
MODELLING A UNIVERSITY AS A MULTI-AGENT SYSTEM

by

ÖNDER ÖZKAN

BS, Information Technologies, FMV IŞIK UNIVERSITY, 2005

BS, Computer Sciences and Engineering, FMV IŞIK UNIVERSITY, 2006

Submitted to the Graduate School of

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Information Technologies

FMV Işık University

2008

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

MODELLING A UNIVERSITY AS A MULTI-AGENT SYSTEM

ÖNDER ÖZKAN

APPROVED BY :

Assist. Prof. Nazım Ziya PERDAHÇI

(Thesis Supervisor)

Assoc. Prof. Seyhun ALTUNBAY

Assist. Prof. Vedat COŞKUN

DATE OF APPROVAL: 09.09.2008

MODELLING A UNIVERSITY AS A MULTI-AGENT

SYSTEM

Abstract

Multi-Agent systems are an approach for designing and implementing complex

social organizations in the software domain. In multi-agent systems; actors that in-

teract with the system are modeled as software entities called ”agents”. These soft-

ware agents can show autonomous and intelligent behaviour. Also when a supporting

runtime environment (or platform) is available, agents show mobility and can move

between interconnected platforms that form the system. With these properties agents

try to satisfy the expectations of their respective owner actors by using their knowledge

and belief bases (derived from the actors). An implementation of a multi-agent system

can both be used for simulation purposes (by initialising agents based on reference test

data) and as an actual information system by attaching agents to real world actors.

This work aims at analysing a university as a complex social system and creating

a corresponding multi-agent model. In the designed model academic and administra-

tive units and students are represented by intelligent and mobile agents that can be

implemented using JADE multi-agent system development framework. To provide a

satisfactory mobile environment faculties and administrative units are defined to have

their own (separate) agent platforms.

ii

BİR ÜNİVERSİTENİN ÇOKLU-AJANLI SİSTEM

OLARAK MODELLENMESİ

Özet

Çoklu ajanlı sistemler (Multi-Agent Systems) karmaşık sosyal organizasyonların

bilgisayar ortamında modellenmesine ve uygulanmasına yönelik kolaylıklar sag̃layan

bir yazılım gelistirme yaklaşımıdır. Çoklu ajanlı sistemlerde gerçek sistemde etkin olan

aktörlerin yazılımsal karşılıkları ”ajan” olarak adlandırılan yazılımlar ile sag̃lanır. Bu

yazılımsal ajanlar otonom ve (dereceli olarak) zeki davranışlar gösterebilirler. Buna

ek olarak desteklenen ortamlarda ajanlar hareketlilik (mobility) özellig̃i ile birbirine

bag̃lı platformlar arasında dolaşabilirler. Bu özellikleri ile temsil ettikleri aktörlerin

amaçlarına uygun şekilde karşılanması gereken fayda beklentilerini ilgili aktörlerin bilgi

birikimleri ve inançları dog̃rultusunda gerçekleştirmeye çalışırlar. Çoklu ajanlı mod-

eli hazırlanmış bir sistemin uygulaması hem (test bilgi birikimleri yüklenmiş ajan-

lar ile) sisteme yönelik simulasyon amaçları için kullanılabilir, hem de reel bilgiler ile

yüklenerek ve/veya ajanlar gerçek kullanıcıların erişimine açılarak aktif bir bilgi sistemi

olarak kullanılabilirler.

Bu çalışma ile karmaşık sosyal bir sistem olarak bir üniversitenin incelenmesi ve

çoklu ajanlı modelinin oluşturulması amaçlanmıştır. Oluşturulan modelde üniversite

içinde varolan akademik ve idari birimler ve ög̃renciler JADE çoklu ajan geliştirme

ortamında uygulanacak zeki ve mobil ajanlar ile temsil edilmektedirler. Mobilite için

gerekli ortamı yaratmak adına üniversite içinde bulunan fakülte ve idari birimler ayrı

ajan platformları olarak tanımlanmışlardır.

iii

Acknowledgements

I would like to thank my advisor for his support, mentorship and friendship during

past 7 years we have been working together.

To family, friends and Snow White...

iv

Table of Contents

Abstract . ii

Özet . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . ix

List of Symbols/Abbreviations . xi

1. Introduction . 1

1.1. Motivation . 2

1.2. Objectives . 3

2. Review on Agents and Agent Technology . 4

2.1. Agent Concept . 4

2.2. Agent Architectures . 6

2.3. FIPA . 7

2.4. JADE . 9

2.4.1. Agent Model in JADE . 9

2.4.2. Agent Activities . 10

2.4.3. Communication Among Agents 12

2.4.4. Content Languages and Ontologies 16

2.4.5. Agent Platforms and Containers 16

2.5. Gaia Methodology for Developing Multi-Agent Systems 18

v

2.5.1. Analysis Phase . 18

2.5.2. Design Phase . 21

3. Modelling a University as a Multi-Agent System 23

3.1. Model Definition . 23

3.1.1. Agent Platform and Container Definition 23

3.1.2. Agent Definitions . 23

3.1.3. Model-Phase Agents . 24

3.1.3.1. Student-Agent . 24

3.1.3.2. Faculty-Agent . 25

3.1.3.3. Administrative-Agent 25

3.1.3.4. Aggregate-Agent . 26

3.1.3.5. Pseudo-Agent . 26

3.1.4. Implementation-Phase Agents 26

3.1.4.1. MausAgent . 26

3.1.4.2. DataProviderAgent . 26

3.1.4.3. CoreServicesAgent . 26

3.1.4.4. JADECreatorAgent 27

3.2. Implementation . 27

3.2.1. Programming Implementation 27

3.2.2. Package Structure . 27

3.2.2.1. edu.zion.mas.maus.core 27

3.2.2.2. edu.zion.mas.maus.core.data.providers 28

3.2.2.3. edu.zion.mas.maus.core.data.types 29

3.2.3. edu.zion.mas.maus.core.data.onto 29

3.2.4. edu.zion.mas.maus.agents . 29

3.2.4.1. edu.zion.mas.maus.agents.actions 31

3.2.4.2. edu.zion.mas.maus.behaviour 31

3.2.4.3. edu.zion.mas.maus.kb.believes 32

3.2.4.4. edu.zion.mas.maus.kb.rules 33

vi

3.2.4.5. edu.zion.mas.maus.util 34

3.2.4.6. edu.zion.mas.maus.util.management 34

3.2.4.7. edu.zion.mas.maus.util.ui 34

3.2.4.8. edu.zion.mas.maus.util.web 34

3.3. Data Storage . 35

3.4. Deployment . 35

4. Applications of this Model . 37

4.1. Quota Forecasting . 37

4.2. Online Course Registration . 38

4.3. Regulation Simulations . 38

4.4. Online Student-Faculty Collaboration System 39

5. Sample Application . 40

5.1. Description . 40

5.2. Analysis . 41

5.2.1. Roles Model . 41

5.2.2. Interactions Model . 46

5.3. Design . 46

5.3.1. Agent Model . 46

5.3.2. Services Model . 47

5.3.2.1. StudentAgent Services 47

5.3.2.2. RegistrarAgent Services 51

5.3.2.3. DataProviderAgent Services 51

5.3.3. Acquaintance Model . 52

5.4. Implementation . 53

6. Conclusion . 54

References . 56

References not Cited . 57

Curriculum Vitae . 58

vii

List of Tables

Table 2.1. FIPA ACL MessageParameters [6] 14

Table 2.2. Gaia Operators for Liveness Formulas 20

Table 2.3. Gaia Agent Instance Qualifiers . 22

Table 5.1. Gaia Interactions Model . 48

Table 5.2. Gaia Services Model for Course Registration System (StudentA-

gent, Registrar Agent) . 49

Table 5.3. Gaia Services Model for Course Registration System (DataProvider-

Agent) . 50

viii

List of Figures

Figure 2.1. An agent and its environment . 5

Figure 2.2. Horizontal and Vertical Layered Architectures 8

Figure 2.3. JADE - Agent thread path of execution[2] 11

Figure 2.4. FIPA message structure . 13

Figure 2.5. JADE Agent Platform Architecture[2] 17

Figure 2.6. JADE Agent Platform Architecture Elements[2] 18

Figure 2.7. Gaia Framework Structure . 19

Figure 2.8. Sample Gaia Liveness Property Definition 19

Figure 2.9. Gaia Analysis Process . 21

Figure 2.10. Gaia Design Process . 22

ix

Figure 5.1. Gaia Agent Model for Course Registration System 46

Figure 5.2. Gaia Acquaintance Model for Course Registration System 52

x

List of Symbols/Abbreviations

AI Artificial Intelligence

AMS Agent Management System

AP Agent Platform

DF Directory Facilitator

FIPA Foundation for Intelligent Physical Agents

FSM Finite State Machine

IEEE International Association of Electrical and Electronics Engi-

neers

JADE Java Agent Development Framework

JADE-WSIG JADE Web Services Integration Gateway

MAM Multi-Agent Model

MAS Multi-Agent System

MAUS Multi-Agent UniverSity

MTS Message Transport Service

WSDL Web Services Definition Language

xi

1. Introduction

Multi-Agent systems (MAS) are systems composed of multiple interacting com-

puting elements, known as agents. Agents are computer systems with two important

capabilities. First, they are at least to some extend capable of autonomous action - of

deciding for themselves what they need to do in order to satisfy their design objectives.

Second, they are capable of interacting with other agents - not simply by exchanging

data, but by engaging in analogues of the kind of social activity that we all engage in

every day of our lives: cooperation, coordination, negotiation and the like.[1]

MAS’s can be used in modelling, designing and implementing complex and dy-

namic systems. Due to the intelligent and autonomous nature of the agents the re-

sulting system can also be used for experimental simulation purposes. Multi-Agent

systems can also be used for Multi-Agent modelling for observing social behaviour and

effects of outside factors in artificial societies.

A university presents an interesting social organization for studying as a multi-

agent system. The various actors in the system; administrative departments, academic

departments, students, etc., can be represented by carefully designed intelligent agents.

The interactions that happen between these actors can then be modeled as agent

behaviours and the resulting system can be used for simulating the behaviour of the

1

university during special periods (consider course registration period as an example)

and when faced with certain scenarios (such as curriculum changes).

1.1. Motivation

The ability to forecast the outcomes of changes made to the dynamics of a uni-

versity is a valuable tool for administrative bodies. A MAS representing a university

can be used to provide such a forecasting tool. In such a system agents representing

students will have internal rule definitions representing the beliefs (impressions about a

certain instructor, the students ability in course subjects - mathematics, programming,

etc. -, expectations - leaving a day of the week free, taking the same course with a

friend - and constraints - satisfying a minimum course credit, taking outstanding failed

courses - of students. A similar specialized agent representation will exist for instruc-

tors and administrative staff. Using this MAS, simulations and forecasts on system

reflexes to situations such as;

1. demand on individual courses during registration periods

2. effects of changes on course curriculum

3. effects of changes on administrative workflows

On the other hand a MAS representing a university can be used to deploy information

systems for applications such as;

1. online course registration system

2. online information gathering and communication system

3. online petition registration, processing and tracking system

2

1.2. Objectives

This work aims at providing a basis for a complete Multi-Agent model (as a Multi-

Agent system) of a university. In the following chapters conceptual definition and actual

implementation details of this model will be given along with sample applications. The

objectives of this work can be summarized as;

1. provide a basis conceptual model of a university

2. map the conceptual model to a MAS

3. provide an actual implementation design of the MAS

4. provide a sample application for the implemented MAS

3

2. Review on Agents and Agent Technology

2.1. Agent Concept

An agent is a computer system that is situated in some environment, and that is

capable of autonomous action in this environment in order to meet its design objec-

tives. [1] An agent is in constant interaction with its environment. The environment

affects the agent causing it to take actions and change its internal state. Likewise ac-

tions of an agent will affect the environment. When multiple agents exist in the same

environment actions of one agent may have effects on all the agents. A very simple

graphic representation of an agent an its environment is given in figure 2.1. Having said

that agents can affect their environments, agents generally do not have total control

over their environments, other entities (agents, external input sources, etc.) may be

affecting the system. Thus, when an agent executes an action A1 at time t0, it can not

expect the environment to respond in the same way when the same action is executed

at time t1. So agents must be prepared for failures (as in action results not meeting

expectations). Consider a room temperature control system as an example. In this

system the thermostat can be modeled as an agent. If the agent had total control

over the environment (the environment was deterministic) running the heater units for

a given period of time would have the same effect on the ambient room temperature

regardless of the time this action was triggered. However in a real scenario due to

4

Figure 2.1. An agent and its environment

external factors like; the number of people in the room, having the windows and/or

doors open, the time of the day, the same action will result in a different temperature

change (in other words the effort for keeping the temperature at a fixed point will vary

from time to time). When designing and analyzing agents it is important to identify

and characterize the environments. Agent environments can be characterized as;

1. Accessible vs. Inaccessible

2. Deterministic vs. Non-deterministic

3. Static vs. Dynamic

4. Discrete vs. Continuous

Accessible environments are environments where the agent has complete,accurate and

upto date access to the state of the environment. Whereas in inaccessible environ-

ments the agents vision (or perception) of the environment is limited. In deterministic

environments results of an action are the same regardless of the conditions (time,

environment state, agent state, etc.) the action is executed. In non-deterministic envi-

ronments the results of an action may vary depending on the conditions it is executed.

5

A static environment is an environment that can only be changed (or affected) by the

agent operating in it. In contrast, dynamic environments have other processes oper-

ating on them and are open to changes that can result from sources other than the

agent. In a discrete environment the set of actions that an agent can do and the set of

responses that can be received from the environment are fixed and finite.

2.2. Agent Architectures

There are several approaches and architectures that can be used when designing

or defining agents. Generally there is no single architecture that can be selected as the

best. Instead the choice of architecture should be based on the requirements of the

agent system to be developed. For example; consider MAS that acts as a flight traffic

controller system. An architecture for agents that can learn and adapt their behaviour

is unnecessary and possibly dangerous for such a system. Such control systems are de-

signed (and are expected) to give the same responses to same events. What follows is

a summary of available agent architectures. Logic-based (symbolic) architectures draw

their foundation from traditional knowledge-based systems techniques in which an en-

vironment is symbolically represented and manipulated using reasoning mechanisms.

The advantage of this approach is that human knowledge is symbolic so encoding is

easier, and they can be constructed to be computationally complete, which makes it

easier for humans to understand the logic. The disadvantages are that it is difficult

to translate the real world into an accurate, adequate symbolic description, and that

symbolic representation and manipulation can take considerable time to execute with

results that are often available too late to be useful.[2] Reactive architectures imple-

ment decision-making as a direct mapping of situation to action and are based on a

stimulus-response mechanism triggered by sensor data. Unlike logic-based architec-

tures, they do not have any central symbolic model and therefore do not utilize any

complex symbolic reasoning.[2] Instead they generally include predefined finite-state

machines that define their behaviour. Sensory input data is run through these finite-

6

state machines and responses are determined accordingly. These finite-state machines

can also be organized into a decision-making hierarchy that creates a layered architec-

ture where each layer can be specialized for handling a specific response types (much

like the layered structure of sensory parts of the human brain) BDI (Belief, Desire,

Intention) architectures are probably the most popular agent architectures. They have

their roots in philosophy and offer a logical theory which defines the mental attitudes of

belief, desire and intention using a modal logic.[2] Layered (hybrid) architectures allow

both reactive and deliberative agent behaviour. To enable this flexibility, subsystems

arranged as the layers of a hierarchy are utilized to accommodate both types of agent

behaviour. There are two types of control flow in layered architectures; horizontal and

vertical.[2] In horizontal layering each layer is directly connected to sensory inputs and

action outputs, having each layer act as a separate agent. Although this approach

is simple to design, synchronization, coordination and consistency issues can occur in

such an architecture. Also as the number of layers increases the complexity of the

actions that can take place increases. Vertical layering eliminates these problems to

some extent by dealing with sensory input and action output with by at most one layer

(thus having no consistency problems). Data and control flow in layered architectures

is shown in figure 2.2.

2.3. FIPA

Foundation for Physical Agents is a non-profit organization founded in 1996 for

creating a set of standards for developing multi-agent platforms. At the core of FIPA

is the following set of principles:

1. Agent technologies provide a new paradigm for solving old and new problems;

2. Some agent technologies have reached a considerable degree of maturity;

3. To be of use some agent technologies require standardization;

4. Standardization of generic technologies has been shown to be possible and to

7

Figure 2.2. Horizontal and Vertical Layered Architectures

provide effective results by other standardization fora;

5. The standardization of the internal mechanics of agents themselves is not the

primary concern, but rather the infrastructure and language required for open

inter-operation. [2]

Since its inception FIPA has published three versions of open standards for multi-

agent systems; FIPA ’97, FIPA ’98, FIPA2000. With the last standard release FIPA

also published the FIPA Abstract Architecture; a document that defines all core ar-

chitectural elements of a FIPA compliant Multi-Agent platform and the relationships

between these elements, guidelines for multi-agent system definitions in terms of soft-

ware technologies and communication protocols.

After a brief period of inactivity (between 2004 and 2005) FIPA was reformed

(and renamed as FIPA-IEEE) as a standards activity under the IEEE. Since then work

has been concentrated on integration with web services, human-agent communication,

8

mobile agents and peer-to-peer nomadic agents.

2.4. JADE

Java Agent Development Framework is a FIPA compliant multi-agent systems

development framework and run-time platform that was developed by Telecom Italia.

The initial goal behind the development of JADE was to test early FIPA specifications.

JADE provides standard agent technologies and offers to the developer a number of

features in order to simplify the development process:

• Distributed agent platform. The agent platform can be distributed on several

hosts, each one of them executes one Java Virtual Machine.

• FIPA-Compliant agent platform, which includes the Agent Management System

the Directory Facilitator and the Agent Communication Channel.

• Efficient transport of ACL messages between agents. [5]

In the following sections the major components of the JADE framework are dis-

cussed.

2.4.1. Agent Model in JADE

Agents in JADE are developed as Java classes that extend the jade.core.Agent

class. Agents in JADE have a lifecycle similar to Java Applets. They are created,

have a run-time, then they are terminated. Similar to Applets JADE agents have

predefined methods that correspond to these life cycle periods. Agents can override

the setup method defined in jade.core.Agent class to have custom initialization steps.

Likewise agents can override the takeDown method to have custom finalization code.

The basic structure for the lifecycle of JADE agents is given in figure 2.3. Each agent

in a JADE platform must have a name that is globally unique. In practice global

9

uniqueness is achieved by (a process managed by the AMS) adding the platform name

to the original name of the agent. The identification of each agent is stored in an

instance of the jade.core.AID class.

2.4.2. Agent Activities

Actions an agent can do in a JADE platform are defined through behaviors.

Behaviors an agent can have during its run-time are defined by extending one of the

behavior classes defined in the jade.core.behaviours package and adding instances of

these classes to the task queue of the agent. The jade.core.behaviours.Behaviour base

class defines two public abstract methods that must be overridden by child classes;

1. an action method (method signature: public void action();) that defines the code

that constitute the task carried out by this behaviour.

2. a done method (method signature: public boolean done() ;) that defines a control

structure for checking the completion status of this behaviour. As it can be seen

from figure 2.3 the done method is called after each execution of a behaviour.

In addition to the above methods jade.core.behaviours.Behaviour class also

defines two methods that can be overridden for further behaviour customization;

1. the onStart() method which is executed once before the first call to the action

method (similar to the setup() method of jade.core.Agent class)

2. the onEnd() method which is executed right after the done() method returns true

(similar to the takeDown() method of jade.core.Agent class)

There are two direct extensions to the Behaviour class that constitute the two

primary types of agent behaviours;

10

Figure 2.3. JADE - Agent thread path of execution[2]

11

• SimpleBehaviour; (and extending classes) represent atomic simple tasks that

can be executed a number of times specified by the developer. [5]

• CompositeBehaviour; (and extending classes) support the handling of multiple

behaviours according to a policy. [5]

There are two primary types of simple behaviours in JADE; [2]

1. One-shot behaviours are designed to complete in one execution phase; their ac-

tion() method is thus executed only once.

2. Cyclic behaviours are designed to never complete; their action() method executes

the same operations each time it is called.

There are three implementations of CompositeBehaviour provided with the

JADE distribution;

• SequentialBehaviour; a composite behaviour that schedules its children ac-

cording to a very simple sequential policy [2]

• FSMBehaviour; which executes its children behaviours according to a Finite

State Machine (FSM) of behaviours [5]

• ParallelBehaviour; a composite behaviour that schedules its children in parallel

[2]

The Agent-core of each agent (provided by the superclass jade.core.Agent) keeps a

tasklist for active behaviours.

2.4.3. Communication Among Agents

Agents in JADE talk to each other by creating messages that adhere to the Agent

Communication Language (ACL) standard. Communication between agents in JADE

12

is realized by the Message Transport Service (as defined by the FIPA specifications).

The MTS is a service provided by an AP to transport FIPA-ACL messages between

agents on any given AP and between agents on different APs. Messages are providing

a transport envelope that comprises the set of parameters detailing, for example; to

whom the message is to be sent. The general structure of a FIPA compliant message

is depicted in Figure 2.4.

Figure 2.4. FIPA message structure

In more detail a FIPA ACL message is composed of the following fields;

• Type of Communicative Act

– performative; is a required parameter that defines the communicative

act (or purpose) of the message. Some performative types are; INFORM,

PROPOSE, CFP (Call for Proposals).

• Participants in Communication

– sender; gives the identity of the sender of the message (for JADE the AID)

and can be omitted if the sender desires to remain anonymous.

– receiver; gives the identities of the recipients of the message

– reply-to; indicates that subsequent messages in this conversation thread

are to be directed to the agent identified by the reply-to parameter.

• Content of Message

– content; the content of the message encoded in a way (defined by the de-

13

Parameter Category of Parameters

performative Type of communicative acts

sender Participant in communication

receiver Participant in communication

reply-to Participant in communication

content Content of message

language Description of content

encoding Description of content

ontology Description of content

protocol Control of conversation

conversation-id Control of conversation

reply-with Control of conversation

in-reply-to Control of conversation

reply-by Control of conversation

Table 2.1. FIPA ACL MessageParameters [6]

14

scription of content parameters) that the receiver can understand.

• Description of Content

– language; the language in which the content parameter is expressed

– encoding; the specific encoding of the language expression

– ontology; the vocabulary(ies) used in the content expression

• Control of Conversation

– protocol; the interaction protocol used for the message; FIPA-request,

FIPA-query, etc.

– conversation-id; an expression used for identifying ongoing sequence of

communication acts (a conversation) between agents

– reply-with; used to define a key for identifying this message

– in-reply-to; used for linking a reply message to a previous message with

reply-with parameter

– reply-by; specifies the latest time a reply is expected for this message, used

for timeout definitions.

The content slot of an ACL message can contain either a string value or a sequence

of bytes. In its most basic use an ACL compliant message, the content is a simple

string that includes name-value pairs separated by semicolons. More advanced content

representations are available through content languages and ontologies. Each agent is

equipped with an incoming message box and message polling can be blocking or non-

blocking with an optional timeout. Moreover, JADE provides methods for filtering.

The developer can apply advanced filters on the various fields of the incoming message

such as sender, performative or ontology. [5]

A typical agent-to-agent communication occurs as follows; An agent (initiator)

starts communication by sending a message to another agent(s) (responder). If the

message is not one that the responder can understand or is expecting the responder

can reply with not-understood or refuse message indicating its inability to join the

15

communication. Otherwise the responder replies with an agree message. Upon com-

pletion of the action requested with the message the responder must send an inform

message to the initiator about the result of the action.

2.4.4. Content Languages and Ontologies

In realistic scenarios agents in a MAS often need to communicate complex infor-

mation (such as database records, actual java objects, etc.) Content languages define

syntaxes for representing complex data in ACL message slots. An example content

language is the FIPA defined SL language which represents data as a string sequence.

The actual conversion from complex data representation to a content language syntax

is done via special codecs that handle the encoding and decoding processes.

An ontology defines mappings (name, type and validation) between named items

in a ACL message content and actual fields and methods inside a Java class. Thus

using an ontology processing decoded ACL message content into a usable Java class is

automatized. When used together, content languages and ontologies provide a simple,

effective and truly platform independent framework for serializing and deserializing

agent communication content.

2.4.5. Agent Platforms and Containers

In a JADE environment the top level agent run-time environment is the Agent

Platform. Physically an agent platform may span multiple computing environments

(servers, workstations, mobile devices). Different agent platforms can be interconnected

to form a platform forest for massively complex multi-agent systems. Inside agent

platforms, agents exists inside special run-time elements called agent containers. When

started (bootstrapping in JADE terms) each agent platform creates an initial (and

singular) agent container called the main container (additional containers may also be

16

created via bootstrap configurations). This container is responsible for keeping track

of all the agents that exist in that specific platform and for providing synchronization

services of this agent registry when there are more than one containers active in that

specific platform. This responsibility (or role) can be transferred to another container in

case the initial main container has to terminate for some reason. The main container is

also home to two special agents (created during the bootstrap process); the Directory

Facilitator (DF) agent and the Agent Management System (AMS). The DF is an

agent that provides yellow pages services for the agent platform. Agents that want to

announce their services can register themselves with the DF and requesting agents can

run queries against the DF. The AMS provides (as its name implies) agent management

services (agent creation/termination, etc.) and white pages services for the agent

platform. [2] Figures 2.5 and 2.6 show main JADE architecture elements and their

relations.

Figure 2.5. JADE Agent Platform Architecture[2]

17

Figure 2.6. JADE Agent Platform Architecture Elements[2]

2.5. Gaia Methodology for Developing Multi-Agent Systems

The Gaia methodology is an attempt to define a complete and general method-

ology that is specifically tailored to the analysis and design of MASs. Gaia is a general

methodology that supports both levels of the individual agent structure and the agent

society in the MAS development process. [5] A typical Gaia effort is divided into three

phases; an initial phase where requirements for the MAS is gathered from interested

parties, an analysis phase where the initial requirements are used for creating the roles

model and the interaction model and finally a design phase where the models from

the analysis phase are used for creating the agent model, the services model and the

acquaintance model.

2.5.1. Analysis Phase

The objective of the Gaia analysis process is the identification of the roles and

the modelling of interactions between the roles found.[5] The outputs of the analysis

phase provide an abstract model representation of the MAS. Roles correspond to the

sources of activity that exist in the MAS. For each role four types of attributes are

used when building a definition; responsibilities, permissions, activities and protocols.

18

Figure 2.7. Gaia Framework Structure

Responsibilities determine the functionality of the role by defining the functional

expectations the role must fulfil or serve. There are in turn two different types of

responsibility properties; liveness and safety. Liveness properties determine the be-

haviour patterns of the role (which result in positive contributions to the MAS), they

are defined as the tasks that a role must complete under certain environmental condi-

tions. For example; in a course registration MAS a role representing a student will have

the liveness property that tries to finalize its registration once the student’s course pro-

gram is completed. Safety properties determine constraints on the actions of the role

and conditions the role will prevent from happening. A simple example for a liveness

property definition is given below;

SAMPLE AGENT = InitializeSelf .P ickActivityPath.DoActivity

Figure 2.8. Sample Gaia Liveness Property Definition

Here the ”.” operator is used for denoting the sequence the activities and prop-

erties are to be executed for the liveness sequence. The complete list of operators

supported for liveness formulas are given in Table 2.2.

19

Operator Interpretation

x.y x is followed by y

x|y x or y occurs

x∗ x occurs 0 or more times

x+ x occurs 1 or more times

xω x occurs infinitely often

[x] x is optional

x ‖ y x and y are interleaved

Table 2.2. Gaia Operators for Liveness Formulas

Permissions define how each role can access resources available in the system. For

example; the role representing a student in a course registration MAS will be able to

read course data but will not be able to update them.

Activities define tasks that a role can carry out on its own without interacting

with other roles in the MAS. For example; the functionality a student role uses for

picking a course to register can be considered an activity (with the assumption that

instances of the student role do not discuss registration options with other instances).

Protocols represent patterns of interactions supported by each role.

An important aspect of MASs is that the agents existing in the system realize

micro and macro level objectives by interacting with each other. Any framework related

to MAS design thus must provide representations for the interactions between agents.

In Gaia the first level of representing inter-agent interactions is done via the Interactions

Model. Each entry in the Interactions Model corresponds to a protocol definition. In

turn each protocol definition consists of the following attributes [4];

• purpose; brief textual description of the nature of the interaction;

• initiator ; the role(s) responsible for starting the interaction;

• responder ; the role(s) with which the initiator interacts;

• inputs ; information used by the role initiator while enacting the protocol;

• outputs ; information supplied by/to the protocol responder during the course of

20

the interaction;

• processing ; brief textual description of any processing the protocol initiator per-

forms during the course of the interaction.

The analysis process can be summarized by the following algorithm;

1. Identify roles in the system. For each role provide an informal, simple description.

2. For each role identify and describe the associated protocols.

3. Based on the protocol model in step 2 detail the roles model by adding permis-

sions, responsibilities, protocols and activities for each role identified.

4. Repeat previous step until all possibilities in the requirements are exhausted.

Figure 2.9. Gaia Analysis Process

2.5.2. Design Phase

During the design phase the abstract models conceived in the analysis phase are

converted into models that are at a sufficiently low level of abstraction [4] that they can

be easily used as agent-design references for traditional software design methodologies.

As a result three models are created; Agent Model, Services Model and Acquaintance

Model.

Agent Model; is a model that identifies the agent types to be used in the system

as well as agent instance information (how many instances will be instantiated). The

agent model also provides the mapping between Roles and Agents. Agents in the Agent

Model are defined as sets of roles defined in the analysis phase. The correspondence

between roles and agents can be one-to-one or many-to-one (when related roles are

packaged in to a single role). For each agent defined in the agent model the model also

includes instance qualifiers which denote the number of instances expected to be active

in the MAS. Table 2.3 gives a list of possible instance qualifiers along with descriptions.

21

Qualifier Meaning

n exactly n instances will be instantiated

m..n between m and n instances will be instantiated

∗ 0 or more instances will be instantiated

+ 1 or more instances will be instantiated

Table 2.3. Gaia Agent Instance Qualifiers

Services Model identifies the main services that are required to realise the

agent’s role.[4] For each service available a service description is written with the prop-

erties; inputs, outputs, pre-conditions and post-conditions. Each one of the services

is based on one or more of the protocols identified in the analysis phase thus inputs

and outputs of services are derived from inputs and outputs of protocols. Pre- and

post-constraints represent constraints on services. These are derived from the safety

properties of a role.[4]

Acquaintance Model identifies paths of communications between agents based

on the agent model and the interactions model. The model can be visualized as a

directed graph between agents identified in the Agent Model; an arrow from agent a to

agent b means that agent a can send messages to agent b (in effect call services defined

in agent b).

The design phase can then be summarized as;

1. Create an agent model by mapping roles to agents and defining instance annota-

tions.

2. Develop a services model, by examining activities, protocols and safety and live-

ness properties of roles.[4]

3. Develop an acquaintance model from the interaction model and agent model.[4]

Figure 2.10. Gaia Design Process

22

3. Modelling a University as a Multi-Agent System

3.1. Model Definition

This work proposes a multi-agent model of a university that can be implemented

into a fully functional multi-agent system. The full definition of this model as well as

implementation details are provided in the sections that follow.

3.1.1. Agent Platform and Container Definition

In this model the whole university is defined inside a single agent platform. For

each faculty and administrative unit a separate agent container is defined. The idea

here is to have localized data and processing services for each academic and adminis-

trative unit. During the implementation phase each agent container will run its own

server system, thus achieving a level of load balancing in the system.

3.1.2. Agent Definitions

Agent definitions for this model are discussed in two groups; model-phase agents

and implementation-phase agents. Model-phase agents represent actors that are de-

fined in the conceptual model of the system and are also present at the implementation

23

phase. Implementation-phase agents represent agents that are specific to the implemen-

tation and are either required for serving core functionalities or to meet programming

needs (as in base Java classes).

3.1.3. Model-Phase Agents

3.1.3.1. Student-Agent. In its basic form software agents representing students will

contain identification data, data representing the students view of his/her academic

record (which in a optimum system will be complete, upto date and accurate) and

students understanding of rules and regulations (which again in an optimum system is

complete, accurate and upto date). Furthermore the agent will include certain actions

(defined as JADE behaviours) for interacting with other agents. These include actions

for course registration and information query.

Software agents representing students can be further be enhanced with behavioural

rules representing the interests and demands of actual students during course registra-

tion periods. These behavioural rules or beliefs can then be attached to actual agent

behaviours for modeling the activities of students during course registration periods.

The resulting agent model for students thus contains;

1. beliefs regarding the students ability in specific courses and general subject mat-

ters

2. beliefs regarding the instructors (the students relations with the instructor, in-

structors behaviour patterns)

3. additional beliefs modeling more generic student behaviour

4. behaviours for course registration activities (searching for courses, course data

queries, add/drop courses, etc.)

5. behaviours for interaction with instructors and administrative bodies (approval

requests, information queries, etc.)

24

6. behaviours for interaction with fellow students (querying registered courses, course

swapping, belief exchanges, etc.)

3.1.3.2. Faculty-Agent. Similarly agents representing instructors will have identifica-

tion data as well as a representation of the instructors academic background (in terms

of subject areas). Instructor agents will also have a representation of their understand-

ing of rules and regulations (which again in an optimum system is complete, accurate

and upto date). Instructor agents will also have a representation of their own beliefs

and a set of behaviours that define the actions they can take.

1. beliefs regarding the students the instructor knows

2. beliefs regarding the instructors expectations from students registering to courses

3. beliefs regarding the agents understanding and execution of rules and regulations

(important for instructors that also have the role of advisor)

4. additional beliefs modeling more generic instructor behaviour

5. behaviours for handling advisor requests (when applicable)

6. behaviours for handling course queries

7. behaviours for generic interactions with students

8. behaviours for interaction with instructors and administrative bodies

3.1.3.3. Administrative-Agent. The third and last kind of agents represent administra-

tive units. These units include registrars office (can be decomposed to several delegate

agents each handling a specific functionality), quota managers, delegate agents repre-

senting councils, secretaries and other clerks. These agents can either represent a real

person (as in the case of secretaries) or can be delegate agents that either represent a

single anonymous entity (as in quota managers) or represent a group of agents (as in

councils and boards).

25

3.1.3.4. Aggregate-Agent. Aggregate-Agents represent structured collaborations (mostly

for decision making purposes) between agents. They have their internal lists of col-

laborating agents, a message service for passing messages between participating agents

and concensus control/decision making mechanisms. Aggregate-Agents can be used

for representing continuous groups (like a faculty board) or can be used for one-shot

decision making efforts.

3.1.3.5. Pseudo-Agent. Pseudo-Agents are used to represent meta-actors that are gen-

erally related to a certain task/responsibility (or a combination of these) and that

can be occupied by different agents at different points of time. An implementation of a

pseudo-agent will contain a field for linking it to its acting agent, a list representation

of tasks and privileges related to the position represented by the Pseudo-Agent.

3.1.4. Implementation-Phase Agents

3.1.4.1. MausAgent. MausAgent is the super class of all core agents implemented in

the Maus system. It provides basic agent functionality and fields. The most important

parts of the MausAgent implementation are the fields; mausUniqID, mausType and

actionTable. mausUniqID and mausType are used for identifying and categorizing

agents with respect to the Maus platform specification. actionTable is a representation

of the actions known to an agent.

3.1.4.2. DataProviderAgent. DataProviderAgent is an agent implementation that pro-

vides services for accessing datastorages active in a Maus deployment. It can also be

used as a base class for implementing specialized data access providers.

3.1.4.3. CoreServicesAgent. CoreServicesAgent is an agent aggregating basic services

(format converters, utility access, etc.) for the Maus system.

26

3.1.4.4. JADECreatorAgent. JADECreatorAgent is a singleton (meaning only one

instance is allowed per agent container) agent that is responsible for the initialization

of a JADE container.

3.2. Implementation

Implementation details are discussed in two parts; programming implementation

and deployment implementation.

3.2.1. Programming Implementation

The multi-agent university model is implemented as a Java agent application

that runs on a JADE agent platform. For portability purposes (with respect to agent

platform used) the whole model is developed using a dual class hierarchy where ap-

plicable. This dual approach requires that core agent object and related functionality

is developed without any reference to any agent deployment platform. For each agent

implementation in this first hierarchy a complementing stub implementation is devel-

oped for connecting to the actual agent run-time. What follows is a description of the

package structure, core agent implementations and JADE stub implementations.

3.2.2. Package Structure

The base package for the multi-agent university system (MAUS) is edu.zion.mas.maus.

Class implementations are distributed between sub-packages based on their types and/or

functionalities.

3.2.2.1. edu.zion.mas.maus.core. This package contains core objects(classes and in-

terfaces, not to be mixed with run-time objects) for the MAUS system. Core objects

include top level base classes for the inheritance hierarchy, implementation specific

27

datatypes and public access interfaces for providing common constants and function-

alities. The package contents are;

• MausAgentIdentifier; represents a class implementation of the base agent iden-

tifier for agents in the MAUS system. At this time a single string is used as an

identifier. For more complex implementations a composite identifier may be more

appropriate.

• MausCommonConstants; is a public interface that holds common constant

values (e.g; enumeration for Agent types) for the MAUS system.

• MausCommonStrings; is a public interface that holds common strings (such

as system messages) for the MAUS system.

• MausCoreObject; is an abstract class that is the base class for all classes imple-

mented for the MAUS system. At this time the only content of this base class is an

abstract method clone() that is used for creating exact copies of MAUS objects.

Every non-abstract class extending (directly or indirectly) MausCoreObject is

expected to provide an implementation for the clone() method.

3.2.2.2. edu.zion.mas.maus.core.data.providers. This package contains class implemen-

tation for datasource providers. Datasource providers provide functionality for access

control and data-access (queries,inserts,updates) operations. The package contents are;

• MausCourseDataProvider; a data provider that is specialized for course data

related queries.

• MausInternalCourseDataProvider; an internal storage engine implementa-

tion of the MausCourseDataProvider

• MausInternalGenericDataProvider; an internal storage engine implementa-

tion of a generic data provider

• MausInternalRegistrationDataProvider; an internal storage engine imple-

mentation of the MausRegistrationDataProvider

28

• MausInternalStudentDataProvider; an internal storage engine implementa-

tion of the MausStudentDataProvider

• MausRegistrationDataProvider; a data provider that is specialized for reg-

istration data related queries.

• MausStudentDataProvider; a data provider that is specialized for student

data related queries.

3.2.2.3. edu.zion.mas.maus.core.data.types. This package contains class implementa-

tions that are used for data storage and exchange purposes.

• Course; a data representation class for courses available in the Maus system.

• CourseInstance; a data representation of a specific course instance (a section

opened in a semester) in the Maus system.

• CoursesEnrolled; a data representation of the list of courses enrolled by a

student in a given registration period.

• MausDataType; a base class for all Maus specific data type classes.

• Student; a data representation class for a students record in the Maus system.

3.2.3. edu.zion.mas.maus.core.data.onto

This package contains ontology implementations for datatypes that can be used

in message exchanges.

3.2.4. edu.zion.mas.maus.agents

This package contains Java classes for core agents and complementing JADE stub

agents. This package contains the implementations for the following classes;

• MausAgent; This class forms the base class for all core agents in the MAUS im-

29

plementation. The MausAgent defines three common fields for all MAUS agents;

the actionTable (a hashtable holding the list of actions an agent can take), the

agents type (with respect to MAUS) and the agent’s unique identifier.

• MausAgentJADEStub; This class is the JADE stub for the top-level MausAgent

and provides a default implementation of the setup() method for JADE agents.

• AdministrativeAgent; This is the core agent implementation for the adminis-

trative agents described earlier.

• AdministrativeAgentJADEStub; This is the JADE stub for the administra-

tive agent implementation.

• AggregateAgent; This is the core agent implementation for the aggregate

agents described earlier.

• AggreagateAgentJADEStub; This is the JADE stub for the aggregate agent

implementation.

• CoreServicesAgent; This is the core agent implementation for the core-services

agent described earlier.

• CoreServicesAgentJADEStub; This is the JADE stub for the core-services

agent described earlier.

• DataProviderAgent; This is an abstract class that acts as a base class for all

core agent that will be used for data serving purposes.

• FacultyAgent; This is the core agent implementation for the faculty agents

described earlier.

• FacultyAgentJADEStub; This is the JADE stub for the faculty agent imple-

mentation.

• JADECreatorAgent; This is the implementation for the JADE agent respon-

sible for initializing the MAUS run-time environment.

• PseudoAgent; This is the core agent implementation for the pseudo agents

described earlier.

• PseudoAgentJADEStub; This is the JADE stub for the pseudo agent imple-

mentation.

30

• StudentAgent; This is the core agent implementation for the student agents

described earlier.

• StudentJADEStub; This is the JADE stub for the student agent implementa-

tion.

3.2.4.1. edu.zion.mas.maus.agents.actions. This package contains Java implementa-

tions for core agent actions. Core agent actions define functionalities representing

actions core agents can use to interact with their environments and with other agents.

Each action implementation (at the very least) includes;

• a field that gives a list of agent classes this action can be attached to

• a method for attaching the action to a JADEStub agent

• a method for transforming the agent action to a valid JADE agent behaviour

This package contains the following class implementations (at this time);

• MausAgentAction; an abstract class that acts as the base class for agent ac-

tion implementations. MausAgentAction defines the common fields and base

functionality for all agent action implementations.

• EnrollToNewCourse; a sample agent action implementation that is applicable

only to student agents. This action allows a student agent to create a JADE

behaviour for enrolling to a course (the request and negotiation phases).

• GetPossibleCourses; a sample agent action implementation that is used for

querying the course database for courses fitting a given search criteria.

3.2.4.2. edu.zion.mas.maus.behaviour. This package contains actual JADE behaviour

implementations that can be created by MAUS agent actions.

• EnrollToNewCourseBehaviour

31

• QueryCourseListBehaviour

3.2.4.3. edu.zion.mas.maus.kb.believes. The first of the two knowledge-base packages

contains class implementations representing believes of agents in the MAUS system

and interface implementations used for categorizing believes. This package includes

the following sample class implementations;

• MausCoreBelief ; This abstract class acts as a base class for all belief objects

in the MAUS system

• AvoidClassMate; This belief implementation is used for defining which agents a

certain student agent will try to avoid as class mates when registering for courses.

• AvoidInstructor; This belief implementation is used for defining which instruc-

tor agents a certain student will try to avoid when registering for courses.

• PreferredClassMate; This belief implementation is used for defining which

agents a certain student will try to have as class mates when registering for

courses.

• PreferredInstructor; This belief implementation is used for defining which in-

structor agents a certain student agent will prefer when registering for courses.

• StrongCourse; This belief implementation is used for defining a course in which

a certain student agent believes is strong at.

• StrongSubject; This belief implementation is used for defining a course subject

area in which a certain student agent believes is strong at.

• WeakCourse; This belief implementation is used for defining a course in which

a certain student agent believes is weak at.

• WeakSubject; This belief implementation is used for defining a course subject

area in which a certain student agent believes is weak at.

This package also include the following interface implementations;

32

• AbilityBelief ; This interface is used for identifying believes regarding an agents

ability in subjects and actions.

• PreferenceBelief ; This interface is used for identifying believes regarding an

agents preferences against other objects in the MAUS system.

3.2.4.4. edu.zion.mas.maus.kb.rules. The rules package of the knowledge-base pack-

ages contains class implementations representing rules that are used for checking va-

lidity of agent actions and for decision making purposes. This package includes the

following sample class implementations;

• MausCoreRule; This abstract class forms a base for other rule implementations

to build on. The following abstract methods are declared for extending classes to

override;

– boolean initialize(MausCoreObject subject, Hashtable<String, Object>

params); initializes the rule with the given set of parameters (as a Hashtable

of Java objects) and attaches itself to the given subject (a MausCoreObject

instance)

– boolean isInitializable(); a method for querying if the initialize method can

be called for the rule class in question. Some rule implementations may not

require initialization procedures other than their own constructor methods.

– boolean check(MausCoreObject object, Hashtable<String, Object>

params); a method that tests its rule against the object and parameters

provided to the method. Not all rules will have check procedures.

– boolean isCheckable(); a method for querying if the check method can be

called for the rule class in question.

• GenericRule; This class provides an empty rule that can be extended for im-

plementing custom rules during run-time.

• AvoidInstructorRule; This class provides a complete implementation of a rule

that defines negative preference relations between a student and an instructor

33

agent.

• CreditOverloadRule; This class provides a complete implementation of a rule

that defines the maximum credits a student can enroll to in addition to the normal

credit load allowed.

• ScheduleConflictRule; This class provides a complete implementation of a rule

that defines the maximum number of schedule conflicts a student can have.

3.2.4.5. edu.zion.mas.maus.util. This package contains general utility classes and ap-

plications for the MAUS system.

• ScheduleConstants

3.2.4.6. edu.zion.mas.maus.util.management. This package contains management util-

ities for the MAUS system.

• DBManagerGenericInternal

3.2.4.7. edu.zion.mas.maus.util.ui. This package contains UI centric utility classes for

the MAUS system.

• DBViewGenericInternal

3.2.4.8. edu.zion.mas.maus.util.web. This package contains web utility classes and

other JADE-WSIG related classes.

34

3.3. Data Storage

The MAUS system can use a combination of data storage options from Java-

based internal storage to standalone SQL-compliant database servers. In this section

possibilities for all considered options are discussed.

The sample implementation uses data providers that use JavaDB database engine

for storage and data retrieval.

3.4. Deployment

In a complete deployment environment the MAUS system will be deployed on a

set of computer where each academic unit is represented by its own agent container

and in turn each agent container is deployed on its own server machines.

In the example deployment scenario the whole sample system will be deployed on

a single agent container running on a single server. For data storage purposes JavaDB

based data providers are used.

The aforementioned agent platform will be deployed on a set of computers where

each agent container executes on its own server machine. Agents will be built against

the 3.5 version of the JADE libraries. For purposes of data storage Java-Derby embed-

ded database engine will be used. For general simulation purposes the database engine

used is not important and any jdbc-connectable database engine will suffice. Using

Derby at this step further simplifies data handling procedures. In any case using jdbc

to connect to the databases allows for a database engine independent coding (unless

some specialized/implementation specific functionality (like transactions) is used that

makes the system database engine dependent). For purposes of web-based front-ends

JADE-WSIG will be used and the functionality of the system will be exposed as WSDL

35

compliant web services. The actual web-based front ends will be implemented as Java

servlets and will be deployed on a J2EE application server. For agent communication

purposes the SL-codec will be used with a custom ontology defined specifically for this

MAS.

36

4. Applications of this Model

The model presented can be used both as a simulation and as an actual system

for automating various activities that can be found in a university environment. In the

following subsections sample applications for this model are discussed.

4.1. Quota Forecasting

In this application the agents in the MAS are initialized with student academic

records, behavioral data (possibly collected through behavioural profiling question-

naires), rules-regulations. Into this MAS we can introduce the list of available courses

(along with schedule information, eligibility criteria and quota limitations). In this

state the agents can be allowed to run fully autonomously to interact with each other

as real students would do during a course registration period.

Data gathered through this simulation can then be used for forecasting the de-

mand on courses and provide a better judgement on course and quota planning. This

simulation will also allow for trials on course parameters like schedule data and instruc-

tor relationships and effects of changes on these parameters can safely be observed.

37

4.2. Online Course Registration

The MAS used in the ”Quota Forecasting” application can be enhanced to pro-

vide interactivity to the extend that agents can be controlled by their respective owners

to alter their behaviour based feedback from the university environment. Such a sys-

tem can be used for forming a semi-autonomous online course registration system. In

this scenario student agents will have a base understanding of their owners agendas

regarding course registration (based on student’s academic profile and further calibra-

tion data collected through student surveys or other means). Accordingly faculty and

administrative agents will have a total understanding of the regulations that must be

adhered during the course registration. Further individual agents will be initialized

with owner specific profile data.

Once deployed each agent will try to satisfy its expectations autonomously to the

extend allowed by the regulations and their owners. For example; an agent representing

a repeat status student will try and take all repeated courses without the need of

approval from its owner. In case there are multiple possibilities the agent can either

try to make a decision based on its beliefs (leave one day of the week free, register to

the same course section with a fellow student, avoid a certain instructor, etc.). Likewise

an agent representing an advisor will try to handle the requests coming from students

based on its profile definition.

4.3. Regulation Simulations

As mentioned earlier regulations concerning the university can be implemented

as rules in the edu.zion.mas.maus.kb.rules package extending the MausCoreRule

or some other more specialized rule implementation class. Using these rule implemen-

tations simulation runs can be made on a Maus system initialized with training data

and with fully autonomous agents and observations can be made on the behaviour

38

of the agents and activity patterns in the MAS. Such a simulation application can

then be used for testing the effects of regulation changes. The effects can be observed

in a multitude of observation points; registration patterns of students, bottlenecks in

inter-agent activities, patterns in requests arriving at AggregateAgents representing

governing bodies, etc.

4.4. Online Student-Faculty Collaboration System

A final application proposal is that of a Student-Faculty Collaboration System.

In this scenario the MAS acts as a storage for collaboration data (schedules, announce-

ments, public/private messages, journals, etc.) and a platform for social networking

(agents acquaintance graphs representing real life interpersonal relations and affilia-

tions). Each agent active in the system will provide the following services for their

respective owners;

• harvest data from the system according to interests and affiliations of their owners

• provide gateway services for data manipulations and custom queries of the central

storage

• provide communication services for one-to-one and one-to-many conversations.

• provide social networking services such as group formation, friend lists, organi-

zation affiliations, etc.

39

5. Sample Application

The model discussed so far is a complex system that requires the development

of many software components. To show how a multi-agent approach can be applied

to a realworld application regarding a university a simplified sample application for

course registrations is provided in this section. The application is discussed in four

sections; in the description section a description of the application along with appli-

cation requirements is given, in the analysis section results of the Gaia analysis are

given with descriptions of the Gaia Roles Model (based on Gaia roles identified) and

Gaia Interactions Model, in the design section UML design of the Gaia Agent Model is

given, and finally in the implementation section details on the JADE implementation

of the Gaia Agent Model are discussed.

5.1. Description

This application provides a simple multi-agent system that handles course reg-

istration activities. On a preliminary analysis the following requirements have been

identified;

• A student has a list of course slots that he/she must fill in order to complete

his/her registration.

40

• A student can request a list of courses eligible for a course slot.

• A student can request to register a course to a course slot in his/her registration

program.

• A registration service provider (registrar) handles and responds to course regis-

tration requests. On a successfull request the registrar will inform the requesting

student and update data records accordingly.

• A data service provider handles and responds to course list queries made by

students.

• A data service provider also maintains a view of the system defined as;

– The registration programs of every student

– The complete list of open courses

– The list of registrants for each open course

5.2. Analysis

5.2.1. Roles Model

The analysis of the above requirements leads to the following Gaia Roles Model;

• StudentAssistant (SA)

Description: Represents the student in the course registration MAS. SA can

request courselists, pick courses for registration and tries to complete the students

registration.

Protocols & Activities:

RequestCourseList GetStudentProfile

DetermineTargetSlot GetRegistrationCard

DetermineCourseToRegister FinalizeRegistration

RequestCourseRegistration

Permissions:

41

read supplied courseSlot

courseList

read supplied courseID

courseInfo

read registrationCard

change personalSchedule

Responsibilities:

Liveness:

STUDENTASSISTANT = InitStudentProfile.

(RegistrationCycle)+.

FinalizeRegistration

INITSTUDENTPROFILE = GetStudentProfile.

GetRegistrationCard

REGISTRATIONCYCLE = DetermineTargetSlot.

RequestCourseList.

DetermineCourseToRegister.

RequestCourseRegistration

Safety: true

• RegistrationHandler (RH)

Description: Represents registrar’s office in the course registration MAS.

RegistrationHandler receives, verifies and processes course registration requests

issued by StudentAssistants.

Protocols & Activities:

RegisterDF DropStudentFromCourse

QueryStudentRecord InformStudent

VerifyRegistrationEligibility ReceiveRegistrationRequest

CheckDuplicateRegistration QueryCourseRecord

FinalizeRegistration AddStudentToCourse

Permissions:

42

read supplied courseID

courseRecord

read supplied courseID

courseRegistrantList

change supplied studentID

studentRecord

change supplied studentID

registrationCard

Responsibilities:

Liveness:

REGISTRATIONHANDLER = RegisterDF.

(RequestHandleCycle)ω

REQUESTHANDLECYCLE = ReceiveRegistrationRequest.

QueryRequestParams.

(VerifyRegistrationRequest |

VerifyRegistrationRequest.

ProcessRequest).

InformStudent

QUERYREQUESTPARAMETERS = QueryStudentRecord ‖

QueryCourseRecord

VERIFYREGISTRATIONREQUEST = VerifyRegistrationEligibility.

CheckDuplicateRegistration

PROCESSREQUEST = AddStudentToCourse |

DropStudentFromCourse |

FinalizeRegistration

Safety: IncompleteRegistrations > 0

• DataQueryHandler (DQH)

Description: Provides read-only access to system datasources.

Protocols & Activities:

43

RegisterDF AuthenticateRequest

ProcessStudentQuery ReturnQueryResult

ProcessCourseQuery ProcessRegistrationQuery

ProcessCourseListQuery ReceiveQueryRequest

RejectQueryRequest

Permissions:

read supplied courseSlot

courseList

read supplied courseID

courseRecord

read supplied studentID

studentRecord

read supplied studentID

registrationCard

read supplied courseID

courseRegistrantList

Responsibilities:

Liveness:

DATAQUERYHANDLER = RegisterDF.

(QueryHandleCycle)ω

QUERYHANDLECYCLE = AuthenticateQueryRequest.

((ReceiveQueryRequest.

ProcessQuery.

ReturnQueryResult) |

RejectQueryRequest)

PROCESSQUERY = ProcessCourseQuery |

ProcessCourseListQuery |

ProcessStudentQuery |

ProcessRegistrationQuery

44

Safety: true

• DataUpdateHandler (DUH)

Description: Provides insert and update access to system datasources.

Protocols & Activities:

RegisterDF AuthenticateRequest

AddStudentToCourse DropStudentFromCourse

InformRequestOwner RejectRequest

ReceiveRequest FinalizeRegistration

Permissions:

change supplied courseID

courseRecord

change supplied courseID

courseRegistrantList

change supplied studentID

studentRecord

change supplied studentID

registrationCard

Responsibilities:

Liveness:

DATAUPTADEHANDLER = RegisterDF.

(RequestHandleCycle)ω

REQUESTHANDLECYCLE = AuthenticateRequest.

((ReceiveQueryRequest.

ProcessRequest.

InformRequestOwner) |

RejectRequest)

PROCESSREQUEST = AddStudentToCourse |

DropStudentFromCourse |

FinalizeRegistration

45

Safety: true

5.2.2. Interactions Model

The interactions model is given in Table 5.1.

5.3. Design

During the design phase; an agent model, a services model and a acquaintances

model of the system is achieved based on the roles model and interactions model from

the analysis phase.

Figure 5.1. Gaia Agent Model for Course Registration System

5.3.1. Agent Model

After a study of the Gaia Roles Model three agents are identified to be mod-

eled in the design phase; a StudentAgent that corresponds to the StudentAssistant

role, a RegistrarAgent that corresponds to the RegistrationHandler role and finally

a DataProviderAgent that represents the DataQueryHandler and DataUpdateHandler

46

roles. In our sample system the RegistrationAgent and the DataProviderAgent will each

have single instances for the sake of implementation simplicity. In a more advanced

implementation several RegistrationAgents and DataProviderAgents may coexist with

proper request routing, load-balancing and synchronization support. The system may

host 1 or more StudentAgents. An instance qualifier of ”n..m” may also be deemed

appropriate for StudentAgents.

5.3.2. Services Model

Based on the activities and protocols identified in the Roles Model and the Inter-

actions Model the following services are designed for the Services Model. The services

model is discussed in three parts; each part corresponding to an agent defined in the

Agent Model.

5.3.2.1. StudentAgent Services. The first service for the StudentAgent is related to the

initialization of the agent and involves the fetching of initialization data (studentProfile

and registrationCard) based on a unique key (studentID) identifying the specific agent

instance. The studentProfile data includes student identification information such as

name, GPA, class, department, etc. The registrationCard data includes registration

related data such as course slots available, maximum credits that can be used, etc.

Upon retrieval the StudentAgent is initialized using internal methods and joins the

agent run-time platform.

47

Protocol RequestCourseList GetStudentProfile GetRegistrationCard RequestCourseRegistration FinalizeRegistration

Initiator StudentAssistant StudentAssistant StudentAssistant StudentAssistant StudentAssistant

Receiver DataQueryHandler DataQueryHandler DataQueryHandler RegistrationHandler RegistrationHandler

RespondingAction ReturnQueryResult ReturnQueryResult ReturnQueryResult InformStudent InformStudent

Purpose/ Parameters Request list of courses that

match a given registration

slot

Request profile informa-

tion regarding a certain

student

Request registration card

(list of slots to be filled,

etc.) for a certain student

Request to register a stu-

dent to a specified course

Request to finalize the reg-

istration of a student

Protocol QueryStudentRecord QueryCourseRecord CheckDuplicateRegistration AddStudentToCourse DropStudentFromCourse

Initiator RegistrationHandler RegistrationHandler RegistrationHandler RegistrationHandler RegistrationHandler

Receiver DataQueryHandler DataQueryHandler DataQueryHandler DataUpdateHandler DataUpdateHandler

RespondingAction ReturnQueryResult ReturnQueryResult ReturnQueryResult InformRequestOwner InformRequestOwner

Purpose/ Parameters Request details on a spe-

cific student

Request details on a spe-

cific course

Query the registration re-

lation between a given stu-

dent and course

Register a student to a

specified course

Remove a student from a

specified course

Protocol FinalizeRegistration InformStudent ReturnQueryResult RejectQueryRequest InformRequestOwner

Initiator RegistrationHandler RegistrationHandler DataQueryHandler DataQueryHandler DataUpdateHandler

Receiver DataUpdateHandler StudentAssistant StudentAssistant/ Regis-

trationHandler

StudentAssistant/ Regis-

trationHandler

RegistrationHandler

RespondingAction InformRequestOwner - - - -

Purpose/ Parameters Finalize the registration of

a student

Inform owner of a registra-

tion request about action

result.

Return results of a query

request

Reject a query request Inform the owner of an up-

date request

Protocol RejectRequest

Initiator DataUpdateHandler

Receiver RegistrationHandler

RespondingAction -

Purpose/ Parameters Reject an update request.

Table 5.1. Gaia Interactions Model

48

Service Inputs Outputs Pre-Condition Post-Condition

Obtain student details and initialize

student

studentID studentProfile,

registrationCard

true true

Determine target course slot none courseSlot ¬ registrationComplete ∧

emptySlotCount > 0

true

Request course list for slot courseSlot courseList courseSlot 6= nil courseList 6= nil

Pick course to register for slot courseList, courseSlot courseID courseSlot 6= nil ∧

courseList 6= nil

courseID 6= nil

Register to course courseSlot, courseID registrationResult courseSlot 6= nil ∧

courseList 6= nil ∧

emptySlotcount > 0

regisrationResult = true

Finalize registration none registrationStatus emptySlotCount = 0 ∧

¬ registrationComplete

registrationComplete = true

Register to DF (RegistrarAgent) none none true true

Register student to a course studentID, courseSlot,

courseID

registrationResult studentIsEligible studentID ∈ studentListcourseID

Drop student from a course studentID, courseSlot,

courseID

registrationResult studentID ∈ studentListcourseID studentID /∈ studentListcourseID

Finalize registration studentID registrationResult ¬ registrationComplete(studentID) registrationComplete(studentID)

= true

Inform student studentID,

registrationResult

none studentID 6= nil ∧

registrationResult 6= nil

student knows registrationResult

Table 5.2. Gaia Services Model for Course Registration System (StudentAgent, Registrar Agent)

49

Register to DF (DataProviderAgent) none none true true

Process student records query studentID queryResult true true

Process course list query courseSlot queryResult true true

Process course records query courseID queryResult true true

Process registration records query studentID, courseSlot,

courseID

queryResult true true

Return query result queryResult, requester none queryResult 6= nil ∧

requester 6= nil

requester receives query result

Add student to course records studentID, courseSlot,

courseID

queryResult true true

Drop student from course records studentID, courseSlot,

courseID

queryResult studentID ∈ studentListcourseID studentID /∈ studentListcourseID

Finalize registration (DB) studentID queryResult ¬ registrationComplete registrationComplete = true

Inform query request owner queryResult, requester none queryResult 6= nil

requester 6= nil

requester is informed

Table 5.3. Gaia Services Model for Course Registration System (DataProviderAgent)

50

The second StudentAgent service represents the internal activity of choosing a

courseSlot from the registrationCard for which the agent will later try to pick a course

for. Upon deciding which courseSlot to register for, the third service comes into ac-

tion and queries the DataProviderAgent for a list of courses available for that specific

courseSlot. The next service - using internal decision making algorithms - chooses a

course from the available courseList which maximizes the benefits the StudentAgent

is expecting from the registration. The next service creates and issues a registration

request to the RegistrarAgent for the courseSlot,courseID pair determined by previous

services. Finally when the agent has completed filling slots in its registrationCard the

final service is used for submitting and finalizing the registration.

5.3.2.2. RegistrarAgent Services. The first service for the RegistrarAgent is related

to the initialization of the agent and its registration to the DF service in the JADE

run-time platform. The initialization of the agent does not require any parameters and

is done according to a predefined configuration provided by the system. A registration

to the DF is required so that StudentAgents can lookup the RegistrarAgent and later

communicate with it.

The second and third RegistrarAgent services deal with registration requests (for

adding and dropping courses respectively) initiated by StudentAgents. Based on the

parameters extracted from the request the agent will verify the request and upon

a successful verification do post processing (including requesting updates from the

DataProviderAgent) for completing the request. The next service processes registration

finalization request from StudentAgents and follows a path similar to the previous

services. The last service informs owners of requests processed about their outcome.

5.3.2.3. DataProviderAgent Services. The first service for the DataProviderAgent is

related to the initialization of the agent and its registration to the DF service in the

51

JADE run-time platform. The initialization of the agent does not require any param-

eters and is done according to a predefined configuration provided by the system. A

registration to the DF is required so that StudentAgents and the RegistrarAgent can

lookup the DataProviderAgent and later communicate with it.

The next four services are related to read-only queries that can be requests by

other agents in the system. For each record type available for query (student records,

course lists, course records and registration records) there is a corresponding service for

processing the query. The next service deals with returning query results to respective

owners. The following three services are related to requests that require an update to

database records (add a student to a course, drop a student from a course and finalize

a registration) and contain all update actions required to complete the request. The

final service deals with returning update query results to respective request owners.

Figure 5.2. Gaia Acquaintance Model for Course Registration System

5.3.3. Acquaintance Model

The acquaintance model shows possible interactions paths among agents existing

in the system. In the sample system all agents are aware of the existence of each other

so no such information is depicted in the diagram, instead only paths that show service

52

consumption directions are given. As it can be seen from the graph and deducted from

previous discussions on interaction and services models StudentAgents can interact

with both the RegistrarAgent and the DataProviderAgent consuming services available

from these services. However no agent in the system can interact with StudentAgents,

communication from a RegistrarAgent or DataProviderAgent to a StudentAgent is only

possible as a response to a communication initiating from a StudentAgent. The Regis-

trarAgent can communicate with the DataProviderAgent for query purposes.

5.4. Implementation

During implementation agent types conceptualized previously in the complete

model definition are used. Namely StudentAgent, DataProviderAgent and Reg-

istrarAgent types of the Maus hierarchy and their corresponding JADEStub Agent

implementations are used in the sample applications. Agent services are modeled

to agent actions in the edu.zion.mas.maus.agents.actions and behaviours in

edu.zion.mas.maus.behaviour packages. Constraints on agent actions are imple-

mented as rules under the edu.zion.mas.maus.kb.rules package. A utility for access-

ing the internal database is provided in the edu.zion.mas.maus.util.management

package.

53

6. Conclusion

Multi-agent systems present an interesting approach to designing and implement-

ing complex systems where multiple actors are interacting to satisfy micro- and macro-

level goals. Modelling complex behaviours of multiple interacting actors as interactions

between agents allows for a better design approach compared to traditional program-

ming approaches. Multi-agent systems also provide valuable tools of modelling and

simulating behavioural patterns in real and pseudo societies.

This work concentrates on the possibility of representing a university in the multi-

agent domain. To that end two separate efforts are made; first a preliminary multi-

agent model of a university is proposed with possible implementation details. The

proposed model is to be used as a basis for further studies in building a comprehensive

university multi-agent system. The second effort is to provide a practical (but simple)

implementation example for a MAS representing course registration activities observed

in a university.

Based on the preliminary model suggestions on MAS applications of the model

are also discussed. A complete university MAS system can be used for both simulation

and practical purposes. In this work four such application ideas are proposed. As a sim-

ulation tool the MAS can be used for quota forecasting simulations where simulations

54

runs on training data can be used to determine which courses (or as a general observa-

tion subject areas) students will tend to concentrate on. The same simulation system

can also be modified to provide an actual course registration system. The rules system

proposed in the model can also be used for simulating effects of regulation changes on

the university ecosystem. Finally a MAS can be used as an online collaboration and

social networking tool.

55

References

1. M. Wooldridge, ”An Introduction to MultiAgent Systems”, John Wiley & Sons,

Ltd., West Sussex, England (2002).

2. F. Bellifemine, G. Caire, D. Greenwood, ”Developing Multi-Agent Systems with

JADE”, John Wiley & Sons, Ltd., West Sussex, England (2007)

3. Natalya F. Noy, Deborah L. McGuinness, ”Ontology Development 101: A Guide to

Creating Your First Ontology”, Stanford University

4. M. Wooldridge, N. R. Jennings, D. Kinny, ”The Gaia Methodology for Agent-

Oriented Analysis and Design”, England (2000)

5. Pavlos Moräıtis, Eleftheria Petraki, Nikolaos I. Spanoudakis, ”Engineering JADE

Agents with the Gaia Methodology”, Cyprus (2003)

6. FIPA TC Communication, ”FIPA ACL Message Structure Specification” [

http://www.fipa.org/specs/fipa00061/SC00061G.html], Geneva, Switzerland, 2002

56

References not Cited

1. F. Zambonelli, N. R. Jennings, M. Wooldridge, ”Developing Multiagent Systems:

The Gaia Methodology”, ACM Transactions on Software Engineering and Method-

ology, Vol. 12, No.3, July 2003

2. G. Wang, H. Yu, J. Xu, S. Huang, ”A Multi-agent Model Based on Market Com-

petition for Task Allocation: a Game Theory Approach, Shenyang, China (2004)

3. Z. Guessoum, ”A Hybrid Agent Model: a Reactive and Cognitive Behavior, Paris,

France (1997)

4. N. Liu, M. A. Abdelrahman, Srini Ramaswamy, ”A Multi-Agent Model for Reactive

Job Shop Scheduling”, Tennessee Technological University, USA (2004)

5. P. Moräıtis, N. I. Spanoudakis, ”Combining Gaia and JADE for Multi-Agent Sys-

tems Development”, 4th International Symposium ”From Agent Theory to Agent

Implementation” (AT2AI4), in: Proceedings of the 17th European Meeting on Cy-

bernetics and Systems Research (EMCSR 2004), Vienna, Austria (2004)

57

Curriculum Vitae

Önder Özkan was born on November 10th, 1980, in İstanbul. He received

his BS degree in Information Technologies in 2005 and BS degree in Computer Sciences

and Engineering in 2006 both from Işık University. He worked as a research assistant

at the department of Information Technologies of Işık University from 2005 and 2008.

His research interests include multi-agent modelling and multi-agent systems, mobile

agent technology and content management systems.

58

