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CR-SUBMANIFOLDS OF A NEARLY TRANS-HYPERBOLIC

SASAKIAN MANIFOLD WITH RESPECT TO SEMI SYMMETRIC

NON-METRIC CONNECTION

P. ALMIA1∗, J. UPRETI1, §

Abstract. The present paper deals with the study of CR-submanifolds of Nearly Trans-
Hyperbolic Sasakian manifold with respect to semi symmetric Non-metric connection.
Nijenhuis tensor, integrability conditions for some distributions on CR-submanifolds of
a nearly trans-hyperbolic Sasakian manifold with respect to semi symmetric non-metric
connection are discussed.
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1. Introduction

A. Bejancu introduced the notion of CR-submanifolds of a Kaehlar manifold [1]. Later,
CR-submanifold have been studied by Kobayashi [14], Shahid et al. [18, 17], Yano and
Kon [20] and others. Upadhyay and Dube [14] have studied almost contact hyperbolic
(f ,g,η,ξ)- structure, Dube and Mishra [6] have considered hypersurfaces immersed in an
almost hyperbolic Hermitian manifold. Also Dube and Niwas [5] worked with almost r-
contact hyperbolic structure in a product manifold. Gherghe studied harmonicity on a
nearly trans-Sasakian manifold [7]. Bhatt and Dube [3] studied CR-submanifolds of trans-
hyperbolic Sasakian manifold. Joshi and Dube [13] studied semi-invariant submanifold of
an almost r-contact hyperbolic metric manifold. Gill and Dube have also worked on CR-
submanifolds of a trans-hyperbolic Sasakian manifold [8]. Hui and Mandal [10] studied
pseudo parallel contact CR-submanifolds of Kenmotsu manifold. Hui and Roy [11] have
studied warped product CR-submanifolds of Sasakian manifolds with respect to certain
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connections. Also Pal, Shahid and Hui [15] worked with CR-submanifolds of (LCS)n-
manifolds with respect to quarter symmetric non-metric connection. Hui, Atceken, Pal
and Mishra [12] have considered on contact CR-submanifolds of (LCS)n-manifolds. Let ∇
be a linear connection and T be a torsion tensor in an n-dimensional differentiable manifold
M [4]. The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is non-
symmetric. The connection ∇ is metric if there is a Riemannian metric g in M such that
∇g=0, otherwise it is non-metric. It is well known that a linear connection is symmetric
and if and only if it is the Levi-civita connection. In [9], S. Golab introduced the idea of
a semi-symmetric and quarter symmetric linear connections.

2. Preliminaries

Let M be an n-dimensional almost hyperbolic contact metric manifold with the almost
hyperbolic contact metric structure (φ,ξ,η,g) where φ is a tensor of type (1,1), a vector
field ξ, called structure vector field and η is a dual 1-form of ξ satisfying the following

φ2X = X − η(X)ξ, η(ξ) = −1, φ o ξ = 0, η o φ = 0

g(φX, φY ) = −g(X,Y )− η(X)η(Y )

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X)

for all vector fields X, Y ∈ TM [16]. A linear connection is said to be a semi-symmetric
connection if its torsion tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y,

where η is 1-form and φ is a tensor field of the type (1,1).

Definition 2.1. An m dimensional Riemannian submanifold M of M is called a CR-
submanifold if ξ is tangent to M and there exists on M a differentiable distribution D: x
→Dx⊂Tx(M) such that
(i) The distribution Dx is invariant under φ, i.e., φDx⊂Dx for each x∈M ;
(ii) The orthogonal complementary distribution D⊥: x → D⊥

x ⊂ Tx(M) of the distribution
D on M is anti-invariant under φ, i.e., φD⊥

x (M) ⊂ T⊥
x (M) for all x ∈ M , where Tx(M)

and T⊥
x (M) are tangent space and normal space of M at x ∈ M respectively.

If dimD⊥
x =0 (resp., dimDx=0), then CR-submanifold is called an invariant (resp., anti-

invariant). The distribution D (resp., D⊥) is called the horizontal (resp., vertical) distri-
bution. The pair (D, D⊥) is called ξ-hoizontal (resp., ξ-invariant) if ξx ∈ Dx(resp., ξx ∈
D⊥
x ) for x ∈ M .

For any vector field X tangent to M , we put

X = PX +QX, (1)

where PX and QX belong to the distribution D and D⊥ respectively.
For any vector field N normal to M , we put

φN = BN + CN, (2)

where BN (resp., CN) denotes the tangential (resp., normal) component of φN .
Now, we remark that owing to the existence of the 1-form η, we can define a semi symmetric
non-metric connection in any almost contact metric manifold by

∇XY = ∇XY + η(Y )X (3)
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such that (∇Xg)(Y,Z)=−η(Y )g(X,Z)−η(Z)g(X,Y ) for any X, Y ∈TM , where ∇ is the
induced connection with respect to g on M .
An almost hyperbolic contact metric structure (φ, ξ, η, g) on M is called trans-hyperbolic
Sasakian[2] if and only if

(∇Xφ)Y = α[g(X,Y )ξ − η(Y )φX] + β[g(φX, Y )ξ − η(Y )φX] (4)

for all X, Y tangents to M and α, β are functions on M . On a trans-hyperbolic Sasakian
manifold M , we have

(∇Xξ) = −α(φX) + β[X − η(X)ξ]

By using (3) and (4), we get

(∇Xφ)Y = α[g(X,Y )ξ − η(Y )φX] + β[g(φX, Y )ξ − η(Y )φX]− η(Y )φX (5)

Similarly we have

(∇Y φ)X = α[g(Y,X)ξ − η(X)φY ] + β[g(φY,X)ξ − η(X)φY ]− η(X)φY (6)

on adding (5) and (6), we obtain

(∇Xφ)Y +(∇Y φ)X = α[2g(X,Y )ξ−η(X)φY −η(Y )φX]−(β+1)[η(Y )φX+η(X)φY ] (7)

This is the condition for M (φ, ξ, η, g) with a semi symmetric non-metric connection to be
nearly trans-hyperbolic Sasakian manifold.
We denote by g the metric tensor of M as well as that induced on M . Let ∇ be the
semi symmetric non-metric connection on M and ∇ be the induced connection on M with
respect to the unit normal N .

Theorem 2.1. (i). If M is ξ-horizontal , X, Y ∈ D and D is parallel with respect to
∇, then the connection induced on CR-submanifold of a nearly trans-hyperbolic Sasakian
manifold with respect to a semi symmetric non-metric connection is also a semi symmetric
non-metric connection.
(ii).If M is ξ-vertical , X, Y ∈ D⊥ and D⊥ is parallel with respect to ∇, then the con-
nection induced on a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold with
respect to a semi symmetric non-metric connection is also a semi symmetric non-metric
connection.
(iii).The Gauss formula with respect to the semi symmetric non-metric connection is of
the form

∇XY = ∇XY + h(X,Y )

Proof. Let ∇ be the induced connection with respect to the unit normal N on a CR-
submanifold of a nearly trans-hypebolic Sasakian manifold from a semi symmetric non-
metric connection ∇, then

∇XY = ∇XY +m(X,Y ), (8)

where m is a tensor field of the type of the type (0, 2) on CR-submanifold M . If ∇å be

the induced connection on CR-subamanifold from Riemannian connection ∇, then

∇XY = ∇å
XY + h(X,Y ), (9)

where h is a second fundamental form. By the definition of the semi symmetric non-metric
connection, we have

∇XY = ∇XY + η(Y )X
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Now using (8) and (9) in above equation, we have

∇XY +m(X,Y ) = ∇å
XY + h(X,Y ) + η(Y )X

using (1), the above equation can be written as

P∇XY +Q∇XY +m(X,Y ) = P∇å
XY +Q∇å

XY +h(X,Y ) + η(Y )PX + η(Y )QX (10)

From (10), we have tangential and normal components

h(X,Y ) = m(X,Y ) (11)

P∇XY − η(Y )PX = P∇å
XY (12)

Q∇XY − η(Y )QX = Q∇å
XY (13)

Using (11), the Gauss formula for a CR-submanifold of a nearly trans-hyperbolic Sasakian
manifold with a semi symmetric non-metric connection is

∇XY = ∇XY + h(X,Y ) (14)

This proves (iii).
In view of (12), if M is ξ-horizontal, X, Y ∈ D and D is parallel with respect to ∇,
then the connection induced on a CR-submanifold of a nearly trans-hyperbolic Sasakian
manifold with respect to a semi-symmetric non-metric connection is also a semi symmetric
non-metric connection.
Similarly, using (13), if M is ξ-vertical, X, Y ∈ D⊥ and D⊥ is parallel with repect to ∇,
then the connection induced on a CR-submanifold of a nearly trans-hyperbolic Sasakian
manifold with respect to a semi symmetric non-metric connection.
Weingarten formula is given by

∇XN = −ANX +∇⊥
XN + η(N)X (15)

for X, Y ∈ TM , N ∈ T⊥M , h : TM × TM → TM⊥ (resp., AN : TM→TM) is the
second fundamental form (resp., tensor) of M in M and ∇⊥ denotes the operator of the
normal connection. Moreover, we have

g(h(X,Y ), N) = g(ANX,Y )

�

3. Main Results

Lemma 3.1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
M with a semi symmetric non-metric connection.Then

P (∇XφPY ) + P (∇Y φPX)− P (AφQYX)− P (AφQXY ) = φP∇XY + φP∇YX

+2αg(X,Y )Pξ − αη(X)φPY − αη(Y )φPX − (β + 1)[η(X)φPY + η(Y )φPX]

Q(∇XφPY ) +Q(∇Y φPX)−Q(AφQYX)−Q(AφQXY ) = 2αg(X,Y )Qξ − αη(X)QY

−αη(Y )QX + 2Bh(X,Y ) (16)

h(X,φPY ) + h(Y, φPX) +∇⊥
XφQY +∇⊥

Y φQX = φ(Q∇XY ) + φ(Q∇YX) + 2Ch(X,Y )

−(β + 1)[η(Y )φQX + η(X)φQY ] (17)

for X, Y ∈ TM .
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Proof. Differentiating covariantly

∇XφY = (∇Xφ)Y + φ(∇XY )

and by (1), (2), (14) and (15)

∇XφPY + h(X,φPY )−AφQYX +∇⊥
XφQY − φ[∇XY + h(X,Y )] = α[g(X,Y )ξ

−η(Y )φX] + βg(φX, Y )ξ − (β + 1)η(Y )φX.

Similarly, we have

∇Y φPX + h(Y, φPX)−AφQXY +∇⊥
Y φQX − φ[∇YX + h(Y,X)] = α[g(X,Y )ξ

−η(X)φY ] + βg(φY,X)ξ − (β + 1)η(X)φY.

On adding above equations, we have

∇XφPY +∇Y φPX + h(X,φPY ) + h(Y, φPX)−AφQYX −AφQXY +∇⊥
XφQY+

∇⊥
Y φQX − φ∇XY − φ∇YX + 2φh(X,Y ) = α[2g(X,Y )ξ − η(X)φY − η(Y )φX]− (β + 1)

[η(X)φY + η(Y )φX]

Using (1) and (2) and equating horizontal, vertical and normal components. The lemma
follows. �

Lemma 3.2. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
M with a semi-symmetric non-metric connection. Then

2(∇Xφ)Y = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX)− φ[X,Y ] + α[2g(X,Y )ξ − η(X)φY

−η(Y )φX]− (β + 1)[η(Y )φX + η(X)φY ]

for any X, Y ∈ D.

Proof. Using (14), we have

∇XφY −∇Y φX = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX).

Also, we have

∇XφY −∇Y φX = (∇Xφ)Y − (∇Y φ)X + φ[X,Y ]

From above equations, we get

(∇Xφ)Y − (∇Y φ)X = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX)− φ[X,Y ] (18)

For a nearly trans-hyperbolic Sasakian manifold with a semi symmetric non-metric con-
nection, we have

(∇Xφ)Y + (∇Y φ)X = α[2g(X,Y )ξ − η(X)φY − η(Y )φX]− (β + 1)[η(Y )φX + η(X)φY ]
(19)

Combining (18) and (19), the lemma follows. �

In particular, we have the following corollary.

Corollary 3.1. Let M be a ξ-vertical CR-submanifold of a nearly trans-hyperbolic Sasakian
manifold M with a semi symmetric non-metric connection. Then

2(∇Xφ)Y = ∇XφY −∇Y φX + h(X,φY )− h(Y, φX)− φ[X,Y ] + 2αg(X,Y )ξ

for any X, Y ∈ D.

Similarly, by Weingarten formula, we can easily get the following lemma.
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Lemma 3.3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
M with a semi symmetric non-metric connection. Then

2(∇Y φ)Z = AφY Z −AφZY +∇⊥
Y φZ −∇⊥

ZφY − φ[Y,Z] + α[2g(Y,Z)ξ − η(Y )φZ − η(Z)φY ]

−(β + 1)[η(Z)φY + η(Y )φZ]

for any Y , Z ∈ D.

Corollary 3.2. Let M be a ξ-horizontal CR-submanifold of a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection. Then

2(∇Y φ)Z = AφY Z −AφZY +∇⊥
Y φZ −∇⊥

ZφY − φ[Y,Z] + 2αg(Y,Z)ξ

for any Y , Z ∈ D⊥.

Lemma 3.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
M with a semi symmetric non-metric connection. Then

2(∇Xφ)Y = −AφYX +∇⊥
XφY − h(Y, φX)−∇Y φX − φ[X,Y ] + α[2g(X,Y )ξ − η(X)φY

−η(Y )φX]− (β + 1)[η(Y )φX + η(X)φY ]

for any X ∈ D, Y ∈ D⊥.

Proof. From Gauss and Weingarten equations for X∈D and Y ∈D⊥ respectively we get

∇XφY −∇Y φX = −AφYX +∇⊥
XφY −∇Y φX − h(Y, φX) (20)

Also we have

∇XφY −∇Y φX = (∇Xφ)Y − (∇Y φ)X + φ[X,Y ] (21)

From (20) and (21), we get

(∇Xφ)Y − (∇Y φ)X = −AφYX +∇⊥
XφY −∇Y φX − h(Y, φX)− φ[X,Y ] (22)

Also for nearly trans-hyperbolic Sasakian manifold M with a semi symmetric non-metric
connection, we have

(∇Xφ)Y + (∇Y φ)X = α[2g(X,Y )ξ − η(Y )φX − η(X)φY ]− (β + 1)[η(Y )φX + η(X)φY ]
(23)

Adding (22) and (23), we get

2(∇Xφ)Y = −AφYX +∇⊥
XφY − h(Y, φX)−∇Y φX − φ[X,Y ] + α[2g(X,Y )ξ − η(X)φY

−η(Y )φX]− (β + 1)[η(Y )φX + η(X)φY ]

Hence the lemma. �
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4. Parallel Distributions

Definition 4.1. The horizontal (resp., vertical) distributions D (resp., D⊥) is said to be
parallel [1] with respect to the semi-symmetric non-metric connection ∇ on M if ∇XY ∈D
(resp., ∇ZW∈D⊥) for any X, Y ∈ D (resp., W , Z ∈D⊥).

Now, we have the following proposition.

Proposition 4.1. Let M be a ξ-vertical CR-submanifold of a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection.Then

h(X,φY ) = h(Y, φX)

for all X, Y ∈D.

Proof. By the parallelness of horizontal distributions D, we have

∇XφY ∈ D,∇Y φX ∈ D for any X, Y ∈ D
For Y ∈D, using the fact that QX=QY=0, (16) gives

Bh(X,Y ) = g(X,Y )Qξ for any X, Y ∈ D
Therefore in view of (2), we have

φh(X,Y ) = g(X,Y )Qξ + Ch(X,Y ) for any X, Y ∈ D
From (17), we have

h(X,φY ) + h(Y, φX) = 2φh(X,Y )− 2g(X,Y )Qξ for any X, Y ∈ D (24)

Now, putting X = φ X ∈ D and Y = φ Y ∈ D in (24), we get respectively

h(φX, φY ) + h(Y,X) = 2φh(φX, Y )− 2g(φX, Y )Qξ (25)

h(φY, φX) + h(X,Y ) = 2φh(X,φY )− 2g(X,φY )Qξ (26)

Hence from (24) and (25), we have

φh(X,φY )− φh(Y, φX) = g(X,φY )Qξ − g(φX, Y )Qξ (27)

Operating φ on both sides of (27) and using φξ=0, we get

h(X,φY ) = h(Y, φX)

for all X, Y ∈ D. �

Now, for the distribution D⊥, we have the following proposition.

Proposition 4.2. Let M be a ξ-vertical CR-submanifold of a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection. If the distribution
D⊥ is parallel with a semi symmetric non-metric connection on M .Then

(AφY Z +AφZY ) ∈ D⊥ for any Y, Z ∈ D⊥.

Proof. From Weingarten formula, we have

∇Y φZ = −AφZY +∇⊥
Y φZ

and

∇ZφY = −AφY Z +∇⊥
ZφY for any Y, Z ∈ D⊥.

From above Weingarten equations, we have

−AφZY +∇⊥
Y Z −AφY Z +∇⊥

ZφZ = (∇Y φ)Z + (∇Zφ)Y + φ(∇Y Z +∇ZY )
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Using (7) and (14), we obtain

−AφZY −AφY Z = α[2g(Y, Z)ξ − η(Y )φZ − η(Z)φY ]− (β + 1)[η(Y )φZ + η(Z)φY ]

+φ∇Y Z + φ∇ZY + 2φh(Y, Z) for any Y, Z ∈ D⊥. (28)

Taking inner product with X∈D in (28), we get

g(AφZY,X) + g(AφY Z,X) = g(∇Y Z, φX) + g(∇ZY, φX)

If the distributions D⊥ is parallel then ∇Y Z ∈ D⊥ and ∇ZY ∈D⊥ for any Y , Z ∈ D⊥.
Thus we have

g(AφZY,X) + g(AφY Z,X) = 0

g(AφZY +AφY Z,X) = 0

Which implies that AφZY+AφY Z∈D⊥ for any Y , Z ∈ D⊥. �

Definition 4.2. A CR-submanifold with a semi symmetric non-metric connection is said
to be mixed totally geodesic if h(X,Z) = 0 for all X ∈ D and Z ∈ D⊥.

Lemma 4.1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
M with a semi symmetric non-metric connection. Then M is mixed totally geodesic if
and only if ANX ∈ D for all X ∈ D.

Definition 4.3. A normal vector field N 6=0 with a semi symmetric non-metric connection
is called D-parallel normal section if ∇⊥

XN=0 for all X ∈ D.

Now, we have the following proposition.

Proposition 4.3. Let M be a mixed totally geodesic ξ-vertical CR-submanifold of a nearly
trans-hyperbolic Sasakian manifold M with a semi symmetric non-metric connection.Then
the normal section N ∈ φD⊥ is D-parallel if and only if ∇XφN ∈ D for all X ∈ D.

5. Integrability conditions of distributions

In this section,we calculate the Nijenhuis tensor N(X,Y ) on a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection.

Lemma 5.1. Let M be a nearly trans-hyperbolic Sasakian manifold with a semi symmetric
non-metric connection.Then

(∇φXφ)Y = 2αg(φX, Y )ξ − αη(Y )φX − (β + 1)η(Y )X + (β + 1)η(Y )η(X)ξ + η(X)∇Y ξ

+φ(∇Y φ)(X) + ((∇Y η)X)ξ (29)

for any X, Y ∈ TM .

Proof. From the definition of nearly trans-hyperbolic Sasakian manifold with a semi sym-
metric non-metric connection M , we have

(∇φXφ)Y = 2αg(φX, Y )ξ − αη(Y )φX − (β + 1)η(Y )X + (β + 1)η(Y )η(X)ξ − (∇Y φ)φX
(30)

Also we have

(∇Y φ)φX = −η(X)∇Y ξ − φ(∇Y φ)X − ((∇Y η)X)ξ (31)

Now using (31) in (30), we get

(∇φXφ)Y = 2αg(φX, Y )ξ − αη(Y )φX − (β + 1)η(Y )X + (β + 1)η(Y )η(X)ξ + η(X)∇Y ξ
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+φ(∇Y φ)X + ((∇Y η)X)ξ

for any X, Y ∈ TM , which completes the proof of the lemma. �

On a nearly trans-hyperbolic Sasakian manifold with a semi symmetric non-metric
connection M , Nijenhuis tensor is given by

N(X,Y ) = (∇φXφ)Y − (∇φY φ)X − φ(∇Xφ)Y + φ(∇Y φ)X (32)

for any X, Y ∈ TM . From (29) and (32), we get

N(X,Y ) = 4αg(φX, Y )ξ − α[η(Y )φX − η(X)φY ]− (β + 1)[η(Y )X − η(X)Y ]

+η(X)∇Y ξ − η(Y )∇Xξ − 2g(X,φY )ξ + 2φ(∇Y φ)X − 2φ(∇Xφ)Y (33)

In view of (7), we have

φ(∇Xφ)Y = −αη(Y )φX − αη(X)φY − (β + 1)[η(Y )X + η(X)Y ] + 2(β + 1)η(X)η(Y )ξ

−φ(∇Y φ)X

Using (33), we obtain

N(X,Y ) = 4αg(φX, Y ) + αη(Y )φX + 3αη(X)φY − (β + 1)η(Y )X + 3(β + 1)η(X)Y

−2g(X,φY )ξ + 4φ(∇Y φ)X − 4(β + 1)η(X)η(Y )ξ + η(X)∇Y ξ − η(Y )∇Xξ (34)

for any X, Y ∈ TM .

Proposition 5.1. Let M be a ξ-vertical CR-submanifold of a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection.Then the distribu-
tion D is integrable if the following conditions are satisfied

S(X,Z) ∈ D, h(X,Z) = h(φX,Z)

for any X, Z ∈ D.

Proof. The torsion tensor S(X,Y ) of the almost contact metric structure (φ,ξ,η,g) is given
by

S(X,Y ) = N(X,Y ) + 2dη(X,Y )ξ = N(X,Y )− 2g(φX, Y )ξ (35)

Thus, we have

S(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ]− 2g(φX, Y )ξ

for any X, Y ∈ TM . Suppose that the distribution D is integrable. so for X, Y ∈ D,
Q[X,Y ]=0. If S(X,Y ) ∈ D, then from (34) and (35), we have

4αg(φX, Y )Qξ + 4(φQ∇Y φX + φh(Y, φX) +Q∇YX + h(X,Y )) = 0

for any X, Y ∈ D and ξ ∈ D⊥. Replacing Y by φZ for Z ∈ D,we get

4αg(φX, φZ)Qξ + 4(φQ∇φZφX + φh(φZ, φX) +Q∇φZX + h(X,φZ)) = 0 (36)

Interchanging X and Z for X, Z ∈ D in (36), we have

4αg(φZ, φX)Qξ + 4(φQ∇φXφZ + φh(φX, φZ) +Q∇φXZ + h(Z, φX)) = 0

Subtracting above equations, we get

φQ[φX, φZ] +Q[X,φZ] + h(Z, φX]− h(X,φZ] = 0

for any X , Z ∈ D and the assertion follows. �

Now, we prove the following proposition.
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Proposition 5.2. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian man-
ifold M with a semi symmetric non metric connection. Then

AφY Z −AφZY =
1

3
φP [Y,Z] +

2

3
α[η(Y )Z − η(Z)Y ]

for any Y , Z ∈ D⊥.

Proof. For Y , Z ∈ D⊥ and X ∈ TM , we have

2g(AφZY,X) = 2g(h(X,Y ), φZ)

2g(AφZY,X) = g(h(X,Y ), φZ) + g(h(X,Y ), φZ)

2g(AφZY,X) = g(∇XY +∇YX,φZ)

2g(AφZY,X) = −g(φ(∇XY +∇YX), Z)

2g(AφZY,X) = −g[(∇Y φX +∇XφY )− α(2g(X,Y )ξ − η(X)φY − η(Y )φX) + (β + 1)

(η(Y )φX + η(X)φY ), Z]

2g(AφZY,X) = −g(∇Y φX,Z)− g(∇XφY ,Z) + 2αg(X,Y )η(Z)

2g(AφZY,X) = g(∇Y Z, φX) + g(AφY Z,X) + 2αg(X,Y )η(Z).

The above equation is true for all X ∈ TM , therefore transvecting the vector field X both
sides, we obtain

2AφZY = AφY Z − φ∇Y Z + 2αη(Z)Y (37)

Interchanging the vector fields Y and Z, we get

2AφY Z = AφZY − φ∇ZY + 2αη(Y )Z (38)

From (37) and (38), we get

AφY Z −AφZY =
1

3
φP [Y,Z] +

2

3
α[η(Y )Z − η(Z)Y ] (39)

for any Y , Z ∈ D⊥, which completes the proof. �

Proposition 5.3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian man-
ifold M with a semi symmetric non-metric connection. Then the distribution D⊥ is inte-
grable if and only if

AφY Z −AφZY =
2

3
α[η(Y )Z − η(Z)Y ] (40)

for any Y , Z ∈ D⊥.

Proof. Suppose that the distribution D⊥ is integrable. Then [Y, Z] ∈ D⊥ for any Y , Z ∈
D⊥. Since P is a projection operator on D, so P [Y,Z]=0. Thus from (39) we get (40).
Conversly, we suppose that (40) holds. Then using (39), we have φP [Y,Z]=0 for any Y ,
Z ∈ D⊥. Since rank φ=2n. Therefore, either P [Y, Z]=0 or P [Y, Z]=kξ. But P [Y, Z]=kξ
is not possible as P is a projection operator on D. Thus P [Y,Z]=0, which is equivalent
to [Y,Z] ∈ D⊥ for any Y , Z ∈ D⊥ and hence D⊥ is integrable. �

Corollary 5.1. Let M be a ξ-horizontal CR-submanifold of a nearly trans-hyperbolic
Sasakian manifold M with a semi symmetric non-metric connection. Then the distribution
D⊥ is integrable if and only if

AφY Z −AφZY = 0
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for any Y , Z ∈ D⊥.

6. Conclusions

The notion of CR-submanifolds of a nearly trans-hyperbolic Sasakian manifold with a
semi symmetric non metric connection investigated which shows that the existence of a
parallel distribution relating to ξ-vertical CR-submanifolds of a nearly trans-hyperbolic
Sasakian manifold with a semi symmetric non metric connection. Further we have tried
to find the condition under which the distributions required by CR-submanifolds of a
nearly trans-hyperbolic Sasakian manifold with a semi symmetric non metric connection
are parallel are obtained. D-parallel normal section have been also studied.
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