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ROOT CUBE MEAN CORDIAL LABELING OF Cn ∨ Cm, FOR n,m ∈ N

S. MUNDADIYA1, J. PAREJIYA2∗, M. JARIYA3, §

Abstract. All the graphs considered in this article are simple and undirected. Let G
= (V(G), E(G)) be a simple undirected Graph. A function f : V (G) → {0, 1, 2} is
called root cube mean cordial labeling if the induced function f∗ : E(G) → {0, 1, 2}
defined by f∗(uv) = b

√
((f(u))3+(f(v))3

2
c satisfies the condition |vf (i) − vf (j)| ≤ 1 and

|ef (i) − ef (j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where vf (x) and ef (x) denotes the number
of vertices and number of edges with label x respectively and bxc denotes the greatest
integer less than or equals to x. A Graph G is called root cube mean cordial if it admits
root cube mean cordial labeling. In this article we have shown that the join of two cycles
Cn ∨Cm is not a root cube mean cordial and also we have provided graph which is root
cube mean cordial.

Keywords: Cycle, root cube mean cordial labeling, Join of two graphs G ∨H, labeling,
corona of graphs.

AMS Subject Classification: 05C78.

1. Introduction

All the graphs considered in this article are simple, undirected and finite. Recall from
[1] that for two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1 and G2 is denoted
by G1∪G2 is a graph whose vertex set is V1∪V2 and edge set is E1∪E2 and if G1 and G2

are vertex disjoint, then G1∪G2 is called sum of G1 and G2 and it is denoted by G1 +G2.
Recall from [1], Def. 1.8.3 that the join of two graphs G and H denoted as G ∨ H is a
supergraph of G + H in which every vertex of G is adjacent to each vertex of H. Note
that |V (G ∨H)| = |V (G)|+ |V (H)| and |E(G ∨H)| = |E(G)|+ |E(H)|+ |V (G)||V (H)|.
Let G = (V(G), E(G)) be a simple undirected Graph. Recall from [4] that a function
f : V (G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function
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f∗ : E(G) → {0, 1, 2} defined by f∗(uv) = b
√

((f(u))3+(f(v))3

2 c satisfied the condition

|vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where vf (x) and ef (x)
denotes the number of vertices and number of edges with label x respectively and bxc
denotes the greatest integer less than or equals to x. A Graph G is called root cube
mean cordial if it admits root cube mean cordial labeling. In [4], the authors defined
root cube mean cordial labeling and they have proved some interesting results. Motivated
by the results proved in [4], in this article we have proved that the join of two cycles is
not root cube mean cordial. Let G be a graph and {v1, v2, ..., vn} ⊆ V (G). We called
v1, v2, ..., vn are in sequence with respect to label x if v1, v2, ..., vn forms a path. For the
sake of convenience of the reader, we use abbreviation RCMC for root cube meal cordial
labeling.

2. Main Results

Remark 2.1. If all the vertices with labels 1 and 2 are in sequence in cycle Cn, then it
is clear that all the vertices with labels 0 are in sequence in cycle Cn. So, to prove all the
vertices are in sequence in cycle Cn, it is enough to prove that all the vertices with labels
1 and 2 are in sequence in cycle Cn. Now, it is clear that all the vertices with label 2 are
in sequence in cycle Cn, then it produces a minimum number of edges with label 2 in cycle
Cn and when all the vertices with label 1 are in sequence in cycle Cn, then it produces a
maximum number of edges with label 1 in cycle Cn. So, this is the best possible situation
in which |ef (2)−ef (1)| is minimum in cycle Cn. So, now onwards, we have considered all
the vertices with labels 1 and 2 are in sequence in cycle Cn. Hence, all the vertices with
labels 0, 1 and 2 are in sequence in cycle Cn.

Remark 2.2. Let p, q ≡ 0 (mod 3). If all the vertices in Cp or Cq have the same labels
x; for some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC.

Proof. Let p = 3n and q = 3m for some m,n ∈ N. Without loss of generality, we may
assume that n < m. Note that |V (Cp ∨Cq)| = 3m + 3n. Suppose that Cp ∨Cq is RCMC.
Then we have vf (0) = vf (1) = vf (2) = n + m.
Case (I) All the vertices in Cp have the label 0
Then in Cq, we have m − 2n number of vertices with label 0, m + n number of vertices
with label 1 and m + n number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− n + 1 = 3mn + 3n2 + 2 > 1.
Case (II) All the vertices in Cp have the label 1
Then in Cq, we have m + n number of vertices with label 0, m − 2n number of vertices
with label 1 and m + n number of vertices with label 2. Note that
ef (1) = 3n + m− 2n− 1 + 3n(m− 2n) = m + n− 1 + 3mn− 6n2 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 3mn + 3n2 + 1.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− n + 1− 3mn + 6n2 = 9n2 + 2 > 1.
Case (III) All the vertices in Cp have the label 2
Then in Cq, we have m+n number of vertices with label 0, m+n number of vertices with
label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = 3n + m− 2n + 1 + 3n(3m) = m + n + 9mn + 1.
So, ef (2)− ef (1) = m + n + 9mn + 1−m− n + 1 = 9mn + 2 > 1.
Thus, in all the Cases, we have ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC. �
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Remark 2.3. Let p ≡ 0 (mod 3) and q ≡ 1 (mod 3). If all the vertices in Cp or Cq have
the same labels x; for some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC.

Proof. Let p = 3n and q = 3m + 1 for some m,n ∈ N. Suppose that Cp ∨ Cq is RCMC.
Without loss of generality, we may assume that n < m. Note that |V (Cp ∨ Cq)| =
3m + 3n + 1.
Case (I) All the vertices in Cp have the label 0
As Cp ∨ Cq is RCMC, we have the following three possibilities :
(i) vf (0) = n + m + 1, vf (1) = vf (2) = n + m
(ii) vf (0) = vf (2) = n + m, vf (1) = n + m + 1
(iii) vf (0) = vf (1) = n + m, vf (2) = n + m + 1.
Subcase (i) vf (0) = n + m + 1, vf (1) = vf (2) = n + m
Note that in Cq, we have m − 2n + 1 number of vertices with label 0, m + n number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, by Case (I) of Remark 2.2, we have ef (2)− ef (1) > 1.
Subcase (ii) vf (0) = vf (2) = n + m, vf (1) = n + m + 1
Note that in Cq, we have m − 2n number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− n = 3mn + 3n2 + 1 > 1.
Subcase (iii) vf (0) = vf (1) = n + m, vf (2) = n + m + 1
Note that in Cq, we have m−2n number of vertices with label 0, n+m number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
So, ef (2)− ef (1) = m + 4n + 2 + 3mn + 3n2 −m− n + 1 = 3mn + 3n2 + 3n + 3 > 1.
Case (II) All the vertices in Cp have the label 1
In this Case, we have the following three subcases :
Subcase (i) vf (0) = n + m + 1, vf (1) = vf (2) = n + m
Note that in Cq, we have m + n + 1 number of vertices with label 0, m − 2n number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = 3n + m− 2n− 1 + 3n(m− 2n) = m + n− 1 + 3mn− 6n2 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− n + 1− 3mn + 6n2 = 9n2 + 2 > 1.
Subcase (ii) vf (0) = vf (2) = n + m, vf (1) = n + m + 1
Note that in Cq, we have m + n number of vertices with label 0, m − 2n + 1 number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = 3n + m− 2n + 3n(m− 2n + 1) = m + 4n + 3mn− 6n2 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− 4n− 3mn + 6n2 = 9n2 − 3n + 1 > 1.
Subcase (iii) vf (0) = vf (1) = n + m, vf (2) = n + m + 1
Note that in Cq, we have m+n number of vertices with label 0, m−2n number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = 3n + m− 2n− 1 + 3n(m− 2n) = m + n− 1 + 3mn− 6n2 and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
So, ef (2)− ef (1) = m+ 4n+ 2 + 3mn+ 3n2−m−n+ 1− 3mn+ 6n2 = 9n2 + 3n+ 3 > 1.
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Case (III) All the vertices in Cp have the label 2
In this Case, we have the following three subcases :
Subcase (i) vf (0) = n + m + 1, vf (1) = vf (2) = n + m
Note that in Cq, we have m + n + 1 number of vertices with label 0, m + n number of
vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = 3n + m− 2n + 1 + 3n(3m + 1) = m + 4n + 1 + 9mn.
So, ef (2)− ef (1) = m + 4n + 1 + 9mn−m− n + 1 = 9mn + 3n + 2 > 1.
Subcase (ii) vf (0) = vf (2) = n + m, vf (1) = n + m + 1
Note that in Cq, we have m + n number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + m− 2n + 1 + 3n(3m + 1) = m + 4n + 1 + 9mn.
So, ef (2)− ef (1) = m + 4n + 1 + 9mn−m− n = 9mn + 3n + 1 > 1.
Subcase (iii) vf (0) = vf (1) = n + m, vf (2) = n + m + 1
Note that in Cq, we have m+n number of vertices with label 0, m+n number of vertices
with label 1 and m− 2n + 1 number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = 3n + m− 2n + 2 + 3n(3m + 1) = m + 4n + 2 + 9mn.
So, ef (2)− ef (1) = m + 4n + 1 + 9mn−m− n + 1 = 9mn + 3n + 2 > 1.
Thus, in all the Cases, we get ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC. �

Remark 2.4. Let p ≡ 0 (mod 3) and q ≡ 2 (mod 3). If all the vertices in Cp or Cq have
the same labels x; for some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC.

Proof. Let p = 3n and q = 3m + 2 for some m,n ∈ N. Without loss of generality, we may
assume that n < m. Note that |V (Cp ∨ Cq)| = 3m + 3n + 2. Suppose that Cp ∨ Cq is
RCMC.
Case (I) All the vertices in Cp have the label 0
As Cp ∨ Cq is RCMC, we have the following three possibilities :
(i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
(ii) vf (0) = n + m, vf (1) = vf (2) = n + m + 1
(iii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m.
Subcase (i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
In Cq, we have m− 2n + 1 number of vertices with label 0, m + n + 1 number of vertices
with label 1 and m + n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− n = 3mn + 3n2 + 1 > 1.
Subcase (ii) vf (0) = n + m, vf (1) = vf (2) = n + m + 1
In Cq, we have m− 2n number of vertices with label 0, n+m+ 1 number of vertices with
label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
So, ef (2)− ef (1) = m + 4n + 2 + 3mn + 3n2 −m− n = 3mn + 3n2 + 3n + 2 > 1.
Subcase (iii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m
In Cq, we have m− 2n+ 1 number of vertices with label 0, n+m number of vertices with
label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
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So, ef (2)− ef (1) = m + 4n + 2 + 3mn + 3n2 −m− n + 1 = 3mn + 3n2 + 3n + 3 > 1.
Case (II) All the vertices in Cp have the label 1
In this Case, we have the following three subcases :
Subcase (i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
In Cq, we have m + n + 1 number of vertices with label 0, m− 2n + 1 number of vertices
with label 1 and m + n number of vertices with label 2. Note that
ef (1) = 3n + m− 2n + 3n(m− 2n + 1) = m + 4n + 3mn− 6n2 and
ef (2) = m + n + 1 + 3n(m + n) = m + n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = m + n + 1 + 3mn + 3n2 −m− 4n− 3mn + 6n2 = 9n2 − 3n + 1 > 1.
Subcase (ii) vf (0) = n + m, vf (1) = vf (2) = n + m + 1
In Cq, we have m+n number of vertices with label 0, m− 2n+ 1 number of vertices with
label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = 3n + m− 2n + 3n(m− 2n + 1) = m + 4n + 3mn− 6n2 and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
So, ef (2)− ef (1) = m + 4n + 2 + 3mn + 3n2 −m− 4n− 3mn + 6n2 = 9n2 + 2 > 1.
Subcase (iii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m
In Cq, we have m+n+ 1 number of vertices with label 0, m− 2n number of vertices with
label 1 and n + m + 1 number of vertices with label 2. Note that
ef (1) = 3n + m− 2n− 1 + 3n(m− 2n) = m + n− 1 + 3mn− 6n2 and
ef (2) = m + n + 2 + 3n(m + n + 1) = m + 4n + 2 + 3mn + 3n2.
So, ef (2)− ef (1) = m+ 4n+ 2 + 3mn+ 3n2−m−n+ 1− 3mn+ 6n2 = 9n2 + 3n+ 3 > 1.
Case (III) All the vertices in Cp have the label 2
In this Case, we have the following three subcases :
Subcase (i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
In Cq, we have m + n + 1 number of vertices with label 0, m + n + 1 number of vertices
with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + m− 2n + 1 + 3n(3m + 2) = m + 7n + 1 + 9mn.
So, ef (2)− ef (1) = m + 7n + 1 + 9mn−m− n = 9mn + 6n + 2 > 1.
Subcase (ii) vf (0) = n + m, vf (1) = vf (2) = n + m + 1
In Cq, we have m + n number of vertices with label 0, m + n + 1 number of vertices with
label 1 and m− 2n + 1 number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + m− 2n + 2 + 3n(3m + 2) = m + 7n + 2 + 9mn.
So, ef (2)− ef (1) = m + 7n + 2 + 9mn−m− n = 9mn + 6n + 2 > 1.
Subcase (iii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m
In Cq, we have m + n + 1 number of vertices with label 0, m + n number of vertices with
label 1 and m− 2n + 1 number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = 3n + m− 2n + 2 + 3n(3m + 2) = m + 7n + 2 + 9mn.
So, ef (2)− ef (1) = m + 7n + 1 + 9mn−m− n + 1 = 9mn + 6n + 2 > 1.
Thus, in all the Cases, we get ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC.

�

Remark 2.5. Let p, q ≡ 1 (mod 3). If all the vertices in Cp or Cq have the same labels
x; for some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC.

Proof. Let p = 3n + 1 and q = 3m + 1 for some m,n ∈ N. Without loss of generality, we
may assume that n < m. Note that |V (Cp ∨Cq)| = 3m+ 3n+ 2. Suppose that Cp ∨Cq is
RCMC.
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Case (I) All the vertices in Cp have the label 0
As Cp ∨ Cq is RCMC, we have the following two subcases :
(i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
(ii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m.
Subcase (i) vf (0) = vf (1) = n + m + 1, vf (2) = n + m
Note that in Cq, we have m − 2n number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 1 + (3n + 1)(m + n) = 2m + 2n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m + 2n + 1 + 3mn + 3n2 −m− n = 3mn + 3n2 + m + n + 1 > 1.
Subcase (ii) vf (0) = vf (2) = n + m + 1, vf (1) = n + m
Note that in Cq, we have m−2n number of vertices with label 0, m+n number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = m + n + 2 + (3n + 1)(m + n + 1) = 2m + 5n + 3 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m+ 5n+ 3 + 3mn+ 3n2−m−n+ 1 = 3mn+ 3n2 +m+ 4n+ 4 > 1.
Case (II) All the vertices in Cp have the label 1
As Cp ∨ Cq is RCMC, we have the following two subcases :
(i) vf (1) = vf (0) = n + m + 1, vf (2) = n + m
(ii) vf (1) = vf (2) = n + m + 1, vf (0) = n + m.
Subcase (i) vf (1) = vf (0) = n + m + 1, vf (2) = n + m
Note that in Cq, we have m + n + 1 number of vertices with label 0, m − 2n number of
vertices with label 1 and m + n number of vertices with label 2. Note that
ef (1) = 3n + 1 + m− 2n− 1 + (3n + 1)(m− 2n) = 2m− n + 3mn− 6n2 and
ef (2) = m + n + 1 + (3n + 1)(m + n) = 2m + 2n + 1 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m + 2n + 1 + 3mn + 3n2 − 2m + n− 3mn + 6n2 = 9n2 + 3n + 1 > 1.
Subcase (ii) vf (1) = vf (2) = n + m + 1, vf (0) = n + m
Note that in Cq, we have m+n number of vertices with label 0, m−2n number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = 3n + 1 + m− 2n− 1 + (3n + 1)(m− 2n) = 2m− n + 3mn− 6n2 and
ef (2) = m + n + 2 + (3n + 1)(m + n + 1) = 2m + 5n + 3 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m + 5n + 3 + 3mn + 3n2 − 2m + n− 3mn + 6n2 = 9n2 + 6n + 3 > 1.
Case (III) All the vertices in Cp have the label 2
As Cp ∨ Cq is RCMC, we have the folllowing two subcases :
(i) vf (2) = vf (0) = n + m + 1, vf (1) = n + m
(ii) vf (2) = vf (1) = n + m + 1, vf (0) = n + m.
Subcase (i) vf (2) = vf (0) = n + m + 1, vf (1) = n + m
Note that in Cq, we have m + n + 1 number of vertices with label 0, m + n number of
vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n− 1 and
ef (2) = 3n + 1 + m− 2n + 1 + (3n + 1)(3m + 1) = 4m + 4n + 3 + 9mn.
So, ef (2)− ef (1) = 4m + 4n + 3 + 9mn−m− n + 1 = 9mn + 3m + 3n + 4 > 1.
Subcase (ii) vf (2) = vf (1) = n + m + 1, vf (0) = n + m
Note that in Cq, we have m + n number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + 1 + m− 2n + 1 + (3n + 1)(3m + 1) = 4m + 4n + 3 + 9mn.
So, ef (2)− ef (1) = 4m + 4n + 3 + 9mn−m− n = 9mn + 3m + 3n + 3 > 1.
Thus, in all the Cases, we have ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC. �
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Remark 2.6. Let p ≡ 1 (mod 3) and q ≡ 2 (mod 3). If all the vertices in Cp or Cq have
the same labels x; for some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC .

Proof. Let p = 3n + 1 and q = 3m + 2 for some m,n ∈ N. Without loss of generality, we
may assume that n < m. Note that |V (Cp ∨Cq)| = 3m+ 3n+ 3. Suppose that Cp ∨Cq is
RCMC. Then we have vf (0) = vf (1) = vf (2) = n + m + 1
Case (I) All the vertices in Cp have the label 0
Then in Cq, we have m− 2n number of vertices with label 0, m+n+ 1 number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 2 + (3n + 1)(m + n + 1) = 2m + 5n + 3 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m + 5n + 3 + 3mn + 3n2 −m− n = 3mn + 3n2 + m + 4n + 3 > 1.
Case (II) All the vertices in Cp have the label 1
Then in Cq, we have m+n+ 1 number of vertices with label 0, m− 2n number of vertices
with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = 3n + 1 + m− 2n− 1 + (3n + 1)(m− 2n) = 2m− n + 3mn− 6n2 and
ef (2) = m + n + 2 + (3n + 1)(m + n + 1) = 2m + 5n + 3 + 3mn + 3n2.
So, ef (2)− ef (1) = 2m + 5n + 3 + 3mn + 3n2 − 2m + n− 3mn + 6n2 = 9n2 + 6n + 3 > 1.
Case (III) All the vertices in Cp have the label 2
Then in Cq, we have m + n + 1 number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + 1 + m− 2n + 1 + (3n + 1)(3m + 2) = 4m + 7n + 4 + 9mn.
So, ef (2)− ef (1) = 4m + 7n + 4 + 9mn−m− n = 9mn + 3m + 6n + 4 > 1.
Thus, in all the Cases, we have ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC.

�

Remark 2.7. Let p, q ≡ 2 (mod 3). If all the vertices in Cp or Cq have the label x; for
some x ∈ {0, 1, 2}, then Cp ∨ Cq is not RCMC.

Proof. Let p = 3n + 2 and q = 3m + 2 for some m,n ∈ N. Without loss of generality, we
may assume that n < m. Note that |V (Cp ∨Cq)| = 3m+ 3n+ 2. Suppose that Cp ∨Cq is
RCMC.
Case (I) All the vertices in Cp have the label 0
As Cp ∨ Cq is RCMC, we have vf (0) = n + m + 2, vf (1) = vf (2) = n + m + 1
Note that in Cq, we have m − 2n number of vertices with label 0, m + n + 1 number of
vertices with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = m + n + 2 + (3n + 2)(m + n + 1) = 3m + 6n + 4 + 3mn + 3n2.
So, ef (2)− ef (1) = 3m + 6n + 4 + 3mn + 3n2 −m− n = 3mn + 3n2 + 2m + 5n + 4 > 1.
Case (II) All the vertices in Cp have the label 1
As Cp ∨ Cq is RCMC, we have vf (1) = n + m + 2, vf (0) = vf (2) = n + m + 1
Note that in Cq, we have m + n + 1 number of vertices with label 0, m − 2n number of
vertices with label 1 and m + n + 1 number of vertices with label 2. Note that
ef (1) = 3n + 2 + m− 2n− 1 + (3n + 2)(m− 2n) = 3m− 3n + 3mn− 6n2 + 1 and
ef (2) = m + n + 2 + (3n + 2)(m + n + 1) = 3m + 6n + 4 + 3mn + 3n2.
So, ef (2)−ef (1) = 3m+6n+4+3mn+3n2−3m+3n−3mn+6n2−1 = 9n2+9n+5n+3 > 1.
Case (III) All the vertices in Cp have the label 2
As Cp ∨ Cq is RCMC, we have vf (2) = n + m + 2, vf (0) = vf (1) = n + m + 1
Note that in Cq, we have m+ n+ 1 number of vertices with label 0, m+ n+ 1 number of



S MUNDADIYA, J PAREJIYA, M JARIYA: ROOT CUBE MEAN CORDIAL LABELING OF CN ∨ CM 467

vertices with label 1 and m− 2n number of vertices with label 2. Note that
ef (1) = m + n and
ef (2) = 3n + 2 + m− 2n + 1 + (3n + 2)(3m + 2) = 7m + 7n + 7 + 9mn.
So, ef (2)− ef (1) = 7m + 7n + 7 + 9mn−m− n = 9mn + 6m + 6n + 7 > 1.
Thus, in all the Cases, we have ef (2)− ef (1) > 1. Hence, Cp ∨ Cq is not RCMC. �

Theorem 2.1. Cp ∨ Cq is not RCMC, for any p, q ∈ N.

Proof. Suppose that Cp ∨Cq is RCMC. By Remark 2.1 it is now clear that all the vertices
in Cp and Cq must be in sequence with respect to each label x, for x ∈ {0, 1, 2}. Hence,
throughout the proof we consider that all the vertices with respect to each label x, for
x ∈ {0, 1, 2} are in sequence.
Case (I) p ≡ 0 (mod 3), q ≡ 0 (mod 3)
Let p = 3n and q = 3m for some n,m ∈ N. Note that |V (Cp∨Cq)| = 3(n+m). As Cp∨Cq is
RCMC, we have vf (0) = vf (1) = vf (2) = n+m. Suppose that in C3n we have, vf (0) = t,
vf (1) = s, vf (2) = r. Then in C3m we have, vf (0) = m + n − t, vf (1) = m + n − s,
vf (2) = m + n − r. Also, we have, t + s + r = 3n. Now, in C3n we have, ef (0) = t,
ef (1) = s− 1 and in C3m we have ef (0) = m + n− t, ef (1) = m + n− s− 1. Therefore,
in C3n ∨ C3m we have,
ef (0) = t + m + n− t + t(m + n− t) + t(m + n− s) + s(m + n− t)

= m + n + 2tm + 2tn− t2 − 2ts + sm + sn and
ef (1) = s− 1 + m + n− s− 1 + s(m + n− s) = m + n− 2 + sm + sn− s2. Now,
|ef (0)− ef (1)| = |m + n + 2tm + 2tn− t2 − 2ts + sm + sn−m− n + 2− sm− sn + s2|

= |2tm + 2tn + s2 − 2st− t2 + 2|
= |2tm + 2tn + s2 − 2st + t2 − 2t2 + 2|
= |2tm + 2tn + (s− t)2 − 2t2 + 2|
> |2tm + 2tn + (s− t)2 − 2tn + 2| (t < n⇒ −2tn < −2tt)
= |2tm + (s− t)2 + 2|
> 2.

Case (II) p ≡ 0 (mod 3), q ≡ 1 (mod 3)
Let p = 3n and q = 3m + 1 for some n,m ∈ N. Note that |V (Cp ∨ Cq)| = 3(n + m) + 1.
So, we have the following three subcases in this Case :
(1) vf (0) = m + n + 1, vf (1) = m + n and vf (2) = m + n
(2) vf (0) = m + n, vf (1) = m + n + 1 and vf (2) = m + n
(3) vf (0) = m + n, vf (1) = m + n and vf (2) = m + n + 1
Subcase (i) vf (0) = m + n + 1, vf (1) = m + n and vf (2) = m + n
Suppose that in C3n we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1 we have,
vf (0) = m+n− t+ 1, vf (1) = m+n− s, vf (2) = m+n− r. Also, we have t+ s+ r = 3n.
Now in C3n, we have, ef (0) = t, ef (1) = s−1 and in C3m+1 we have ef (0) = m+n− t+1,
ef (1) = m + n− s− 1. Hence, in C3n ∨ C3m+1 we have,
ef (0) = t + m + n− t + 1 + t(m + n− t + 1) + t(m + n− s) + s(m + n− t + 1)

= m + n + 2tm + 2tn− t2 + t + s− 2ts + sm + sn + 1 and
ef (1) = s− 1 + m + n− s− 1 + s(m + n− s) = m + n− 2 + sm + sn− s2. Now
|ef (0)−ef (1)| = |m+n+2tm+2tn−t2+t+s−2ts+sm+sn+1−m−n+2−sm−sn+s2|

= |2tm + 2tn + s2 − 2st− t2 + t + s + 3|
= |2tm + 2tn + s2 − 2st + t2 − 2t2 + t + s + 3|
= |2tm + 2tn + (s− t)2 − 2t2 + t + s + 3|
> |2tm + 2tn + (s− t)2 − 2tn + t + s + 3| (t < n⇒ −2tn < −2tt)
= |2tm + (s− t)2 + t + s + 3|
> 3.
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Subcase (ii) vf (0) = m + n, vf (1) = m + n + 1 and vf (2) = m + n
Suppose that in C3n we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1 we have,
vf (0) = m+n− t, vf (1) = m+n− s+ 1, vf (2) = m+n− r. Also, we have t+ s+ r = 3n.
Note that in C3n we have ef (0) = t, ef (1) = s−1 and in C3m+1 we have, ef (0) = m+n−t,
ef (1) = m + n− s. Hence, in C3n ∨ C3m we have,
ef (0) = t + m + n− t + t(m + n− t) + t(m + n− s + 1) + s(m + n− t)

= m + n + 2tm + 2tn− t2 + t− 2ts + sm + sn and
ef (1) = s− 1 + m + n− s + s(m + n− s + 1) = m + n + sm + sn + s− s2 − 1. Now,
|ef (0)−ef (1)| = |m+n+2tm+2tn− t2 + t−2ts+sm+sn−m−n−sm−sn−s+s2 +1|

= |2tm + 2tn + s2 − 2ts− t2 + t− s + 1| ...............(1)
= |2tm + 2tn + (s− t)2 − 2t2 + t− s + 1|
> |2tm + 2tn + (s− t)2 − 2tn + t− s + 1|
= |2tm + (s− t)2 + t− s + 1|

If s ≤ t,then t− s ≥ 0. So, |ef (0)− ef (1)| > 2.
If s > t, then from equation (1),
|ef (0)− ef (1)| = |2tm + 2tn− 2ts + s2 − t2 + t− s + 1|

= |2tm + 2tn− 2ts + (s− t)(s + t)− (s− t) + 1|
= |2tm + 2tn− 2ts + (s− t)(s + t− 1) + 1|
> |2tm + 2tn− 2tn + (s− t)(s + t− 1) + 1| (s < n⇒ −2tn < −2ts)
= |2tm + (s− t)(s + t− 1) + 1|
> 1.

Subcase (iii) vf (0) = m + n, vf (1) = m + n and vf (2) = m + n + 1
Suppose that in C3n, we have vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1, we have
vf (0) = m + n− t, vf (1) = m + n− s, vf (2) = m + n− r + 1. Note that the numbers of
vertices with labels 0 and with labels 1 in this Subcase are the same as those in the Case
(I). So, in this Case, we have, |ef (0)− ef (1)| > 1.
Case (III) p ≡ 0 (mod 3), q ≡ 2 (mod 3)
Let p = 3n and q = 3m + 2 for some n,m ∈ N. Note that |V (Cp ∨ Cq)| = 3(n + m) + 2.
As So, we have the following three subcases in this Case :
Subcase (i) vf (0) = m + n + 1, vf (1) = m + n + 1, vf (2) = m + n
Suppose that in C3n we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2, we have
vf (0) = m + n − t + 1, vf (1) = m + n − s + 1, vf (2) = m + n − r. Also, we have
t+ s+ r = 3n. Note that in C3n we have, ef (0) = t, ef (1) = s− 1 and in C3m+2, we have
ef (0) = m + n− t + 1, ef (1) = m + n− s. Note that C3n ∨ C3m+2, we have
ef (0) = t + m + n− t + 1 + t(m + n− t + 1) + t(m + n− s + 1) + s(m + n− t + 1)

= m + n + 2tm + 2tn− t2 + 2t + s− 2ts + sm + sn + 1 and
ef (1) = s− 1 + m + n− s + s(m + n− s + 1) = m + n + sm + sn− s2 + s− 1. Now,
|ef (0)−ef (1)| = |m+n+2tm+2tn−t2+2t+s−2ts+sm+sn+1−m−n−sm−sn+s2−s+1|

= |2tm + 2tn + s2 − 2st− t2 + 2t + 2|
= |2tm + 2tn + s2 − 2st + t2 − 2t2 + 2t + 2|
= |2tm + 2tn + (s− t)2 − 2t2 + 2t + 2|
> |2tm + 2tn + (s− t)2 − 2tn + 2t + 2| (t < n⇒ −2tn < −2tt)
= |2tm + (s− t)2 + 2t + 2|
> 2.

Subcase (ii) vf (0) = m + n, vf (1) = m + n + 1 and vf (2) = m + n + 1
Suppose that in C3n we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2 we have,
vf (0) = m + n− t, vf (1) = m + n− s + 1, vf (2) = m + n− r + 1. Note that the numbers
of vertices with labels 0 and labels 1 in this Subcase are the same as those in the Subcase
(ii) of Case (II). So, in this Case, we have |ef (0)− ef (1)| > 1.
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Subcase (iii) vf (0) = m + n + 1 , vf (1) = m + n , vf (2) = m + n + 1
Suppose that in C3n we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2 we have,
vf (0) = m + n− t + 1, vf (1) = m + n− s, vf (2) = m + n− r + 1. Note that the numbers
of vertices with labels 0 and labels 1 in this Subcase are the same as those in the Subcase
(i) of Case (II). So, in this Case, we have |ef (0)− ef (1)| > 1.
Case (IV) : p ≡ 1 (mod 3), q ≡ 1 (mod 3)
Let p = 3n+ 1 and q = 3m+ 1 for some n,m ∈ N. Note that |V (Cp∨Cq)| = 3(n+m) + 2.
So, we have the following three subcases in this Case :
Subcase (i) vf (0) = m + n + 1, vf (1) = m + n + 1, vf (2) = m + n
Suppose that in C3n+1 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1 we
have, vf (0) = m + n − t + 1, vf (1) = m + n − s + 1, vf (2) = m + n − r. Also, we have,
t + s + r = 3n + 1. Note that the numbers of vertices with labels 0 and labels 1 in this
Subcase are the same as those in the Subcase (i) of Case (III). So, in this Case, we have
|ef (0)− ef (1)| > 1.
Subcase (ii) vf (0) = m + n , vf (1) = m + n + 1 , vf (2) = m + n + 1
Suppose that in C3n+1 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1 we
have, vf (0) = m + n − t, vf (1) = m + n − s + 1, vf (2) = m + n − r + 1. Also, we have,
t + s + r = 3n + 1. Note that the numbers of vertices with labels 0 and labels 1 in this
Subcase are the same as those in the Subcase (ii) of Case (III). So, in this Case, we have
|ef (0)− ef (1)| > 1.
Subcase (iii) vf (0) = m + n + 1 , vf (1) = m + n , vf (2) = m + n + 1
Suppose that in C3n+1 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+1 we
have, vf (0) = m + n − t + 1, vf (1) = m + n − s, vf (2) = m + n − r + 1. Also, we have,
t + s + r = 3n + 1. Note that the numbers of vertices with labels 0 and labels 1 in this
Subcase are the same as those in the Subcase (iii) of Case (III). So, in this Case, we have
|ef (0)− ef (1)| > 1.
Case (V) p ≡ 1 (mod 3), q ≡ 2 (mod 3)
Let p = 3n+ 1 and q = 3m+ 2 for some n,m ∈ N. Note that |V (Cp∨Cq)| = 3(n+m) + 3.
So, we have vf (0) = vf (1) = vf (2) = n+m+1. Suppose that in C3n+1 we have, vf (0) = t,
vf (1) = s, vf (2) = r. Then in C3m+2 we have, vf (0) = m+n− t+1, vf (1) = m+n−s+1,
vf (2) = m+n− r+ 1. Note that the numbers of vertices with labels 0 and labels 1 in this
Subcase are the same as those in the Subcase (i) of Case (IV). So, in this Case, we have
|ef (0)− ef (1)| > 1.
Case (VI) : p ≡ 2 (mod 3), q ≡ 2 (mod 3)
Let p = 3n+ 2 and q = 3m+ 2 for some n,m ∈ N. Note that |V (Cp∨Cq)| = 3(n+m) + 4.
So, we have the following three subcases in this Case :
Subcase (i) vf (0) = m + n + 2 , vf (1) = m + n + 1 , vf (2) = m + n + 1
Suppose that in C3n+2 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2 we have,
vf (0) = m + n − t + 2, vf (1) = m + n − s + 1, vf (2) = m + n − r + 1. Also, we have
t+ s+ r = 3n+ 2. Note that in C3n+2 we have ef (0) = t, ef (1) = s− 1 and in C3m+2, we
have ef (0) = m + n− t + 2, ef (1) = m + n− s. So, in C3n+2 ∨ C3m+2 we have,
ef (0) = t + m + n− t + 2 + t(m + n− t + 2) + t(m + n− s + 1) + s(m + n− t + 2)

= m + n + 2tm + 2tn− t2 − 2ts + sm + sn + 3t + 2s + 2 and
ef (1) = s− 1 + m + n− s + s(m + n− s + 1) = m + n + sm + sn− s2 + s− 1. Now
|ef (0)−ef (1)| = |m+n+2tm+2tn−t2−2ts+sm+sn+3t+2s+2−m−n−sm−sn+s2−s+1|

= |2tm + 2tn + s2 − 2st− t2 + 3t + s + 3|
= |2tm + 2tn + s2 − 2st + t2 − t2 + 3t + s + 3|
= |2tm + 2tn + (s− t)2 − 2t2 + 3t + s + 3|
> |2tm + 2tn + (s− t)2 − 2tn + 3t + s + 3| (t < n⇒ −2tn < −2tt)
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= |2tm + (s− t)2 + 3t + s + 3|
> 3.

Subcase (ii) vf (0) = m + n + 1 , vf (1) = m + n + 2 , vf (2) = m + n + 1
Suppose that in C3n+2 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2 we have,
vf (0) = m + n − t + 1, vf (1) = m + n − s + 2, vf (2) = m + n − r + 1. Also, we have
t+ s+ r = 3n+ 2. Note that in C3n+2 we have, ef (0) = t, ef (1) = s− 1 and in C3m+2 we
have, ef (0) = m + n− t + 1, ef (1) = m + n− s + 1. Hence, in C3n+2 ∨ C3m+2 we have,
ef (0) = t + m + n− t + 1 + t(m + n− t + 1) + t(m + n− s + 2) + s(m + n− t + 1)

= m + n + 2tm + 2tn− t2 − 2ts + sm + sn + 3t + s + 1 and
ef (1) = s− 1 + m + n− s + 1 + s(m + n− s + 2) = m + n + sm + sn− s2 + 2s. Now,
|ef (0)−ef (1)| = |m+n+2tm+2tn−t2−2ts+sm+sn+3t+s+1−m−n−sm−sn+s2−2s|

= |2tm + 2tn + s2 − 2ts− t2 + 3t− s + 1|
= |2tm + 2tn + (s− t)2 − 2t2 + 3t− s + 1|
> |2tm+2tn+(s−t)2−2tn+3t−s+1| (s < n, t < n⇒ −2tn < −2t2)
= |2tm + (s− t)2 + 3t− s| ........(1)

If s ≤ t, then |ef (0)− ef (1)| > 1.
If t < s, then from equation (1),
|ef (0)− ef (1)| > |2tm + (s− t)2 + 3t− s|

= |2tm + 2t + (s− t)2 − (s− t)|
= |2tm + 2t + (s− t)(s− t− 1)|
> 1.

Subcase (iii) vf (0) = m + n + 1 , vf (1) = m + n + 1, vf (2) = m + n + 2
Suppose that in C3n+2 we have, vf (0) = t, vf (1) = s, vf (2) = r. Then in C3m+2 we have,
vf (0) = m+n− t+ 1, vf (1) = m+n− s+ 1, vf (2) = m+n− r+ 2. Note that numbers of
vertices with labels 0 and labels 1 in this Subcase are the same as those in the Case (V).
So, in this Case we have |ef (0)− ef (1)| > 1.
Therefore, Cp ∨ Cq is not RCMC.

�

Theorem 2.2. TSn �K1 is RCMC for n = 3k + 1, n ∈ N and k ≡ 0 (mod 2).

Proof. Note that |V (TSn � K1)| = 2n and |E(TSn � K1)| = 3n−3
2 + n = 5n−3

2 . Let
V (TSn) = {v1, v2, ..., vn} be the vertex set of TSn and ui be the pendant vertices of
TSn �K1 adjacent to vi for 1 ≤ i ≤ n as shown in the following figure.

TSn �K1

Define a labeling function f : V (TSn)→ {0, 1, 2} as follows :
f(vi) = 1 if 1 ≤ i ≤ k + 1

= 0 if k + 1 < i ≤ 2k + 1
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= 2 if 2k + 1 < i ≤ 3k + 1
f(ui) = 1 if 1 ≤ i ≤ k

= 0 if k < i ≤ 2k + 1
= 2 if 2k + 1 < i ≤ 3k + 1

Note that vf (0) = 2k + 1, vf (1) = 2k + 1, vf (2) = 2k, ef (0) = 3k
2 + k + 1, ef (1) = 3k

2 + k

and ef (2) = 3k
2 + k. Thus, |vf (i)− vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1. Hence, TSn �K1 is

RCMC for n = 3k + 1, n ∈ N and k ≡ 0 (mod 2). �

Example 2.1. RCMC labeling of TS13 �K1 is shown in the following figure.
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TS13 �K1

Remark 2.8. Here, we are mentioning some of the families of graphs that can be studied
by interested researchers, as an open problem .
(1) Join of graphs
(2) Product of graphs
(3) Family of cycle related graphs like Wheel graph, Helm graph, Closed Helm Graph.

3. Conclusion

In this article, we have proved that the Join of two cycles Cn ∨ Cm is not a Root Cube
Mean Cordial labeling. Also, we have provided a graph which is RCMC.
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