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ON THE NORMS OF R-CIRCULANT MATRICES INVOLVING

BALANCING AND LUCAS-BALANCING NUMBERS

KALIKA PRASAD1, MUNESH KUMARI1, HRISHIKESH MAHATO1∗, §

Abstract. In this article, we investigate the r-circulant matrices B[r] and C[r] involv-
ing the balancing and Lucas-balancing numbers respectively with arithmetic indices. For
matrices B[r] and C[r], we establish the direct formula for the eigenvalues, the determi-
nant, the Euclidean norm and the bound for the spectral norm. Furthermore, we extend
the concept to right circulant matrices and skew-right circulant matrices and, investigate
all the above results including the sum identities and divisibility.
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1. Introduction

Special number sequences like Fibonacci, Lucas, Horadam, Pell, Jacobsthal, Mersenne,
etc., are widely studied topics in number theory. Especially generalizations of a number
sequence, establishing new identities and their application in other branches have become
very popular among the researchers (for example, see [1, 5, 11, 33, 20, 17]). Interestingly,

Özkan, et al. [22] studied the relationship of new families for k-Lucas numbers with clas-
sical Fibonacci and Lucas numbers, later in [23] they studied new families of the Gauss
k-Jacobsthal and Gauss k-Jacobsthal-Lucas numbers. In [26], Prasad et. al. proposed
a generalized recursive matrix made with k-step Fibonacci numbers and shown their ap-
plication in cryptography, later in [27], they extended the concept to generalized Lucas
matrices. In [28], Ray et. al. studied the image scrambling with the balancing numbers
and balancing transformations.

Construction of special matrices with a number sequence, investigation of its algebraic
properties and their application in cryptography, image processing, signal processing, etc.,
are very interesting research subjects in matrix analysis, some work in this direction can
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be seen in [19, 24, 13]. In recent years, several articles on the construction of Toeplitz
matrices, Hankel matrices and r-circulant matrices involving a number sequence appeared.
The study shows the investigation of properties like some norms, the closed form formula
for eigenvalues and the determinants involving the number sequences (see [7, 8, 9, 14, 15]).
In the study of the construction of these matrices, a traditional way is to pick up a
number sequence and make its terms as the entries of matrices and then investigate further
properties.

Recently, A.C.F. Bueno studied the right circulant matrices with Pell and Pell-Lucas
numbers [8] and Fibonacci numbers [6], after that they investigated r-circulant matrices
with Fibonacci & Lucas numbers in [7] and Horadam numbers in [9] having arithmetic
indices. Some works in this direction and their extension are due to Akbulak, et.al.[2],
Gökbaş, et.al.[14, 15], Shen[30] and Solak[31].

These special matrices are widely used in solving different types of differential equations
[32, 12], image and signal processing [3, 10] and vibration analysis[21], etc.

Two of such fascinating number sequences are the balancing numbers and Lucas-
balancing numbers. The concept of balancing numbers and balancers was originally in-
troduced in 1999 by Behera et al.[4].

A natural number n is said to be balancing number [4] with balancer r if it satisfy the
Diophantine equation

1 + 2 + 3 + ...+ (n− 1) = (n+ 1) + (n+ 2) + ...+ (n+ r).

The Balancing number Bn and Lucas-balancing number Cn are defined by the recurrence
relation

Bn+2 = 6Bn+1 −Bn, n ≥ 0 with B0 = 0, B1 = 1, (1)

Cn+2 = 6Cn+1 − Cn, n ≥ 0 with C0 = 1, B1 = 3. (2)

The first few terms of balancing and Lucas-balancing numbers are

n 0 1 2 3 4 5 6 7 8 ...
Bn 0 1 6 35 204 1189 6930 40391 235416 ...
Cn 1 3 17 99 577 3363 19601 114243 665857 ...

The closed form formula for any number sequences is a very useful tool to derive identities.
For balancing and Lucas-balancing numbers, the closed form formulas(Binet’s formula)
are, respectively, given[29] as

Bn =
αn
1 − αn

2

α1 − α2
=
αn
1 − αn

2

2
√

8
and Cn =

αn
1 + αn

2

2
, (3)

where α1 = 3 +
√

8 and α2 = 3−
√

8. And, also we have

α1 + α1 = 6, α1 − α1 = 2
√

8 and α1α2 = 1.

Definition 1.1. [7] A r-circulant matrix is defined as

P [r] =



c0 c1 c2 ... cn−2 cn−1
rcn−1 c0 c1 ... cn−3 cn−2
rcn−2 rcn−1 c0 ... cn−4 cn−3

...
...

...
. . .

...
...

rc2 rc3 rc4 ... c0 c1
rc1 rc2 rc3 ... rcn−1 c0


,

where r ∈ C− {0}. The r-circulant matrix P [r] can be determined by the vector
~a = (c0, c1, c2, ..., cn−2, cn−1) where ~a is called the circulant vector.
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Definition 1.2. For r = 1 and r = −1, the r-circulant matrices are known as the right
circulant matrices and the skew-right circulant matrices, respectively.

The r-circulant matrices are the Toeplitz matrices[16] and they are diagonal-constant
matrices.

Definition 1.3. For any matrix A = [aij ]n×n, the Euclidean norm of A is denoted by
||A||E and defined as

||A||E =

√√√√ n−1∑
i,j=0

|aij |2

and the spectral norm of A, denoted by ||A||2 is defined by

||A||2 = max{|λi|},

where i = 0, ..., n− 1 and λ′is are eigenvalues of A.

Definition 1.4. The eigenvalues of r-circulant matrices P[r] are given as

λt =
n−1∑
i=0

ci(ρω
−t)i

where ρ is the n-th root of r, ω is the n-th root of unity and t = 0, 1, ..., n− 1.

Lemma 1.1. By the virtue of [7], the Euclidean norm for r-circulant matrices P[r] is
given by

||P [r]||E =

√√√√n−1∑
i=0

|ci|2[n− i(1− |r|2)]. (4)

Lemma 1.2. For any x and y, we have
∏n−1

i=0 (x− yρω−i) = xn − ryn.

The following identities of the balancing numbers and Lucas-balancing numbers [25, 4]
will be used to prove our main result.

Lemma 1.3. For all integers m and n, we have

(1) Bn =
αn
1 − αn

2

2
√

8
and Cn =

αn
1 + αn

2

2
,

(2) Bm−nBm+n = (Bm −Bn)(Bm +Bn),
(3) Cn−mCn+m − C2

n = 1
2(C2m − 1),

(4) C2n = 2C2
n − 1 (if m = n in (3)).

2. Main results

Let us define r-circulant matrices B[r] = [bij ]
n
i,j=1 and C[r] = [cij ]

n
i,j=1 with balancing

(Bn) and Lucas-balancing (Cn) numbers, respectively, as,

bij =

{
Bs+(j−i)t : i ≤ j
rBs+(n+j−i)t : i > j

and cij =

{
Cs+(j−i)t : i ≤ j
rCs+(n+j−i)t : i > j
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i.e of the form

B[r] =



Bs Bs+t Bs+2t ... Bs+(n−2)t Bs+(n−1)t
rBs+(n−1)t Bs Bs+t ... Bs+(n−3)t Bs+(n−2)t
rBs+(n−2)t rBs+(n−1)t Bs ... Bs+(n−4)t Bs+(n−3)t

...
...

...
. . .

...
...

rBs+2t rBs+3t rBs+4t ... Bs Bs+t

rBs+t rBs+2t rBs+3t ... rBs+(n−1)t Bs


n×n

, (5)

C[r] =



Cs Cs+t Cs+2t ... Cs+(n−2)t Cs+(n−1)t
rCs+(n−1)t Cs Cs+t ... Cs+(n−3)t Cs+(n−2)t
rCs+(n−2)t rCs+(n−1)t Cs ... Cs+(n−4)t Cs+(n−3)t

...
...

...
. . .

...
...

rCs+2t rCs+3t rCs+4t ... Cs Cs+t

rCs+t rCs+2t rCs+3t ... rCs+(n−1)t Cs


n×n

, (6)

where r ∈ C− {0} and s, t are arbitrary integer.
In this article, we investigate the above r-circulant matrices B[r] and C[r] with entries

balancing numbers(Bn) and Lucas-balancing numbers(Cn), respectively.
Our aim is to obtain the eigenvalues, determinants, Euclidean norms and the spectral

norm for the matrices B[r] and C[r].

Lemma 2.1. For integers s and t, we have

GB(s, t) =
1

2
√

8
(αs

1α
t
2 − αt

1α
s
2) =


Bs−t : s > t

0 : s = t

Bt−s : s < t

and

GC(s, t) =
1

2
(αs

1α
t
2 + αt

1α
s
2) =


Cs−t : s > t

1 : s = t

Ct−s : s < t

.

Proof. It can be easily proved using the relation α1α2 = 1 and (1) of Lemma 1.3. �

In the following subsection, we obtain the eigenvalues for matrices B[r] and C[r].

2.1. Eigenvalues of B[r] and C[r].

Proposition 2.1. The eigenvalues of r-circulant matrices B[r] are

λk(r) =
Bs − rBs+nt − (GB(s, t)− rBs+(n−1)t)ρω

−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)
,

where ρ is the n-th root of r, ω is the n-th root of unity and k = 0, 1, 2, ..., n− 1.
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Proof. From Definition 1.4, we have

λk(r) =
n−1∑
m=0

Bs+mt(ρω
−k)m =

n−1∑
m=0

[
αs+mt
1 − αs+mt

2

2
√

8

]
(ρω−k)m (using Lemma 1.3)

=
1

2
√

8

[
αs
1

n−1∑
m=0

(αt
1ρω

−k)m − αs
2

n−1∑
m=0

(αt
2ρω

−k)m

]

=
1

2
√

8

[
αs
1

(
1− (αt

1ρω
−k)n

1− αt
1ρω

−k

)
− αs

2

(
1− (αt

2ρω
−k)n

1− αt
2ρω

−k

)]
=

1

2
√

8

[
αs
1

(
1− rαnt

1

1− αt
1ρω

−k

)
− αs

2

(
1− rαnt

2

1− αt
2ρω

−k

)]
=

1

2
√

8

[(
αs
1 − rα

s+nt
1

1− αt
1ρω

−k

)
−
(
αs
2 − rα

s+nt
2

1− αt
2ρω

−k

)]
=

1

2
√

8

(αs
1 − rα

s+nt
1 − αs

2 + rαs+nt
2 − (αs

1α
t
2 − αt

1α
s
2)ρω

−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)

+
r(α

s+(n−1)t
1 − αs+(n−1)t

2 )ρω−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)

)
=

Bs − rBs+nt − (GB(s, t)− rBs+(n−1)t)ρω
−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)
(using (1) of Lemma 1.3),

where GB(s, t) =
1

2
√

8
(αs

1α
t
2 − αt

1α
s
2) =


Bs−t : s > t

0 : s = t

Bt−s : s < t

.

This completes the proof. �

For r = 1 and r = −1 in the above proposition, we get the eigenvalues for the right cir-
culant and the skew-right circulant balancing matrices respectively, given in the following
corollary.

Corollary 2.1. The eigenvalues of circulant matrices B[1] and B[-1] are, respectively,

λk(B[1]) =
Bs −Bs+nt − (GB(s, t)−Bs+(n−1)t)ω

−k

(1− αt
1ω
−k)(1− αt

2ω
−k)

and (7)

λk(B[−1]) =
Bs +Bs+nt − (GB(s, t) +Bs+(n−1)t)τω

−k

(1− ταt
1ω
−k)(1− ταt

2ω
−k)

, (8)

where τ is n-th root of −1 and k = 0, 1, 2, ..., n− 1.

Corollary 2.2. For k = 0 in eqn.(7), we have

n−1∑
m=0

Bs+mt =
Bs −Bs+nt −GB(s, t) +Bs+(n−1)t

2(1− Ct)
.

Proof. Using α1α2 = 1 and (1) of Lemma 1.3, we write

(1− αt
1)(1− αt

2) = 1 + αt
1α

t
2 − (αt

1 + αt
2)

= 2− 2Ct.

As required. �
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Proposition 2.2. The eigenvalues of r-circulant matrices C[r] are given by

σk(r) =
Cs − rCs+nt − (GC(s, t)− rCs+(n−1)t)ρω

−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)
,

where ρ is the n-th root of r, ω is the n-th root of unity and k = 0, 1, 2, ..., n− 1.

Proof. The argument is similar to Proposition 2.1 where GC(s, t) is as defined in the
Lemma 2.1. �

Here, the eigenvalues for the right circulant and the skew-right circulant Lucas-balancing
matrices are given by setting r = 1 and r = −1 in the above proposition as follows.

Corollary 2.3. The eigenvalues of circulant matrices C[1] and C[-1] are, respectively,

σk(C[1]) =
Cs − Cs+nt − (GC(s, t)− Cs+(n−1)t)ω

−k

(1− αt
1ω
−k)(1− αt

2ω
−k)

and (9)

σk(C[−1]) =
Cs + Cs+nt − (GC(s, t) + Cs+(n−1)t)τω

−k

(1− ταt
1ω
−k)(1− ταt

2ω
−k)

, (10)

where τ is n-th root of −1 and k = 0, 1, 2, ..., n− 1.

Thus, for k = 0 in eqn.(9), we obtain the finite sum formula for Lucas balancing numbers
having arithmetic indices as follows

n−1∑
m=0

Cs+mt =
Cs − Cs+nt −GC(s, t) + Cs+(n−1)t

2(1− Ct)
.

Now, we aim to obtain the determinant and norms of r-circulant balancing and Lucas-
balancing matrices.

2.2. Determinants and norms of B[r] and C[r].

Theorem 2.1. The determinants of r-circulant matrices B[r] and C[r] are given, respec-
tively, by

det(B[r]) =
(Bs − rBs+nt)

n − r(GB(s, t)− rBs+(n−1)t)
n

1 + r2 − 2rCnt
and (11)

det(C[r]) =
(Cs − rCs+nt)

n − r(GC(s, t)− rCs+(n−1)t)
n

1 + r2 − 2rCnt
. (12)

Proof. We establish the result using the fact that the determinant is a product of eigen-
values. Here,

n−1∏
k=0

λk(r) =

n−1∏
k=0

(
Bs − rBs+nt − (GB(s, t)− rBs+(n−1)t)ρω

−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)

)

=
(Bs − rBs+nt)

n − r(GB(s, t)− rBs+(n−1)t)
n

(1− rαnt
1 )(1− rαnt

2 )
(using Lemma 1.2)

=
(Bs − rBs+nt)

n − r(GB(s, t)− rBs+(n−1)t)
n

1 + r2 − 2rCnt
.

For det(C[r]), the argument is the same as first part.
This completes the proof. �

As a special case of Theorem 2.1, for r = 1 and r = −1 the determinant of right
circulant and skew-right circulant matrices have been obtained in the following corollary.
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Corollary 2.4. The determinant of matrices B[1] and B[-1] are, respectively,

det(B[1]) =
(Bs −Bs+nt)

n − (GB(s, t)−Bs+(n−1)t)
n

2(1− Cnt)
and

det(B[−1]) =
(Bs +Bs+nt)

n + (GB(s, t) +Bs+(n−1)t)
n

2(1 + Cnt)
.

Corollary 2.5. The determinant of matrices C[1] and C[-1] are, respectively,

det(C[1]) =
(Cs − Cs+nt)

n − (GC(s, t)− Cs+(n−1)t)
n

2(1− Cnt)
and

det(C[−1]) =
(Cs + Cs+nt)

n + (GC(s, t) + Cs+(n−1)t)
n

2(1 + Cnt)
.

2.3. Matrix norms. In the case of r-circulant matrices B[r] and C[r], we have the fol-
lowing results.

The norm ||.||1 and ||.||∞ for a matrix A = [aij ]m×n are given[18], respectively, by

||A||1 = max
1≤j≤n

m∑
i=1

|aij | and ||A||∞ = max
1≤j≤m

n∑
i=1

|aij |. (13)

Theorem 2.2. For balancing numbers Bn and Lucas-balancing numbers Cn, we have

||B[r]||1 = ||B[r]||∞ =

{
Bs + |r|

∑n−1
m=1Bs+mt : if |r| > 1,∑n−1

m=0Bs+mt : if |r| ≤ 1,

||C[r]||1 = ||C[r]||∞ =

{
Cs + |r|

∑n−1
m=1Cs+mt : if |r| > 1,∑n−1

m=0Cs+mt : if |r| ≤ 1.

Now, in the following theorems, we establish the euclidean norm and bounds for the
spectral norm.

Theorem 2.3. The Euclidean norm of r-circulant matrices B[r] is given by

||B[r]||E =

√√√√n−1∑
m=0

(
C2
s+mt − 1

8

)
[n−m(1− |r|2)].

Proof. From Lemma 1.1, we have

||B[r]||2E =
n−1∑
m=0

|Bs+mt|2[n−m(1− |r|2)]

=
n−1∑
m=0

(
αs+mt
1 − αs+mt

2

2
√

8

)2

[n−m(1− |r|2)] (using (1) of Lemma 1.3)

=

n−1∑
m=0

(
α
2(s+mt)
1 + α

2(s+mt)
2 − 2

32

)
[n−m(1− |r|2)]

=

n−1∑
m=0

(
C2(s+mt) − 1

16

)
[n−m(1− |r|2)]

=
n−1∑
m=0

(
2C2

s+mt − 2

16

)
[n−m(1− |r|2)] (using (4) of Lemma 1.3).
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This completes the proof. �

Special case of above theorem for r = ±1 gives the Euclidean norm of the right circulant
and the skew right circulant matrices with balancing numbers as

||B[±1]||E =

√√√√n
n−1∑
m=0

(
C2
s+mt − 1

8

)
.

Theorem 2.4. The Euclidean norm of r-circulant matrices C[r] is given by

||C[r]||E =

√√√√n−1∑
m=0

(
C2(s+mt) + 1

2

)
[n−m(1− |r|2)].

Proof. The argument is the same as the previous theorem. �

Corollary 2.6. The Euclidean norm of right circulant and skew right circulant matrices
with Lucas-balancing numbers are given by

||C[±1]||E =

√√√√n

n−1∑
m=0

C2
s+mt.

Proof. Setting r = ±1 in the Theorem 2.4, we get

||C[±1]||E =

√√√√n−1∑
m=0

(
C2(s+mt) + 1

2

)
n

=

√√√√n

2

n−1∑
m=0

(
C2(s+mt) + 1

)

=

√√√√n
n−1∑
m=0

C2
s+mt (using (4) of Lemma 1.3).

As required. �

2.3.1. Bounds for the spectral norms.

Theorem 2.5. Bounds for the spectral norms of r-circulant matrices B[r] are given by

||B[r]||2 ≤
|Bs|+ |r||Bs+nt|+ |r|

1
n |GB(s, t)|+ |r|

1
n
+1|Bs+(n−1)t|

|ξ(ρ)|2
, (14)

where ξ(ρ) = min{|1− αt
1ρω

−k|, |1− αt
2ρω

−k|}.

Proof. From Proposition 2.1, for k = 0, 1, 2, ..., n− 1, we write

|λk(r)| =

∣∣∣∣∣Bs − rBs+nt − (GB(s, t)− rBs+(n−1)t)ρω
−k

(1− αt
1ρω

−k)(1− αt
2ρω

−k)

∣∣∣∣∣
≤
|Bs|+ |r||Bs+nt|+ |r|

1
n (|GB(s, t)|+ |r||Bs+(n−1)t|)

|(1− αt
1ρω

−k)||(1− αt
2ρω

−k)|

≤
|Bs|+ |r||Bs+nt|+ |r|

1
n |GB(s, t)|+ |r|

1
n
+1|Bs+(n−1)t|

|ξ(ρ)|2
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where ξ(ρ) = min{|1− αt
1ρω

−k|, |1− αt
2ρω

−k|}. Thus, we can conclude that

||B[r]||2 ≤
|Bs|+ |r||Bs+nt|+ |r|

1
n |GB(s, t)|+ |r|

1
n
+1|Bs+(n−1)t|

|ξ(ρ)|2
.

As required. �

Theorem 2.6. Bounds for the spectral norms of r-circulant matrices C[r] are given by

||C[r]||2 ≤
|Cs|+ |r||Cs+nt|+ |r|

1
n |GC(s, t)|+ |r|

1
n
+1|Cs+(n−1)t|

|ξ(ρ)|2
, (15)

where ξ(ρ) = min{|1− αt
1ρω

−k|, |1− αt
2ρω

−k|}.

Proof. The argument is similar to the above theorem, where GC(s, t) is as defined in the
Lemma 2.1. �

As a special case of above theorems, we have the following corollary.

Corollary 2.7. Bounds for spectral norms of right circulant matrices B[1] & C[1] and
skew-right circulant matrices B[-1] & C[-1] are respectively

||B[1]||2 ≤
|Bs|+ |Bs+nt|+ |GB(s, t)|+ |Bs+(n−1)t|

|ξ(ω)|2
, (16)

||B[−1]||2 ≤
|Bs|+ |Bs+nt|+ |GB(s, t)|+ |Bs+(n−1)t|

|ξ(τ)|2
, (17)

||C[1]||2 ≤
|Cs|+ |Cs+nt|+ |GC(s, t)|+ |Cs+(n−1)t|

|ξ(ω)|2
, (18)

||C[−1]||2 ≤
|Cs|+ |Cs+nt|+ |GC(s, t)|+ |Cs+(n−1)t|

|ξ(τ)|2
, (19)

where ξ(ω) = min{|1−αt
1ω
−k|, |1−αt

2ω
−k|}, ξ(τ) = min{|1−αt

1τω
−k|, |1−αt

2τω
−k|} and

GB(s, t), GC(s, t) are as defined in the Lemma 2.1.

Theorem 2.7. If r ∈ Z, then (Bs − rBs+nt)
n − r(GB(s, t) − rBs+(n−1)t)

n and (Cs −
rCs+nt)

n − r(GC(s, t)− rCs+(n−1)t)
n are multiple of 1 + r2 − 2rCnt.

Proof. Since, the entries of matrices B[r] and C[r] are integers and we know that the
determinant of matrices whose entries are integers is an integer. So det(B[r]), det(C[r]) ∈
Z. Hence

(Bs − rBs+nt)
n − r(GB(s, t)− rBs+(n−1)t)

n

1 + r2 − 2rCnt
∈ Z

and
(Cs − rCs+nt)

n − r(GC(s, t)− rCs+(n−1)t)
n

1 + r2 − 2rCnt
∈ Z.

It gives that (Bs− rBs+nt)
n− r(GB(s, t)− rBs+(n−1)t)

n and (Cs− rCs+nt)
n− r(GC(s, t)−

rCs+(n−1)t)
n are multiple of 1 + r2 − 2rCnt. �

By setting r = 1 and r = −1 in the above theorem, we have the following corollary.

Corollary 2.8. For balancing numbers Bn and Lucas-balancing numbers Cn, we have

(1) (Bs−Bs+nt)
n−(GB(s, t)−Bs+(n−1)t)

n and (Cs−Cs+nt)
n−(GC(s, t)−Cs+(n−1)t)

n

are multiple of 2(1− Cnt).
(2) (Bs+Bs+nt)

n+(GB(s, t)+Bs+(n−1)t)
n and (Cs+Cs+nt)

n+(GC(s, t)+Cs+(n−1)t)
n

are multiple of 2(1 + Cnt).
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3. Conclusion

In summary, here we have studied the r-circulant matrices B[r] and C[r] involving the
balancing and Lucas-balancing numbers respectively with arithmetic indices. For matrices
B[r] and C[r], we have established the direct formula for the eigenvalues, the determinant,
the Euclidean norm and the bound for the spectral norm. Furthermore, we have extended
the concept to right circulant matrices and skew-right circulant matrices and established
all the above results. Lastly, we have obtained some interesting results and identities
involving sum identities and divisibility.
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