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MURAT İŞLEYEN

B.S., Electronics Engineering, Işık University, 2008
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A COOPERATIVE COMMUNICATION APPROACH

TO COGNITIVE RADIO

Abstract

Cognitive radio, whose main idea is to have intelligent devices utilize the lim-

ited resources, such as frequency spectrum in wireless channels, is becoming a

groundbreaking technology. The aim of this thesis is to apply the cooperative

communication techniques to the systems which consist of cognitive radio termi-

nals and to develop new cooperative encoding and decoding protocols to reach

higher data rates. Accordingly, the performance of a cognitive system where

there is one primary (licensed) user and one secondary (unlicensed) user in a

network is analyzed considering two approaches: maximization of the sum rate,

and maximization of the rates achievable of the secondary user. Optimal power

allocation policies for the cooperative cognitive multiple access channel (MAC)

are obtained, and the resulting power distributions and achievable rate regions

are computed via simulations.
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İŞBİRLİKLİ HABERLEŞME YAKLAŞIMI İLE

BİLİŞSEL TELSİZ

Özet

Temel fikri kablosuz kanallardaki frekans tayfı gibi sınırlı kaynakları verimli kul-

lanmak olan bilişsel telsizler yeni bir çığır açan teknoloji olma yolunda ilerlemekte-

dir. Bu tez çalışmasında işbirlikli haberleşme modellerinde kullanılan tekniklerin

bilişsel telsiz içeren ağlarda uygulanması ele alınarak daha yüksek veri hızlarına

erişim için yeni bir kodlama ve kodçözme protokolü geliştirilmesi hedeflenmekte-

dir. Bu amaçla bir birincil (lisanslı) ve bir ikincil (bilişsel) kullanıcıdan oluşan

bir bilişsel ağın başarımı iki farklı açıdan ele alınmıştır: toplam veri hızının ve

ikincil kullanıcının veri hızının en iyilemesi. İşbirlikli bilişsel çoklu erişim kanal-

ları için özkaynakların en iyi dağılım politikaları incelenmiş, bunlara karşı gelen

güç dağılımları ve erişilebilir veri hızı bölgeleri bilgisayar benzetimleri aracılığıyla

hesaplanmıştır.
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Chapter 1

Introduction

1.1 Motivation

Wireless networks have been expanding very rapidly, and technology holders and

researchers are challenged to develop new equipments and standardizations in

wireless services, to meet this demand. The most crucial bottlenecks for the

growth in wireless networks is the interference, transmitting power and available

spectrum limitations.

Several users in a network may be willing to coexist in the same frequency band

and at the same time, thereby causing interfering to each other. Some frequency

bands are also reserved to some services or service providers in order to compen-

sate this issue and to better manage the licensed wireless spectrum. Accordingly,

several coding strategies and diversity techniques are developed in the field of

communications to achieve users’ demands.

Traditionally, the most popular diversity techniques (time, frequency, space) have

been tried to overcome the impediments in a wireless channel, but spatial diver-

sity, specifically dealt with in this thesis, generally requires the multiple antennas.

Unfortunately, implementation of multiple antenna technique is hard for small-

sized devices. Yet, through cooperative communication strategies, each user in

the same network may act as an antenna, so that they generate a virtual multiple

antenna array.
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However, better quality of communication is not the only problem for telecom-

munications systems also need to operate with high efficiency, Federal Commu-

nications Commission (FCC), which is charged with regulating all of the radio

spectrum and all international communications that originate or terminate in the

United States published a snapshot of the spectrum usage [1], showing that there

is a severe under-utilization of the licensed spectrum by primary users. In order

to achieve higher efficiency, new spectrum management approaches are needed.

These new approaches are based on the opportunistic access to the spectrum, and

are sometimes called dynamic spectrum access (DSA) or cognitive radio (CR).

In this thesis, the aim is to propose cooperative communication strategies in

networks involving cognitive radios.

1.2 Software Defined Radio and Cognitive Radio

Traditional radios have been transforming into more intelligent devices over the

past two decades. The distinct difference is that radios are now a combination

of hardware and software instead of the fact that they are pure hardware-based

radios. This devices are referred to as software defined radio (SDR). SDRs are

radios which have a configurable behavior, i.e., radio parameters can be adapted

to suit the changes in the surrounding radio environment, such as modulation,

coding scheme, and transmitting power [2].

Cognitive radios (CRs) are a type of SDRs and they are capable of sensing and

adapting the parameters to environmental changes like in SDR technology: power

control, modulation and coding adaptation [2]. However the difference occurs in

the intelligence on sensing. A block diagram contrasting traditional radio, SDR,

and CR is given in Figure 1.1 [3].
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RF Modulation Coding Framing Processing

Hardware Software

RF Modulation Coding Framing Processing

RF Modulation Coding Framing Processing

Sensing - Learning - Optimization

Hardware Software

Hardware Software

Traditional Radio

Software Radio

Cognitive Radio

Figure 1.1: Comparison of Types of Radios

1.3 Related Works

The term of cognitive radio was firstly introduced by Joseph Mitola [4] in his

PhD thesis. CR is defined as an intelligent radio that is capable of analyzing the

environment, learning, predicting the most suitable way of the available spectrum

and adapting all of its operational parameters [4]. In a cognitive radio network

there are three main types of communication techniques: underlaying the signal,

overlaying the signal, and interweaving the signal [5]. The main focus on cognitive

radios is detecting spectrum holes and communicating at those frequency bands.

However, this technique brings with complexity of the devices [6].

The work [5] shows that the communication between cognitive radio’s transmit-

ter and receiver does not impact the primary user’s communication, significantly.

Considering these techniques, we can summarize that an underlay system requires

the side information about the interference caused by the cognitive transmitter
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to the primary receiver. Overlay systems require the side information about the

codebook and the possible message of the noncognitive user. In interweave tech-

nique, the side information required is the user activity (primary user sensing).

On the other hand, while cognitive user’s transmit power is limited by the inter-

ference constraint in underlay technique, there is no such a constraint in overlay

technique. Furthermore, the overlay technique can increase the throughput of

secondary communications significantly over the interweave technique [7].

In many works, the channel model is accepted as an interference channel which

consists of two transmitters (cognitive and noncognitive) and two intended re-

ceivers. Its characteristics can be changed according to the cognitive communi-

cation channel techniques mentioned above. Most of the works in literature are

based on interweave techniques, but overlay techniques nowadays become more

popular yielding cooperative communication advantages [8].

Interference channel where the cognitive transmitter has noncausal knowledge of

the primary user’s message is the most encountered scenario in the literature. This

type of systems are referred to as an interference channel with genie-aided message

knowledge [9], degraded message sets [10], [11], and one cooperating encoder [12].

All these works are based on an unrealistic assumption that cognitive user has a

priori (non-causal) knowledge of the message of the primary user.

Causal Cognitive Radio (CCR) was first investigated in [9]. Later, an improved

rate region was introduced in [13] by introducing the use of delays. [9] proposes

a two-phase protocol and the first phase is the transmission of the message from

the primary user to the cognitive encoder while [13] employs rate-splitting even

with delay. Moreover the impact of feedback and the common information for the

channel model in [9] has also been investigated in [14] and [15]. One step further

is the bidirectional cooperation between transmitters [16], so both transmitters

are cognitive, and coding strategy has changed to the combination of decode-and-

forward (DF) and compress-and-forward (CF). In [17], the authors investigated

the causal cognitive radio channel where the cognitive source is subjected to a
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half-duplex constraint in contrast to the full-duplex manner in [13] and four two-

phase protocols in [9]. Besides the achievable rate regions for different scenarios,

the other important constraint is the limited transmitting power. The work [18]

considered the long-term or the short-term transmit-power constraint over the

fading states at each non-cognitive transmitter, combined with the interference

power constraint at each primary receiver, and for each case, the optimal power

allocation scheme is derived. For multi-transmitter multi-receiver channel, [19]

has suggested a power allocation algorithm to increase the channel capacity by 50

%. Recent works have been also investigated for the perfect message knowledge

at the cognitive encoder but lack of partial channel knowledge.

The situation of the knowledge of the primary user’s message enables the cognitive

transmitter to apply several encoding schemes that will improve the rates of both

cognitive and noncognitive users [5], [9], [10] and [13]. Each receiver observes a

noisy copy of the transmitted signal in an interference channel, so the energy of

the received signal depends on the path gain from the transmitter to the intended

receiver. Using superposition coding [20], information for a worse receiver is first

encoded, and a signal for a better user is then superimposed on it. Better receivers

can eliminate interference by decoding first and by subtracting their effect from

the received signal. However the users cannot be ordered by the quality of their

received signals, the interference can still be partially eliminated. The transmitter

can apply the precoding technique referred to as Gel’fand-Pinsker (GP) binning

[21] and Dirty Paper Coding (DPC) [22]. Moreover, rate-splitting is the best

known encoding technique for interference channels. This technique was applied

to overlay networks in [9], [11] and [12]. However additional techniques beyond

rate-splitting can be used to best exploit the cognitive transmitter’s message

knowledge.
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1.4 Outline of Thesis

Overlay technique provides simultaneous communication in a network and re-

quires considering application of user cooperation and spatial diversity. Chapter

2 aims to give some basic knowledge on cooperative communications and funda-

mental concepts of information theory, based on different channel models. Par-

ticularly, channel models with additive white Gaussian noise (AWGN), are used

to introduce these topics in Chapter 2.

Chapter 3 describes several techniques to communicate in a cognitive radio net-

work. The interference channel, where there is one primary and one cognitive

transmitter with the irrespective intended receiver pairs, takes large place in the

literature. The channel capacity of the interference channel can be found under

some special conditions, this chapter tries to take a picture of the works in the

literature and their relationships, detailing the different techniques of the com-

munication for the cognitive channel model. Moreover the encoding and decoding

strategies and the methodologies used to improve the achievable rates are given.

In Chapter 4, the problem of our thesis is stated. The proposed model of mul-

tiple access channel with two transmitters (one is cognitive and the other one is

primary) is investigated. Accordingly, the problem is formulated by taking into

account of two different approaches: optimization of the sum rate of the system

and maximization of the rate achievable by the cognitive user. This optimization

problems are solved by using Lagrangian methods, and KKT conditions. For both

optimization problems, iterative algorithms are proposed, based on the structure

of the optimal power allocation policies. Resultant achievable rate regions are

introduced and corresponding power distributions of the primary user and the

secondary user are given with respect to the different channel states.
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Chapter 2

Background Theory

This chapter of the thesis includes the fundamental theory. It is given what in-

formation capacity means and several channel models of interest, such as parallel

Gaussian channel, multiple user channels. Karush-Kuhn-Tucker (KKT) condi-

tions should be also considered to solve the optimization problem in this chapter

and the next ones of the thesis. Last part of this chapter mentions diversity tech-

niques and user cooperation. For this purpose, relay channels and main strategies

are described. Notations used in this thesis follow those used in [23].

2.1 Capacity and Gaussian Channel

Information theory is developed by Claude E. Shannon in his seminal work, ”A

Mathematical Theory of Communication” to find fundamental limits on signal

processing operations such as compressing data, storing and communicating data

reliably. The central paradigm of classical information theory is the engineer-

ing problem of the transmission of information over a noisy channel. The most

fundamental results of this theory are Shannon’s source coding theorem, which

establishes that, on average, the number of bits needed to represent the result of

an uncertain event is given by its entropy; and Shannon’s noisy-channel coding

theorem, which states that reliable communication is possible over noisy channels

provided that the rate of communication is below a certain threshold, called the

7



channel capacity. The channel capacity can be approached in practice by using

appropriate encoding and decoding systems.

The most important channel for continuous output alphabet channel which the

output can take any values is the additive white Gaussian (AWGN) channel as a

special case of Gaussian channel. This channel model is the best model to fit a

variety of practical communication channels.

Suppose we send a message over a channel shown in Figure 2.1 that is subjected

to AWGN.

X Y

Z

Figure 2.1: Gaussian Channel

Then the output is

Yi = Xi + Zi (2.1)

where Xi and Yi represent the channel input and the output, respectively and Zi

is zero-mean Gaussian random variable with N : Zi ∼ N (0, N). We also assume

that there is a constraint on transmitting power, such that if we have an input

codeword (x1, x2, ..., xn), we will say that the average power is constrained so that

1

n

n∑
i=1

Pi ≤ P (2.2)

Considering the probability of error for binary transmission, we can send either

−
√
P or +

√
P over the channel, so the receiver observes the received signal and

8



determines it according to the amplitude of the signal.

Pe =
1

2
P (Y < 0|X =

√
P ) +

1

2
P (Y > 0|X = −

√
P )

=
1

2
P (Z < −

√
P |X =

√
P ) +

1

2
P (Z >

√
P |X = −

√
P )

= P (Z >
√
P )

=

∫ ∞
√
P

1√
2πN

e−
x2

2N dx

= Q(
√
P/N) = 1− Φ(

√
P/N) (2.3)

The information capacity of the Gaussian channel is

C = max
p(x):E[X2]≤P

I(X;Y ) (2.4)

We can compute this as follows:

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN

=
1

2
log(1 + P/N) bits/transmission � (2.5)

In order to realize such a result an (M,n) code for the Gaussian channel with

power constraint P consists of the following:

1. An index set 1, 2, ...,M

2. An encoding function x : 1, 2, ...,M → X n, which maps an input index into

a sequence that is n elements long, xn(1), xn(2), ..., xn(M), such that the

average power constraints is satisfied:

n∑
i=1

((xni (w)))2 ≤ nP (2.6)

9



for w = 1, 2, ...,M .

3. A decoding function g : Yn → 1, 2, ...,M .

2.2 Parallel Gaussian Channel

Before the consideration of parallel Gaussian channel, we need to mention about

Karush-Kuhn-Tucker conditions. It is particularly considered in Section 2.5.

When we have k independent Gaussian channels,

Yj = Xj + Zj, j = 1, 2, ..., k. (2.7)

where Zj ∼ N (0, Nj)

Assume a constraint on total power extending the constraint in Section 2.1

E

[
k∑
j=1

X2
j

]
≤ P. (2.8)

The information capacity of the parallel Gaussian channel is

I(X1, ..., Xk;Y1, ..., Yk) = h(Y1, ..., Yk)− h(Y1, ..., Yk|X1, ..., Xk)

= h(Y1, ..., Yk)− h(Z1, ..., Zk)

= h(Y1, ..., Yk)−
k∑
i=1

h(Zi)

≤
k∑
i=1

h(Yi)− h(Zi)

≤
∑
i

1

2
log(1 + Pi/Ni) � (2.9)

10



From the equation (2.9), we can say that if the distribution of powers for each

parallel channel is cleverly selected, the channel capacity is maximized. The

power constraint becomes the following based on Lagrangian operation.

J(P1, P2, ..., Pk) =
∑
i

1

2
log
(

1 +
Pi
Ni

)
+ λ

k∑
i

Pi (2.10)

with a constraint that Pi ≥ 0. Differential w.r.t. Pj to obtain

1

Pj +Nj

+ λ ≥ 0. (2.11)

with equality only if all constraints are inactive, i.e., λ = 0. After some substitu-

tions, we obtain Pj = ν −Nj.

However, we must also have Pj ≥ 0, so we must ensure that we do not violate

that if Nj < ν. Thus, we let

Pj = (ν −Nj)
+ (2.12)

where

(x)+ =

 x, x ≥ 0

0, x < 0
(2.13)

and ν is chosen so that
n∑
i=1

(ν −Ni)
+ = P (2.14)

This solution is illustrated in Figure 2.2. The vertical levels shows the power

levels for the different channels and says that less power is distributed into noisier

channels. This process is similar to the way in which water distributes itself in a

vessel, so this process is sometimes referred to as waterfilling.

11



Channel 1 Channel 2 Channel 3

N

P

v

Power

P

N

N

1

3

1

2

3

Figure 2.2: Waterfilling for Parallel Channels

2.3 Gaussian Multiple User Channels

This section shows the fundamental calculations for establishing the capacity

regions of the Gaussian multiple access channel and its dual model broadcast

channel, interference channel and relay channel.

2.3.1 Gaussian Multiple Access Channel

We consider m transmitters sending simultaneously their data to the common

destination as shown in Figure 2.3 with the average total power mP .

Let

Y =
m∑
i=1

Xi + Z. (2.15)

b

b

b

Figure 2.3: Multiple Access Channel
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The achievable rate region for the Gaussian channel takes on the simple form

given in the following equations

R1 <
1

2
log

(
1 +

P1

N

)
(2.16)

R1 +R2 <
1

2
log

(
1 +

P1 + P2

N

)
(2.17)

R1 +R2 +R3 <
1

2
log

(
1 +

P1 + P2 + P3

N

)
(2.18)

...

m∑
i=1

Ri <
1

2
log

(
1 +

mP

N

)
(2.19)

To achieve the rate, we need m codebooks which the ith codebook has 2nRi

codewords of power Pi. Each of the independent senders arbitrarily chooses a

codeword from its own codebook, then all users send these simultaneously. The

destination receives the combined codewords of all ones sent with the Gaussian

noise Z, such that the received signal at time instant i for m users is:

Yi = X1i +X2i + ...+Xmi + Zi (2.20)

The receiver decodes the received message as looking the Euclidean distance be-

tween the vector sum of them codewords (one from each) and Y. If (R1, R2, ..., Rm)

is in the capacity region given above, the probability of error goes to 0 as n tends

to infinity.

The sum of the rates of the users 1
2

log(1 + mP
N

) goes to infinity with m. It is

obviously seen that the increasing interference as the number of senders m→∞

does not limit the total received information.

13



2.3.2 Gaussian Broadcast Channel

In this model in Figure 2.4, we have one transmitter with power P and at least

two receivers. In a two receiver case, each channel effects the transmitting signal

with additive white Gaussian noise with variances N1 and N2. The channel model

is

Y1 = X + Z1 (2.21)

Y2 = X + Z2 (2.22)

where Z1 and Z2 are arbitrarily correlated Gaussian random variables with vari-

ances N1 and N2, respectively. Suppose that N1 < N2, so the first channel has a

better condition than the other. In other words, the receiver Y1 is less noisy than

the receiver Y2.

b

b

b

Figure 2.4: Broadcast Channel

In addition, the capacity region of a broadcast channel depends only on the condi-

tional marginal distributions p(y1|x) and p(y2|x), i.e. p(y1, y2|x) = p(y1|x)p(y2|x).

This is called degraded broadcast channel. The capacity region of the Gaussian

degraded broadcast channel [22, Theorem 15.6.4] is

R1 <
1

2
log

(
1 +

αP

N1

)
(2.23)

R2 <
1

2
log

(
1 +

(1− α)P

αP +N2

)
(2.24)

14



where α is the tradeoff parameter which is chosen in (0 ≤ α ≤ 1).

The common transmitter generates two codebooks, one with power αP at rate

R1, and another codebook with power ᾱP where ᾱ = 1 − α at rate R2. Indexes

w1 ∈ 1, 2, ..., 2nR1 and w2 ∈ 1, 2, ..., 2nR2 are sent to Y1 and Y2, respectively. The

transmitter combines these two codewords (one from each book), then sends it

over the channel.

In order to decode the messages, firstly, the worse receiver Y2 receives the second

codeword with an unwanted component which is the first trasmitter’s codeword.

It is proven that this component can treat as a noise to Y2. Thus, the signal-to-

noise ratio at the receiver is ᾱP/(αP +N2). Then, better receiver Y1 can decodes

Y2’s codeword due to the lower channel noise, N1. So the receiver subtracts the

decoded part of the other codeword from Y1 and finds the codeword in the first

codebook closest to Y1 − X̂2. The resulting probability of error can be made as

low as desired.

2.3.3 Gaussian Interference Channel

An interference channel consists of two senders and two receivers. Each trans-

mitter aims to send its own message to its intended receiver, so they do not care

what the other sender are transmitting through the channel. This simultaneous

communication causes which one of the signal interferes with the other. This

channel model is illustrated in Figure 2.5.

If we suppose the channel is symmetric (a = b), we have

Y1 = X1 + aX2 + Z1 (2.25)

Y2 = X2 + bX1 + Z2 = X2 + aX1 + Z2 (2.26)

where Z1, Z2 are independent Gaussian random variables with Z ∼ N (0, N) .
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Figure 2.5: Gaussian Interference Channel

This channel has not been solved in general, even in the Gaussian case. However,

it can be shown that the capacity region of this channel is the same as when

the channel is exposed to strong interference, i.e., where a > 1 and b > 1 It is

proven that a clear message is transmitted in strong interference channel. It is

particularly detailed in Chapter 3.

Considering two codebooks, each with power of P and the rate of 1
2

log(1+P/N).

Each transmitter chooses a codeword from its own codebook and sends it. If the

interference a satisfies the condition of 1
2

log(1 +a2P/(P +N)) > 1
2

log(1 +P/N),

the first transmitter perfectly understands the index of the second transmitter

and looks through the closest codeword. The receiver then subtracts it from his

waveform received. So there is a clean channel between a transmitter-receiver

pair. Lastly, the receiver searches the senders codebook to find the closest code-

word and declares that codeword to be the one sent.

2.3.4 Gaussian Relay Channel

In a relay channel, there are a transmitter X, an intended receiver Y and also

a node X1 which relays the transmitter’s message to the sender. The Gaussian

relay channel as shown in Figure 2.6 is given by
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Y1 = X + Z1 (2.27)

Y = X + Z1 +X1 + Z2 (2.28)

where Z1 and Z2 are independent zero-mean Gaussian random variables with

Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2), respectively. The encoding can be applied by

the relay as following scheme

X1i = fi(Y11, Y12, ..., Y1i−1). (2.29)

Sender X has power of P and sender X1 has power of P1, the channel capacity is

then found as

C = max
0≤α≤1

min

{
1

2
log

(
1 +

P + P1 + 2
√
ᾱPP1

N1 +N2

)
,
1

2
log

(
1 +

αP

N1

)}
(2.30)

The effect of the relay can be observed for such a condition in which if there is no

relay in the system, the capacity becomes 1
2

log(1+P/(N1+N2)) when α is selected

as 1. When we also determine P1

N2
≥ P

N1
, the capacity is C = 1

2
log(1+P/N1). Thus,

17



the channel appears noise-free after the relay. For large N2, we can extract that

the rate can be increased from 1
2

log(1+P/(N1+N2)) ≈ 0 to C = 1
2

log(1+P/N1).

There are two codebooks are needed to create the opportunity for cooperation by

the relay. The first codebook has 2nR1 codewords of power αP and the second one

has 2nR0 codewords of power ᾱP . A codeword from the first codebook is first sent.

The relay knows the index of this codeword since R1 <
1
2

log(1+αP/N1), but the

intended receiver does not. However, the receiver has a list of possible codewords

of size 2n(R1− 1
2
log(1+αP/(N1+N2))). Then, the transmitter and the relay wish to

cooperate to resolve the receiver’s uncertainty about the codeword sent previously

that is on the receiver’s list. Unfortunately, they cannot be sure what this list is

because they do not know the received signal Y . Thus, they randomly partition

the first codebook into 2nR0 cells with an equal number of codewords in each cell.

The relay, the receiver, and the transmitter agree on this partition. The relay

and the transmitter find the cell of the partition in which the codeword from the

first codebook lies and cooperatively send the codeword from the second codebook

with that index, that is, X and X1 send the same designated codeword. The relay,

of course, must scale this codeword so that it meets its power constraint P1. They

now transmit their codewords simultaneously. An important point to note here

is that the cooperative information sent by the relay and the transmitter is sent

coherently. So the power of the sum as seen by the receiver Y is (
√
ᾱP +

√
P1)

2.

However, this does not exhaust what the transmitter does in the second block.

It also chooses a fresh codeword from the first codebook, adds it on paper to

the cooperative codeword from the second codebook, and sends the sum over the

channel.

The reception by the ultimate receiver Y in the second block involves first find-

ing the cooperative index from the second codebook by looking for the closest

codeword in the second codebook. It subtracts the codeword from the received

sequence and then calculates a list of indices of size 2nR0 corresponding to all

codewords of the first codebook that might have been sent in the second block.
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Now it is time for the intended receiver to complete computing the codeword

from the first codebook sent in the first block. It takes its own list of possible

codewords that might have been sent in the first block and intersects it with the

cell of the partition that it has learned from the cooperative relay transmission

in the second block. The rates and powers have been chosen so that it is highly

probable that there is only one codeword in the intersection. This is Y s guess

about the information sent in the first block.

In each new block, the transmitter and the relay cooperate to resolve the list

uncertainty from the previous block. In addition, the transmitter superimposes

some fresh information from its first codebook to this transmission from the sec-

ond codebook and transmits the sum. The receiver is always one block behind,

but for sufficiently many blocks, this does not affect its overall rate of reception.

2.4 User Cooperation

User cooperation is a cooperative multiple antenna technique in order to improve

individual or total network capacities. Cooperation can be achieved by amplifying

or decoding the combined signal of the relaying signal and the direct signal.

Hence, it can be seen that cooperative diversity is an antenna diversity that uses

distributed antennas belonging to each user in a wireless system.

In this thesis, our proposed model is based on the cooperative communication

framework, we should thus consider the relaying strategies mentioned above. In

our topology, the cognitive user use Decode and Forward method to relay the

primary user’s message to the destination. It is described in Chapter 4 in detail.

The main cooperative communication signaling methods can be categorized into

three parts. There are also their combinations in literature. These are Amplify

and Forward, Decode and Forward and Compress and Forward.

Amplify and Forward (AF) is the most fundamental of the relaying methods. It

is often referred to as the non-regenerative relaying protocol. AF will amplify the
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received signal to compensate the channel loss, and then forward it to the receiver.

In this technique, each user receives a noisy version of the signal transmitted by

its cooperative user. The performance of this protocol suffers from the fact that it

also amplifies the noise factor and requires constant estimation of channel quality.

Nevertheless, AF is a simple method to analyze in literature and therefore has

been very useful to understand the cooperative communication.

Decode and Forward (DF) method is any protocol where relay performs decoding

and re-encoding before forwarding the data to the receiver, and is sometimes

referred to as regenerative relaying protocol. The requirement for cooperation is

that the relay successfully decodes the message from the source. In this technique,

faulty information is not transmitted to destination, so the performance for the

decoder can be decreased. Thus, the main advantage of AF over DF is that no

hard decisions are needed, but on the contrary AF does not regenerate the signal.

In our model, Decode and Forward strategy is employed. There are various encod-

ing and decoding protocols have established in literature. Most used technique is

block Markov superposition encoding and backward decoding proposed by Car-

leial [24] and irregular block Markov superposition encoding is proposed by Cover

and El-Gamal. This methodology is also investigated with decoding strategies in

Chapter 4.

Compress and Forward (CF) method allows the relay to compress the received

signal from the source and forward it to the destination without decoding the

signal. In this technique, Wyner-Ziv coding can be used for optimal compression.

2.5 Nonlinear Optimization

In the previous sections and next chapters, parallel Gaussian channel and some

Gaussian channel models are considered. To understand the idea of power al-

location, we need a result from constrained optimization theory as known the
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Karush-Kuhn-Tucker (KKT) conditions in order to cleverly distribute transmit-

ting power.

In mathematics, KKT conditions are necessary for a solution in nonlinear pro-

gramming to be optimal, provided that some regularity conditions are satisfied.

Suppose we minimize a convex objective function L(x),

minL(x) (2.31)

subject to

f(x) ≤ 0. (2.32)

Then, say that the optimal value is x0. The constraint is inactive, when we get

∂L

∂x

∣∣∣∣∣
x0

= 0 (2.33)

or, if the constraint is active, it must be the case that the objective function

increases for all admissible values of x :

∂L

∂xx∈A
≥ 0 (2.34)

where A is the set of admissible values, for which
∂f

∂y
≤ 0.

Thus,
∂L

∂x
+ λ

∂f

∂x
= 0 λ ≥ 0. (2.35)

We can create a new objective function

J(x, λ) = L(x) + λf(x), (2.36)
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so the necessary conditions become

∂J

∂x
= 0 and f(x) ≤ 0 (2.37)

where

λ ≥ 0 f(y) = 0 constraint is active

λ = 0 f(y) < 0 constraint is inactive
(2.38)

For a vector variable x, then the condition (2.35) means: ∂L
∂x

is parallel to ∂f
∂x

and

pointing in opposite directions where ∂L
∂x

is interpreted as the gradient.

Thus, what the condition (2.35) says that the gradient of L with respect to x at

a minimum must be pointed in such a way that decrease of L can only come by

violating the constraints. Otherwise, we could decrease L further. This is the

essence of the Kuhn-Tucker conditions.
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Chapter 3

Cognitive Radio Systems

Cognitive radio is a device to use spectrum efficiently getting assistance of its

ability of sensing environmental conditions for wireless communication. This in-

formation contains presence of a user, channel gains, other users’ codebooks and

even their messages. Cognitive users aim to communicate with their intended

or common receiver(s) underlaying, interweaving, or overlaying their own signals

with the other (licensed) users’ signals. In this chapter, these three techniques

which do not impact the existing users’ communication are summarized and over-

lay technique which is the directly related in the thesis is detailed and the most

investigated channel model for cognitive radio systems, interference channel, is

used to better understand these concepts, and also encoding/decoding strate-

gies for this type of channel are considered to determine achievable rate region.

Most of the ideas comes from user cooperation techniques which are mentioned

in Chapter 2.

3.1 Cognitive Radio Communication Techniques

There are three strategies to communicate over a wireless cognitive channel as

mentioned above.
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3.1.1 Interweave Technique

The important feature of a cognitive radio comes from the idea which was pro-

pounded by Mitola so that it is able to sense its surrounding spectra. It is based

on the filling the spectrum holes which mean frequency voids that are not in use

by the licensed users. This technique is also referred to as interference avoidance

technique. In this setting, the cognitive device observes the radio spectrum and

determines the presence or absence of the licensed users, then it releases its own

message throughout the communication channel. An illustration of channel usage

is shown in Figure 3.1. However, the cognitive transmitter has to spend some of

its time and power to sense the surrounding situation. Although the catching of

the spectrum holes of the primary users is a critical issue both over a wide band-

width system and in a low SNR scenarios [25] collaborating of multiple cognitive

users and exchanging their own spectrum knowledge combat the limitations of

resources in such this conditions [26].

Frequency

Time

Licensed User

Licensed User

Licensed User

Licensed User

Frequency

Time

Licensed User

Licensed User

Licensed User

Licensed User

Cognitive User

CU Cognitive User

Cognitive User

CUCU

Figure 3.1: Spectrum Utilization in Interweave Technique

As illustrated fundamental cognitive channel model in Figure 3.2 with idealization

where the cognitive user has the knowledge of the spectral gaps is perfect and

the time spent for sensing is ignored, the rate region for primary and secondary

users by time sharing fashion is

R1 ≤ tC(P1) (3.1)

R2 ≤ (1− t)C(P2) (3.2)
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where C(x) = 1
2

log(1 + x). P1, P2 are the primary user’s and secondary user’s

average power constraint, respectively and 0 ≤ t ≤ 1. The noise variance is

normalized to the unity.

3.1.2 Underlay Technique

A cognitive radio has a knowledge of interference caused by its transmitter to

the receivers of all noncognitive users due to its own intelligence. In this setting,

simultaneous secondary and primary transmissions can be allowed only if the in-

terference is below some acceptable level [27] because of the fact that the primary

users’ data rates should not be less than the desired level. This type of interfer-

ence controlling policy covers a large spectrum behavior, i.e., small networks or

ultrawideband (UWB) communications. In small networks, the cognitive user has

knowledge of the maximum of the interference temperature for the licensed user

at receivers, the current interference level and how its own transmit power will

change at the primary receiver, then the cognitive radio may control its own trans-

mission power to satisfy the interference temperature constraint of the primary

users [28] so that this technique is also called as interference control. In UWB

systems, the cognitive user spreads its signal over a huge bandwidth to ensure

the interference caused to the primary users is acceptable level, then it transmits

its own signal to the intended receiver. However, the underlay technique is only

useful for short range communications due to the nature of the UWB systems.

Suppose the channel in Figure 3.2, each receiver obviously treats the other user’s

message as a noise. To satisfy the primary user’s desired rate, its average power

is fixed to a value P1 generating a Gaussian codebook. Then, the cognitive trans-

mitter allows its power to a level P ?
2 depends on the interference-temperature. So
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the rate region is obtained as

R1 ≤ C

(
P1

h221P
?
2 + 1

)
(3.3)

R2 ≤ C

(
P ?
2

h212P
?
1 + 1

)
(3.4)

where channel fading coefficients h12, h21 and P ?
2 lies in the range of [0, P2].

3.1.3 Overlay Technique

The overlay technique allows that the cognitive and noncognitive users transmit

their own messages simultaneously over the same spectrum. However, this con-

current communication effects both the primary and secondary users because of

the interference which one is that the cognitive transmitters cause to the primary

receivers and one is that the primary transmitters cause to the cognitive receivers

in the general scenario of cognitive radio systems. The cognitive radio has to

know or learn the channel gains, primary users’ codebooks and/or the messages

of the licensed users.

The thesis is directly related to overlay the transmitting signal with the cognitive

user’s signal. Thus, this technique is detailed in the next section.

3.2 Overlay Cognitive Radio

The cognitive user transmits over the same spectrum as the primary user while

the primary user’s rate is not reducing. The smallest and fundamental model in

this area is the interference channel which there are two primary and two cognitive

users as shown in Figure 3.2.
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Figure 3.2: Cognitive Interference Channel

In the overlay cognitive interference channel, the cognitive user has a priori knowl-

edge of the primary user’s message. This priori knowledge can be achieved non-

causally [9] or causally [13]. This type of interference channels are referred to

as one-sided cooperation, the channel with asymmetric message knowledge, or

degraded message sets in the literature.

It is assumed that two users share their codebooks and there is a feedback, so

they also know channel gains. This means that the cognitive user knows the

primary user’s message W1 and thereby its codeword X1. Moreover, our purpose

is to improve both user’s data rates. To achieve that, several encoding/decoding

schemes are applied by cognitive user knowing the primary user’s message [5],

[9], [29], [30] and [31]. An encoding scheme that the cognitive transmitter may

employ to exploit its knowledge of the primary user’s message is not practical

because of the fact that the cognitive transmitter does not know the message of

the primary transmitter at the start of their transmissions. However, this be-

comes very reasonable if the two transmitters are close together. Accordingly,

the channel between the transmitter is better than the primary users pair and

in a fraction of the transmission time, cognitive transmitter could listen to and

obtain the message transmitted by the primary transmitter. In worse case, the

primary message is being transmitted after a delay, and the cognitive user was

able to successfully decode the first transmission. This assumption is also appli-

cable when the primary transmitter formerly sends its message to the cognitive

transmitter. Both of these scenarios might lead to partial message decoding of

the primary message instead of full decoding, which also fits within the overlay
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network technique.

When both users do not know the message of the other, this model reduces the

channel model into the interference channel or when the primary transmitter does

not transmit its messages, this model reduces the channel to a broadcast channel.

In a broadcast channel, the encoder knows all messages and can exploit that

information to partially eliminate the interference. To achieve that, superposition

coding [20] is used so that it allows sending information simultaneously to all

users at higher rates than can be achieved with time-sharing. Particularly, noisier

message is first encoded at a lower rate, and then better signal is superimposed on

it. So the receiver can eliminate interference by decoding low-rate messages first

and by subtracting their effect from the received signal. Superposition coding was

shown to achieve capacity of degraded broadcast channel in [32]. If the channel

is not degraded which means received signals could not be ordered successfully,

interference can still be partially eliminated applying the precoding technique

referred to as Gel’fand-Pinsker (GP) binning [21] and, specifically, DPC [22] in

Gaussian channels.

The opposite action of a broadcast channel scenario is the multiple access channel.

The capacity region of this channel is known in [33]. As explained in Chapter

2, when the interference channel which suffers strong interference, i.e., the cross-

channel gains are more than unity, the optimal strategy for decoders is to decode

both transmitted messages. Thus, the interference channel behaves as two MAC

channels.

We now review the various encoding/decoding techniques that have been pro-

posed for overlay cognitive networks, which are mostly derived from encoding

strategies for the interference, broadcast, and multiaccess channels: Rate-splitting

is the well known encoding technique for interference channels, so it is natural to

consider it for overlay encoding as well. This technique was applied to overlay

networks in [9], [11], and [12]. The cognitive user can eventually cooperate by

superimposing the primary user’s message in order to help the primary decoder.
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In this way, the cognitive transmitter declares a part of its power to send the pri-

mary user’s message W1 and increase its rate R1. On the other hand, any signal

conveying W1 is interference to the cognitive encoder’s receiver. This interference

is known at the cognitive transmitter since it consists of codewords used for W1.

This is where the GP binning [21] and DPC [22] in Gaussian channels can be

applied.

Therefore, although the encoding techniques for overlay cognitive radio certainly

borrow from existing strategies for the classical interference channel, a number

of additional techniques are needed to fully exploit the knowledge of the primary

user’s message. The encoding strategies that have been investigated in the next

sections.

3.3 Capacity of Cognitive Interference Channel

The capacity region for the channel model in Figure 3.2 is still an open problem in

most cases. However, some results can be achieved under some special conditions.

In strong interference, both decoders can decode the two users’ messages, so each

receiver behaves as the multiple access channel with common information con-

sidered in [34]. When the primary user’s message W1 is known to both encoders,

it is thought as the common information for which the capacity is known [30].

Therefore, rate splitting or superposition encoding is not needed at the cognitive

encoder. Accordingly, the cognitive user divides its transmit power P2 into αP2

and (1− α)P2 for cooperation and its own transmission, respectively. Then, the

capacity region is bounded by the rate of

R2 ≤
1

2
log
(

1 + (1− α)P2

)
(3.5)

When the cognitive user and noncognitive user share a common information like

in our thesis problem, the the cognitive decoder decodes both messages, there is no
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need for binning, as there is no interference at that decoder. Thus, rate-splitting

and superposition coding achieve capacity. [35].

In weak interference case, where the cross-channel (ending to the primary re-

ceiver) gain is small, the decoder does not need to cancel interference. Inter-

ference at the cognitive decoder can be fully eliminated by dirty paper coding

and does not depend on the value of between the cognitive transmitter and pri-

mary receiver. Thus, there is no need for rate-splitting at the encoders. For

example, we employ an encoding protocol that exploits an asymmetric message

knowledge at the transmitters in AWGN channel such that both transmitters use

random Gaussian codebooks, the primary transmitter’s average power of P1 and

the secondary transmitter’s P2 but into two parts: αP2 for relaying the message

of the primary user and (1 − α)P2 for transmitting its own message using the

interference-mitigating technique of dirty-paper coding [22]. This strategy may

harm the primary receiver and is treated as noise at primary receiver. Thus, the

rate region may be expressed as

R1 ≤ C

((√
P1 + h12

√
αP2

)2
h212(1− α)P2 + 1

)
(3.6)

R2 ≤ C
(
(1− α)P2

)
(3.7)

where 0 ≤ α ≤ 1.

As focusing on our channel model, unknown capacity of the interference channel

with one cognitive encoder is overcame using several encoding strategies that

combine the above techniques [9], [11], [12]. The relative performance of these

various encoding schemes depends on the channel conditions and topology. For

the Gaussian channel, a comparison of the achievable rate regions for the encoding

schemes proposed in [11] and [12]

The rate gains of having one cognitive encoder versus the two primary encoders in

the traditional interference channel were evaluated in [9]. The encoding schemes

we have described are known to be capacity-achieving under certain assumptions
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about the channel or specific encoding/decoding constraints. Finding additional

regimes where these and other encoding schemes achieve capacity is the topic of

ongoing investigation. The impact of feedback and common information has also

been investigated in [14] and [15].

The practical designs based on these paradigms, various assumptions and con-

straints about message knowledge will affect these conclusions, and many of these

issues have yet to be investigated. Also, the bigger networks are becoming popular

to consider. Intuitively, some form of cooperation between these users will be re-

quired, but the best form of cooperation is unclear. Another interesting question

is whether cognition is more beneficial at the transmitter or the receiver.

For more practical scenarios, work in [9] and [13] considers the causal message

sharing at the cognitive radio. In this setting, the cognitive user decodes the

message sent by the other encoder based on the observation from the channel

introducing a delay. The paper [9] proposes a two-phase protocol where the first

phase is used solely to convey the message from the primary to the cognitive

encoder. The second phase is identical to the noncausal scenario with the differ-

ence of the fact that [13] handles the delay by adjusting the encoding strategies

as follows: Rate-splitting of a message available to an encoder can employed at

the interval of the delay. In terms of cooperation, the causal setting resembles

the classic relay channel [36]: the cognitive encoder can be viewed as the relay

that forwards the message of the other user after decoding it. Techniques such as

block Markov superposition encoding [37] and sliding-window decoding [38] need

to be used to facilitate the message encoding/decoding over two blocks, thus han-

dling delay. However, this approach relies on the primary encoder and decoder

to employ this scheme. Still, two techniques clearly extend to the causal setting.

In contrast, the precoding against interference and DPC critically depend on the

noncausal knowledge of the interfering message and do not extend to the cases

with delay. The encoding scheme that incorporates rate-splitting and cooperation

demonstrates performance losses in comparison to the noncausal system perfor-

mance when the channel between two encoders is weak [13]. Also present perfect
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message knowledge at the cognitive encoder but only partial channel knowledge

in recent works. The case where the phase of the channel between the primary

transmitter and the cognitive receiver is unknown at the cognitive transmitter is

considered and the main challenge in this scenario is that Costa’s DPC technique

[22] cannot be applied directly.

In brief, the cognitive interference channel is investigated in this chapter yielding

the literature. The main types of the cognitive channels we deal with are sorted

as competitive, cognitive and cooperative. In competitive channel, the secondary

user has no additional side information and two users compete for the channel.

In cognitive channel, the secondary transmitter has knowledge of the primary

user’s message and codebook. It can be also said that asymmetric cooperation is

possible between the users. In cooperative channel, both users know each other’s

messages and symmetrically cooperate in their transmission. The channel models

are illustrated in Figure 3.3 as described in [3].
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Figure 3.3: Types of Channels depending on Side Information
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Chapter 4

Two-User Cooperative Cognitive Multiple Access Channel

As described in the literature survey, cognitive radio channels are generally mod-

eled as two transmitter two receiver pairs in the case of overlay techniques. Cogni-

tive user has a priori fully knowledge of noncognitive user’s message in the most

of the works. Although many elegant papers have published on causal cogni-

tive radio networks. Nevertheless, the power control policy does not investigated

because of whether it is not directly related to the system model (interference

channel in the most of the works) or it is too hard to apply for the cognitive radio

systems. However, some implementations of power allocation have proposed in

[28] and [39] for the case of underlay cooperative cognitive channels.

The investigation of the cooperative cognitive multiple access systems are crucial

because cognitive radios are not only a part of communication channels, they

are also an element of a network which consists of many primary and secondary

users. The biggest advantage of multiple access channel compared to the inter-

ference channel is ease of the decoding by a single common receiver in the sense

of applicability. This thesis aims to develop an encoding and decoding protocol,

to allocate optimal transmitting powers so that we achieve higher data rates for

overlay cooperative cognitive channels.

In this thesis, several known techniques from the cooperative communications are

applied into the systems which consist of cognitive radios. Accordingly, using an

information theoretical approach, our main goal is to come up with encoding and
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decoding techniques which maximize the rate achievable by secondary user while

improving the rates of primary user or keeping constant in worst case. Thus, we

have to add a constraint on the primary user’s achievable rate.

While developing cooperative cognitive protocols in multiple access settings, we

use block Markov superposition encoding technique, which is based on decode and

forward (DF) strategy with rate-splitting. For all the cooperation protocols that

will be developed in this thesis, our main purpose is to characterize, and maximize

the achievable rates of the cognitive user and sum of all users. Therefore, we also

propose to optimize the rate expressions which shall be derived based on each

encoding/decoding strategy, in terms of the transmit powers of the users.

In this chapter, we consider a two user (one is cognitive and one is noncognitive)

system where the users communicate with the common receiver by using a coop-

erative scheme over a fading channel. The main goal is to obtain an effective way

of reaching as high a capacity region as possible by using a half duplex (only one

direction at a time) communication scheme [40].

4.1 System Model

There is only one common receiver which is aimed to communicate by one cogni-

tive and one noncognitive user in a network. In the system model, the cognitive

user listens the primary user’s message and transmits its own message to the re-

ceiver at the same time, while the primary user sends the message. The channel

model is shown in Figure 4.1

Accordance with Figure 4.1,

Y0 =
√
h10X1 +

√
h20X2 + n0 (4.1)

Y2 =
√
h12X1 + n2 (4.2)
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Figure 4.1: Proposed System Model

where
√
hij represents the channel coefficient between nodes i and j, ni is additive

white Gaussian noise, W1 is the message of the primary user, W2 is cognitive user’s

message, Y0 is the signal at the receiver, and Y2 is the signal at the cognitive user.

The receiver is defined as the node 0.

As illustrated in Figure 4.1, the secondary user receives an attenuated and noisy

version of transmitted signal. Nevertheless, secondary user has decoding capabil-

ity for its partner’s transmitted signal X1. The transmitted and received signals

at each mobile nodes are encoded by superposition block Markov encoding and

decoded by backward decoding [41] algorithm where the receiver does not work

on decoding until all B block codewords completely received and relevant infor-

mation and illustrations can be found in the next subsection of the thesis.

As understood from the equations (4.1) and (4.2), Xi is the signal transmitted by

user i which is encoded by superposition Markov encoding scheme. This coding

scheme, for a two user MAC with generalized feedback is illustrated in [8]. The

transmitted signal Xi for the two user scheme can be expressed as below:

X1 =
√
P10(h)X10 +

√
P12(h)X12 +

√
Pu1(h)U (4.3)

X2 =
√
P20(h)X20 +

√
Pu2(h)U (4.4)
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where X10 and X20 are transmitted signals to the destination which are treated

as a noise for the other user. X12 is transmitted signal towards the cognitive user

and U is the cooperative signal which contains information from the previous

blocks. P10(h), P12(h), Pu1(h), P20(h) and Pu2(h) are the allocated power values

for subsignals of X1 and X2, which are functions of the channel state vector h =

[h10, h12, h20]. Beside this, the power allocations are defined with the following

constraints

P1(h) = P10(h + P12(h) + Pu1(h) (4.5)

P2(h) = P20(h) + Pu2(h) (4.6)

E
[
Pi(h)

]
≤ P̄i where i ∈ 1, 2 (4.7)

where P̄i is average power of user i.

The subsignal X10, X12 and U can be expressed as below

X10 =
√
P10X10(W10(i),W12(i− 1)) (4.8)

X12 =
√
P12X12(W12(i),W12(i− 1)) (4.9)

U =
√
Pu1(W12(i− 1)) where i ∈ 1, 2, ..., B (4.10)

where i and i − 1 indicate the current block and previous block, respectively.

W10,W20 are the parts of information intended to the destination and W12 is the

part of information intended to the cognitive transmitter and the destination,

indirectly. The signal X1 does not only depend on new information W10(i) and

W12(i), but it is also depends on the previous block W12(i− 1) which are helpful

to generate cooperative signal.

The cooperative cognitive channel model was explained in the equations (4.1) and

(4.2). As described before, the communication structure is based on superposition

Markov encoding and backward decoding scheme.
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The transmitted signal of primary user can be modeled as below without power

allocation

X1 = X10 +X12 + U (4.11)

where X10 is employed for transmitting of W10 directly to the destination at rate

R10, X12 is employed for transmitting of W12 to the cognitive user at rate R12

and U is employed for transmitting cooperative signal W12(i− 1) to the receiver.

The cognitive user works to send its signal as

X2 = X20 + U (4.12)

Here, X20 is employed for transmitting of W20 directly to the receiver at rate R20

and U is employed for transmitting cooperative signal to the receiver. Separately,

the power allocation must satisfy the equations (4.5) and (4.6).

Based on block Markov encoding and backward decoding scheme, we can generate

the achievable rate region as similar to [8]. R1 and R2 denote the rates of primary

and cognitive users. They have subcomponents such as R10, R12, R20.

As describing the decoding procedure, the destination must wait until all B blocks

are received. In the last block of code sequence W10(B),W12(B),W20(B) contain

no new information and they can be set W10(B),W12(B),W20(B) = (0, 0, 0).

Then the decoding algorithm starts decoding from the B’th block to first block. In

the case of transmitting no new information at the last block, the total information

rate reduces by a coefficient of (B−1)/B. However, the reduction of information

ratio can be undervalued at large B. In contrary to the encoding scheme, in the

backward decoding the destination wants to decode message by help of W (i+ 1).

This decoding strategy can be clarified in Figure 4.3.
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By using properties of the mutual information, the achievable rates of the primary

and the secondary users can be described as

R1 ≤ I(X1;Y |X2) (4.13)

R2 ≤ I(X2;Y |X1) (4.14)

Rsum = R1 +R2 ≤ I(X1, X2;Y ) (4.15)

where R1 = R10 +R12 and R2 = R20 for generality.

As explained before, the achievable rate of the primary user to the receiver can

be expressed as

R10 ≤ E

{
log

[
1 +

h10P10(h)

σ2
0

]}
(4.16)

Nevertheless, in order to findR12, which is the rate of primary user to the cognitive

user, we first look at block 1 illustrated in Figure 4.3. Here, we set W12(0) = 0.

These signals are known by both users. The first signal X1(1) contains W12(0)

which are known, W12(1) which is of interest to cognitive user W10(1) which is

not attempted to be decoded by the cognitive user. Cognitive user will treat X10

as noise. The rate R12 between primary and secondary users can then be found

by the following equation

R12 ≤ E

{
log

[
1 +

h12P12(h)

h12P10(h) + σ2
2

]}
(4.17)

where P10 is treated as a noise component at the cognitive side so it must be in

denominator of logarithm. R20 is in similar fashion and can be expressed as

R20 ≤ E

{
log

[
1 +

h20P20(h)

σ2
0

]}
(4.18)
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And the sum of the rates at the destination, R10, R20 are bounded by

R10 +R20 ≤ E

{
log

[
1 +

h10P10(h) + h20P20(h)

σ2
0

]}
(4.19)

The decoding starts from the last block where it has no new information. In

the last block, the decoder wants to decode W12(B − 1) since W10(B), W20(B),

W12(B) are set to zero. The following rate constraint needs to be satisfied at the

receiver

R1 +R2 ≤ E

{
log

[
1 +

h10P1(h) + h20P2(h) + 2
√
h10h20Pu1Pu2

σ2
0

]}
(4.20)

where P1 and P2 are total power which are described in the equations (4.7).

The term 2
√
h10h20Pu1Pu2 in the equation (4.20) comes from the coherent addition

of cooperative signals U at the receiver. In the next step, the decoder wants to

decode W10(B − 1),W20(B − 1),W12(B − 1).

However, the sum rate in the side of destination is dominated by the equation

(4.21) and can be expressed as proved in [42]

R10 +R20 +R12 ≤ E

{
log

[
1 +

h10P1(h) + h20P2(h) + 2
√
h10h20Pu1Pu2

σ2
0

]}
(4.21)

There is also a constraint to meet the primary user’s optimal achievable rate

which is

R?
1 ≥ E

{
log

[
1 +

h10P
?
1 (h)

σ2
0

]}
(4.22)
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where P ?
1 is the optimum power level to guarantee not to underlay the desired

data rates for licensed user under the condition of

E[P ?
1 (h)] = P1 (4.23)

Besides, in consideration of given power allocation structures and constraints in

the equations (4.5) and (4.23), this rate in the equations (4.21) and (4.22) can

be dominated by sum of individual rates. Thus, sum of R1 and R2, which are

denoted by R10 +R12 is bounded by

R1 +R2 ≤ min

{
E

{
log

[
1 +

h10P1(h) + h20P2(h) + 2
√
h10h20Pu1Pu2

σ2
0

]}
,

E

{
log

[
1 +

h10P10(h) + h20P20(h)

σ2
0

]
+ log

[
1 +

h12P12(h)

h12P10(h) + σ2
0

]}}
(4.24)

4.1.1 Block Markov Superposition Coding

Various Markov encoding techniques are proposed for specific channels, such as

multiple access channel with feedback, relay channels. In this section, relay chan-

nel, similarly our channel model of interest which the cognitive user is as a relay

is examined. Transmission using block Markov coding operates over a number

of blocks. In the first block, a codeword is sent from the first codebook and the

relay knows the index of this codeword, but the intended receiver does not be-

cause of the fact that the channel between the transmitter and the relay is better.

However, the receiver has a list of possible codewords. In the next block, the

users randomly divide the first codebook into equal sized cells. The transmitters

and the receiver agree on what this partition is. The relay and the transmit-

ter find the cell of the partition in which the codeword from the first codebook

lies and cooperatively send the codeword from the second codebook with that

index. The transmitter also chooses a fresh codeword from its codebook, adds
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it to the cooperative codeword from its second codebook, and sends this sum

over the channel. The reception by the receiver in the second block involves first

finding the cooperative index from the second codebook by looking the closest

codeword and subtracts it, then calculates a list of indices corresponding to all

transmitted words from the first codebook in that second block. The receiver now

computes the codeword from the first codebook sent in the first block. In each

new block, the transmitter and the relay cooperate to resolve the list uncertainty

from the previous block. In addition, the transmitter adds some fresh information

from its codebook to its transmission from the second codebook and transmit the

sum. This encoding and decoding process is referred as to regular encoding and

backward decoding.

To summarize, in each block, with the exception of the first or the last block, a

new message is sent. However, the codeword to send at each block depends on not

only fresh information but also past information from one or more previous blocks.

Therefore the name is Markov encoding. The information from previous blocks

can be refined information for the previous message or cooperative information

for other users. At the receiver side, the channel output at each block is related

with messages from previous blocks, so various decoding schemes have also been

proposed.

In our scheme for the channel model 4.1, PU sends the codeword x1(wB−1, wB)

at block B. SU estimates ˆ̂wB−1 from the previous block B − 1, transmits then

x2( ˆ̂wB−1). An illustration of block Markov encoding is given in Figure 4.2 ac-

cording to the proposed model.

Figure 4.2: An Illustration of Superposition Markov Encoding
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At the end of the block B, given ˆ̂wB−1, SU estimates ˆ̂wB = w if and only if

there exists unique w such that (x2( ˆ̂wB−1),x1(w, ˆ̂wB−1),y2(B)) is jointly typical.

After retransmitting the information from the SU, the receiver starts decoding

from the last block B and proceeds backwards. At block B, assume ŵB is known

following decoding of block B + 1, the decoder estimates ŵB−1 = w if and only

if there exists a unique w such that (x1(ŵB, w),x2(w),y3(B)) is jointly typical.

Backward decoding is illustrated as follows in Figure 4.3

Figure 4.3: An Illustration of Backward Decoding

4.2 Optimization of Sum Rate of Two-User Cooperative Cognitive

Multiple Access Channel

There are two main problem of interest which the first is one of maximizing the

sum rate of the system and the other one of aimimg to optimize the cognitive radio

user’s achievable rate by getting assistance of the fully knowledge of the channel

state information at both the users and the receiver. Therefore, our problems

are based on power allocation showing as in the equations from (4.5) to (4.7).

Before we give our proposed practical scenario for the first case, we summarize the

problem associating the Lagrangian multipliers γ1, γ2, γ3, γ4 > 0 to the inequality

constraints, λ1, λ2 > 0 to the power constraints, and µi(h) ≥ 0, i = 1, ..., 5 to

the non-negativity constraints, and noting that the power constraints need to be

satisfied by equality, we obtain the KKT conditions, which are necessary and

sufficient for optimality.
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The optimization problem for the maximizing of the sum rate of the system with

satisfying the primary user’s quality of service is

max
p(h)

R1 +R2

s.t.

R1 < E

{
log

[
1 +

h10P10(h)

σ2
0

]
+ log

[
1 +

h12P12(h)

h12P10(h) + σ2
0

]}
(4.25)

R2 < E

{
log

[
1 +

h20P20(h)

σ2
0

]}
(4.26)

R1 +R2 < E

{
log

[
1 +

h10P1(h) + h20P2(h) + 2
√
h10h20Pu1(h)Pu2(h)

σ2
0

]}
(4.27)

R1 ≥ E

{
log

[
1 +

h10P
?
1 (h)

σ2
0

]}
(4.28)

P1 = E
[
P10(h) + P12(h) + Pu1(h)

]
(4.29)

P2 = E
[
P20(h) + Pu2(h)

]
(4.30)

P10(h), P12(h), Pu1(h), P20(h), Pu2(h) ≥ 0 (4.31)

For simplicity of the derivations, we assume that the fading distributions are such

that all realizations of the fading values satisfy which the cooperative link has

better channel conditions compared to the direct links from both transmitters to

the receiver, s12 > s10 where the channel fading coefficients are normalized by the

noise powers as sij = hij/σ
2
j . This can be thought as particular case is of practical

interest since the cooperating transmitters are likely to be closely located with

less number of scatterers and obstructions when compared to their paths to the
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receiver. Since, P10(h) = 0 and the problem of maximizing the cognitive user’s

rate reduces to

L1 = R1 +R2 + γ1

{
E
[

log
(

1 + s12P12(h)
)]
−R1

}
+γ2

{
E
[

log
(

1 + s20P20(h)
)]
−R2

}
+γ3

{
E
[

log
(
A
)]
−R1 −R2

}
+ γ4

{
R1 −B?

}
+λ1

{
P1 − E

[
P12(h) + Pu1(h)

]}
+ λ2

{
P2 − E

[
P20(h) + Pu2(h)

]}
+µ2P12(h) + µ3Pu1(h) + µ4P20(h) + µ5Pu2(h) (4.32)

This optimization problem actually includes the next one of optimization of the

cognitive user’s data rate. The constraint which is weighted by γ4 checks whether

the optimal rate for the primary user is satisfied or not. If this equation is satisfied

with inequality, then we can say that the constraint for γ4 is inactive.

Considering the case which the rate of the primary user by the power control

policy is equal to the optimal value, then the γ4 becomes active, and R1 can be

replaced with B? in the rest of the equations. Thus, the optimization problem is

transformed into the problem of maximizing the rates achievable of the cognitive

user.

Taking the partial derivations of L1 with respect to the power components of

the primary and the secondary users, we handled out the expressions from (4.33)

to (4.36). Note that for optimality, for any given h, the components of powers

should be non-negative.
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γ1
s12

1 + s12P12(h)
+ γ3

s10
A
≤ λ1 (4.33)

γ2
s20

1 + s20P20(h)
+ γ3

s20
A
≤ λ2 (4.34)

γ3
s10
√
Pu1(h) +

√
s10s20Pu2(h)

A
√
Pu1(h)

≤ λ1 (4.35)

γ3
s20
√
Pu2(h) +

√
s10s20Pu1(h)

A
√
Pu2(h)

≤ λ2 (4.36)

where γ2 +γ3 = 1 and γ1 +γ3 = 1+γ4 and for this case, we also zero γ4. Thus, we

extract that γ1 = γ2. From the equations (4.35) and (4.36). If Pu1(h), Pu2(h) > 0,

then the equations (4.35) and (4.36) is satisfied with equality and getting ratio

of these two equations we also found a linear relationship between Pu1(h) and

Pu2(h) by dividing the equations (4.35) to (4.36) such that

λ21s20Pu1(h) = λ22s10Pu2(h) (4.37)

Therefore, the powers allocated for the transmission of the message components

are given by

P12(h) =

(
γ2(λ2s10 + λ1s20)

λ21s20
− 1

s12

)+

(4.38)

P20(h) =

(
γ2(λ2s10 + λ1s20)

λ22s20
− 1

s20

)+

(4.39)

Pu1(h) =

1− γ2
(
s10 + λ1

λ2
s20

)
λ1

−
[
1 + s10P12(h) + s20P20(h)

]
(
s10 + λ1

λ2
s20

)2 s10 (4.40)

Pu2(h) =

1− γ2
(
s20 + λ2

λ1
s10

)
λ2

−
[
1 + s10P12(h) + s20P20(h)

]
(
s20 + λ2

λ1
s10

)2 s20 (4.41)
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Next, we include the case when the power allocated to transmit cooperative mes-

sages, i.e., the equations (4.40), (4.41) result with negativity. In this case, we

should set Pu1(h) = Pu2(h) = 0 in our analysis for optimality. Then, the power

levels of P12(h) and P20(h) become as in the roots of equations (4.42) and (4.43)

by replacing Pu1 and Pu2 terms including in the sum rate with coherent addition,

A as zero.

For P12(h) and P20(h) when Pu1(h) = Pu2(h) = 0

a1P12(h)2 + b1P12(h) + c1 = 0 (4.42)

a2P20(h)2 + b2P20(h) + c2 = 0 (4.43)

The solution for the equation (4.42) is

a1 = λ1s10s12 (4.44)

b1 = λ1

(
s10 + s12 + s12s20P20(h)

)
− s10s12 (4.45)

c1 = λ1

(
1 + s20P20(h)

)
− γ2

(
s12 + s12s20P20(h)− s10

)
− s10 (4.46)

The solution for Equation (4.43) is

a2 = λ2s
2
20 (4.47)

b2 = λ2

(
2s20 + s10s20P12(h)

)
− s220 (4.48)

c2 = λ2

(
1 + s10P12(h)

)
− γ2

(
s10s20P12(h)

)
− s20 (4.49)
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4.2.1 Iterative Algorithm

Our algorithm searches the optimal Lagrangian multipliers iteratively. We have

to find out optimal γ2, λ1 and λ2 values. We force that each user’s transmitting

power is satisfied with the equality to average total power with the amount of error

of 10−4. Program firstly scans the optimal combination of λ1 and λ2 considering

the satisfaction of the power. Our calculations which are shown in the analytical

part in the thesis. We calculate the water level for each user and then determine

the powers of the sub-messages using the equation (4.38), (4.39), (4.40) and (4.41)

when Pu1(h) and Pu2(h) are positive, otherwise we assign the new power values

of P12(h) and P20(h) using the equation (4.42) and (4.43) and setting Pu1(h) =

Pu1(h) = 0 for those index. Thus, we iteratively look for the suboptimal λ

values. After finding the temporary optimal values, we have to check whether the

summation of the achievable rates of the users reaches the its maximal values.

The rate constraint gets the maximal value when the equations of (4.25)+(4.26)

and (4.27) are the equal with an acceptable error.
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Algorithm 1 Optimization of Sum Rate with Multidimensional Search

while γ2 does not satisfy the equation (4.25)+(4.26)=(4.27) do
All power values ← 0;
Initiate λ1;
while All components of powers do not converge as in the equations (4.29)
and (4.29) do

while λ1 where controls (4.29) is not optimal do
Assume PU1 > 0 calculate v1, P12, PU1 and assign zero where PU1 < 0;
while PU1 6= 0 do

Recalculate P12 using (4.42) for those index and find where PU1 = 0;
end while
if First user transmitting power is satisfied its total average power then

Modify λ1 (if the result is less, decrease λ1;
end if

end while
Use new suboptimal λ1 and initiate λ2;
while λ2 is not optimal as in (4.30) do

Calculate V2, P20, PU2 and find where PU2 < 0;
while PU2 ≤ 0 do

Recalculate P20 using (4.43) for those index and find where PU2 = 0;
end while
if Cognitive user transmitting power is satisfied its total average power
then

Modify λ2;
end if

end while
end while
Calculate R1 and R2 using (4.25), (4.26) and (4.27);
if R1 −R2 < Threshold then

Decrease γ2;
else

Increase γ2;
end if

end while

4.2.2 Simulation Results

In this section, we provide some numerical examples to illustrate the performance

of the power allocation and cooperative cognitive scheme. We solve the optimiza-

tion problem by two different approaches; maximization of the sum rate and

maximization of the cognitive user’s rate.
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Figure 4.4: Rates achievable with the power control and user cooperation for
uniform fading

Figure 4.4 illustrates the achievable rate region we obtain for a system with the

average total power of 1 for each user subject to uniform fading. The links from

the primary user and cognitive user to the destination takes values from the set

of {0.025, 0.050, ..., 0.25}. The link between the transmitters is also uniform and

takes values from the set of {0.26, 0.27, ..., 0.35}. As we discussed in the analytical

part of this chapter, the fading coefficient of the cooperation link is always better

than the direct links and we set the primary user’s transmitting power to the

zero, P10(h) = 0. Therefore, the power allocation scheme is actually the optimal

power allocation policy for the block Markov superposition encoding scheme.

User cooperation and power control scheme significantly improves the rates achiev-

able with(out) the power control as seen in Figure 4.4. For the rate pairs close

to the sum rate, the primary user takes advantages of its cooperative link while

it is sending its own message because of the fact that the link is always better

than the direct one. Cognitive user decides which path is more profitable to the

sum rate of the system and makes a decision on whether it helps to cooperate to

the primary user or it sends its own message over the channel to the destination.

Secondary user is able to reach the rate of 0.144 symbols/transmission when the
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primary user exhausts its change in order to maximize the sum rate of 0.358

symbols/transmission. The other interesting result is where the maximal point

of the sum rate is close to the case of the cooperation with power control.
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Figure 4.5: Power distribution for different channel coefficients of s12 and s20

The power distributions of the primary and the secondary users for different

channel fading coefficients are investigated to make sense of the results of the

sum rate region. In the first case where fixed s12 and s20, the transmitting powers

behave as in Figure 4.5. To optimize the sum rate of the system, the higher the

direct connection of the primary user s10 is, the more power should be allocated

to send the cooperative codeword of X12. However, if the link from the secondary

user to the destination, s20 has a active part of maximizing the sum rate so

that the power allocated to P20 can be more reasonable if this link is better. In

our example, when s20 = 0.15, P12 is increasing early compared to the case of

s20 = 0.25 or when s12 is increasing and s20 is constant, the power should be

increased to transmit more number of symbols to the destination.
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In addition to the power distribution of the common link, the power allocated to

the direct path of the secondary user is described. We know of that s12 is always

better than the other channel conditions. If we want to increase the sum rate, P20

should be moved up to the case of when s10 reaches to the desired level because of

that s12 is bigger. Moreover, when the link of the direct link from the secondary

user to the destination is stabilized and s12 moved from 0.25 to 0.35, the level of

P20 starts to decrease early.
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Figure 4.6: Power distribution for different channel coefficients of s10 and s20

In Figure 4.6, the power distribution is given with respect to s12 with fixing the

direct links, s10 and s20. It is obviously that the power allocated to the cooper-

ative path is related to s12. Thus, increasing the coefficient means distributing

more power of P12. However, the message sent to the cognitive user from the

primary user is decoded by the receiver with dependency on the situation of the

relationship between the direct links of the primary user and the cognitive user,

s10 and s20. If s10 is getting better compared to s20, then the more power of P12

should be assigned. On contrary, it increases with less amount of power. In other
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case of looking the distribution of P20, the common information between the users

does not depend on s12 as formulating in the analytical part of this chapter, so

the lines with zero slope is reasonable under the condition of P2 = P20 + PU2. It

differs accordance with the channel fading coefficient of the link from the cogni-

tive user to the destination. Considering the black dashed line in Figure 4.6, s20

is approximately worst and s10 and s12 is nearly two or three times higher than

s20. To optimize the sum rate, P20 is initialized and its total power is transferred

to the common information.

4.3 Optimization of Rate of Cognitive User of Two-User Cooperative

Cognitive Multiple Access Channel

As mentioned in the previous section, we have two main problem and our interest

in this section is to optimize the cognitive radio user’s achievable rate by getting

assistance of the fully knowledge of the channel state information at both the users

and the receiver under the condition of the fact that the primary user’s achievable

rate does not decrease the optimal level. We investigate the power allocation

policy showing as in the equations from (4.5) to (4.7) by solving Lagrangian

optimization problem. We obtain the KKT conditions, which are necessary and

sufficient for optimality.
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The problem which aims the maximization of the rate achievable of the cognitive

user can be expressed as

max
p(h)

R2

s.t.

R1 < E

{
log

[
1 +

h10P10(h)

σ2
0

]
+ log

[
1 +

h12P12(h)

h12P10(h) + σ2
0

]}
(4.50)

R2 < E

{
log

[
1 +

h20P20(h)

σ2
0

]}
(4.51)

R1 +R2 < E

{
log

[
1 +

h10P1(h) + h20P2(h) + 2
√
h10h20Pu1(h)Pu2(h)

σ2
0

]}
(4.52)

R1 = E

{
log

[
1 +

h10P
?
1 (h)

σ2
0

]}
(4.53)

P1 = E
[
P10(h) + P12(h) + Pu1(h)

]
(4.54)

P2 = E
[
P20(h) + Pu2(h)

]
(4.55)

P10(h), P12(h), Pu1(h), P20(h), Pu2(h) ≥ 0 (4.56)

Assumptions for the first case are also valid for this problem. In other words, all

realizations of the fading values satisfy s12 > s10 where the channel coefficients are

normalized by the noise powers as sij = hij/σ
2
j and P10(h) = 0 and the problem

of maximizing the achievable rate of the cognitive user becomes as

L2 = R2 + γ1

{
E
[

log
(

1 + s12P12(h)
)]
−B?

}
+γ2

{
E
[

log
(

1 + s20P20(h)
)]
−R2

}
+ γ3

{
E
[

log
(
A
)]
−B? −R2

}
+λ1

{
P1 − E

[
P12(h) + Pu1(h)

]}
+ λ2

{
P2 − E

[
P20(h) + Pu2(h)

]}
+µ2P12(h) + µ3Pu1(h) + µ4P20(h) + µ5Pu2(h) (4.57)
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Taking the partial derivations of L2 with respect to the power components of the

primary and the secondary users, we found out the expressions from (4.58) to

(4.61).

γ1
s12

1 + s12P12(h)
+ γ3

s10
A
≤ λ1 (4.58)

γ2
s20

1 + s20P20(h)
+ γ3

s20
A
≤ λ2 (4.59)

γ3
s10
√
Pu1(h) +

√
s10s20Pu2(h)

A
√
Pu1(h)

≤ λ1 (4.60)

γ3
s20
√
Pu2(h) +

√
s10s20Pu1(h)

A
√
Pu2(h)

≤ λ2 (4.61)

where γ2 + γ3 = 1. From the same procedure at the above case, the linear

relationship between Pu1(h) and Pu2(h) exists such that

λ21s20Pu1(h) = λ22s10Pu2(h) (4.62)

If and only if the equations (4.60) and (4.61) is satisfied with equality when

Pu1(h), Pu2(h) > 0. Therefore, the powers allocated for the transmission of the

message components are given by
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P12(h) =

(
γ1(λ2s10 + λ1s20)

λ21s20
− 1

s12

)+

(4.63)

P20(h) =

(
γ2(λ2s10 + λ1s20)

λ22s20
− 1

s20

)+

(4.64)

Pu1(h) =

1− γ2
(
s10 + λ1

λ2
s20

)
λ1

−
[
1 + s10P12(h) + s20P20(h)

]
(
s10 + λ1

λ2
s20

)2 s10 (4.65)

Pu2(h) =

1− γ2
(
s20 + λ2

λ1
s10

)
λ2

−
[
1 + s10P12(h) + s20P20(h)

]
(
s20 + λ2

λ1
s10

)2 s20 (4.66)

Next, we have to again include the case when the power allocated to transmit

cooperative messages, i.e., the equations (4.65), (4.66) result with negativity. In

this case, we should set Pu1(h) = Pu2(h) = 0 in our analysis for optimality. Then,

the power levels of P12(h) and P20(h) become as in the roots of the quadratic

equations (4.67) and (4.68) by replacing Pu1 and Pu2 terms including in the sum

rate with coherent addition, A as zero.

For P12(h) and P20(h) when Pu1(h) = Pu2(h) = 0

a3P12(h)2 + b3P12(h) + c3 = 0 (4.67)

a4P20(h)2 + b4P20(h) + c4 = 0 (4.68)

The solution for the equation (4.67) is

a3 = λ1s10s12 (4.69)

b3 = λ1

(
s10 + s12 + s12s20P20(h)

)
− (γ1 − γ2 + 1)

(
s10s12

)
(4.70)

c3 = λ1

(
1 + s20P20(h)

)
− γ1

(
s12 + s12s20P20(h)

)
− (1− γ2)s10 (4.71)
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The solution for the equation (4.68) is

a4 = λ2s
2
20 (4.72)

b4 = λ2

(
2s20 + s10s20P12(h)

)
− s220 (4.73)

c4 = λ2

(
1 + s10P12(h)

)
− γ2

(
s10s20P12(h)

)
− s20 (4.74)

4.3.1 Iterative Algorithm

Our second algorithm differs from the first one with the additional constraint

which controls the primary user’s optimal achievable rate. We have to search

optimal γ1, γ2, λ1 and λ2 values iteratively. Our iterative program firstly scans the

optimal combination of λ1 and λ2 according to the specific Lagrangian multipliers

for the rate constraints, γ1 and γ2. We calculate the water level for each user and

then determine the powers of the sub-messages using the equation (4.63), (4.64),

(4.65) and (4.66) when Pu1(h) and Pu2(h) are positive. We assign the new power

values of P12(h) and P20(h) using the equation (4.67) and (4.68) when those power

values are negative and we set Pu1(h) = Pu1(h) = 0 for those index. After finding

the suboptimal λ values, we have to firstly check the primary user’s quality of

services scanning γ1, then we search γ2 value for the maximum of the achievable

rate of the cognitive user.
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Algorithm 2 Optimization of Secondary User’s Rate

Initiate γ1 and γ2;
while γ2 does not satisfy that (4.52)-(4.53)=(4.51) do

Reset γ1;
while γ1 does not satisfy the equation (4.50)¡(4.53) do

All power values ← 0;
Initiate λ1;
while Powers are not optimal as in the equations (4.54) and (4.55) do

Reset λ1;
while λ1 where controls (4.54) is not optimal do

Calculate water-level V1 and power components of the primary user
P12, PU1 using (4.63) and (4.65);
Find where PU1 < 0;
while PU1 ≤ 0 do

Recalculate P12 for that index set using the equation (4.67);
end while
if Primary user’s power is satisfied with its average power then

Modify λ1 (if the result is less than required, decrease λ1);
end if

end while
Use new suboptimal λ1 to calculate λ2;
Initiate λ2;
while λ2 is not optimal in (4.55) do

Calculate water level V2 and power components of the cognitive user
P20, PU2 (4.64) and (4.66);
Assign PU2 = 0 where PU2 < 0;
while PU2 is equal to 0 do

Recalculate P20 for those index using (4.68);
end while
if Secondary user’s power is satisfied with its average power then

Modify λ2;
end if

end while
end while
Calculate the rate of primary user, R3 and R4 using (4.50) and (4.53);
if R3 −R4 ¡ Threshold then

Decrease γ1;
else

Increase γ1;
end if

end while
Calculate the rates of the cognitive user, R1 and R2 using (4.51) and (4.52)-
(4.53);
if R1 −R2 ¡ Threshold then

Modify γ2;
end if

end while
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4.3.2 Simulation Results

The second approach to the optimization problem is to maximize the rates achiev-

able by the cognitive user taking into account of the fact that the primary user’s

data rates should not be below the level of the optimal value providing by the

power control policy only. We analyzed and optimized the maximization problem,

and found out achievable rate pairs, then we performed a convex hull operation

over these points and we observed Figure 4.7. We obtain for a system with the

average total power of 1, and a channel is exposed to uniform fading. The links

between the primary user and the receiver and also the cognitive user and the

destination take values from the set of {0.025, 0.050, ..., 0.25} with probability of

1/10. The link between the transmitters is also uniform and takes values from

the set of {0.26, 0.27, ..., 0.35}. The assumption of the channel condition is valid

for this situation, so that the fading coefficient of the cooperation link is always

better than the direct links, so P10(h) = 0.
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Figure 4.7: Rates achievable of cognitive user with power control and user coop-
eration for uniform fading

The rate achievable pairs of the two-sided cooperation in a multiple access channel

is shown with the dashed black line in Figure 4.7 and the rate pairs with power
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control and without cooperation for the same channel is illustrated with red line.

We can observe that the case of two-sided cooperation lies over the situation of

the one-sided cooperation in the cognitive MAC channel as expected. It is seen

that the cooperation in our case improves both the sum rate and the cognitive

user rate achievable with the case of the fact that primary user’s rate is fixed.

The cognitive user’s rate is 0.158 symbols/transmission where the rate of the

primary user’s is limited to 0.172 symbols/transmission in order to be guaranteed

to transmit its own message reliable considering the optimization of the secondary

user’s data rates.
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Figure 4.8: Power distribution for different channel coefficients of s12 and s20

Figure 4.8 shows the power distributions of the one for the cooperative link and

the one for the direct path of the secondary user with respect to the different

channel conditions of s10 with some fixed values of s12 and s20. This figure is

illustrated to be able to interpret successfully what differs the results compared

to the case of optimization of the sum rate of the system. In this case, our aim is

to improve the rate of the cognitive user as much as possible with the care of the
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primary user’s rate constraint. Thus, if the link from the cognitive user to the

destination has the best value as possible, its power is allocated to its own link

without effecting any cause to the primary user’s rate, so that the direct link of

the primary user, s10 is getting better, the power of P20 is enrolled to decrease.

Besides, we have to consider the cooperative link condition. It is helpful to

increase the primary user’s achievable rate, so the increasing s12 contributes the

primary user and the power of P12 gets bigger with s10 as shown in Figure 4.8. We

have to again compare the two figures. When s12 reaches its maximal value, 0.35,

and s20 is decreased from 0.25 to 0.15 with looking at the yellow lines, then we

can see that more power of P20 is allocated to the case of optimizing the cognitive

user’s rate for the lower s10. Another interesting result is that the blue dashed

line and black dashed line overlap due to the fact that PU2 does not depend on

s12, so it does not change and so P20.

In Figure 4.9, the power distribution is given with respect to s12 with fixing the

links coefficients of the primary users, s10 and s12.

It can be easily figured out that the message sent by the cognitive user is decoded

at the receiver successfully is directly related to the link from the secondary

user to the destination. Therefore, the bigger the channel fading coefficient of

s20 is, the more power is allocated to that part of the message over that path.

However, there is an other constraint to limit us which is the primary user’s rate

for its quality of service requirement. This requirement is provided by the channel

condition of s10 and s12. When s10 is selected as lower level, then the power of

P12 becomes smaller. As an example in Figure 4.9, if s10 = 0.10, then the power

allocated for the cooperative message of the first user, PU1 should be increased

and the cognitive user should also increase its own cooperative message power,

PU2 to improve the sum rate of the system. After the channel of the direct link of

the secondary user gets better (which is bigger than 0.10), it starts to use its own

direct link to transmit the message, in other words, the power of P20 is increasing.

Moreover, we should analyze the effects of the common link between transmitters

to the power distribution. We already know that increasing of s12 also provides
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Figure 4.9: Power distribution for different channel coefficients of s10 and s12

to get higher the P12. Remember that the power for the transmitting of the

cooperative message, PU2 is independent with s12. Any change of s12 does not

effect PU2, so the power allocated to transmit its own fresh information, P20 as

illustrated with dashed green and red lines overlapped.
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Conclusion

In this thesis, we proposed a coding and decoding strategy for a wireless communi-

cation network, in which licensed and unlicensed (cognitive) users simultaneously

transmit their own messages towards the common destination, such that the cog-

nitive user relays the primary user’s message while transmitting its own message.

We have solved the problem of optimal power allocation for a fading cooperative

cognitive multiple access channel. Transmitters can adapt the encoding/decoding

strategies by allocating the transmitting powers which maximize the achievable

rates by block Markov superposition coding, so that the powers for the signal

components which are the one that is destined to the receiver, the one for the

cognitive user, and the one for cooperation are allocated according to the channel

condition. Using techniques from convex minimization (or equivalently concave

maximization), we obtained the analytical structure of the optimal power allo-

cation policies. The power control policies, which are jointly optimal with block

Markov coding, were then obtained through simulations. The sum rate of the sys-

tem with power control and one-directional cooperation improves the one with

power control only and it is close to the one with bidirectional cooperative sys-

tems with power control. The results also show that the rate achievable by the

cognitive user slightly increases considering the constraint of the primary user’s

optimal rate.
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