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COEFFICIENT ESTIMATE OF THE SECOND HANKEL

DETERMINANT OF LOGARITHMIC COEFFICIENTS FOR THE

SUBCLASS OF CLOSE-TO-CONVEX FUNCTION

S. CIK SOH1, D. MOHAMAD1, H. DZUBAIDI1∗, §

Abstract. Let S denote the subclass of the analytic function and univalent functions
in D, where D is defined as a unit disk, and having the Taylor representation form of
S. In this paper, we will be obtaining the second Hankel determinants, in which the
elements are the logarithmic coefficients mainly for the subclass of the close-to-convex
functions in S.
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1. Introduction

Let S be a subclass of the analytic function A, normalized by f (0) = f ′ (0)− 1 = 0 in
D where D is defined as the unit disk, | z | < 1 such that z ∈ C. If the function f ∈ A,
then f (z) has the series form,

f (z) = z +

∞∑
n=2

anz
n (1)

There are three main subclasses in S that include starlike functions, convex functions, and
close-to-convex functions. We made S represent the class of univalent functions in A. The
f ∈ A becomes a starlike function, when it satisfies the following conditions

Re

(
z f ′ (z)

f (z)

)
> 0, (2)

for z ∈ D. The class of the starlike function is denoted by S∗. It has an important member
as well, as the class S which is the Koebe function that can be defined as follows,

k (z) =
z

( 1− z ) 2
, (3)
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The Koebe function plays significant roles in extreme functions mainly for the furthermost
issues for the class S∗ and S classes. A function f ∈ A is called a convex function, when
it meets the following conditions,

Re

(
1 +

z f ′′ (z)

f ′ (z)

)
> 0, (4)

for z ∈ D. This class is denoted by CV in class S. The function f ∈ A is said to be a
close-to-convex function if there exists a real number, α, where |α | < π/2 and the function
g(z) is convex which meets the following conditions,

Re

(
ei α

f ′ (z)

g′ (z)

)
> 0, (5)

where z ∈ D [12]. In 1916, Alexander indicated that the connection between the starlike
function and convex function where the condition if the function h (z) ∈ S∗ then h (z) =
zg′ (z) where g (z) ∈ CV . (As cited by [18]). Therefore, the condition (5) can be formed
as follows,

Re

(
ei α

zf ′ (z)

h (z)

)
> 0, (6)

where z ∈ D. From there, we know that the starlike function and the convex functions
are close-to-convex functions. We can summarize it by proper inclusion CV ⊆ S∗ ⊆
K ⊆ S. We denote the class of close-to-convex function as K. The classes of starlike
function, convex function and close-to-convex function have a representation that uses the
Caratheodory class P , which is an analytic function p in D by having the following form,

p (z) = 1 +
∞∑
n=1

cnz
n, (7)

where z ∈ D and having a positive real part in D. These classes can be expressed by
coefficients of functions in P . The logarithmic coefficients of function f , can be written
as,

log
f (z)

z
= 2

∞∑
n=1

γnz
n, (8)

where z ∈ D. The logarithmic coefficients show a critical role in Milin’s conjecture (as
cited by [13]). It shows that for the class S, the sharp estimates for the single logarithmic
coefficient, | γ1 | ≤ 1, | γ2 | ≤ 0.635 and are unknown for n = 3, 4, · · · . There are several
results of logarithmic coefficients estimates that have been established, for example, the
results in [1], [2], [4], [7], [8], [9], [15], [16], [20] and [21].

The Hankel matrices and determinants play a significant role and have several appli-
cations in a number of branches of mathematics. Many researchers have established the
Hankel determinants for their classes. For example, the results of [3], [5], [10], [11], [14],
[17] and [19].

Recently, authors in [13] had obtained the sharp result of the Hankel determinants
whose entries are the logarithmic coefficient of f ∈ S, that is,

H q, n (Ff/2) =

∣∣∣∣∣∣∣∣∣
γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q
...

...
...

...
γn +q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣ ,
where q, n ∈ N . In their research, they dealt with finding the Hankel determinants
for the classes of starlike function and convex function. Additionally, authors in [3] had
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obtained the second Hankel determinant of logarithmic coefficient for various subclasses of
analytic function with accurate results. From there, we were motivated to find the Hankel
determinant for the subclass of S especially for the class of close-to-convex functions.

In this paper, we have to deal with H 2, 1 (Ff/2) = γ1 γ3 − γ22 by using a subclass of
close-to-convex function that is defined as follows,

Re
{ (

1− z2
)
f ′ ( z )

}
> 0 ,

where z ∈ D. We denoted this subclass as F1. This class have been studied by [4], [7],
[14] and [15] on the estimation of logarithmic coefficients. This class has been discovered
by Ozaki (As cited by [7]) as a valuable criteria of univalence. This class has a good
geometrical interpretation, and it plays a major role in the geometric theory. The following
lemmas will be used in order to obtain the second Hankel determinant.

Lemma 1.1 (As cited by [13]). If p ∈ P is in the form (7) with c1 ≥ 0, then

c1 = 2ζ1, (9)

c2 = 2ζ21 + 2
(
1− ζ21

)
ζ2, (10)

and

c3 = 2ζ31 + 4
(
1− ζ21

)
ζ1ζ2 − 2

(
1− ζ21

)
ζ1ζ

2
2 + 2

(
1− ζ21

) (
1− |ζ2|2

)
ζ3 (11)

for some ζ1 ∈ [ 0 , 1 ] and ζ2, ζ3 ∈ D̄. For ζ1 ∈ T , there is a unique function p ∈ P with
c1 and c2 as in (9)-(10), namely,

p (z) =
1 +

(
ζ̄1ζ2 + ζ1

)
z + ζ2z

2

1 +
(
ζ̄1ζ2 − ζ1

)
z − ζ2z2

, z ∈ D.

For ζ1, ζ2 ∈ D and ζ3 ∈ T , there is a unique functionp ∈ P with c1, c2 and c2 as in
(9)-(11)

p (z) =
1 +

(
ζ̄2ζ3 + ζ̄1ζ2 + ζ1

)
z +

(
ζ̄1ζ3 + ζ1ζ̄2ζ3 + ζ2

)
z2 + ζ3z

3

1 +
(
ζ̄2ζ3 + ζ̄1ζ2 − ζ1

)
z +

(
ζ̄1ζ3 − ζ1ζ̄2ζ3 − ζ2

)
z2 − ζ3z3

, z ∈ D. (12)

Lemma 1.2 (As cited by [3]). Given the real numbers A, B, C, let

Y (A,B,C) := max
{ ∣∣A+B z + C z2

∣∣+ 1− | z |2 : z ∈ D̄
}
.

I . If AC ≥ 0, then

Y (A,B,C) =

{
|A |+ |B |+ |C | , |B | ≥ 2 (1− |C |) ,
1 + |A |+ B2

4(1−|C |) , |B | < 2 (1− |C |) .

II . If AC < 0, then

Y (A,B,C) =


1− |A |+ B2

4(1−|C |) , −4AC
(

1
C2 − 1

)
≤ B2 ∧ |B | < 2 (1− |C |) ,

1 + |A |+ B2

4(1−|C |) , B2 < min
{

4 (1 + |C |)2 , −4AC
(

1
C2 − 1

)}
R (A,B,C) otherwise,

where

R (A,B,C) :=


|A |+ |B | − |C | , |C | (|B |+ 4 |A |) ≤ |AB | ,
− |A |+ |B |+ |C | , |AB | ≤ |C | (|B | − 4 |A |) ,
(|C |+ |A |)

√
1− B2

4AC otherwise.
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The following theorem will be discussed on the H 2, 1 (Ff/2) for the subclass of the close-
to-convex function.

Theorem 1.1. If the function f ∈ F1, then∣∣ γ1γ3 − γ22 ∣∣ ≤ 0.05364.

The inequality is sharp.

Proof. We have, (
1− z2

)
f ′ (z) = p (z) (13)

By differentiating the equation (13) and computing the coefficients of z2, z3, and z4, we
get

a2 =
1

2
c1, (14)

a3 =
1

3
+

1

3
c2, (15)

and

a4 =
1

4
c3 +

1

4
c1 (16)

respectively. Note that, the logarithmic coefficients for γ1, γ2, and γ3 give

γ1 =
1

2
a2, (17)

γ2 =
1

2

(
a3 −

1

2
a22

)
, (18)

and

γ3 =
1

2

(
a4 − a2a3 +

1

3
a32

)
(19)

respectively. Then, substitute the equation of (14), (15), and (16) into the logarithmic
coefficients (17) - (18), yields

γ1 =
1

4
c1, (20)

γ2 =
1

6
+

1

6
c2 −

1

16
c21, (21)

and

γ3 =
1

48
c31 +

1

48
(2− 4c2) c1 +

1

8
c3. (22)

Then, by applying Lemma 1.1 into the logarithmic coefficient of the equation (20) – (22),
we have

γ1 =
1

2
ζ1 (23)

γ2 =
1

6
+

1

12
ζ21 +

1

3

(
1− ζ21

)
ζ2 (24)

and

γ3 =
1

12
ζ31 +

1

12

(
1 +

(
2ζ2 − 3ζ22

) (
1− ζ21

) )
ζ1 +

1

4

(
1− ζ21

) (
1− |ζ2|2

)
ζ3 (25)

Note that, the second Hankel determinant denotes H2,1 (Ff/2) = γ1γ3 − γ22 . By relation
of the equation (23) - (25), we have

γ1γ3 − γ22 = 5
144ζ

4
1 + 1

144

(
2 +

(
4 ζ2 − 18 ζ22

) (
1− ζ21

) )
ζ21

+1
8

(
1− ζ21

) (
1− |ζ2|2

)
ζ1 ζ3 − 1

9

( (
1− ζ21

)
ζ2 + 1

2

)2 (26)
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A. Assuming that ζ1 = 1 , then by the equation (26),∣∣ γ1γ3 − γ22 ∣∣ =
1

48
.

B. Assuming that ζ1 = 0, then we have the following inequality∣∣ γ1γ3 − γ22 ∣∣ =

∣∣∣∣∣−
(

1

6
+

1

3
ζ2

)2
∣∣∣∣∣

≤ 1

9
ζ22 +

1

9
ζ2 +

1

36
= ψ1 (ζ2)

By using elementary calculus to find the extreme point for the function ψ1 (ζ2), we found
that,

max ψ1 ( ζ2 ) = ψ1 ( 0.5 ) =
1

9
≈ 0.1111.

Therefore, we can say that ∣∣ γ1γ3 − γ22 ∣∣ ≤ 1

9
≈ 0.1111.

C. Assuming that ζ1 ∈ ( 0 , 1 ). Since the inequality is | ζ3 | ≤ 1, the equation (26) will
return as ∣∣ γ1γ3 − γ22 ∣∣ ≤ 5

144ζ
4
1 + 1

144

(
2 +

(
4 ζ2 − 18 ζ22

) (
1− ζ21

) )
ζ21

+1
8

(
1− ζ21

) (
1− |ζ2|2

)
ζ1 − 1

9

( (
1− ζ21

)
ζ2 + 1

2

)2
=

1

8
ζ1
(

1− ζ21
) [ ∣∣A+Bζ2 + Cζ22

∣∣+ 1− |ζ2|2
]

+
1

36
, (27)

where

A =
1

ζ1
(

1− ζ21
) ( 1

9
ζ21 +

5

18
ζ41

)
,

B =
1

ζ1

(
2

9
ζ21 −

8

9

)
,

and

C =
1

ζ1

(
−1

9
ζ21 −

8

9

)
.

We use Lemma 1.2 only for case II as AC < 0. Before that, we know that the absolutes
of A, B and C give,

A =
1

18

(
4 ζ21(

1− ζ21
) 2 +

20 ζ41(
1− ζ21

) 2 +
25 ζ61(

1− ζ21
) 2
) 1

2

,

B =
2

9

(
ζ21 − 8 +

16

ζ21

) 1
2

,

and

C =
1

9

(
ζ21 + 16 +

64

ζ21

) 1
2

.

C1. Note that the following inequality gives us

−4AC

(
1

C2
− 1

)
−B2 ≤ 6 ζ61 − 636 ζ41 − 64 ζ21 − 512

81
(
ζ21 + 8

)
ζ21

≤ 0,
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and it is equivalent to 6 ζ61 − 636 ζ41 − 64 ζ21 − 512 ≤ 0, which is false for ζ1 ∈ ( 0 , 1 ). Same
goes to the inequality |B | < 2 (1− |C |) gives

2

9

√
ζ21 − 8 + 16

ζ21

9
+

2

9

√
ζ21 + 16 + 64

ζ21

9
− 2 < 0,

which is false for ζ1 ∈ ( 0 , 1 ).
C2. Next, we look into another case for the following inequality

B2 < min

{
4 (1 + |C |)2 , −4AC

(
1

C2
− 1

)}
.

From there, we know that

4 (1 + |C |)2 =

4

(
9 +

√
( ζ21+8 )

2

ζ21

)2

81
> 0, and −4AC

(
1

C2
− 1

)
=

10 ζ41 − 636 ζ21 − 256

81 ζ21 + 648
< 0.

Now, we can say that

B2 + 4AC

(
1

C2
− 1

)
=
−6 ζ61 + 636 ζ41 + 64 ζ21 + 512

81
(
ζ21 + 8

)
ζ21

< 0,

which is false for ζ1 ∈ ( 0 , 1 ).
C3. We found that the following inequality

|C | (|B |+ 4 |A |)− |AB | = 2
81

(
( ζ21+8 )

2

ζ21

) 1
2
(

( ζ21−4 )
2

ζ21

) 1
2

+ 2
81

(
( ζ21+8 )

2

ζ21

) 1
2
(
ζ21( 5 ζ21+2 )

2

( ζ21−1 )
2

) 1
2

− 1
81

(
(5 ζ41−18 ζ21−8 )

2

( ζ21−1 )
2

) 1
2

≤ 0 ,

gives
7ζ61 + 108 ζ41 − 32 ζ21 + 64

ζ21
(
ζ21 − 1

) ≤ 0

which is false for ζ1 ∈ ( 0 , 1 ).
C4. Note that the following inequality gives

|AB | − |C | (|B | − 4 |A |) = 1
81

(
( 5ζ41−18ζ21−8 )

2

( ζ21−1 )
2

) 1
2

− 2
81

(
( ζ21+8 )

2

ζ21

) 1
2
(

( ζ21−4 )
2

ζ21

) 1
2

+ 2
81

(
( ζ21+8 )

2

ζ21

) 1
2
(
ζ21( 5 ζ21+2 )

2

( ζ21−1 )
2

) 1
2

≤ 0

and it is equivalent to 13 ζ61 + 60 ζ41 + 96 ζ21 − 64 ≤ 0. From there, we know that the
inequality has a real root, that is

ζ1 = 1

( 13 )
(
309+( 13 ) ( 565 )

1
2

) 1
6

(
( 13 )

1
2 ( 2 )

1
6

(
( 22 )

1
3

(
309 + ( 13 ) ( 565 )

1
2

) 2
3

− ( 10 ) ( 2 )
2
3

(
309 + ( 13 ) ( 565 )

1
2

) 1
3 − 4

) 1
2

)
≈ 0.70443 ,

and it satisfies ζ1 ∈ ( 0 , 1 ). Then by the equation (27) , we have∣∣ γ1γ3 − γ22 ∣∣ ≤ 1

8
ζ1
(

1− ζ21
)

(− |A |+ |B |+ |C | ) +
1

36
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= ψ2 ( ζ1 ) +
1

36
,

where ψ2 ( ζ1 ) = 1
144 ζ1

(
1− ζ21

) ( ζ1 ( 5 ζ21 +2)
( ζ21−1 )

− 4 ( ζ21−4 )
ζ1

− 2 (ζ21+8 )
ζ1

)
, and then gives

∣∣ γ1γ3 − γ22 ∣∣ ≤ ψ2 ( 0.70443 ) +
1

36
≈ 0.05364.

This concludes the proof. �

2. Conclusions

By summarising the inequality in (26), it follows from the portion A until C, the equality
for the function f ∈ A given by the equation (13), where p ∈ P and has the form of (7)
with ζ1 ≈ 0.70443, ζ2 = 1

9 ≈ 0.1111 and ζ3 = 1 that gives

p (z) =
1 + ( 0.7827 ) z + ( 0.1111 ) z2

1− (0.6262) z − ( 0.1111 ) z2
, z ∈ D.
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