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STABILITY OF DUAL CONTROLLED G-FUSION FRAMES IN

HILBERT SPACES

P. GHOSH1∗, T. K. SAMANTA2, §

Abstract. Some properties of controlled K-g-fusion frame have been discussed. Char-
acterizations of controlled K-g-fusion frame are being presented. We also establish a
relationship between quotient operator and controlled K-g-fusion frame. Some algebric
properties of controlled K-g-fusion frame have been described. Finally, we shall discuss
the stability of dual controlled g-fusion frame.

Keywords: g-fusion frame, K-g-fusion frame, quotient operator, controlled g-fusion frame,
controlled K-g-fusion frame.
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1. Introduction

In 1952, Duffin and Schaeffer [9] introduced frame for Hilbert space to study some
fundamental problems in non-harmonic Fourier series. At present, frame theory has been
widely used in signal and image processing, filter bank theory, coding and communications,
system modeling and so on. Several generalization of frames namely, K-frame [11], fusion
frame [5], g-frame [22], g-fusion frame [14, 21] and K-g-fusion frame [1] etc had been
proposed in recent times. P. Ghosh and T. K. Samanta [12] studied the stability of dual
g-fusion frame in Hilbert space and they also discussed generalized atomic subspace for
operator in Hilbert space and presented the frame operator for a pair of g-fusion Bessel
sequences [13].

One of the newest generalization of frame is controlled frame. I. Bogdanova et al. [4]
introduced controlled frame for spherical wavelets to get numerically more efficient ap-
proximation algorithm. Thereafter, weighted and controlled frame in Hilbert space was
devepolded by P. Balaz [3]. In recent times, several generalizations of controlled frame
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namely, controlledK-frame [18], controlled g-frame [19], controlled fusion frame [16], con-
trolled g-fusion frame [15], controlled K-g-fusion frame [20] etc. have been appeared.

In this paper, we develop some results in K-g-fusion frame to the controlled K-g-fusion
frame. We construct new type of controlled g-fusion frame from a given controlled K-g-
fusion frame by using a invertible bounded linear operator. A necessary and sufficient
condition for controlled g-fusion Bessel sequence to be a controlled K-g-fusion frame is
established. Finally, stability of controlled g-fusion frame and its dual have been presented.

Throughout this paper, H is considered to be a separable Hilbert space with associated
inner product 〈 · , · 〉 and {Hj }j ∈ J are the collection of Hilbert spaces, where J is subset

of integers Z. IH is the identity operator on H.B (H 1, H 2 ) is a collection of all bounded
linear operators from H 1 toH 2. In particular B (H ) denotes the space of all bounded
linear operators on H. For S ∈ B (H ), we denote N (S ) and R (S ) for null space
and range of S, respectively. Also, PM ∈ B (H ) is the orthonormal projection onto a
closed subspace M ⊂ H.G B (H ) denotes the set of all bounded linear operators which
have bounded inverse. If S, R ∈ G B (H ), then R ∗, R− 1 and S R are also belongs to
G B (H ).G B+ (H ) is the set of all positive operators in G B (H ).

In a complex Hilbert space, every bounded positive operator is self-adjoint and any two
bounded positive operators can be commute with each other.

2. Preliminaries

In this section, we recall some necessary definitions and theorems.

Theorem 2.1. ( Douglas’ factorization theorem ) [8] Let S, V ∈ B (H ). Then the follow-
ing conditions are equivalent:

(i) R (S ) ⊆ R (V ).
(ii) S S ∗ ≤ λ 2 V V ∗ for some λ > 0.

(iii) S = V W for some bounded linear operator W on H.

Theorem 2.2. [7] The set S (H ) of all self-adjoint operators on H is a partially ordered
set with respect to the partial order ≤ which is defined as for R, S ∈ S (H )

R ≤ S ⇔ 〈Rf, f 〉 ≤ 〈S f, f 〉 ∀ f ∈ H.

Definition 2.1. [17] A self-adjoint operator U : H1 → H1 is called positive if 〈U x , x 〉 ≥
0 for all x ∈ H1. In notation, we can write U ≥ 0. A self-adjoint operator V : H1 →
H1 is called a square root of U if V 2 = U . If, in addition V ≥ 0, then V is called
positive square root of U and is denoted by V = U1 / 2.

Theorem 2.3. [17] The positive square root V : H1 → H1 of an arbitrary positive self-
adjoint operator U : H1 → H1 exists and is unique. Further, the operator V commutes
with every bounded linear operator on H1 which commutes with U .

Theorem 2.4. [10] Let M ⊂ H be a closed subspace and T ∈ B (H ). Then PM T ∗ =
PM T ∗ PT M . If T is an unitary operator ( i . e T ∗ T = IH ), then PT M T = T PM .

Theorem 2.5. [7] Let H 1, H 2 be two Hilbert spaces and V : H 1 → H 2 be a bounded
linear operator with closed range RV . Then there exists a bounded linear operator V † :
H 2 → H 1 such that V V † x = x ∀ x ∈ RV .

The operator V † defined in Theorem 2.5, is called the pseudo-inverse of V .

Definition 2.2. [21] Let {Wj }j ∈ J be a collection of closed subspaces of H and { vj }j ∈ J
be a collection of positive weights and let Λj ∈ B (H, Hj ) for each j ∈ J . Then the
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family Λ = { (Wj , Λj , vj ) }j ∈ J is called a generalized fusion frame or a g-fusion frame
for H respect to {Hj }j ∈ J if there exist constants 0 < A ≤ B < ∞ such that

A ‖ f ‖ 2 ≤
∑
j ∈ J

v 2
j

∥∥Λj PWj ( f )
∥∥ 2 ≤ B ‖ f ‖ 2 ∀ f ∈ H. (1)

The constants A and B are called the lower and upper bounds of g-fusion frame, respec-
tively. If A = B then Λ is called tight g-fusion frame and if A = B = 1 then we say
Λ is a Parseval g-fusion frame. If Λ satisfies only the right inequality of (1) it is called
a g-fusion Bessel sequence with bound B in H.

Define the space

l 2
(
{Hj }j ∈ J

)
=

 { f j }j ∈ J : f j ∈ Hj ,
∑
j ∈ J
‖ f j ‖ 2 < ∞


with inner product is given by

〈 { f j }j ∈ J , { g j }j ∈ J 〉 =
∑
j ∈ J
〈 f j , g j 〉Hj

.

Clearly l 2
(
{Hj }j ∈ J

)
is a Hilbert space with the pointwise operations [1].

Definition 2.3. [15] Let {Wj }j ∈ J be a collection of closed subspaces of H and { vj }j ∈ J
be a collection of positive weights. Let {Hj }j ∈ J be a sequence of Hilbert spaces, T, U ∈
G B (H ) and Λj ∈ B (H, Hj ) for each j ∈ J . Then ΛT U = { (Wj , Λj , vj ) }j ∈ J is a

(T, U )-controlled g-fusion frame for H if there exist constants 0 < A ≤ B < ∞ such
that

A ‖ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2 ∀ f ∈ H. (2)

If A = B then ΛT U is called (T, U )-controlled tight g-fusion frame and if A = B = 1
then we say ΛT U is a (T, U )-controlled Parseval g-fusion frame. If ΛT U satisfies only
the right inequality of (2) it is called a (T, U )-controlled g-fusion Bessel sequence in H.

Definition 2.4. [15] Let ΛT U be a (T, U )-controlled g-fusion Bessel sequence in H with
a bound B. Suppose, for each j ∈ J , the operator T ∗ PWj Λ ∗j Λj PWj U is positive.
The synthesis operator TC : KΛj → H is defined as

TC

({
v j
(
T ∗ PWj Λ ∗j Λj PWj U

)1 / 2
f
}
j ∈ J

)
=
∑
j ∈ J

v 2
j T

∗ PWj Λ ∗j Λj PWj U f,

for all f ∈ H and the analysis operator T ∗C : H → KΛj is given by

T ∗C f =
{
v j
(
T ∗ PWj Λ ∗j Λj PWj U

)1 / 2
f
}
j ∈ J

∀ f ∈ H,

where

KΛj =

{{
v j
(
T ∗ PWj Λ ∗j Λj PWj U

)1 / 2
f
}
j ∈ J

: f ∈ H

}
⊂ l 2

(
{Hj }j ∈ J

)
.
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The frame operator SC : H → H is defined as follows:

SC f = TC T
∗
C f =

∑
j ∈ J

v 2
j T

∗ PWj Λ ∗j Λj PWj U f ∀ f ∈ H

and it is easy to verify that

〈SC f, f 〉 =
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
∀ f ∈ H.

Furthermore, if ΛT U is a (T, U )-controlled g-fusion frame with bounds A and B then
AIH ≤ SC ≤ B IH . Hence, SC is bounded, invertible, self-adjoint and positive linear
operator. It is easy to verify that B−1 IH ≤ S −1

C ≤ A−1 IH .

Definition 2.5. [20] Let K ∈ B (H ) and {Wj }j ∈ J be a collection of closed subspaces

of H and { vj }j ∈ J be a collection of positive weights. Let {Hj }j ∈ J be a sequence of

Hilbert spaces, T, U ∈ G B (H ) and Λj ∈ B (H, Hj ) for each j ∈ J . Then the family
ΛT U = { (Wj , Λj , vj ) }j ∈ J is a (T, U )-controlled K-g-fusion frame for H if there exist

constants 0 < A ≤ B < ∞ such that

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2 ∀ f ∈ H.

If A = B then ΛT U is called (T, U )-controlled tight K-g-fusion frame and if A =
B = 1 then we say ΛT U is a (T, U )-controlled Parseval K-g-fusion frame.

Throughout this paper, ΛT U denotes the family { (Wj , Λj , vj ) }j ∈ J .

3. Some properties of controlled K-g-fusion frame

In this section, we describe few properties of controlled K-g-fusion frame. Con-
structions of controlled g-fusion frame from a given controlled K-g-fusion frame have been
discussed. We also give some characterizations of controlled K-g-fusion frame. Relationship
between controlled K-g-fusion frame and quotient operator is established. We also estab-
lish some algebric properties of controlled K-g-fusion frame. We start with this section
by give an example of a controlled K-g-fusion frame.

3.1. Example. Let H = R 3 and { e 1, e 2, e 3 } be an orthonormal basis for H. Define

K : H → H by K f =
3∑

j = 1
〈 f, e j 〉 e j , f ∈ H. Suppose W1 = span { e 2, e 3 } , W2 =

span { e 1, e 3 } and W3 = span { e 1, e 2 }. Define Λ1 f = 〈 f, e 2 〉 e 3, Λ2 f = 〈 f, e 3 〉 e 1

and Λ3 f = 2 〈 f, e 1 〉 e 2. We show that { (Wj , Λj , 1 ) } 3
j = 1 is a K-g-fusion frame for

H. It is easy to verify that K ∗ e 1 = e 1, K ∗ e 2 = e 2, K
∗ e 3 = e 3. Now, for any

f ∈ H, we have

‖K ∗ f ‖ 2 =

∥∥∥∥∥∥
3∑

j = 1

〈 f, e j 〉 K ∗ e j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
3∑

j = 1

〈 f, e j 〉 e j

∥∥∥∥∥∥
2

= ‖ f ‖ 2,

3∑
j = 1

∥∥Λj PWj f
∥∥ 2

= | 〈 f, e 2 〉 | 2 + | 〈 f, e 3 〉 | 2 + 4 | 〈 f, e 1 〉 | 2

= ‖ f ‖ 2 + 3 | 〈 f, e 1 〉 | 2 .
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Thus,

‖K ∗ f ‖ 2 ≤
3∑

j = 1

∥∥Λj PWj f
∥∥ 2 ≤ 4 ‖ f ‖ 2, ∀ f ∈ H.

Let T ( f 1, f 2, f 3 ) = ( 2 f 1, 3 f 2, 5 f 3 ) and U ( f 1, f 2, f 3 ) =

(
f 1

2
,
f 2

3
,
f 3

4

)
be two

operators on H. Then it is easy to verify that T, U ∈ G B+ (H ), T U = U T . Now, for
any f = ( f 1, f 2, f 3 ) ∈ H,

3∑
j = 1

〈
Λj PWj U f, Λj PWj T f

〉
= 4 f 2

1 + f 2
2 +

5

4
f 2

3 .

Thus,

‖K ∗ f ‖ 2 ≤
3∑

j = 1

〈
Λj PWj U f, Λj PWj T f

〉
≤ 4 ‖ f ‖ 2, ∀ f ∈ H.

Hence, { (Wj , Λj , 1 ) } 3
j = 1 is a (T, U )-controlled K-g-fusion frame for H.

Theorem 3.1. Let K ∈ B (H ) and ΛT U be a (T, U )-controlled g-fusion Bessel se-
quence in H with synthesis operator TC . Then the following statements hold:

(i) If ΛT U is a (T, U )-controlled tight K-g-fusion frame for H, then R (TC ) =
R (K ).

(ii) R (TC ) = R (K ) if and only if there exist constants positive A, B such that

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖K ∗ f ‖ 2 (3)

for all f ∈ H.

Proof. (i) Suppose ΛT U is a (T, U )-controlled tight K-g-fusion frame for H. Then for
each f ∈ H, there exists constant A > 0 such that

A ‖K ∗ f ‖ 2 =
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
= ‖T ∗C f ‖ 2.

This shows that AKK ∗ = TC T
∗
C and hence by Theorem 2.1, R (TC ) = R (K ).

(ii) First we suppose that R (TC ) = R (K ). Then by Theorem 2.1, there exist positive
constants A and B such that AKK ∗ ≤ TC T

∗
C ≤ BKK ∗ and therefore for each

f ∈ H, we have

A ‖K ∗ f ‖ 2 ≤ ‖T ∗C f ‖ 2 =
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖K ∗ f ‖ 2 .

Conversely, suppose that (3) holds. Using synthesis operator TC , the inequality (3) can

be written as A ‖K ∗ f ‖ 2 ≤ ‖T ∗C f ‖ 2 ≤ B ‖K ∗ f ‖ 2 and this implies that AKK ∗ ≤
TC T

∗
C ≤ BKK ∗ and hence by Theorem 2.1, R (TC ) = R (K ). �

In the following theorem, we will see that every controlled g-fusion frame is a controlled
K-g-fusion frame and the converse is also true under some condition.

Theorem 3.2. Let K ∈ B (H ). Then

(i) Every (T, U )-controlled g-fusion frame is a (T, U )-controlled K-g-fusion frame.
(ii) If R (K ) is closed, every (T, U )-controlled K-g-fusion frame is a (T, U )-controlled

g-fusion frame for R (K ).
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Proof. (i) Let ΛT U be a (T, U )-controlled g-fusion frame for H with bounds A and
B. Then for each f ∈ H, we have

A

‖K ‖ 2
‖K ∗ f ‖ 2 ≤ A ‖ f ‖ 2 ≤

∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Hence, ΛT U is a (T, U )-controlled K-g-fusion frame for H with bounds
A

‖K ‖ 2
and B.

(ii) Let ΛT U be a (T, U )-controlled K-g-fusion frame for H with bounds A and
B. Since R (K ) is closed, by Theorem 2.5, there exists an operator K † ∈ B (H ) such
that KK † f = f ∀ f ∈ R (K ). Then for each f ∈ R (K ),

A

‖K † ‖ 2
‖ f ‖ 2 ≤ A ‖K ∗ f ‖ 2 ≤

∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Thus, ΛT U is a (T, U )-controlled g-fusion frame for R (K ) with bounds
A

‖K † ‖ 2 and

B. �

In the next two theorems, we will construct new type of controlled g-fusion frame from
a given controlled K-g-fusion frame by using a invertible bounded linear operator.

Theorem 3.3. Let V ∈ B (H ) be an invertible operator on H and V ∗ commutes
with T and U . Let ΛT U be a (T, U )-controlled K-g-fusion frame for H for some K ∈
B (H ). Then ΓT U =

{ (
V Wj , Λj PWj V

∗, vj
) }

j ∈ J is a (T, U )-controlled V K V ∗-g-

fusion frame for H.

Proof. Since ΛT U is a (T, U )-controlled K-g-fusion frame for H, there exist positive
constants A and B such that

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Now, for each f ∈ H, using Theorem 2.4, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U f, Λj PWj V
∗ T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U V

∗ f, Λj PWj T V
∗ f
〉

≤ B ‖V ∗ f ‖ 2 ≤ B ‖V ‖ 2 ‖ f ‖ 2.

On the other hand, for each f ∈ H, we have

A

‖V ‖ 2
‖ (V K V ∗ ) ∗ f ‖ 2

=
A

‖V ‖ 2
‖V K ∗ V ∗ f ‖ 2 ≤ A ‖K ∗ V ∗ f ‖ 2

≤
∑
j ∈ J

v 2
j

〈
Λj PWj U V

∗ f, Λj PWj T V
∗ f
〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U f, Λj PWj V
∗ T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
.
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Thus, ΓT U is a (T, U )-controlled V K V ∗-g-fusion frame for H. �

Theorem 3.4. Let V ∈ B (H ) be an invertible operator on H and V ∗, (V − 1 ) ∗ com-
mutes with T and U . Let ΓT U =

{ (
V Wj , Λj PWj V

∗, vj
) }

j ∈ J is a (T, U )-controlled

K-g-fusion frame for H, for some K ∈ B (H ). Then ΛT U is a (T, U )-controlled
V − 1K V -g-fusion frame for H.

Proof. Since ΓT U is a (T, U )-controlledK-g-fusion frame for H, for each f ∈ H, there
exist constants A, B > 0 such that

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
≤ B ‖ f ‖ 2 .

Now, for each f ∈ H, using Theorem 2.4, we have

A

‖V ‖ 2

∥∥∥ (V − 1K V
) ∗

f
∥∥∥ 2

=
A

‖V ‖ 2

∥∥V ∗K ∗ (V − 1 ) ∗ f
∥∥ 2

≤ A
∥∥∥K ∗ (V − 1

) ∗
f
∥∥∥ 2

≤
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U
(
V − 1

) ∗
f, Λj PWj V

∗ PV Wj T
(
V − 1

) ∗
f
〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U
(
V − 1

) ∗
f, Λj PWj V

∗ T
(
V − 1

) ∗
f
〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ (V − 1
) ∗

U f, Λj PWj V
∗ (V − 1

) ∗
T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
.

On the other hand, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U V

∗ (V − 1
) ∗

f, Λj PWj T V
∗ (V − 1

) ∗
f
〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U
(
V − 1

) ∗
f, Λj PWj V

∗ T
(
V − 1

) ∗
f
〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U
(
V − 1

) ∗
f, Λj PWj V

∗ PV Wj T
(
V − 1

) ∗
f
〉

≤ B
∥∥∥ (V − 1

) ∗
f
∥∥∥ 2
≤ B

∥∥V − 1
∥∥ 2 ‖ f ‖ 2.

Thus, ΛT U is a (T, U )-controlled V − 1K V -g-fusion frame for H. �

In the following theorem, we will construct a controlled K-g-fusion frame by using a
controlled g-fusion frame under some sufficient conditions.

Theorem 3.5. Let K ∈ B (H ) be an invertible operator on H and ΛT U be a (T, U )-
controlled g-fusion frame for H with frame bounds A, B and SC be the associated
frame operator. Suppose S − 1

C K ∗ commutes with T and U . Then the family ΓT U ={ (
K S − 1

C Wj , Λj PWj S
− 1
C K ∗, vj

) }
j ∈ J is a (T, U )-controlled K-g-fusion frame for H

with the corresponding frame operator K S − 1
C K ∗.
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Proof. Let V = K S − 1
C . Then V is invertible on H and V ∗ = S − 1

C K ∗. Now, it is easy
to verify that

‖K ∗ f ‖ 2 ≤ B 2
∥∥S − 1

C K ∗ f
∥∥ 2 ∀ f ∈ H.

Now, for each f ∈ H, using Theorem 2.4, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U f, Λj PWj V
∗ T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U S

− 1
C K ∗ f, Λj PWj T S

− 1
C K ∗ f

〉
≤ B ‖S − 1

C ‖ 2 ‖K ∗ f ‖ 2

≤ B

A 2
‖K ‖ 2 ‖ f ‖ 2 [ using B−1 IH ≤ S − 1

C ≤ A−1 IH ].

On the other hand, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U S

− 1
C K ∗ f, Λj PWj T S

− 1
C K ∗ f

〉
≥ A

∥∥S − 1
C K ∗ f

∥∥ 2 ≥ A

B 2
‖K ∗ f ‖ 2 .

Thus, ΓT U is a (T, U )-controlled K-g-fusion frame for H.
Furthermore, for each f ∈ H, we have∑

j ∈ J
v 2
j T

∗PV Wj

(
Λj PWj V

∗ ) ∗ (Λj PWj V
∗ ) PV Wj U f

=
∑
j ∈ J

v 2
j T

∗ (PV W j V PWj

)
Λ ∗j Λj

(
PWj V

∗ PV Wj

)
U f

=
∑
j ∈ J

v 2
j T

∗ (PWj V
∗ PV Wj

) ∗
Λ ∗j Λj (PWj V

∗ PV Wj )U f

=
∑
j ∈ J

v 2
j T

∗ (PWj V
∗ ) ∗ Λ ∗j Λj PWj V

∗ U f [ using Theorem 2.4 ]

=
∑
j ∈ J

v 2
j T

∗ V PWj Λ ∗j Λj PWj V
∗ U f

=
∑
j ∈ J

v 2
j V T

∗ PWj Λ ∗j Λj PWj U V
∗ f = V SC V

∗ f

=
(
K S − 1

C

)
SC

(
S − 1
C K ∗ f

)
= K S − 1

C K ∗ f.

This implies that K S − 1
C K ∗ is the corresponding frame operator of ΓT U . �

Corollary 3.1. Let ΛT U be a (T, U )-controlled g-fusion frame for H with frame op-
erator SC . If PV is the orthogonal projection onto closed subspace V ⊂ H and S − 1

C PV

commutes with T, U then
{ (

PV S
− 1
Λ Wj , Λj PWj S

− 1
Λ PV , vj

) }
j ∈ J is a (T, U )-controlled

K-g-fusion frame for H with the corresponding frame operator PV S
− 1
C PV .
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Proof. Proof of this corollary directly follows from the Theorem 3.5, by putting K =
PV . �

Theorem 3.6. Let K ∈ B (H ) and ΛT U be a (T, U )-controlled K-g-fusion frame
for H with frame bounds A, B. If V ∈ B (H ) with R (V ) ⊂ R (K ), then ΛT U is a
(T, U )-controlled V -g-fusion frame for H.

Proof. Since ΛT U is a (T, U )-controlled K-g-fusion frame for H, for each f ∈ H,

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Since R (V ) ⊂ R (K ), by Theorem 2.1, there exists some λ > 0 such that V V ∗ ≤
λK K ∗. Thus, for each f ∈ H, we have

A

λ
‖V ∗ f ‖ 2 ≤ A ‖K ∗ f ‖ 2 ≤

∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Hence, ΛT U is a (T, U )-controlled V -g-fusion frame for H. �

The following theorem shows that any controlled K-g-fusion frame is a K-g-fusion
frame and conversely any K-g-fusion frame is a controlled K-g-fusion frame under some
conditions.

Theorem 3.7. Let K ∈ B (H ), T, U ∈ G B+ (H ) and K commutes with T and U
and SΛ T = T SΛ. Then ΛT U is a (T, U )-controlled K-g-fusion frame for H if and
only if ΛT U is a K-g-fusion frame for H, where SΛ is the K-g-fusion frame operator
defined by

SΛ f =
∑
j ∈ J

v 2
j PWj Λ ∗j Λj PWj f, f ∈ H.

Proof. First we suppose that ΛT U is a K-g-fusion frame for H with bounds A and
B. Then for each f ∈ H, we have

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

∥∥Λj PWj f
∥∥ 2 ≤ B ‖ f ‖ 2 .

Now according to the Lemma 3.10 of [2], we can deduced that

mm ′AKK ∗ ≤ T SΛ U ≤ MM ′B IH ,

where m, m ′ and M, M ′ are positive constants. Then for each f ∈ H, we have

mm ′A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
T PWj Λ ∗j Λj PWj U f, f

〉
≤ MM ′B ‖ f ‖ 2

⇒ mm ′A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ MM ′B ‖ f ‖ 2.

Hence, ΛT U is a (T, U )-controlled K-g-fusion frame for H.

Conversely, suppose that ΛT U is a (T, U )-controlled K-g-fusion frame for H. Then
for each f ∈ H, there exist constants A, B > 0 such that

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.
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Now, for each f ∈ H, we have

A ‖K ∗ f ‖ 2 = A
∥∥∥ (T U )1 / 2 (T U )− 1 / 2K ∗ f

∥∥∥ 2

= A
∥∥∥ (T U )1 / 2K ∗ (T U )− 1 / 2 f

∥∥∥ 2

≤
∥∥∥ (T U )1 / 2

∥∥∥ 2 ∑
j ∈ J

v 2
j

〈
Λj PWj U (T U )− 1 / 2 f, Λj PWj T (T U )− 1 / 2 f

〉
=
∥∥∥ (T U )1 / 2

∥∥∥ 2 ∑
j ∈ J

v 2
j

〈
Λj PWj U

1 / 2 T − 1 / 2 f, Λj PWj T
1 / 2 U − 1 / 2 f

〉

=
∥∥∥ (T U )1 / 2

∥∥∥ 2
〈∑

j ∈ J
v 2
j U

− 1 / 2 T 1 / 2 PWj Λ ∗j Λj PWj U
1 / 2 T − 1 / 2 f, f

〉

=
∥∥∥ (T U )1 / 2

∥∥∥ 2 〈
U − 1 / 2 T 1 / 2 SΛ U

1 / 2 T − 1 / 2 f, f
〉

=
∥∥∥ (T U )1 / 2

∥∥∥ 2
〈SΛ f, f 〉

=
∥∥∥ (T U )1 / 2

∥∥∥ 2 ∑
j ∈ J

v 2
j

〈
PWj Λ ∗j Λj PWj f, f

〉
⇒ A∥∥ (T U )1 / 2

∥∥ 2 ‖K
∗ f ‖ 2 ≤

∑
j ∈ J

v 2
j

∥∥Λj PWj ( f )
∥∥ 2
.

On the other hand, it is easy to verify that∑
j ∈ J

v 2
j

∥∥Λj PWj ( f )
∥∥ 2

= 〈SΛ f, f 〉 ≤ B
∥∥∥ (T U )− 1 / 2

∥∥∥ 2
‖ f ‖ 2.

Thus, ΛT U is a K-g-fusion frame for H. This completes the proof. �

A characterization of a controlled K-g-fusion frame is given by in the next theorem.

Theorem 3.8. Let K ∈ B (H ), T, U ∈ G B+ (H ) and K commutes with T and U
and SΛ T = T SΛ. Then ΛT U is a (T, U )-controlled K-g-fusion frame for H if and only
if ΛT U is a (T U, IH )-controlled K-g-fusion frame for H, where SΛ is the K-g-fusion
frame operator defined by

SΛ f =
∑
j ∈ J

v 2
j PWj Λ ∗j Λj PWj f, f ∈ H.

.

Proof. For each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
=

〈∑
j ∈ J

v 2
j T PW j Λ ∗j Λj PWj U f, f

〉
= 〈T SΛ U f, f 〉 = 〈SΛ T U f, f 〉

=

〈∑
j ∈ J

v 2
j PW j Λ ∗j Λj PWj T U f, f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj T U f, Λj PWj f

〉
.
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Hence, ΛT U is (T, U )-controlled K-g-fusion frame for H with bounds A and B is
equivalent to:

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj T U f, Λj PWj f

〉
≤ B ‖ f ‖ 2 ∀ f ∈ H.

Thus, ΛT U is a (T U, IH )-controlledK-g-fusion frame for H with bounds A and B. This
completes the proof. �

Corollary 3.2. Let K ∈ B (H ), T, U ∈ G B+ (H ) and K commutes with T and U
and SΛ T = T SΛ. Then ΛT U is a (T, U )-controlled K-g-fusion frame for H if and

only if ΛT U is a
(

(T U )1 / 2, (T U )1 / 2
)
-controlled K-g-fusion frame for H.

Proof. According to the proof of the Theorem 3.8, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
=
〈
SΛ (T U )1 / 2 f, (T U )1 / 2 f

〉

=

〈∑
j ∈ J

v 2
j PW j Λ ∗j Λj PWj (T U )1 / 2 f, (T U )1 / 2 f

〉

=
∑
j ∈ J

v 2
j

〈
Λj PWj (T U )1 / 2 f, Λj PWj (T U )1 / 2 f

〉
.

Thus, ΛT U is a (T, U )-controlled K-g-fusion frame for H if and only if ΛT U is a(
(T U )1 / 2, (T U )1 / 2

)
-controlled K-g-fusion frame for H. �

In the following theorem, we give a necessary and sufficient condition for controlled
g-fusion Bessel sequence to be a controlled K-g-fusion frame with the help of quotient
operator.

Theorem 3.9. Let K ∈ B (H ) and ΛT U be a (T, U )-controlled g-fusion Bessel se-
quence in H with frame operator SC . Then ΛT U is a (T, U )-controlled K-g-fusion frame

for H if and only if the quotient operator
[
K ∗ / S

1 / 2
C

]
is bounded.

Proof. First we suppose that ΛT U is a (T, U )-controlled K-g-fusion frame for H with
bounds A and B. Then for each f ∈ H, we have

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Thus, for each f ∈ H, we have

A ‖K ∗ f ‖ 2 ≤ 〈SC f, f 〉 =
∥∥∥S1 / 2

C f
∥∥∥ 2
.

Now, it is easy to verify that the quotient operator T : R
(
S

1 / 2
C

)
→ R (K ∗ ) defined

by T
(
S

1 / 2
C f

)
= K ∗ f ∀ f ∈ H is well-defined and bounded.

Conversely, suppose that the quotient operator
[
K ∗ / S

1 / 2
C

]
is bounded. Then for each

f ∈ H, there exists some B > 0 such that

‖K ∗ f ‖ 2 ≤ B
∥∥∥S1 / 2

C f
∥∥∥ 2

= B 〈SC f, f 〉

⇒ ‖K ∗ f ‖ 2 ≤ B
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
.

Thus, ΛT U is a (T, U )-controlled K-g-fusion frame for H. �
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Now, we establish that a quotient operator will be bounded if and only if a controlled
K-g-fusion frame becomes controlled V K-g-fusion frame, for some V ∈ B (H ).

Theorem 3.10. Let K ∈ B (H ) and ΛT U be a (T, U )-controlled K-g-fusion frame
for H with frame operator SC . Let V ∈ B (H ) be an invertible operator on H and V ∗

commutes with T and U . Then the following statements are equivalent:

(i) ΓT U =
{ (

V W j , Λ j PW j V
∗, v j

) }
j ∈ J is a (T, U )-controlled V K-g-fusion frame

for H.

(ii) The quotient operator
[

(V K ) ∗ / S
1 / 2
C V ∗

]
is bounded.

(iii) The quotient operator
[

(V K ) ∗ / (V SC V
∗ )1 / 2

]
is bounded.

Proof. (i) ⇒ (ii) Suppose ΓT U is a (T, U )-controlled V K-g-fusion frame with bounds
A and B. Then for each f ∈ H, we have

A ‖ (V K ) ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
≤ B ‖ f ‖ 2.

By Theorem 2.4, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ U f, Λj PWj V
∗ T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U V

∗ f, Λj PWj T V
∗ f
〉

= 〈SC V ∗ f, V ∗ f 〉 . (4)

Thus, for each f ∈ H, we have

A ‖ (V K ) ∗ f ‖ 2 ≤ 〈SC V ∗ f, V ∗ f 〉 =
∥∥∥S1 / 2

C V ∗ f
∥∥∥ 2
.

Now, we define a operator T : R
(
S

1 / 2
C V ∗

)
→ R ( (V K ) ∗ ) by T

(
S

1 / 2
C V ∗ f

)
=

(V K ) ∗ f ∀ f ∈ H. Then it is easy verify that the quotient operator T is well-defined
and bounded.

(ii) ⇒ (iii) It is obvious.

(iii) ⇒ (i) Suppose that the quotient operator
[

(V K ) ∗ / (V SC V
∗ )1 / 2

]
is bounded.

Then for each f ∈ H, there exists B > 0 such that

‖ (V K ) ∗ f ‖ 2 ≤ B
∥∥∥ (V SC V

∗ )1 / 2 f
∥∥∥ 2
.

Now, by (4), for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
= 〈SC V ∗ f, V ∗ f 〉 =

∥∥∥ (V SC V
∗ )1 / 2 f

∥∥∥ 2
≥ 1

B
‖ (V K ) ∗ f ‖ 2

.
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On the other hand, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Λj PWj V

∗ PV Wj U f, Λj PWj V
∗ PV Wj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U V

∗ f, Λj PWj T V
∗ f
〉

≤ C ‖U ∗ f ‖ 2 ≤ C ‖U ‖ 2 ‖ f ‖ 2.

Hence, ΓT U is a (T, U )-controlled V K-g-fusion frame for H.
This completes the proof. �

In the following theorem, we will present some algebric properties of controlled K-g-
fusion frame.

Theorem 3.11. Let Ki ∈ B (H ) and ΛT U be a (T, U )-controlled Ki-g-fusion frame
for H for all i = 1, 2, · · · , n. Then

(i) If a i, for i = 1, 2, · · · , n, are finite collection of scalars, then ΛT U is a (T, U )-

controlled
n∑

i= 1
a iKi-g-fusion frame for H.

(ii) ΛT U is a (T, U )-controlled
n∏

i= 1

Ki-g-fusion frame for H.

Proof. (i) Since ΛT U is a (T, U )-controlled Ki-g-fusion frame for H for all i, there
exist constants A, B > 0 such that

A ‖K ∗i f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Then for each f ∈ H, we have

A

n max
i
| a i | 2

∥∥∥∥∥
(

n∑
i= 1

a iK i

) ∗
f

∥∥∥∥∥
2

≤ A ‖K ∗i f ‖ 2

≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Thus, ΛT U is a (T, U )-controlled
n∑

i= 1
a iKi-g-fusion frame for H.

Proof of (ii) For each f ∈ H, we have

A
n− 1∏
i= 1

‖K ∗i ‖
2

∥∥∥∥∥
(

n∏
i= 1

Ki

) ∗
f

∥∥∥∥∥
2

≤ A ‖K ∗n f ‖
2

≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Thus, ΛT U is a (T, U )-controlled
n∏

i= 1

Ki-g-fusion frame for H. �
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4. Stability of dual controlled g-fusion frame

In frame theory, one of the most important problem is the stability of frame un-
der some perturbation. P. Casazza and Chirstensen [6] have been generalized the Paley-
Wiener perturbation theorem to perturbation of frame in Hilbert space. P. Ghosh and T.
K. Samanta [12] discussed stability of dual g-fusion frame in Hilbert space. In this section,
we give an important on stability of perturbation of controlled K-g-fusion frame and dual
controlled g-fusion frame.

Following theorem provides a sufficient condition on a family ΛT U to be a controlled
K-g-fusion frame, in the presence of another controlled K-g-fusion frame.

Theorem 4.1. Let ΛT U be a (T, U )-controlled K-g-fusion frame for H with bounds
A, B and ΓT U = { (Vj , Γj , vj ) }j ∈ J . If there exist constants λ 1, λ 2, µ with 0 ≤ λ 1, λ 2 <

1, 0 ≤ µ < A ( 1 − λ 1 ) such that for each f ∈ H,

0 ≤
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
≤ µ ‖K ∗ f ‖ 2 +

+ λ 1

∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
+ λ 2

∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
then ΓT U is a (T, U )-controlled K-g-fusion frame for H.

Proof. Since ΛT U is a (T, U )-controlled K-g-fusion frame for H with bounds A, B, for
each f ∈ H, we have

A ‖K ∗ f ‖ 2 ≤
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
≤ B ‖ f ‖ 2.

Now, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
=
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
+

+
∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
.

⇒ ( 1 − λ 2 )
∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
≤ ( 1 + λ 1 )

∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
+ µ ‖K ∗ f ‖ 2 .

⇒ ( 1 − λ 2 )
∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉
≤ ( 1 + λ 1 )

∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
+ µ ‖K ‖ 2 ‖ f ‖ 2

⇒
∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉
≤
[

( 1 + λ 1 ) B + µ ‖K ‖ 2

( 1 − λ 2 )

]
‖ f ‖ 2.
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On the other hand, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
≥
∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
−

−
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
.

⇒ ( 1 + λ 2 )
∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
≥ ( 1 − λ 1 )

∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
− µ ‖K ∗ f ‖ 2 .

⇒
∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉
≥
[

( 1 − λ 1 ) A − µ

( 1 + λ 2 )

]
‖K ∗ f ‖ 2 .

Thus, ΓT U is a (T, U )-controlled K-g-fusion frame for H. �

Corollary 4.1. Let ΛT U be a (T, U )-controlled K-g-fusion frame for H with bounds
A, B and ΓT U = { (Vj , Γj , vj ) }j ∈ J . If there exists constant 0 < D < A such that for

each f ∈ H,

0 ≤
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
≤ D ‖K ∗ f ‖ 2

then ΓT U is a (T, U )-controlled K-g-fusion frame for H.

Proof. For each f ∈ H, we have∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉
=
∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
=
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
+

+
∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
≤
(
B + D ‖K ‖ 2

)
‖ f ‖ 2.

On the other hand,∑
j ∈ J

v 2
j

〈
T ∗ PVj Γ ∗j Γj PVj U f, f

〉
≥
∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U f, f

〉
−

−
∑
j ∈ J

v 2
j

〈
T ∗

(
PVj Γ ∗j Γj PVj − PWj Λ ∗j Λj PWj

)
U f, f

〉
≥ (A − D ) ‖K ∗ f ‖ 2 ∀ f ∈ H.

This completes the proof. �

Theorem 4.2. Let ΛT U be a (T, U )-controlled g-fusion frame for H and SC be cor-
responding frame operator. Assume that S − 1

C is commutes with T and U . Then ΓT U ={ (
S − 1
C Wj , Λj PWj S

− 1
C , vj

) }
j ∈ J is a (T, U )-controlled g-fusion frame for H with the

corresponding frame operator S − 1
C .

Proof. Proof of this theorem directly follows from the Theorem 3.5, by putting K =
IH . �
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The family ΓT U defined in the Theorem 4.2 is called the canonical dual (T, U )-
controlled g-fusion frame of ΛT U . We now give the stability of dual controlled g-fusion
frame.

Theorem 4.3. Let ΛT U and ΓT U be two (T, U )-controlled g-fusion frames for H with
bounds A 1, B 1 and A 2, B 2 having their corresponding frame operators SC and S ′C , re-
spectively. Consider ∆T U = { (Xj , ∆j , vj ) }j ∈ J and ΘT U = { (Yj , Θj , vj ) }j ∈ J as the

canonical dual (T, U )-controlled g-fusion frames of ΛT U and ΓT U , respectively. Assume

that S − 1
C and (S ′C )− 1 commutes with both T and U . Then the following statements

hold:

(i) If the condition∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
−
∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉 ∣∣∣∣∣∣
≤ D ‖ f ‖ 2

holds for each f ∈ H and for some D > 0 then for all f ∈ H, we have∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
∆j PXj U f, ∆j PXj T f

〉
−
∑
j ∈ J

v 2
j

〈
Θj PYj U f, Θj PYj T f

〉 ∣∣∣∣∣∣
≤ D

A 1A 2
‖ f ‖ 2.

(ii) If for each f ∈ H, there exists D > 0 such that∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
T ∗

(
PWj Λ ∗j Λj PWj − PVj Γ ∗j Γj PVj

)
U f, f

〉 ∣∣∣∣∣∣ ≤ D ‖ f ‖ 2

then∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
T ∗

(
PXj ∆ ∗j ∆j PXj − PYj Θ ∗j Θj PYj

)
U f, f

〉 ∣∣∣∣∣∣ ≤ D

A 1A 2
‖ f ‖ 2.

Proof. (i) Since SC − S ′C is self-adjoint so∥∥SC − S ′C
∥∥ = sup

‖ f ‖= 1

∣∣ 〈 (SC − S ′C ) f, f
〉 ∣∣

= sup
‖ f ‖= 1

∣∣ 〈SC f, f 〉 − 〈S ′C f, f 〉 ∣∣
= sup
‖ f ‖= 1

∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
Λj PWj U f, Λj PWj T f

〉
−
∑
j ∈ J

v 2
j

〈
Γj PVj U f, Γj PVj T f

〉 ∣∣∣∣∣∣
≤ sup
‖ f ‖= 1

D ‖ f ‖ 2 = D.

Then ∥∥∥S − 1
C −

(
S ′C
)− 1

∥∥∥ ≤ ∥∥S − 1
C

∥∥ ∥∥SC − S ′C
∥∥ ∥∥∥ (S ′C )− 1

∥∥∥
≤ 1

A 1
D

1

A 2
=

D

A 1A 2
. (5)
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Now, for each f ∈ H, we have∑
j ∈ J

v 2
j

〈
∆j PXj U f, ∆j PXj T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj S

− 1
C PS− 1

C Wj
U f, Λj PWj S

− 1
C PS− 1

C Wj
T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj S

− 1
C U f, Λj PWj S

− 1
C T f

〉
=
∑
j ∈ J

v 2
j

〈
Λj PWj U S

− 1
C f, Λj PWj T S

− 1
C f

〉
=
∑
j ∈ J

v 2
j

〈
T ∗ PWj Λ ∗j Λj PWj U S

− 1
C f, S − 1

C f
〉

=
〈
SC S

− 1
C f, S − 1

C f
〉

=
〈
f, S − 1

C f
〉
.

Similarly, it can be shown that∑
j ∈ J

v 2
j

〈
Θj PYj U f, Θj PYj T f

〉
=
〈
f,
(
S ′C
)− 1

f
〉
.

Therefore, for each f ∈ H, we have∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
∆j PXj U f, ∆j PXj T f

〉
−
∑
j ∈ J

v 2
j

〈
Θj PYj U f, Θj PYj T f

〉 ∣∣∣∣∣∣
=
∣∣∣ 〈 f, S − 1

C f
〉
−
〈
f,
(
S ′C
)− 1

f
〉 ∣∣∣ =

∣∣∣ 〈 f, (S − 1
C −

(
S ′C
)− 1

)
f
〉 ∣∣∣

≤
∥∥∥S − 1

C −
(
S ′C
)− 1

∥∥∥ ‖ f ‖ 2 ≤ D

A 1A 2
‖ f ‖ 2.

Proof of (ii) In this case, we also find that∥∥SC − S ′C
∥∥ = sup

‖ f ‖= 1

∣∣ 〈 (SC − S ′C
)
f, f

〉 ∣∣
= sup
‖ f ‖= 1

∣∣ 〈SC f, f 〉 − 〈S ′C f, f 〉 ∣∣
= sup
‖ f ‖= 1

∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
T ∗

(
PWj Λ ∗j Λj PWj − PVj Γ ∗j Γj PVj

)
U f, f

〉 ∣∣∣∣∣∣
≤ sup
‖ f ‖= 1

D ‖ f ‖ 2 = D.

Then for each f ∈ H, we have∣∣∣∣∣∣
∑
j ∈ J

v 2
j

〈
T ∗

(
PXj ∆ ∗j ∆j PXj − PYj Θ ∗j Θj PYj

)
U f, f

〉 ∣∣∣∣∣∣
=
∣∣∣ 〈 (S − 1

C −
(
S ′C
)− 1

)
f, f

〉 ∣∣∣ ≤ ∥∥∥S − 1
C −

(
S ′C
)− 1

∥∥∥ ‖ f ‖ 2 ≤ D

A 1A 2
‖ f ‖.

This completes the proof. �
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