
TWMS J. App. and Eng. Math. V.14, N.2, 2024, pp. 644-656

A NOVEL STOCHASTIC APPROACH TO BUFFER STOCK

PROBLEM

Z. HANALIOGLU1, A. POLADOVA2, B. GEVER3, T. KHANIYEV2,4∗, §

Abstract. In this paper, the stochastic fluctuation of buffer stock level at time t is
investigated. Therefore, random walk processes X(t) and Y (t) with two specific barriers
have been defined to describe the stochastic fluctuation of the product level. Here X(t) ≡
Y (t) − a and the parameter a specifies half capacity of the buffer stock warehouse.
Next, the one-dimensional distribution of the process X(t) has calculated. Moreover, the
ergodicity of the process X(t) has been proven and the exact formula for the characteristic
function has been found. Then, the weak convergence theorem has been proven for the
standardized process W (t) ≡ X(t)/a, as a → ∞. Additionally, exact and asymptotic
expressions for the ergodic moments of the processes X(t) and Y (t) are obtained.

Keywords: Random walk with two barriers, buffer stock problem, stationary distribution,
weak convergence, asymptotic expansion.
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1. Introduction

This article discusses an innovative approach to the buffer stock problem. A buffer stock
is necessary to avoid delays on the production line and reduce economic losses. By adding
a buffer between two machines, it is possible to optimize the production line and reduce
system downtime (Lv et al. [17]). Numerous eminent scientists have studied the buffer
stock dilemma in their research (see, Cochran et al. [4]; He et al. [10]; Kokangul et al.
[15]; Lv et al. [17]; Smith and Cruz [20]; and etc.). In this article, it is aimed to create a
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mathematical substructure related to the buffer stock problem in a production system. It is
assumed that all the machines in this system produce at the same speed and the downtimes
are random. In addition, the production line is equipped with a limited capacity buffer
stock. Also, the level of stock in the buffer warehouse fluctuates stochastically in the
interval [0, 2a]. Here, 2a denotes the maximum capacity of the buffer stock warehouse.
The raw materials are first included in the production line and processed on machine 1,
then stored in the buffer stock warehouse. The product is then removed from the buffer
stock warehouse and transferred to machine 2. After the product is processed in machine
2, it is placed in the finished product warehouse (see, Fig.1). Random breakdowns occur
in both machines and these malfunctions are repaired at random times. When machine 1
breaks down and the product runs out in the buffer stock warehouse, a “starvation” begins
for machine 2. Similarly, when machine 2 breaks down and the buffer stock depot is full,
“saturation” begins for machine 1. In the event of starvation, the production process
is halted and restarted at the beginning level a, which is the buffer stock’s midpoint.
Therefore, the most undesirable situation for the production system operating with these
rules is that the buffer stock level reaches the maximum level (2a) or the lower (0) level.
Because when the stock level reaches 2a, the production goes into the ”saturation” state,
similarly, when the buffer stock level drops to 0, the production goes into the ”starvation”
state and therefore the production process stops in both cases. As a result, the production
process is restarted from the midpoint (a) of the buffer stock to reduce the probability of
undesirable events.

For the above reasons, in this study, the production process is started with buffer
stock level (a) at the start of each cycle. The fluctuations in the buffer stock level are
mathematically expressed by a random walk process with two specific barriers. Figure 1
shows a graphical representation of an investigated buffer stock problem.

This study provides a mathematical basis for estimating the optimal capacity of the
buffer stock under the above-mentioned assumptions. Thus, in this study, the fluctuation
in buffer stock level is represented by a random walk process (Y (t)) with two specific
barriers. There are several number of significant studies on random walk, renewal and
renewal-reward processes in the literature (see, Aliyev and Khaniyev [1]; Borovkov [2];
Chang and Peres [3]; Feller [5]; Gihman and Skorohod [6]; Gokpinar et al. [7]; Hanalioglu
et al. [8]; Janssen and Leeuwarden [11]; Khaniyev et al. [14]; Kokangul et al. [15]; Lotov
[16]; Poladova et al. [19], Kamislik et al. [12]; Hanalioglu et al. [9]; Marandi et al. [18];
Khaniyev and Aksop [13], etc.). However, examining Y (t) is mathematically challenging.
First, a stochastic process defined as X(t) ≡ Y (t)− a is investigated.

The remainder of the article is organized as follows. In Section 2, the stochastic processes
X(t) and Y (t) is mathematically defined. In Section 3, the one-dimensional distribution of
X(t) is discussed. In Section 4 the ergodicity of X(t) and the characteristic function of its
stationary distribution is examined. Moreover, in Section 5 the weak convergence theorem
for stationary distribution of the ”standardized” process W (t) ≡ X(t)/a is proved. Finally,
in Section 6 and Section 7 the exact and asymptotic results are obtained for the moments
of the stationary distributions of X(t) and Y (t). Conclusion is given in Section 8.

Now, let us define X(t) and Y (t) mathematically.

2. Mathematical Construction of Processes X(t) and Y (t)

Let {ξn} and {ηn}, n ≥ 1, be sequences of independently distributed random variables
with identical distributions specified on probability space {Ω, F, P}. Moreover, let the
random variable ξn take only positive values, but the random variable ηn take both positive
and negative values. Suppose that the random variables ξ1 and η1 are independent from
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Figure 1. Two machine serial production system

each other. In addition, ξ1 and η1 are the random variables with distribution functions
Φ ≡ P{ξ1 ≤ t}, t ≥ 0, and F (x) ≡ P{η1 ≤ x}, x ∈ R, respectively.

Let the renewal sequence {Tn} and random walk {Sn} be defined as follows:

T0 = S0 = 0; Tn ≡
n∑
i=1

ξi, Sn ≡
n∑
i=1

ηi, n = 1, 2, ...

Moreover, define a sequence {Nn}, n ≥ 0 as:

N0 = 0; N1 ≡ N = inf{k ≥ 1 : Sk /∈ [−a, a]}, a > 0,

Nn+1 = inf{k ≥ Nn + 1 : Sk − SNn /∈ [−a, a]}, n = 1, 2, ...

Let τ0 = 0, τ1 = TN =
∑N

i=1 ξi, τn =
∑Nn

i=1 ξi and define ν(t) as follows:

ν(t) = max{n ≥ 0 : Tn ≤ t}, t > 0.

Using the above notations, the desired stochastic process X(t) can be expressed mathe-
matically as follows:

X(t) = Sν(t) − SNn , τn ≤ t < τn+1, n = 0, 1, 2, ... (1)

The process X(t) is interpreted as a semi-Markovian random walk process with two special
barriers. A representation of X(t) is given in Figure 2.

In this study, it is assumed that the random variable η1 has a bilateral exponential
distribution with parameter λ = 1. In other words, density function of η1 is fη(x) =
1
2e
−|x|, x ∈ R and characteristic function of η1 has the following form:

ϕη(θ) ≡ E(eiθη1) =
1

1 + θ2
, θ ∈ R. (2)

Thus, the buffer stock level Y (t) can be represented as:

Y (t) ≡ X(t) + a (3)

The main goal of this research is to analyze the probability and numerical characteristics
of stochastic process Y (t). For this purpose, firstly, the one-dimensional distribution of
X(t) is examined in the following section.

3. One-Dimensional Distribution of X(t)

As is well known, the most general probability characteristic of a stochastic process
is its n-dimensional distributions. Accordingly, this section will focus on calculating the
one-dimensional distribution of X(t).

The one-dimensional distribution of X(t) can be defined as:

Q(t;x) ≡ P{X(t) ≤ x}; x ∈ [−a, a], t > 0.
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Figure 2. A sample graph of the process X(t)

Theorem 3.1. The exact expression of the one-dimensional distribution of X(t) can be
written as follows:

Q(t;x) = G(t, x) +G(t, x) ∗
∞∑
n=1

R∗(n)(t);

where G(t, x) ≡
∑∞

n=0 an(x)∆Φn(t); R(t) ≡
∑∞

n=1 bnΦn(t);

an(x) ≡ P{Si ∈ [−a, a]; i = 1, n; Sn ≤ x}, x ∈ [−a, a];

bn(x) ≡ P{Si ∈ [−a, a]; i = 1, n− 1; Sn /∈ [−a, a]};
Φn(t) ≡ P{Tn ≤ t}, n = 1, 2, ...; Φ0(t) = 1, if t ≥ 0 and Φ0(t) = 0, if t < 0;

∆Φn(t) ≡ Φn(t)− Φn+1(t), n = 0, 1, 2, ...; M1(t) ∗M2(t) =

∫ t

0
M1(t− s)dM2(s).

Proof. The following equation can be used to calculate the one-dimensional distribution
of X(t) based on the total probability formula:

Q(t, x) ≡ P{X(t) ≤ x} =
∞∑
n=1

P {τn−1 ≤ t ≤ τn;X(t) ≤ x} (4)

Let us define the following notation in order to calculate the first term in the Eq.(4):

G(t, x) ≡ G1(t;x) ≡ P{τ1 > t, X(t) ≤ x}.
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Using the total probability formula, we can calculate G(t;x) as:

G(t, x) ≡ G1(t;x) =

∞∑
n=0

P{ν(t) = n; τ1 > t, X(t) ≤ x}.

=
∞∑
n=0

P {Tn ≤ t < Tn+1}P {N1 > n;Sn ≤ x}

=

∞∑
n=0

(Φn(t)− Φn+1(t))P
{
Si ∈ [−a; a], i = 1, n; Sn ≤ x

}
=

∞∑
n=0

an(x)∆Φn(t),

where N1 ≡ min{n ≥ 1 : Sn /∈ [−a; a]} and Sn =
∑n

i=1 ηi.
Now, we can calculate the second term in the Eq.(4) as follows:

G2(t;x) ≡ P {τ1 ≤ t < τ2;X(t) ≤ x} =

∫ t

s=0
P {τ1 ∈ ds; s ≤ t < τ2, X(t) ≤ x}

=

∫ t

s=0
G(t− s;x)R(ds) ≡ G(t;x) ∗R(t),

where R(ds) ≡ P{τ1 ∈ ds}; R(t) ≡
∑∞

n=1 bnΦn(t).
In a similar manner, we can derive the following result:

Gn(t;x) ≡ P {τn−1 ≤ t < τn; X(t) ≤ x} = G(t;x) ∗ (R(t))∗(n−1) , n = 2, 3, ...

Using the above results, we obtain the exact expression for the one-dimensional distri-
bution of X(t) as:

Q(t;x) = G(t, x) +G(t, x) ∗R(t) + . . .+G(t, x) ∗R∗(n)(t) + . . .

= G(t, x) +G(t, x) ∗
∞∑
n=1

R∗(n)(t).

Thus the proof of Theorem 3.1 is proved. �

Remark 3.1. As can be seen from Theorem 3.1, calculating the finite-dimensional dis-
tribution of X(t) is extremely complicated due to infinite convolution multiplications. To
overcome this difficulty, it is useful to examine the stationary characteristics of X(t). For
this purpose, in the following section, the ergodicity of X(t) and the characteristic function
of its ergodic distribution will be examined.

4. Characteristic Function of Ergodic Distribution of X(t)

For shortness, represent the ergodic distribution (QX(x)) and characteristic function
(ϕX(θ)) of ergodic distribution of the process X(t) as follows:

QX(x) ≡ lim
t→∞

Q(t;x) ≡ lim
t→∞

P{X(t) ≤ x}, ϕX(θ) ≡ lim
t→∞

E(exp(iθX(t))).

Now, give the proposition about the ergodicity of X(t).

Proposition 4.1. Suppose the following supplementary conditions are met for sequence
of random pairs {(ξn; ηn), n ≥ 1}:

(i) 0 < E(ξ1) <∞;
(ii) η1 has a bilateral exponential distribution with parameter λ = 1.

Then, the process X(t) is ergodic.
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Proof. According to Smith’s ”key renewal theorem”, X(t) is ergodic if the following two
assumptions are met (Gihman and Skorohod [6], p.243).

Assumption 1. According to Assumption 1, such a random time sequence should
be chosen that the values of the process X(t) at these times form an embedded ergodic
Markov chain. For this purpose, the random time sequence {τn, n = 1, 2, ...}, defined in
Section 2, can be selected. At these moments of time, the values of the process X(t) are
equal to X(τ0) = X(τ1) = ... = X(τn), n = 1, 2, ... and these values form an embedded
ergodic Markov chain. This embedded Markov chain {X(τn), n = 1, 2, ...} is ergodic and
a stationary distribution is as π(z) = 0, if z < 0, π(z) = 1, if z ≥ 0. Thus, the first
assumption of the general ergodic theorem is satisfied (see, Gihman and Skorohod [6],
p.243).

Assumption 2. According to Assumption 2, it is necessary to have a finite expected
values for the time intervals between successive intervention moments {τn, n = 1, 2, ...}.
In other words, E(τn − τn−1)must be finite, for n = 1, 2, . . . .

According to the conditions of Proposition 4.1, E(ξ1) <∞. On the other hand, accord-
ing to the Wald identity (see, Feller [5]) the following equality can be written:

E(τ1) = E

(
N∑
i=1

ξi

)
= E(ξ1)E(N).

and, E(N) = a2

2 + a+ 1 (see, Feller [5], p.601). Therefore, E(τ1) <∞.
Similarly, it can be shown that E(τn − τn−1) <∞ for each n = 2, 3, .... Then, Assump-

tion 2 also holds. Therefore, the process X(t) is ergodic. Hence, Proposition 4.1 has been
proven. �

Theorem 4.1. Suppose that the assumptions of Proposition 4.1 are correct. Then, the
exact formula for the characteristic function (ϕX(θ)) of the stationary distribution of X(t)
is as follows:

ϕX(θ) ≡ lim
t→∞

E
(
eiθX(t)

)
=

1

E(N)

{
1 +

sin(θa)

θ
+

1− cos(θa)

θ2

}
, θ ∈ R. (5)

Proof. In study Aliyev and Khaniyev [1], the general expression of the characteristic func-
tion for the stationary distribution of X(t) is written as:

ϕX(θ) =
1

E(N)

∫ +∞

−∞
eiθz

ϕSN(z)
(−θ)− 1

ϕη(−θ)− 1
dπ(z), θ 6= 0. (6)

Here, ϕη(−θ) = E (exp (−iθη1)); ϕSN(z)
(−θ) = E

(
exp

(
−iθSN(z)

))
, θ ∈ R.

In the considered case, the distribution π(z), which expresses the discrete interference
of chance, is as follows: π(z) = 1, if z ≥ 0 and π(z) = 0, if z < 0.

Substituting the expression of π(z) into Eq.(6), the characteristic function of the sta-
tionary distribution of X(t) is found as:

ϕX(θ) =
1

E(N)

ϕSN
(−θ)− 1

ϕη(−θ)− 1
, θ 6= 0. (7)

Here, N = inf{k ≥ 1 : Sk /∈ [−a; a]}; SN =
∑N

i=1 ηi.
E(N), is an expected value of N . The exact expression for the expected value of N is

equal to E(N) = a2

2 + a + 1 (see, Feller [5], p. 601). Additionally, the exact formula for
the characteristic function (ϕη(θ)) of the random variable η1 is given in Eq.(2) as:

ϕη(θ) ≡ E (exp (iθη1)) =
1

1 + θ2
, θ ∈ R. (8)
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Moreover, the exact expression for the characteristic function (ϕSN
(θ)) of SN is as follows

(see, Feller [5], p. 600)):

ϕSN
(θ) = E

(
eiθSN

)
=

1

2

[
e−iθa

1 + iθ
+

eiθa

1− iθ

]
(9)

Using Euler identity, we can rewrite Eq.(9) as follows:

ϕSN
(θ) =

cos(θa)− θ sin(θa)

1 + θ2
(10)

The exact formula of the characteristic function of the stationary distribution of X(t) is
derived by considering Eq.(8) and Eq.(10) in Eq.(7). Hence, the proof of Theorem 4.1 is
finalized. �

The weak convergence theorem for the stationary distribution of standardized process
W (t) ≡ X(t)/a, as a→∞, is discussed in the following section.

5. Weak Convergence Theorem for Stationary Distribution of W (t)

One of the main purposes of this article is to find the limit form of stationary distribu-
tions of X(t) and Y (t). To achieve this, we must first examine the weak convergence of
the stationary distribution of the ”standardized” process W (t) ≡ X(t)/a , as a→∞.

For brevity, let us represent the stationary distribution and characteristic function of
W (t) as follows: QW (x) ≡ limt→∞ P {W (t) ≤ x} ; ϕW (θ) ≡ limt→∞E (exp{iθW (t)}).

Theorem 5.1. Under the conditions of Proposition 4.1, the characteristic function (ϕW (θ))
of the stationary distribution of W (t) converges to the following limit, when a→∞:

lim
a→∞

ϕW (θ) =
2(1− cos(θ))

θ2
, θ 6= 0.

Proof. By definition, we can represent the characteristic function (ϕW (θ)) of the stationary
distribution of W (t) as follows:

ϕW (θ) ≡ lim
t→∞

E (exp{iθW (t)}) = lim
t→∞

E (exp{(iθ/a)X(t)}) = ϕX

(
θ

a

)
(11)

Using Eq.(5), we can rewrite Eq.(11) as follows:

ϕW (θ) = ϕX

(
θ

a

)
=

1

E(N)

{
1 + a

sin(θ)

θ
+ a2

1− cos(θ)

θ2

}
(12)

Substituting the exact expression of E(N) into Eq.(12), we get the following result for
ϕW (θ):

ϕW (θ) =
1

a2

2 + a+ 1

{
1 + a

sin(θ)

θ
+ a2

1− cos(θ)

θ2

}
(13)

Note that,
∣∣∣ sin(θ)θ

∣∣∣ ≤ 1, for all θ ∈ R/{0}.
Therefore, the following limit form for the characteristic function (ϕW (θ)) of the sta-

tionary distribution of W (t) is immediately obtained from the Eq.(13), when a→∞:

lim
a→∞

ϕW (θ) =
2(1− cos(θ))

θ2
, θ 6= 0. (14)

Thus, the proof of Theorem 5.1 is completed. �

The below weak convergence theorem is stated based on Theorem 5.1 and Continuity
Theorem (see, Feller [5]).
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Theorem 5.2. Let the conditions of the Proposition 4.1 be satisfied. In this case, the
stationary distribution (QW (x)) of the process W (t) weakly converges to the symmetrical
triangular distribution in the interval [−1, 1], when a→∞. In other words, the following
asymptotic relation can be written:

lim
a→∞

QW (x) ≡ QT (x) ≡ P{T ≤ x} =

{
(1+x)2

2 ; x ∈ [−1, 0)

1− (1−x)2
2 ; x ∈ [0, 1]

Here, the random variable T has symmetrical triangular distribution in the interval [−1, 1].

Proof. Note that, the characteristic function of symmetrical triangular distribution in the
interval [−1; 1] can be calculated as:

ϕT (θ) ≡ E
(
eiθT

)
=

∫ 1

−1
eiθxfT (x)dx =

∫ 1

−1
cos(θx)fT (x)dx

= 2

∫ 1

0
cos(θx)(1− x)dx =

2(1− cos(θ))

θ2
(15)

Here fT (x) is a probability density function of the random variable T , i.e., fT (x) =
1− |x|, x ∈ [−1, 1].

Comparing the result of Eq.(15) and Theorem 5.1, the following result is obtained:

lim
a→∞

ϕW (θ) =
2(1− cos(θ))

θ2
= ϕT (θ) (16)

Thus, according to the continuity theorem, the stationary distribution (QW (x)) of W (t)
weakly converges to the distribution (QT (x)) of the random variable T , when a→∞ (see,
Feller [5]). Thus, the proof of Theorem 5.2 is completed. �

Remark 5.1. Using the definition of W (t) and Theorem 5.2, it can be shown that the
ergodic distributions of X(t) and Y (t) close to the symmetrical triangular distributions in
the intervals [−a, a] and [0, 2a], respectively, when capacity of the buffer stock warehouse
is sufficiently large.

In Section 6, the moments of the stationary distribution of X(t) are discussed in detail.

6. Exact and Asymptotic Results for Moments of Stationary Distribution
of X(t)

The primary goal of this section is to examine the moments of the stationary distribution
of X(t), using Theorem 4.1.

Put E(Xn) ≡ limt→∞E(Xn(t)); n = 1, 2, ... and the following theorem can be stated
about the exact expressions for the moments of the stationary distribution of X(t).

Theorem 6.1. Let the conditions of Proposition 4.1 hold. Then, exact formulas for
moments (E(Xn)) of the stationary distribution of X(t) can be given as:

E(X2n) =
1

E(N)

[
a2n+2

(2n+ 1)(2n+ 2)
+

a2n+1

(2n+ 1)

]
; n = 1, 2, ...

E(X2n−1) = 0; n = 1, 2, ..., (17)

where E(N) = 1 + a+ a2/2 (Feller [5]).

Proof. The Taylor series method will be used to obtain exact expressions for the moments
of the stationary distribution ofX(t). The characteristic function (ϕX(θ)) of the stationary
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distribution of X(t) can be written as follows, using Taylor expansions of sin θ and cos θ
in Eq. (5):

ϕX(θ) = 1 +
∞∑
k=2

1

E(N)

[
a2k−1

(2k − 1)!
+

a2k

(2k)!

]
(iθ)2k−2 (18)

On the other hand, we can write ϕX(θ) as follows:

ϕX(θ) = 1 +

∞∑
k=1

E(X2k−1)

(2k − 1)!
(iθ)2k−1 +

∞∑
k=2

E(X2k−2)

(2k − 2)!
(iθ)2k−2 (19)

Comparing Eq.(18) and Eq.(19), the exact formulas for moments (E(Xn)) of the stationary
distribution of X(t) are derived as Eq.(17).

The proof of Theorem 6.1 is completed. �

The three-term asymptotic expansions for the moments of the stationary distribution
of X(t) are given in the following theorem.

Theorem 6.2. Under the conditions of Proposition 4.1, the three-term asymptotic ex-
pansions for the moments of the stationary distribution of X(t) can be written as follows,
when a→∞:

E(Xk) =

{
2ak

(k+1)(k+2) + 2kak−1

(k+1)(k+2) −
4ak−2

(k+2) + o(ak−2); if k is even

0; if k is odd

Proof. Substituting asymptotic result for 1/E(N) into Eq.(17), the asymptotic expansion
for E(X2n), n = 1, 2, 3, ... can be given as follows, when a→∞:

E(X2n) =
2a2n

(2n+ 1)(2n+ 2)
+

4na2n−1

(2n+ 1)(2n+ 2)
− 4a2n−2

(2n+ 2)
+ o(a2n−2) (20)

So, the proof of Theorem 6.2 is finalized. �

Now, the stationary moments of Y (t) can be addressed in the below section.

7. Main Results for Moments of Stationary Distribution of Y (t)

The main aim of this section is to study the moments of the stationary distribution
of Y (t). Therefore, let us state the following theorem regarding the exact results for
stationary moments of Y (t).

Theorem 7.1. Under the assumptions of Proposition 4.1, the exact formulas for the
moments of the stationary distribution of Y (t) are as follows:

E(Y 2n) =
a2n+2

E(N)
A2n +

a2n+1

E(N)
B2n + a2n, (21)

E(Y 2n−1) =
a2n+1

E(N)
C2n−1 +

a2n

E(N)
D2n−1 + a2n−1, (22)

where E(Y n) ≡ limt→∞E(Y n(t)), E(N) = a2

2 + a+ 1, n = 1, 2, ...,

A2n ≡
n∑
r=1

(
2n
2r

)
(2r + 1)(2r + 2)

; B2n ≡
n∑
r=1

(
2n
2r

)
(2r + 1)

;

C2n−1 ≡
n−1∑
r=1

(
2n− 1
2r

)
(2r + 1)(2r + 2)

; D2n−1 ≡
n−1∑
r=1

(
2n− 1
2r

)
(2r + 1)

.
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Proof. Using the binomial formula and the definition of Y (t), the following equation can
be written:

E(Y n(t)) = E(X(t) + a)n =
n∑

m=0

(
n
m

)
E(Xm(t))an−m (23)

From Eq.(23), the following formula can be written for the stationary moments of Y (t):

E(Y n) = an +

(
n
1

)
an−1E(X) +

(
n
2

)
an−2E(X2) + . . .+

(
n
n

)
E(Xn). (24)

On the other hand, in Theorem 6.1, it has been proved that E(Xk) = 0 when k is odd.
For convenience, let’s calculate the even and odd order moments of Y (t) separately:

E(Y 2k) =
k∑
r=1

(
2k
2r

)
a2k−2rE(X2r) + a2k; (25)

E(Y 2k−1) =

k−1∑
r=1

(
2k − 1

2r

)
a2k−2r−1E(X2r) + a2k−1. (26)

Considering the formula (19) in Eq.(25) and Eq.(26), we can rewrite the even and odd
stationary moments of Y (t) as follows:

E(Y 2n) =
1

E(N)

n∑
r=1

(
2n
2r

)
a2n+2

(2r + 1)(2r + 2)
+

1

E(N)

n∑
r=1

(
2n
2r

)
a2n+1

2r + 1
+ a2n;

E(Y 2n−1) =
1

E(N)

n−1∑
r=1

(
2n− 1

2r

)
a2n+1

(2r + 1)(2r + 2)

+
1

E(N)

n−1∑
r=1

(
2n− 1

2r

)
a2n

2r + 1
+ a2n−1.

Using the definition of the coefficients A2n, B2n, C2n−1, D2n−1 in the above formulas,
the exact formulas for moments of the stationary distribution of Y (t) are derived.

Then, the proof of Theorem 7.1 is completed. �

Now, let us obtain asymptotic expansions for the stationary moments of Y (t).

Theorem 7.2. Under the conditions of Proposition 4.1, the three-term asymptotic ex-
pansions for the moments of the stationary distribution of Y (t) can be written as follows,
when a→∞:

E(Y 2n) = (2A2n + 1)a2n + 2(B2n − 2A2n)a2n−1 − 4(B2n −A2n)a2n−2 + o(a2n−2),

E(Y 2n−1) = (2C2n−1 + 1)a2n−1 + 2(D2n−1 − 2C2n−1)a
2n−2

−4(D2n−1 − C2n−1)a
2n−3 + o(a2n−3),

Here, the coefficients A2n, B2n, C2n−1, D2n−1 are defined as in Theorem 7.1.

Proof. It is known that E(N) = a2/2 + a + 1 (see, Feller [5], p.601)). Therefore, when
a→∞:

1

E(N)
=

2

a2

[
1− 2

a
+

2

a2
+ o

(
1

a2

)]
(27)

Using the Eq.(21) and asymptotic expansion (27), it can be derived, when a→∞:

E(Y 2n) = (2A2n + 1)a2n + 2(B2n −A2n)a2n−1 − 4(B2n −A2n)a2n−2 + o(a2n−2)
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Similarly, using the Eq.(22) and asymptotic expansion (27), the following expansion can
be written, when a→∞:

E(Y 2n−1) = (2C2n−1+1)a2n−1+2(D2n−1−C2n−1)a
2n−2−4(D2n−1−C2n−1)a

2n−3+o(a2n−3)

Thus, the proof of Theorem 7.2 is completed. �

The following additional results can be obtained from Theorem 7.2.

Remark 7.1. The results of this study form a mathematical basis for evaluating the op-
timal buffer stock capacity required to maintain uninterrupted operation of a production
line.

8. Conclusions

This article presents a novel stochastic approach to the buffer stock problem. The level
of buffer stock is represented by a random walk process (Y (t)) with two special barriers
at levels 0 and 2a. Next, the exact expression of the one-dimensional distribution of the
process X(t) ≡ Y (t)−a is found. Then, the ergodicity of the process X(t) is investigated.
Additionally, the exact expression of the characteristic function of the stationary distribu-
tion of X(t) is obtained. Furthermore, it is demonstrated that for sufficiently large values
of a, the ergodic distributions of X(t) and Y (t) approach to symmetrical triangular distri-
butions in the intervals [−a, a] and [0, 2a], respectively. The capacity of the buffer stock
is represented by the number 2a. The exact and asymptotic formulas for the stationary
moments of X(t) and Y (t) are obtained. These mathematical results can be effectively
used to determine the optimal capacity of the buffer stock warehouse, which will allow the
production line to run with the fewest number of interruptions and at the lowest possible
cost while maintaining maximum efficiency. The mathematical techniques used in this
study, could potentially be useful for determining optimal capacity for other buffer stock
problems in the future.
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