 −
t
5) ei(1− 103

125 t)

ψ(−1, t) = 1
10

√
3
29sech( 1

10 + t
5) ei(−1− 103

125 t)

w(1, t) = 83
1000 −

1
2900sech

2( 1
10 −

t
5)

w(−1, t) = 83
1000 −

1
2900sech

2( 1
10 + t

5)

(27)

with exact solution

ψ(x, t) = 1
10

√
3
29 sech( 1

10(2t− x)) ei(x−
103
125

t),

w(x, t) = 83
1000 −

1
2900sech

2( 1
10(2t− x)).

(28)

Table 2 shows the error comparison for |ψ|2 and w using DTM, LCM and and modified
Adomian decomposition method [16],
The calculated errors in Table 2 indicate an effective approximation with the actual solu-
tion and the error grows higher as the x- distance value increases, and the LCM gave a
better error than DTM and mADM.

5. Summary and Conclusion

Application of the Legendre collocation method and Differential transform method are
effective than Adomain decomposition technique to investigate numerical solutions of non-
linear complex system problems. In our first caseβ =1, the results shows that both of them
is a powerful technique for finding approximate solutions with better accuracy than mADM
for GZS reaches 3 and 4 digits at some points. Forβ = -10 numerical results indicate that
LCM for the square of the module of the high-frequency electric field in plasma perform
better accuracy than DTM and mADM.
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