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NUMERICAL SOLUTION FOR ANTI-PERSISTENT PROCESS BASED

STOCHASTIC INTEGRAL EQUATIONS

S. R. BALACHANDAR1, UMA D.1∗, S. G. VENKATESH1, §

Abstract. In this article, we propose the shifted Legendre polynomial solutions for
anti-persistent process based stochastic integral equations. The operational matrices for
stochastic integration and fractional stochastic integration are efficiently generated using
the properties of shifted Legendre polynomials. In addition, the original problem can be
reduced to a system of simultaneous equations with (N + 1) unknowns in the function
approximation. By solving the given stochastic integral equations, we obtain numerical
solutions. The proposed method’s convergence is derived in terms of the error function’s
expectation, and the upper bound of the error in L2 norm is also discussed in detail.
The applicability of this methodology is demonstrated using numerical examples and the
solution’s quality is statistically validated by comparing it with the exact solution.

Keywords: Stochastic Ito Volterra integral equation, Shifted Legendre polynomial, Sto-
chastic operational matrix, Convergence analysis, Error estimation.
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1. Introduction

The stochastic differential equation, stochastic integral equation, and other stochastic
models are created by adding a random element, which is sometimes referred to as the
”noise term,”to deterministic models. In domains as diverse as biology, medicine, popu-
lation dynamics, mechanics, and finance, such models have been used to study different
physical or biological phenomena [3, 6, 33, 35]. To study the random effects, we use the
following anti-persistent process based stochastic integral equation model [12, 25].

X(t) = f(t) +

∫ t

0
k1(s, t)N1(s,X(s))ds+

∫ t

0
k2(s, t)N2(s,X(s))dBH(s), (1)
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of Mathematics, 2024; all rights reserved.

368



S. RAJA BALACHANDAR, UMA D: NUMERICAL SOLUTION FOR ... 369

where f(t), ki(s, t), Ni(s,X) are linear or nonlinear known functions for t ∈ [0, 1], H <
1
2 , i = 1, 2 , and X(t) is the unknown stochastic process to be determined. All the above-
mentioned functions, including X(t), are stochastic processes defined in the probability
space. Here, BH(t) is the fractional Brownian motion whose detailed information is dis-
cussed in the following section. Brownian motion is a process with independent increments.
It cannot reflect the long-range dependence implied by the observed market data in the
financial market. It is believed that the fractional Brownian motion, a generalisation of
normal Brownian motion with the Hurst index as an additional parameter, expresses this
long-range dependence. (1) is used to investigate the behavior of the stock price with a
risky asset X(t) where the spot price f(t) = X0 at time 0, k1(s, t) = µ(s), k2(s, t) = σ(s),
N1 = N2 = X(s) and BH(t) is a fractional Brownian motion with BH(0) = 0. The gen-
erated model is linear and valid in the range [0, T] where T is the maturity of the option
[1, 2, 5, 18, 10].

It is not easy to deal with the nonlinear terms N1 and N2 in terms of the unknown
stochastic process X(s). Several numerical methods, along with their variations, have
been applied to solve these stochastic equations [8, 21]. Good approximation approaches
[13, 19, 20, 27, 28, 29, 30, 31] based on the orthogonal basis of polynomials to find an
approximate solution have piqued mathematicians’ interest in recent years. The Jacobi
polynomial, which occurs as the eigenfunctions of a singular Sturm-Liouville problem,
is one such polynomial [9]. The solutions to the aforementioned problem are a set of
polynomials such as Legendre, Chebyshev, and other spherical polynomials in the interval
[-1,1] and are generated from Jacobi polynomials by assigning appropriate values to their
parameters.

The authors also used wavelet theory to find the approximate solution of Stochastic
differential equations driven by fractional Brownian motion. A new class of orthogonal
wavelet, namely the Chebyshev cardinal wavelet approach coupled with operational ma-
trices of differentiation and integration can be seen in [14, 15].The convergence and error
analysis of the proposed method are established in the Sobelov space. Also, in [15], a new
procedure is established for constructing the variable order fractional Brownian motion.
Legendre wavelets coupled with the Galerkin method approach and Chebyshev wavelet,
together with the Galerkin method, are some excellent work, as evidenced by [16, 17].
The stochastic operational matrix and the operational matrices of integration of Legendre
wavelets can be found in [16]. A new stochastic operational matrix of second kind Cheby-
shev wavelets has been derived. The properties of second kind Chebyshev wavelets together
with the operational matrices of integration and stochastic Ito integration transform the
considered problem into a system of equations which nurtures the researchers’ interest
[17]. The numerical method based on hat functions [12] has been implemented to solve
nonlinear stochastic Ito Volterra integral equations driven by fractional Brownian motion.
The error mean produced by that method was observed to be higher for the test problems
taken by the researchers.

Not only motivated by the aforementioned works, but also due to the limitedness in
the availability of literature on the study of nonlinear stochastic differential equations
driven by fractional Brownian motion, we have employed the shifted version of Legendre
polynomials called shifted Legendre polynomials to obtain an approximate solution of (1)
in the interval [0, 1] and H < 1

2 . The usage of shifted Legendre polynomials has provided
fruitful results for various other works undertaken in [34, 23]. The operational matrices
of integration are coupled with the salient properties of these polynomials to convert the
given problem into a system of simultaneous algebraic equations. Solving these equations
provides the required numerical solution.
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The overview of this paper comprises the following. The fundamental definitions and
theorems required for our subsequent study are given in the following section named
Mathematical Background, followed by the fundamentals of shifted Legendre polynomials
and their properties. The various operational matrices required for the proposed method
are also derived. In the next section, we give a detailed presentation of the convergence
theorems and the error estimates. The accuracy and applicability of the scheme are
tested on a few examples and comparative results are also presented in the section on
Numerical Examples. The superiority of this method is also highlighted in the same
section. Concluding remarks are given in the final section.

2. Mathematical Background

We share information about our proposed study in this section. Brownian motion,
which is a fundamental example of a stochastic process, is employed. The underlying
probability space (Ω,F , P ) can be constructed on the space Ω = C0(R+) of continuous
real-valued functions on R+ starting at 0. We’ve also used Gronwall’s inequality to show
that the error function approaches zero for large values of the parameters. The concept
of a sequence {Xn} convergeing in the given space, where the function is defined, is also
examined. Our subsequent development is primarily based on the basic properties of the
Ito integral and Ito isometry [11, 22, 32].

2.1. Fractional Brownian Motion. The Hurst parameter is a measure of the long term
memory of time series. It relates the time series autocorrelations and the rate at which
they drop as the lag between pairs of values increases. In other words, the Hurst parameter
(H) indicates how rough the motion is. The roughness increases when H decreases, and
vice-versa. The process is stated to have a Brownian motion when H is 0.5, when it
is less than 0.5, the increments have a negative correlation (anti-persistent time series),
and when it is higher than 0.5, the increments have a positive correlation (persistent time
series). Throughout this article, BH(t) represents a fractional Brownian motion with Hurst

parameter H < 1
2 [29, 30, 31, 32] . It can be represented as BH(t) =

∫ t
0 K̄(t, s)dB(s), t ≥ 0,

where kernel K̄(s, t) is given by

K̄(t, s) = CH

[
tH−

1
2

sH−
1
2

(t− s)H−
1
2 −

(
H − 1

2

)∫ t

s

uH−
3
2

sH−
1
2

(u− s)H−
1
2du

]
,

with CH =
√

2H
(1−2H)β(1−2H,H+ 1

2
)
. Hence, there exists a Gaussian stochastic process with

H ∈ (0, 1), where E
(
BH(t)

)
= 0, cov

(
BH(s), BH(t)

)
= 1

2s
2H + t2H − |t− s|2H , which is

called the fractional Brownian motion [11, 22].

Theorem 2.1. [7]If k2(s, t)x(s) is bounded by a constant M, k1(s, t)x(s) is a measurable
function, and satisfy the following assumptions
(i) Lipschitz condition: |k1(s, t)x(s)− k1(s, t)x̂(s)| ≤ L0|x(s)− x̂(s)|,
(ii) Linear growth condition: |ki(s, t)x(s)| ≤ Li(1 + |x(s)|), i = 1, 2 then, (1) has a unique
solution.

3. Shifted Legendre Polynomials

3.1. Preliminaries and properties. The Legendre polynomials, Pn(z), are the solutions
of Legendre’s Differential Equations [4]. The orthogonal property of Legendre polynomials

is defined as
∫ 1
−1 Pn(z)Pm(z)dz = 2

2n+1δnm, where δnm is the Kronecker delta. The shifted

Legendre polynomials Ln(t) are derived from Pn(z) by replacing z with 2t-1, which in turn
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refines the interval to [0,1]. The orthogonal property of Ln(t) with Kronecker delta in [0,1]

is defined by
∫ 1
0 Ln(t)Lm(t)dt = 1

2n+1δnm. Then

(i) The recurrence relation of Ln(t) is defined as:

Li+1 (t) =
(2i+ 1)(2t− 1)

i+ 1
Li (t)− i

i+ 1
Li−1 (t) , i = 1, 2..., (2)

L0 (t) = 1, L1 (t) = 2t− 1.

(ii) The analytic form of the shifted Legendre polynomial Ln(t) of degree n is given by:

Ln (t) =
n∑
i=0

(−1)n+i
(n+ i)!

(n− i)!
ti

(i!)2
, Ln (0) = (−1)n, Ln (1) = 1.

(iii) The shifted Legendre vector L(t) is normally defined as:

L(t) = [L0(t) L1(t) . . . LN (t)]T . (3)

(iv) The matrix form of L(t) which is of degree N can be represented as:



1 0 . . . 0

(−1)1+0 (1+0)!
(1−0)!(0!)2 (−1)1+1 (1+1)!

(1−1)!(1!)2 . . . 0

(−1)2+0 (2+0)!
(2−0)!(0!)2 (−1)2+1 (2+1)!

(2−1)!(1!)2 . . . 0
...

...
...

. . .
...

(−1)N+0 (N+0)!
(N−0)!(0!)2 (−1)N+1 (N+1)!

(N−1)!(1!)2 . . . (−1)N+N (N+N)!
(N−N)!(N !)2




1
t
t2

...
tN

 .

Thus
L(t) = DY (t). (4)

The dual matrix Q1 is given by

Q1 =

∫ 1

0
L(t)LT (t)dt =

∫ 1

0
DY (t)(DY (t))Tdt = D

(∫ 1

0
Y (t)Y T (t)dt

)
DT = DHDT ,

(5)

where H is the Hilbert matrix which is of order (N+1) given by

H =

∫ 1

0
Y (t)Y T (t)dt =


1 1

2
1
3 . . . 1

N+1
1
2

1
3

1
4 . . . 1

N+2
1
3

1
4

1
5 . . . 1

N+3
...

...
...

. . .
...

1
N+1

1
N+2

1
N+3 . . . 1

2N+1

 .

Theorem 3.1. Any arbitrary function u(t) ∈ L2[0, 1] can be approximated in terms of
Ln(t) as

u(t) =
∞∑
n=0

unLn(t). (6)

One can identify uj as uj = (2j + 1)
∫ 1
0 u(x)Lj(x)dx, j = 0, 1, ... .

If we approximate u(t) by the first N + 1 terms, we can write

u(t) '
∑N

n=0 unLn(t) = UTL(t) = LT (t)U , where U is the shifted Legendre coefficient
vector given by U = [u0 u1 . . . uN ]T .
We approximate the kernel function by truncating the Taylor series of degree N in the
form
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k(s, t) =
∑N

m=0

∑N
n=0 kmns

mtn, where kmn = 1
m!n!

∂m+nk(0,0)
∂sm∂tn , n,m = 0, 1, ...N.

The matrix form of the above expression is given by k(s, t) = Y T (t)KY (s).
Additionally, the kernel function k(s, t) can be expanded approximately by Lm(s) and

Ln(t) of degree N in the form kN (s, t) =
∑N

m=0

∑N
n=0 LkmnLm(s)Ln(t) and the matrix

form of k(s, t) in terms of L(s) and LT (t) is
k(s, t) = L(s)KLL

T (t),KL = Lkmn .

3.2. Operational Matrices. In the subsequent parts of the section, we construct the
operational matrices as follows[26, 36]: We define the product matrix, Q(t) as

Q(t) = L(t)LT (t), (7)

which is a square matrix of order (N + 1).
Let U = [u0 u1 . . . uN ]T ∈ RN+1. Then,

Q(t)U ' ÛL(t). (8)

Û is called the product operational matrix of shifted Legendre polynomial, calculated
using

Q(t)U = D

[
N∑
i=0

uiLi(t)
N∑
i=0

uitLi(t) . . .
N∑
i=0

uit
nLi(t)

]T
. (9)

Now, the function tkLi(t) is to be approximated as

tkLi(t) ' LT (t)Ck,i, Ck,i = [Ck,i0 Ck,i1 . . . Ck,iN ]T .

From (5) we have,
∫ t
0 t

kLi(t)L(t)dt '
[∫ t

0 L(t)LT (t)dt
]
Ck,j = Q1Ck,j .

Therefore, for each i and k , we get

Ck,i ' Q−11

∫ t

0
tkL(t)Li(t)dt,

= Q−11

[∫ t
0 t

kL0(t)Li(t)dt
∫ t
0 t

kL1(t)Li(t)dt . . .
∫ t
0 t

kLN (t)Li(t)dt
]T
.

Now the term
∑N

i=0 uit
kLi(t) can be computed as follows:

N∑
i=0

uit
kLi(t) '

N∑
i=0

uiL
T (t)Ck,i,=

N∑
i=0

ui

N∑
j=0

Lj(t)C
k,i
j ,=

N∑
j=0

Lj(t)
N∑
i=0

uiC
k,i
j ,

= LT (t)
[∑N

i=0 uiC
k,i
0

∑N
i=0 uiC

k,i
1 . . .

∑N
i=0 uiC

k,i
N

]T
= LT (t)[Ck,0 Ck,1 . . . Ck,N ]U,

= LT (t)Ĉk. (10)

where Ĉk = [Ck,0 Ck,1 . . . Ck,N ]U , k = 0, 1, 2 . . . N .

Now, we define a new matrix L̂ = [Ĉ0 Ĉ1 . . . ĈN ].

From (9) and (10), we obtain Û = DL̂T .

By (2),
∫ t
0 Ln(s)ds = 1

2(2n+1) [Ln+1(t)− Ln−1(t)].
Let P be the integration matrix of polynomials.∫ t

0
L(s)ds = PL(t)− 1

2(2n+ 1)
Ln+1(t), (11)
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where P =



1
2

1
2 0 0 . . . 0 0

−1
6 0 1

6 0 . . . 0 0
0 −1

10 0 1
10 . . . 0 0

0 0 −1
14 0 . . . 0 0

...
...

...
...

...
...

...
0 0 0 0 . . . 0 1

2(2n−3)
0 0 0 0 . . . −1

2(2n−1) 0


.

The integration of the vector L(t) given in (11) needs to be approximated as∫ t

0
L(s)ds ' PL(t). (12)

Hence, any function u(t) can be approximated as∫ t

0
u(s)ds '

∫ t

0
UTL(s)ds = UTPL(t). (13)

3.3. The fractional stochastic integration operational matrix of shifted Le-
gendre polynomials. For the the vector L(t), we define the fractional stochastic op-
erational matrix of integration PH as∫ t

0
L(s)dBH(s) = PHL(t), (14)

∫ t

0
L(s)dBH(s) =

∫ t

0
DY (s)dBH(s), (15)

= D


∫ t
0 dB

H(s)∫ t
0 sdB

H(s)
...∫ t

0 s
NdBH(s)

 ,

= D

W (t)Y (t)−


0∫ t

0 B
H(s)ds
...

N
∫ t
0 s

N−1BH(s)ds


 .

= DVH(t) = D(Υi), i = 0, 1, ..., N

where Υi = tiBH(t)− i
∫ t
0 s

i−1BH(s)ds, i = 0, 1, ..., N.
Evaluating the integral for each i, we get
Υi = tiBH(t)− ti

4 (2( t2)i−1BH( t2) + ti−1BH(t)) = [(1− i
4)BH(t)− i

2i
BH( t2)]ti.

We assume that BH(0.5) and BH(0.25) are the approximate value of BH(t) and BH( t2)
respectively for any value of t in [0,1]. Hence DVH(t) is given by

D


BH(0.5) 0 . . . 0

0 3
4B

H(0.5)− 1
2B

H(0.25) . . . 0
...

...
. . .

...
0 0 . . . (1− N

4 )BH(0.5)− N
2N
BH(0.25)




1
t
...
tN

 .
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Let

ΓH =


BH(0.5) 0 . . . 0

0 3
4B

H(0.5)− 1
2B

H(0.25) . . . 0
...

...
. . .

...
0 0 . . . (1− N

4 )BH(0.5)− N
2N
BH(0.25)

 .

Then,
DVH(t) = DΓHY (t) = DΓHD

−1L(t) = PHL(t), where PH= DΓHD
−1 and ΓH is the

diagonal matrix of order (N+1) whose diagonal elements are of the form (1− j
4)BH(0.5)−

j
2j
BH(0.25) j = 0, 1, 2, ..., N.

By using (14) and(15), the integral of u(t) is defined as∫ t

0
u(s)dBH(s) '

∫ t

0
UTL(s)dBH(s) = UTPHL(t). (16)

Let

φi(t) = Ni(t,X(t)), i = 1, 2. (17)

Using (1) in (17),

φi(t) = Ni(t, f(t) +

∫ t

0
k1(s, t)φ1(s)ds+

∫ t

0
k2(s, t)φ2(s)dB

H(s)), i = 1, 2. (18)

Approximating the above mentioned functions in terms of L(s) and LT (t) in the following
manner

f(t) ' LT (t)F , (19)

ki(s, t) ' LT (t)KT
iLL(s), (20)

φi(t) ' LT (t)Φi, i = 1, 2 , (21)

where F,Φi are (N + 1) column vectors and KiL are square matrices of order (N + 1).
By substituting (19) - (21) in (18),

LT (t)Φi(t) = Ni(t, L
T (t)F +

∫ t

0
LT (t)KT

1LL(s)LT (s)Φ1(s)ds (22)

+

∫ t

0
LT (t)KT

2LL(s)LT (s)Φ2(s)dB
H(s)), i = 1, 2.

By using (8), (12), (14), (22) becomes

LT (t)Φi(t) = Ni(t, L
T (t)F + LT (t)KT

1LΦ̂1PL(t) + LT (t)KT
2LΦ̂2PHL(t)), i = 1, 2. (23)

We collocate (23) at N + 1 points by using the formula ts = 2s+1
2(N+1) ; s = 0, 1, . . . , N.

Therefore, for i = 1, 2 ,

LT (ts)Φi(t) = Ni(ts, L
T (ts)F + LT (ts)K

T
1LΦ̂1PL(ts) + LT (ts)K

T
2LΦ̂2PHL(ts)). (24)

By collocating (24) at these (N+1) points, we get a nonlinear system of 2(N+1) algebraic
equations from which the coefficients can be obtained by using Newton’s method. Hence
the approximate solution of (1) is obtained as

X(t) ' LT (t)F + LT (t)KT
1LΦ̂1PL(t) + LT (t)KT

2LΦ̂2PHL(t). (25)
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4. Theoretical Analysis

Let eN (t) = X(t) − XN (t) be the error function where XN (t) is the Nth degree ap-
proximation of the exact solution X(t). The error bound and convergence theorem for
the proposed method in terms of the function approximation and the error function are
discussed here.

Theorem 4.1. Let fN (t) be the function approximation of f(t) then the error bound is

given by ‖f(t)− fN (t)‖L2 ≤ CF̂ (2)−N , t ∈ [0, 1], where

F̂ =
sup
t

∥∥f (N)(t)
∥∥
L2, C being a constant.

Proof.

‖f(t)− fN (t)‖2 =

∫ 1

0
(f(t)− fN (t))2dt ≤

∫ 1

0

(
1

N !2N
F̂ dt

)2

=

(
1

N !2N
F̂

)2

= (CF̂2−N )2,

where C = 1
N ! and F̂ =

sup
t

∥∥f (N)(t)
∥∥ , t ∈ [0, 1]. �

Theorem 4.2. Let kN (s, t) be the shifted Legendre approximation of the function k(s, t)

then the error bound is ‖k(s, t)− kN (s, t)‖ ≤ ĈK̂(2)−2N where Ĉ is a positive constant,

K̂ =
sup
(s,t)

∥∥∥∂2Nk(s,t)∂sN∂tN

∥∥∥ , (s, t) ∈ [0, 1]× [0, 1].

Proof. Proof of this theorem is based on the assumptions and the steps followed in Theorem
4.1. �

Theorem 4.3. Let XN (t) be the approximate solution of the exact solution X(t) with
N1(s, t), N2(s, t) satisfying the Lipschitz condition
‖N1(s, t1)−N1(s, t2)‖+ ‖N2(s, t1)−N2(s, t2)‖ ≤ L ‖t1 − t2‖ .
Also assume that
i)‖φi(t)‖ ≤ ρi, t ∈ [0, 1]
ii)‖ki(s, t)‖ ≤Mi , for every (s, t) defined in the domain [0, 1]× [0, 1]
iii) G(N) < 1 for i=1,2. Then, we have

I)‖X(t)−XN (t)‖ ≤ η(N)+((M1+ψ(N))β1(N)+ψ(N)ρ1)+‖W (t)‖((M2+γ(N))β2(N)+γ(N)ρ2)
1−G(N)

II) XN (t)→ X(t) in L2 when E
(
|eN (t)|2

)
→ 0. where

η(N) = CF̂ (2)−N ; λ(N) = Ĉ1(2)−2N ; γ(N) = Ĉ2(2)−2N ; βi(N) = CΦ̂i(2)−N ; Φ̂i =

sup
∥∥∥Φ

(N)
i (t)

∥∥∥ i = 1, 2 .

Proof. Proof of I : Let φ̂i(s) be the approximate solution of φi(s) of (17). Then we have

Φ̂i(s) = N̂i(s,XN (s)) and φNi (s) = Ni(s,XN (s)), i = 1, 2. Hence from the above
theorems, we have∥∥∥φi(s)− φ̂i(s)∥∥∥ ≤ ∥∥φi(s)− φNi (s)

∥∥+
∥∥∥φNi (s)− φ̂i(s)

∥∥∥ ≤ L ‖X(s)−XN (s)‖+βi(N), (26)

Also the approximation of (1) is given as

XN (t) = fN (t) +

∫ t

0
k1N (s, t)φ̂1(s)ds+

∫ t

0
k2N (s, t)φ̂2(s)dB

H(s).

Hence the norm of the error function is given by

‖X(t)−XN (t)‖ ≤ ‖f(t)− fN (t)‖+
∥∥∥k1(s, t)φ1(s)− k1N (s, t)φ̂1(s)

∥∥∥
+
∥∥BH(t)

∥∥∥∥∥k2(s, t)φ2(s)− k2N (s, t)φ̂2(s)
∥∥∥ . (27)
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By using Theorems 4.1, 4.2 and assumptions (i) and (ii) of Theorem 4.3, for i = 1, 2 we
have ∥∥∥ki(s, t)φi(s)− kiN (s, t)φ̂i(s)

∥∥∥ ≤ ‖ki(s, t)‖ ∥∥∥φi(s)− φ̂i(s)∥∥∥
+ ‖ki(s, t)− kiN (s, t)‖

(∥∥∥φi(s)− φ̂i(s)∥∥∥+ ‖φi(s)‖
)
, (28)

∥∥∥ki(s, t)φi(s)− kiN (s, t)φ̂i(s)
∥∥∥ ≤ (Mi + λ(N))L ‖X(t)−XN (t)‖

+(Mi + λ(N))βi(N) + λ(N)ρi. (29)

Using (26),(27) and assumption (iii) of Theorem 4.3, we have

‖X(t)−XN (t)‖ ≤
η(N) +H1(N) +

∥∥BH(t)
∥∥H2(N)

1−G(N)
, (30)

where G(N) = L(M1 + λ(N))−
∥∥BH(t)

∥∥L(M2 + γ(N)),
H1(N) = (M1 + λ(N))β1(N) + λ(N)ρ1,
H2(N) = (M2 + γ(N))β2(N) + γ(N)ρ2.

Proof of II : E
(
|eN (t)|2

)
= E

(
|X(t)−XN (t)|2

)
.

By using Theorems 4.1 and 4.2, we get,

E
(
|X(t)−XN (t)|2

)
≤ P (N) + T (N)E

(
|X(t)−XN (t)|2

)
, (31)

where P (N) = 3η2(N)+9(M1+λ(N))2β21(N)+9λ2(N)ρ21+9
∣∣BH(t)

∣∣2 ((M2+γ(N))2β22(N)+

γ2(N)ρ22 and

T (N) = 9(M1 + λ(N))2L2 + 9
∣∣BH(t)

∣∣2 γ2(N)ρ22).

Hence from (29) and Gronwall inequality, we have E
(
|eN (t)|2

)
→ 0. �

5. Numerical Examples

In this section, two examples are presented to demonstrate the applicability of the
proposed method. N and k represent the degree of the approximate function and the
number of simulations, respectively.

Example 1:[12]
We consider (1) with f(t) = 1

10 , k1(s, t) = −2Ha2s2H−1,

k2(s, t) = a, N1(s,X(s)) = X(s)(1−X2(s)), N2(s,X(s)) = (1−X2(s)),
a = 1

30 , t ∈ (0, 1). The approximate solution for X(t) is obtained by the method de-

scribed in Section 3. The exact solution of the above example is X(t) = tanh(aBH(t) +
tanh−1(X0)). Table 1 shows the mean XE and standard deviation SE of the absolute
errors of X(t) along with their 0.95 confidence intervals. We also consider k = 500, N = 32
and H = 0.2. The graph of the exact and approximate solutions obtained by using shifted
Legendre polynomials at H = 0.4 is also shown in Figure 1(a).

Example 2: [12]
We consider (1) with f(t) = 1

10 , k1(s, t) = −Ha2s2H−1,
k2(s, t) = a,N1(s,X(s)) = tanh(X(s))sech2(X(s)), N2(s,X(s)) = sech(X(s)),
a = 1

30 , t ∈ (0, 1). The approximate solution for X(t) is obtained by the method described

in Section 3. The exact solution of the above example is X(t) = arcsinh(aBH(t) +
sinh(X0)). Table 2 shows the mean XE and standard deviation SE of the absolute errors
of X(t) along with their 0.95 confidence intervals. We also consider k=500, N=32 and H =
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Table 1. Mean, standard deviation and mean confidence interval for error
in Example 1 with Hurst parameter 0.2.

0.95 Confidence interval

t XE SE Upper bound Lower bound

0.1 1.5972e-03 1.2125e-03 1.5200e-03 1.6700e-03

0.2 1.9065e-03 1.4775e-03 1.8100e-03 2.0000e-03

0.3 2.0850e-03 1.5383e-03 1.9901e-03 2.1802e-03

0.4 2.2208e-03 1.6952e-03 2.1201e-03 2.3208e-03

0.5 2.2507e-03 1.6744e-03 2.1500e-03 2.3500e-03

0.6 2.3265e-03 1.7272e-03 2.2200e-03 2.4301e-03

0.7 2.4324e-03 1.8247e-03 2.3200e-03 2.5502e-03

0.8 2.4694e-03 1.9437e-03 2.3501e-03 2.5903e-03

0.9 2.5608e-03 1.9722e-03 2.4401e-03 2.6802e-03

1.0 2.6259e-03 2.0592e-03 2.5001e-03 2.7504e-03

0.3. The graph of the exact and approximate solutions obtained by using shifted Legendre
polynomials at H = 0.4 is depicted in Figure 1(b).

The mean error comparison of the numerical method based on hat functions and the
proposed SLP method are shown in Figure 2(a) and Figure 2(b) for examples 1 with H
= 0.2 and example 2 with H = 0.3 respectively. It has been observed from the figures
that the mean error value of our proposed method is smaller than the mean error of the
method based on hat function [12].

Table 2. Mean, standard deviation and mean confidence interval for error
in Example 2 with Hurst parameter 0.3.

0.95 Confidence interval

t XE SE Upper bound Lower bound

0.1 1.2620e-03 9.3297e-04 1.2042e-03 1.3198e-03

0.2 1.6577e-03 1.2750e-03 1.5787e-03 1.7367e-03

0.3 1.8295e-03 1.3660e-03 1.7448e-03 1.9141e-03

0.4 2.0130e-03 1.5211e-03 1.9188e-03 2.1073e-03

0.5 2.1612e-03 1.6576e-03 2.0584e-03 2.2639e-03

0.6 2.2957e-03 1.7370e-03 2.1880e-03 2.4033e-03

0.7 2.3539e-03 1.7467e-03 2.2456e-03 2.4621e-03

0.8 2.5151e-03 1.9722e-03 2.3928e-03 2.6373e-03

0.9 2.5839e-03 1.9862e-03 2.4608e-03 2.7070e-03

1.0 2.7173e-03 2.0601e-03 2.5896e-03 2.8450e-03

The key features of our proposed methodology are summarised as follows. The proposed
methodology generates a solution that is identical to the exact solution. The technique’s
superiority is based on the minimal amount of error it causes, which can be seen in
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Figure 1. The Graph of Exact and Approximate solutions of (a) Example
1 with H = 0.3 and (b) Example 2 with H = 0.4

  

(a)              (b) 

 

  
Figure 2. Mean Error comparison of (a) Example 1 with H=0.2 and (b)
Example 2 with H=0.3

the figures. Also, from the experimental problems, we observe from the figures that the
mean error value of our proposed method is smaller than the mean error of the method
based on hat functions. The tables also show that the error values are within the upper
bound discussed in the theoretical analysis. Since the polynomials used in this case are
orthogonal, the construction of operational matrices and the calculation of connection
coefficients involved in function approximation are simple. The problems considered for
discussion in this paper do not have the exact solution in the case of H < 1

2 . The
approximate solution has been expanded to a certain number of terms and it has been
compared with the function f(t). The quality of the numerical solution can be realised
from tables and figures. The comparison has been carried out with the theoretical errror
bound since no other method is available in the literature for solving the problems that
are mentioned in the numerical examples.
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The various integration matrices and their properties are used to convert the given
equations into a system of algebraic equations. The advantage of having the lower trian-
gular and tridiagonal forms allows us to solve the problem more accurately, whereas when
dealing with Euler polynomials, it seeks the help of the Bernoulli polynomials, resulting
in a massive amount of work even though it reduces to a lower triangular system. Since
shifted Legendre polynomials have the weak form of sparse matrices, they are preferred to
generalised hat functions, Bernoulli, and Bernstein polynomials in terms of computation
difficulty. Certain numerical methods like Euler, Euler - Maruyama, R-K method, and
Milstein method require the previous iteration values for pointwise solutions, whereas this
method does not require any such assigned values. It has the advantage of generating a
more accurate solution with fewer basis functions, and these polynomials are fundamental
for dealing with any sort of stochastic differential equation.

6. Conclusion

This paper discusses a fast approximation method for solving a nonlinear stochastic
integral equations with fractional Brownian motion, which are common in the physical
and biological sciences. Approximating the supplied function in terms of a linear com-
bination of unknown constants and the basis of the polynomials is the essence of the
proposed methodology. To solve the given equation, stochastic operational matrices for
stochastic integration and fractional stochastic integration have been constructed. The
shifted Legendre polynomial matrix is a triangular matrix. As a result, the dual matrix is
found to be diagonal. This is a noteworthy characteristic when working with the shifted
Legendre polynomial. The proposed methodology has undergone theoretical research, and
the method’s applicability has been statistically validated by using numerical examples.
The magnitude of the absolute error and the mean error are small, as can be seen from the
tables and figures. Since the original problem is solved using a set of algebraic equations,
this technique is simple to implement and can be applied to solve additional stochastic
differential equations. This proposed methodology can be implemented and analysed for
higher dimensional equations with the help of Kronecker delta functions.

Acknowledgement: The authors wish to express their gratitude to the referees for
their careful reading of the manuscript and valuable suggestions.
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