
IMPROVING SEARCH ENGINE PERFORMANCE WITH

CONTEXT EXTRACTION USING LUCENE,

DBPEDIA-SPOTLIGHT, AND WORDNET

REMZİ DÜZAĞAÇ

B.S., Computer Engineering, Işık University, 2010

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2014



IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

IMPROVING SEARCH ENGINE PERFORMANCE WITH CONTEXT

EXTRACTION USING LUCENE, DBPEDIA-SPOTLIGHT, AND WORDNET

REMZİ DÜZAĞAÇ

APPROVED BY:

Assoc. Prof. Olcay Taner Yıldız Işık University

(Thesis Supervisor)

Assist. Prof. Ali İnan Işık University

Assist. Prof. Arzucan Özgür Boğaziçi University

APPROVAL DATE: ..../..../....



IMPROVING SEARCH ENGINE PERFORMANCE

WITH CONTEXT EXTRACTION USING LUCENE,

DBPEDIA-SPOTLIGHT, AND WORDNET

Abstract

Search engines are common tools which retrieve information from considerable

amount of data according to the user needs. The data size that needs to be han-

dled and retrieving relevant information, are the main problems of every search

engine. Additionally, in order to improve the performance of a search engine,

there are various approaches and methods are applied. On the other hand, using

context information besides words in the document is a quite new area. Including

“Context Information” into the game is a promising field of work.

In this research, we use context information extracted from the documents in

the collection to improve the performance of the search engine. In first step, we

extract context using Lucene, DBPedia-Spotlight, and Wordnet. As the second

step, we build a graph using extracted context information. In the third step, in

order to group similar contexts, we cluster context graph. In the fourth step, we

rescore results using context-clusters and context-information of documents, as

well as queries. In the fifth step, we implement a data collection tool to collect

gold-standard data. In the sixth and final step, we compare the results of our

algorithm with gold-standard data set. According to experimental results, using

context information may improve the search engine performance but the collection

should be relatively big.

ii



ARAMA MOTORU PERFORMANSININ SOLR,

DBPEDIA-SPOTLIGHT ve WORDNET

KULLANILARAK YAPILAN BAĞLAM ÇIKARIMI İLE

ARTIRILMASI

Özet

Arama motorları, kullanıcıların ihtiyaçlarına göre ilgili bilgileri kayda değer mik-

tarda veri içerisinden sunan araçlardır. İşlenmesi gereken verinin büyüklüğü ve il-

gili bilgileri kullanıcıya sunmak arama motorlarının iki ana problemini oluşturur.

Arama motoru performansını artırmak için pek çok yaklaşım ve metod bulun-

maktadır. Bunlara ek olarak arama motorlarının performansını artırmak için

dökümanın içerdiği kelimelerin yanında bağlam bilgisini kullanmak oldukça yeni

bir alan. Oyuna Bağlam Bilgisini dahil etmek gelecek vaat eden bir çalışma alanı

sunmakta.

Bu çalışmamızda, arama motoru performansını artırmak için döküman ve sorgu-

lardan çıkardığımız bağlam bilgisini kullanıyoruz. İlk adım olarak Lucene, DBPedia-

Spotlight ve Wordnet’i kullanarak bağlam bilgisi çıkarıyoruz. İkinci adımda,

çıkardığımız bağlam bilgilerini kullanarak bir çizge oluşturuyoruz. Üçüncü adımda,

birbirine yakın bağlamları gruplamak için çizge üzerinde kümeleme yapıyoruz.

Dördüncü adımda, döküman ve sorguları bağlam çizgesini ve ilgili bağlam bil-

gilerini kullanarak sonuçları yeniden puanlıyoruz. Beşinci adım olarak referans

verisi toplamak için bir uygulama geliştirip bu uygulama ile kullanıcılardan veri

topluyoruz. Altıncı ve son adımda ise kullanıcılardam topladığımız referans bil-

gisi ile sonuçlarımızı karşılaştırıp yaptığımız çalışmanın performansını ölçüyoruz.

Aldığımız sonuçların bize gösterdiğine göre bağlam bilgisini kullanmak arama mo-

torlarının performansını artırabilir ancak kullanılacak döküman kümesi göreceli

olarak büyük olmalı.

iii



Acknowledgements

There are many people who helped me make my years at the graduate school

most valuable. First, I would like to express my deepest acknowledgements to

my supervisor Assoc. Prof. Olcay Taner Yıldız for his support and guidance

throughout my thesis work. I am also thankful to Işık University for providing

me all the facilities and for being a part of such a wonderful environment. Finally,

I will always be indebted to my fiancée Merve and my family for their patience

and encouragement.

iv



To my family. . .



Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Context Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Works 6

2.1 A New World: Contexts and Concepts . . . . . . . . . . . . . . . 6

2.2 A New World: Contexts and Concepts . . . . . . . . . . . . . . . 6

2.3 Wikipedia and Wordnet: Two New Actors in The Game . . . . . 9

3 System 11

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Context Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Context Analyzers . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1.1 Lucene Context Analyzer - LCA . . . . . . . . . 16

3.3.1.2 DBPedia Spotlight Analyzer - DSCA . . . . . . . 18

3.3.1.3 Wordnet Analyzer - WNCA . . . . . . . . . . . . 21

3.3.2 Pairing & Pair Counting . . . . . . . . . . . . . . . . . . . 22

3.4 Context Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Labeling & Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4 Experiments 28

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 System Implementation . . . . . . . . . . . . . . . . . . . 28

4.1.2 Data Collection & Comparing . . . . . . . . . . . . . . . . 30

4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 39

References 41

Curriculum Vitae 46



List of Figures

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 DBpedia Spotlight Web Service Query . . . . . . . . . . . . . . . 19

3.3 DBPedia Spotlight Web Service Result (JSON) . . . . . . . . . . 20

4.1 Test Data Collection Tool . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 F-Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



List of Tables

3.1 Lucene Filter Examples . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Merged Pair Count Sample . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Weight Sets for Merging . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Cluster Precision Table for Top 20 Result . . . . . . . . . . . . . . 34

4.3 Cluster Recall Table for Top 20 Result . . . . . . . . . . . . . . . 35

4.4 Cluster F-Measure Table for Top 20 Result . . . . . . . . . . . . . 36

4.5 Solr-Cluster Comparision for Top 20 Result . . . . . . . . . . . . 37

4.6 Comparision with Spearman’s rank Correlation Coefficient . . . . 38

ix



List of Abbreviations

IR Information Retrieval

PC Personal Computer

WLC The Wesbury Lab Wikipedia corpus (2010)

LCN Apache Lucene

DBPD DBPedia Spotlight

WNDB Wordnet

LCA Lucene Context Analyzer

DSCA DBPedia Spotlight Context Analyzer

WNCA Wordnet Context Analyzer

HDFS Hadoop File System

EMR Amazon Elastic MapReduce

MCL Markov Cluster Algorithm

x



Chapter 1

Introduction

1.1 Motivation

Today we are living in a digital world and producing enormous data using various

sources such as computers, mobile phones, tablet PCs etc. Between 2000 and

2012, the growth rate of Internet usage was 566.4% [1] Producing and storing

large quantities of data make accessing worthy information quite a challen.

Capability of processing information of the human brain may provide a viable

basis for new approaches. In order to process large amount of data, the human

brain generates relationships between the current sensory information that rep-

resents the external world and previously stored information. This relationship

allows human brain to determine actions. Neuroscience professor Rodolfo Llinas,

describes in his book[2], “I of the vortex: From Neurons to Self”, how the human

brain works as follows: “We can look to the world of neurology for support of the

concept that the brain operates as a closed system, a system in which the role of

sensory input appears to be weighted more toward the specification of ongoing

cognitive states than toward the supply of information – context over content.”

The motivation of our study is to develop an approach to improve the performance

of search engines by adopting the “context over content” approach of the human

brain.

1



1.2 Information Retrieval

Information Retrieval (IR )is the study of retrieving relevant information from

considerable amount of data according to the user needs. IR system consists of

four main parts; crawling, indexing, querying and retrieving. For the each part,

applied method and approach can vary according to the type of data to be han-

dled. For example, retrieving articles of a newspaper from archives and fetching

images from an album requires different methods and approaches. Despite of the

diversity of methods, purpose of every IR system is retrieve relevant information

for the user.

Search engines are applications of information retrieval as computer programs.

They execute crawling, indexing, querying and retrieval steps. Web search engines

are specialized search engines designed for the web. Web search engines crawl

Internet, index and serve the results to the user through its user interface. Today

there are several web search engines in use such as Google, Yandex, Yahoo etc.

First part of the search engine is crawling. Crawling is a step of data gathering

from various sources, the most common source being Internet. Crawlers download

documents and prepare them for the indexing process.

Indexing is the second part of a search engine. During the indexing step, indexers

analyze the document collection to determine how they should be indexed and

extract their contents that will be indexed. After content extraction, indexers

prepare indexes to retrieve relevant documents rapidly.

Third part of a search engine is querying. Queries are formal statements used for

requesting information from search engines. Search engines analyze queries and

reply with the most relevant document list.

Retrieving documents is the fourth part of a search engine. Search engines select

relevant documents from a document collection. In order to retrieve relevant doc-

uments, indexers assign scores to documents by using various parameters such as

2



zone, date, page rank etc. In addition, search engines may assign additional scores

with respect to the queries. After the scoring step completed, search engines or-

der result set with respect to their scores. In information retrieval, ordering the

results of a query by using various scores is called ranking.

1.3 Context Sources

In our work, we use three diffrent sources to extract context information from

documents. These sources are: Lucene, DBPedia Spotlight, and Wordnet.

Lucene [3] project of Apache Foundation [4] is the First source we used to extract

context information. Apache Lucene is an open-source, high-performance, full-

featured text search engine library written entirely in Java. It is a technology

that is suitable for nearly any application that requires full-text search.

DBPedia Spotlight[5][6] is the second source we used. DBPedia[7][8] is an open

source project to extract structured information from Wikipedia and it publishes

the results on the web. DBPedia Spotlight is another open source project which

automatically annotates DBPedia entities in texts. It provides a programming

interface for spotting annotations and entity linkings.

Wordnet[9] the third source. Wordnet is a lexical and semantic database in En-

glish. It has been developed by the Cognitive Science Laboratory in Princeton

University in 1985 and maintained from there since then. It provides conceptual-

semantic and lexical relations between nouns, verbs, adjectives, and adverbs.

1.4 Problem

Search engines deal with the measurement of how close the source information

matches with the user input; thus retrieving the most relevant information to the

users. In order to calculate the relevancy, search engines use several parameters

such as the popularity of a document, the date of a document, user preferences

3



extracted from usage logs etc. In addition to these parameters, some search

engines also provide an auto-suggestion functionality to its users, based on a

generated search history of similar inputs, which proposes a complete query of

what the user might be searching for. How these parameters work depend on the

words that constitute the search query. Therefore, the search engines generally

are not able to consider the “meaning” of the input, in other words, it can not

differentiate the context that the search input is related to. This is why the user

sometimes might see search results that seem completely out of context comparing

to what they searched for. This important problem is the main focus of this thesis.

How human brain operates with neurons has been the key concept for develop-

ing the approach to this problem. According to Llinas[2], the human brain has

evolved to execute movement, which means that enabling the human to build

interactions between its own sense of self and its external environment. Briefly,

with the help of the sense organs, the brain generates sensorimotor images which

represent the external world. By doing this, it can predict what to feel or how

to move during an encounter with real-time sensory information, by comparing

this external information with the internal sensorimotor image. Metaphorically

speaking, prediction is a state of mind, where the brain acts as a search engine

as it goes through internal sensorimotor images and comes up with a prediction

that will determine the human reaction to the external world. This prediction

can be observed as a search result. The internal images in this process are used

in relation to the respective context that they belong to. In other words, “the

significance of sensory cues is expressed mainly by their incorporation into larger,

cognitive states and entities.”[2]

This process in the brain provides us an inspiring idea about how the search

engines might be improved by adopting the “context over content” approach.

This is what this thesis contribute to the field of search engines: adding context-

based search capability (retrieving documents that do not only contain same

words with the search query but also belonging to similar contexts). Instead

of focusing on finding the exact content, we take the context from the input

4



information into account and improve the relevancy rate of the results and thus

the overall performance of the search.

1.5 Our Solution

In order to implement the context over content approach, first context information

from documents and queries are extracted. In the scond step, in order to be able

to find how many documents and queries are interrelated, extracted information

is clustered. As a final step, the clustered context information is used to calculate

new ranking scores to improve search engine efficiency.

The most important part of the proposed approach is to extract the context from

the documents. In this part, we use Lucene, Wordnet, and DBPedia Spotlight

as the context information sources. After the context extraction, we pair these

extracted context data. Following the pairing step, we count pairs to find how

many document contain the same context pairs. This count gives us an idea

about the strength of the relationship existing between pairs.

As a second step, the pairs are clustered according to their counts. These clusters

form contexts which groups the related documents together. After the clustering

step, we label the documents with clusters. In addition to document labeling,

queries are labeled with clusters as well. Finally, the results are scored according

to the correlation between the query and document clusters.

This thesis is organized as follows:

• Chapter 2 reviews similar works in the area.

• chapter 3 describes how the proposed system work.

• chapter 4 explains experiment step and gives result of the experiment.

• Chapter 5 is the conclusion.

5



Chapter 2

Related Works

Improving search engine is a challenging problem. There are various approaches

and a wide range of studies for each approach. However, using context knowledge,

especially using Wordnet and Wikipedia as context sources, is relatively new area.

Still, there are various studies on using context information. we review some of

them in two groups. First group (A New World: Contexts and Concepts) is

general approaches such as using semantic distance or context-aware retrieval.

Second group (Wikipedia and Wordnet: Two New Actors in the game) reviews

some studies which uses Wikipedia and Wordnet to improve a search engine

performance.

2.1 A New World: Contexts and Concepts

2.2 A New World: Contexts and Concepts

In the study of Brown et al [10], Context Aware Retrieval (CAR) systems and

its relationships to information retrieval and filtering are surveyed. They claim

that CAR is a sparsely researched area and there are some topics of information

retrieval and filtering which is not applied to CAR systems. The major differ-

ence between IR/IF and CAR applications is that CAR application contexts are

gradually (continuous) changing. They list types of CAR applications as inter-

active/proactive, user-driven/author-driven. In user driven CAR applications,

6



sensors and user requests are evaluated and information is retrieved accordingly

whereas in author driven applications, each document has a triggering context de-

fined by the author and whenever user enters that context, the document becomes

available for serving.

In this paper [11], two fields of information retrieval are brought together to

present a reliable knowledge-based information extraction method: personaliza-

tion of the information and retrieval context. This paper states that, this com-

bination provides a unique approach towards the process of measuring relevance,

since it introduces the concept of ontological information domain which refers

to the enriched representational ground for content meaning, user interests, and

contextual conditions (Mylonas et al. [11]). Therefore relevance is not just a

measurement of similarity or difference between the content of the documents,

but also it is about the relationship between the users history and the results as

well. This is why this paper proposes a profiling method that ties users history

with a set of contexts. With the use of fuzzy logic and clustering on the user

behavior, user types can be extracted. This fuzzy representation overcomes the

imprecision and uncertainty problems and in order to improve IR results, user

data should be involved in the retrieval process.

In [12], authors make use of semantic distance for feature-free search query clas-

sification. They show advantages of utilizing the number of search results while

grouping the web content according to their relevance. In contrast to other

ML-based methods, they use a feature-free approach since it’s a better fit for

ever-changing web data. They use Naive Ranking Strategy, Normalized Google

Distance, Jaccard, Overlap, Dice and Point-wise Mutual Information to map the

query with a category and use the best ones out of every result.

In the study of [13], Concept-Based Information Retrieval is performed using ex-

plicit semantic analysis. They perform text content processing which is criticized

by the previous article. While the previous research we discussed focused on

the number of search results while not developing a full-fledged retrieval model,

7



this research rather suggests that a representation method would be a reliable

way to solve the inaccuracy problem in the information retrieval field. Their

concept-based approach (which seems similar to our context over content ap-

proach) involves three important contributions: using Explicit Semantic Analysis

which refers to real-life concepts resembling human perception, integrating selec-

tion phase into concept-based indexing stage, and using three AI-based selection

methods for information retrieval. Their work is innovative since they shift the

focus from keyword and indexing back to the capability of generating contexts

based on human concepts.

Atanas Kiryakov et al [14] introduces an architecture for semantic annotation, in-

dexing and retrieval of documents via semantic resources. Their architecture

claims to provide automatic semantic annotation with references to ontology

classes and instances. They perform semantic indexing and retrieval where they

combine ontology and information retrieval methods. Their platform called KIM

has been developed for this purpose. Although they can not evaluate their results

precisely due to lack of test/data or existing metrics for semantic annotation and

retrieval, they conclude that using semantic entity knowledge for semantic an-

notation is worthwhile where entities can be stored in RDF repositories. Their

prototype shows possible future tools that take advantage of entity databases.

In the study of (Mukhopadhyay et al[15]), they build a domain-specific graph-

based search engine and use ontology for detecting the domain-relevance. The

nodes in the graphs are the domains (topics) and edge weights are the number of

mutual pages in both domains. High-weight edges represent related topics. This

way, search results can be extended on topic similarity. They incorporate multiple

domains in the same graph and discard links in a page that is on a domain out of

interest. They use a seed list containing URLs of specific interest domains. For

detecting if a webpage can classified in a domain cluster, they perform relevance

calculation using WordNet and ontologies and apply a threshold.

8



2.3 Wikipedia and Wordnet: Two New Actors in The Game

Question answering systems take part rather than classical search engines, for

providing answers to the users’ queries with better quality. Question classifica-

tion module has a significant role in question answering systems. The module

maintains prior knowledge to the users’ expectations when building a query with

clear form. In the literature, imprecise question classification is pointed as a very

important aspect of question answering systems with poor performance. In the

area of question answering, judging the preciseness of the answer is crucial. In this

paper [16], a novel question classification module is designed for bringing out the

semantic features of the Wordnet and Wikipedia. To accommodate constantly

changing open-domain question answering systems, the algorithm has dynamic

and expendable properties. The method uses natural language processing (NLP)

techniques along with world wide web. This combination results in a 2-folded

structure. NLP spots the users’ expectations for a specific query and world wide

web offers various semantic resources such as Wikipedia and the Wordnet. The

experiments were done with 5500 questions from a standard set and these are

tested for 5 question collections from TREC datasets. According to the results,

the proposed approach outperforms their equivalent methods from the literature

with a 89.55% of accuracy. The effectiveness of the proposed method is promising

for future attempts in the field of open-domain question answering.

This paper [17] studies whether lexical resources can be applied to increase the

diversity level for one word, ambiguous queries. For this approach, two sense

inventories of two different paradigms have been used: Wikipedia and the Word-

net. These two are compared and some conclusions are obtained. According

to the results, Wikipedia has broader coverage of results with its internal graph

structure and the relative number of visits taken by each sense. With simple and

efficient algorithms, 70% of more Wikipedia senses covered from modified rank-

ings. These experiments inspire further researches to use Wikipedia to construct

search results. There are limitations of this research that should be noted; due

9



to the nature of the testbed, strong conclusions cannot be made for web searches

and there are no study for diversity from the web users’ point of view.

This article [18] states a knowledge based approach to web search result clus-

tering and try to solve related research topics focusing on clustering short texts

from the web. This information retrieval task is analyzed if it can take advantage

from DBpedia spotlight state-of-the-art entity linking system. The approach uses

DBpedia concepts as text seeds to collect topical concept labels. These labels are

used to cluster based on their topical similarity. This paper aims at several key

questions: (i) whether we can use DBpedia (ii) check if we benefit from topi-

cal information to capture semantic similarity. The approach takes web search

snippets as inputs and cluster them topically using DBpedia. The results show

that, clustering compact topically semantified representations achieved compet-

itive quality for this method. The viability of using knowledge based methods

outperform the bag-of-words model. For future studies, structured representa-

tions, semantic graphs and multilingual dimension of DBpedia are planned to be

explored.

10



Chapter 3

System

3.1 System Overview

The system that we designed to implement the context over content approach

consists of five different steps: corpus, context extraction, context clustering,

labeling and scoring. First step is corpus, which contains preprocessed documents

and queries for next steps. Second step is the context extraction. In this part,

we use Lucene, DBPedia Spotlight, and Wordnet to extract context information

from documents and queries. The third step is the context clustering. We cluster

extracted contexts to form groups which contain similar contexts.Fourth step is

labeling. In the labeling step, we use context information extracted from each

document and clusters to determine the clusters that each document is related to.

Also we label queries in the same manner with documents. Fifth and final step

is scoring. In the scoring step, we calculate scores according to the correlations

between queries and documents.

3.2 Corpus

A corpus is a collection of texts in digital form, over which processes such as

retrieval or analysis will performs.[19] In this thesis, we use The Westbury Lab

Wikipedia Corpus (WLC)[20], as our data source.

11



Figure 3.1: System Overview

12



WLC is a snapshot of all the articles in the English part of the Wikipedia that

was taken in April 2010. It was processed to remove all links and irrelevant

material (navigation text, etc) Afterwards, it only includes untagged raw text.

WLC contains 990,248,478 words, over 2 million documents. The size of the file

is 6GB in raw text format and 1.8GB in compressed bzip format.[20]

We apply some preprocessing steps to WLC in order to obtain a corpus which fits

our needs. First preprocessing step is splitting the raw WLC corpus file. Since

we need documents that are correlated with queries, we split WLC corpus into

separate documents in a way that each document contains only one article.

Next preprocessing step is selecting documents. It would not be possible to use

all the documents obtained from the WLC file, due to our limited computational

power. Therefore, we randomly select 10000 documents from generated files.

Since the average word count of Wikipedia articles is around 300 and complexity

of the pairing process of context extraction part is O(n2), we decide to set the

limit of each document size between 300 and 1000 words. In order to apply this

limit to each document, we delete documents which have less than 300 words and

split documents which has more than 1000 words into smaller documents. After

this selection step, there are 8000 documents left.

Queries are the questions that are entered into search engine to retrieve results.

In order to select queries, first we select “n” documents (n ≤ 30) randomly. Then

we select a portion of each document randomly and rewrite that portion as a

query sentence. The queries are:

1. japan important political figures

2. newyork architectural landmarks

3. bowling pin shooting

4. comedy films originated from america

5. popular science fiction books

13



6. fundamentals of university education

7. delicious mushroom meal

8. dance music television shows

9. monuments centuries old

10. popular soap opera in united state

11. famous football players

12. historic city and landmarks

13. biggest ships in navy

14. rivers in white mountain

15. network security methods

16. most popular novels

17. super fast computers

18. famous meals famous cooks

19. art gallery in paris

20. space research and satellites

21. information and communication technologies

22. ancient world warriors

23. cute animals in africa

24. most popular albums in south america

25. historical achievement

26. biggest cities in world

14



27. popular languages

28. astrology astronomy stars

29. computer science and applications

30. video game console

3.3 Context Extraction

Context extraction is one of the fundamental steps of our work. The importance

of this step comes from the fact that context information of the documents which

is needed to apply the context over content approach, is retrieved in this step.

The context extraction part of our system, consists of three steps. First step is

analyzing the context with context analyzers. Context analyzers extract terms

that represent context information from documents. Second step is pairing. After

the context extraction, we pair extracted contexts for each document. Then we

group pairs into six different groups according to the combinations of their sources.

The last step is counting pairs in respect to their sources.

3.3.1 Context Analyzers

Context analyzers are tools that we developed to extract context information

from documents. We use three different sources to extract context information.

These sources are listed as follows: Apache Lucene (LCN), DBPedia Spotlight

(DBPD) and Wordnet (WNDB). Analyzers are named in respect to the source

that they use to extract context information.

15



3.3.1.1 Lucene Context Analyzer - LCA

The Lucene context analyzer is the first context analyzer that we used to ex-

tract context information. It uses components of Apache Lucene[3] search engine

library to extract information.

Apache Lucene is a high-performance, full-featured text search engine library

written entirely in Java. Apache Lucene is suitable for almost any application

that requires full-text search. Since it is developed by Java, it is cross-platform.

Lucene is written by Doug Cutting. It joined the Apache Software Foundation’s

Jakarta family of high-quality open source Java products in September 2001 and

became its own top-level Apache project in February 2005[3][21].

Since Lucene is a full-featured search engine library, it has wide range of function-

alities on indexing and searching. Main components of Lucene can be grouped

into two category as “components for indexing” and “components for querying”.

Components for querying are responsible for building and running queries. They

also retrieve results after query run and render results to the user. On the other

hand indexing components consist of acquiring content, building document, ana-

lyzing document and indexing document steps. The LCA mostly depends on the

capabilities of Lucene’s document analyzing component[21].

The analyzer component of Lucene is responsible for extracting and processing to-

kens out of text. It uses different filters to process the provided document. Filter

class in Lucene library is an abstract class, but there are several implementations

of it. These implementations are mostly responsible for applying a specific pro-

cess on tokens and texts, such as removing chars according to the given regular

expression pattern, converting tokens to lowercase or generating stems of tokens

etc.

Filters can work as a chain of process, i.e. output of a filter can be redirected

to another filter’s input. For example, the class which is responsible for the con-

version of lowercase characters can redirect its output to the class which handles

16



Table 3.1: Lucene Filter Examples

Filter Input Output

HTMLStripCharFilter <b>Turkey</b>. Turkey

PatternReplaceCharFilter Approximately
11.6 million visi-
tors arrived

Approximately million
visitors arrived

WhitespaceTokenizer Approximately mil-
lion visitors arrived

[’Approximately’,

’million’,

’visitors’, ’arrived’]

StandardFilter Istanbul’s Istanbul

TrimFilter ’ Istanbul ’ ’Istanbul’

WordDelimeterFilter PowerShot Power, Shot

LowerCaseFilter Istanbul istanbul

StopFilter

[and, the, only,

sea, route,

between, two,

cities]

[sea, route,

between,

cities]

stemming and the stemming class can redirect its output to the class which filters

some specific words. Some of the filters take Java IO Reader as an input, while

others take token stream instead. In order to provide token stream to filters,

Lucene analyzers also use tokenizers which split text into tokens. In the LCA,

ten different filters and one tokenizer used. Some examples showing filter usages

is presented in the table 3.1 .

First filter that is used in the LCA is HTMLStripCharFilter. This filter strips

out html constructs from the given input. Second filter is PatternReplaceCharFil-

ter. This filter uses regular expression to replace matching strings with thetarget

string. In LCA, PatternReplaceCharFilter is used for removing numbers and

punctuations. Since both of these filters process IO from Java IO Reader instead

of tokens, we use them before tokenizing and the other filters.

Furthermore, tokenizing is applied to filtered text with WhitespaceTokenizer.

This tokenizer splits text on whitespace and adjacent sequences of non-whitespace

17



characters form tokens. This tokenizer returns token stream which can be used

by other filters.

In the extraction flow of LCA, next step is processing tokens with token fil-

ters. First applied token filter is StandardFilter. This filter removes dots from

acronyms and ’s (apostrophe followed by s) from words with apostrophes. Then

TrimFilter is applied on token stream. This filter removes leading and trailing

whitespace from tokens in the stream. After trimming whitespaces, WordDelime-

terFilter is applied to tokens. This filter splits words into subwords and performs

optional transformations on subword groups according to given rules. For exam-

ple it converts ’PowerShot’ to ’Power’ and ’Shot’ tokens. Next LowerCaseFilter

is applied. This filter converts token text to lower case.[21]

In IR, stop word term represents words that are commonly used such as a, an

,the etc. since they are common, they do not have an effect on distinguishing

documents. Following filter in the LCA, is StopFilter, which removes given stop

words from tokens. After stop word filter is applied, RemoveDuplicatesTokenFil-

ter removes duplicate tokens and LengthFilter deletes tokens out of given range,

is applied. After application of filters, LCA returns remaining tokens as the

representatives of the analyzed document.

3.3.1.2 DBPedia Spotlight Analyzer - DSCA

DBPedia Spotlight context analyzer[6] extract terms that represent context in-

formation, using DBPedia Spotlight.

DBPedia[8] is an open source project, which extract structured information from

Wikipedia and it publish the results (knowledge base) on the web. DBpedia

knowledge base currently describes over 2.6 million entities. For each of these

entities, DBpedia defines a globally unique identifier that can be dereferenced

over the Web into a rich RDF description of the entity, including human-readable

definitions in 30 languages, relationships to other resources, classifications in four

18



concept hierarchies, various facts as well as data-level links to other Web data

sources describing the entity[22][7].

DBpedia Spotlight (DBPD), is a system for automatically annotating text doc-

uments with DBPedia URIs. DBpedia Spotlight allows users to configure the

annotations to their specific needs. It also provides RESTful web service inter-

face to easily communicate with external applications[6].

DBpedia Spotlight takes full advantage of DBPedia ontology for specifying con-

cepts. The user can restrict annotations by specifying any of all 272 classes or sets

of classes of DBPedia. DBPedia supports SPARQL queries on its knowledge base.

Since DBPedia Spotlight uses DBPedia, SPARQL queries can be used to filter

annotation results. Moreover DBPedia Spotlight can calculate different scores for

task-specific requirements. These scores that DBPedia Spotlight calculates, are

“prominence” which gives how many times a resource is mentioned in Wikipedia,

“topical relevance” which shows how close a text is to DBPedia resource’s and

“contextual ambiguity” which represents the possible ambiguity when a candi-

date resource has a high relevance with another. Confidence and support can also

be specified for queries[6].

In the DBPedia Spotlight context analyzer (DSCA), we use RESTful web service

inteface of DBPD. The web service interface returns list of annotations and its

properties according to support and confidence parameters. Each annotation has

various properties to identify annotated string. An example of a query is shown

as follows.

Figure 3.2: DBpedia Spotlight Web Service Query

1 curl -H "Accept: application/json" \

2 http :// spotlight.dbpedia.org/rest/annotate \

3 --data -urlencode "text=Istanbul is the largest city in Turkey

,

4 constituting the country ’s economic , cultural , and historical

5 heart." \

6 --data "confidence =0.2" \

7 --data "support =20"

8

19



The result of the query presented in figure 3.2 is given.

Figure 3.3: DBPedia Spotlight Web Service Result (JSON)

1 {

2 "@text": "Istanbul is the largest city in Turkey , constituting

3 the country ’s economic , cultural , and historical heart.",

4 "@confidence": "0.2",

5 "@support": "20",

6 "@types": "",

7 "@sparql": "",

8 "@policy": "whitelist",

9 "Resources": [

10 {

11 "@URI": "http :// dbpedia.org/resource/Istanbul",

12 "@support": "6635",

13 "@types": "DBpedia:City ,DBpedia:Settlement ,

14 DBpedia:PopulatedPlace ,DBpedia:Place , Schema:Place ,

15 Schema:City ,Freebase :/ olympics/olympic_bidding_city ,

16 Freebase :/olympics ,Freebase :/ travel/travel_destination ,

17 Freebase :/travel ,Freebase :/ business/employer ,

18 Freebase :/business ,Freebase :/ protected_sites/listed_site ,

19 Freebase :/ sports/sports_team_location ,Freebase :/sports ,

20 Freebase :/ protected_sites ,Freebase :/film/film_location ,

21 Freebase :/film ,Freebase :/ location/dated_location ,

22 Freebase :/location ,Freebase :/book/book_subject ,

23 Freebase :/book ,Freebase :/ business/business_location",

24 "@surfaceForm": "Istanbul",

25 "@offset": "0",

26 "@similarityScore": "0.1449064463376999",

27 "@percentageOfSecondRank": " -1.0"

28 }, ... ] }

“SurfaceForm” and “Types” properties are used as context information in the

DSCA. First parameter, SurfaceForm, represents the string that is annotated by

DBPedia Spotlight. Second parameter, the types, shows related categories and

sub-categories of annotated string. These categories and sub-categories, repre-

sent the context information that we need to extract. Types contains a list of

related categories and sub-categories which are represented in hierarchical order

and each item in the list also contains name of the data source. The items in

the types property list, has a form of [data source]:/[category]/[sub-category]/[...].

For example, the result retrieved for Istanbul is “Freebase:/location/citytown”.

DSCA removes source information and splits rest of the string, which contains

20



categories and sub-categories, on “/” character and returns extracted tokens and

SurfaceForm as context information.

3.3.1.3 Wordnet Analyzer - WNCA

WordNet context analyzer is another context analyzer of our system. It extracts

terms that represent context information using WordNet[9].

Wordnet is a lexical and semantic database in English. It has been developed

by the Cognitive Science Laboratory in Princeton University. Wordnet provides

conceptual-semantic and lexical relations between nouns, verbs, adjectives, and

adverbs. Traditional dictionaries are organized in alphabetic order to be readable

and searchable by human-beings. However, Wordnet is a dictionary where words

are linked together according to their semantic relationships. In this point of

view, Wordnet is more like thesaurus than a dictionary[23][9].

The most important relation in WordNet is “synonym”. Synonyms are words

that have similar meanings. Furthermore, set of synonyms are represented with

the term “synset” in WordNet. Synset is an abstract concept which states

all relationships that the word has. Wordnet divides lexicons into five cate-

gories as nouns, verbs, adjectives, adverbs and function words. In our work

only nouns and verbs are used for context extraction. Moreover, there are 27

relationship types in WordNet. These are “also see”, “antonym”, “attribute”,

“cause”, “derived”, “derived from adjective”, “entailment”, “holonym member”,

“holonym part”, “holonym substance”, “hypernym”, “hypernym instance”, “hy-

ponym”, “hyponym instance”, “meronym member”, “meronym part”, “meronym

substance”, “participle”, “pertainym”, “region”, “region member”, “similar to”,

“topic”, “topic member”, “usage”, “usage member”, “verb group”. Since our

computational power is limited, we only use “Topic” relation along with syn-

onyms in our work[23][9].

21



In WNCA, MIT Java Wordnet Interface (JWI)[24][25] is used. JWI is a Java li-

brary for interfacing with Wordnet which supports WordNet versions 1.6 through

3.0 . According to Finlayson’s comparison, JWI is the highest-performance,

widest-coverage, easiest-to-use library available[25].

WNCA analyzes documents in two sequential steps. First step is the pre-analyze

step. In this step, WNCA uses LCA to process documents. Since the data that

will be analyzed with WordNet should consist of words, WNCA tokenizes and

filters documents using LCA and passes extracted tokens (words) to the next

step.

Second step in WNCA is the analyze step. In this step, first, WNCA gets the

stems of words that are retrieved from the previous step using JWI WordNet

stemmer. Stemming is an essential step because any word that Wordnet does

not contain, can not be used for extracting relations. Next, WNCA extracts

senses of stems that are returned from stemmer. As a next step, WNCA retrieves

all synsets of the extracted senses. After synset extraction, WNCA extracts

synonyms, semantically related words and lexically related words. Synonyms, se-

mantically related words and lexically related words are representatives of context

information.

3.3.2 Pairing & Pair Counting

In the previous steps of context extraction, we extracted context information using

the context analyzers. Using the correlation between contexts and documents is

the base idea of our work. In order to measure the degree of correlation between

the extracted context information and the documents, we pair them and count

these pairs. Our assumption behind pairing and pair counting is that, if two terms

that represent a context occur in the same document, both terms are related.

Moreover, we also assume that the strength of he relationship increases each time

they occur together.

22



After context extraction step is completed, we pair the terms that represent con-

text information together and group pairs with respect to their source combina-

tions. The pair groups that represent the combination of context sources are:

• LCN-LCN: Pairs are from both Lucene.

• LCN-DBPD: One of the pair is from Lucene the other one is from DBPedia

Spotlight.

• LCN-WNDB: One of the pair is from Lucene the other one is from Wordnet.

• DBPD-DBPD: Pairs are from both DBPedia Spotlight.

• WNDB-WNDB: Pairs are from both Wordnet.

• DBPD-WNDB: One of the pair is from DBPedia Spotlight the other one is

from Wordnet.

In order to find correlation strength of each pair, we count all extracted pairs.

Since there is a big amount of data (millions of pairs), Map reduce paradigm on

Apache Hadoop[26] is used for counting.

MapReduce is the new programming paradigm in parallel and distributed com-

puting areas. In 2004, Google published a paper which is about data processing

on large clusters and they proposed MapReduce framework for Google distributed

file system[27]. After that, D. Cutting et al. [28] had started developing an open

source MapReduce framework called Hadoop. In addition to this, Hadoop also

has its own distributed file system, HDFS. The main purpose of Hadoop project

is performing distributed algorithms on commodity hardware. Hadoop has high

fault tolerance and allows data redundancy in its nodes. Hadoop uses functional

programming model to implement a mapper and a reducer[29].

We use Amazon Elastic MapReduce service as our Hadoop cluster. Amazon

Elastic MapReduce (EMR)[30] is a web service is provided by Amazon. EMR

uses Hadoop MapReduce framework works effectively on large scale data sets

23



and supports many programming languages such as Ruby, Perl, Python, and

C++ .

EMR service provides a library to develop MapReduce applications on Amazon

EMR clusters. This library is called MRJob[31] library. MRJob is used in Python

and accesses to Hadoop jar file. It provides a high level Hadoop API as a Python

wrapper.

Table 3.2: Merged Pair Count Sample

PAIR LCN
LCN

DBPD
DBPD

WNDB
WNDB

LCN
DBPD

LCN
WNDB

DBPD
WNDB

istanbul|city 5 0 0 10 5 0

istanbul|historic 5 0 0 8 3 0

city|metropolitan 8 10 5 3 3 15

city|travel 25 6 8 10 12 20

historic|architecture 20 10 13 10 15 25

historic|movie 10 3 2 12 9 5

We write a mapper as a Python script to count word pairs in the input file.

Normally, in Hadoop, we need to write a reducer which will be run after mapper

codes. In Elastic MapReduce framework, the aggregate parameter is passed to

reducer option. This Python script is interpreted as a Hadoop application. Then

we run scripts over EMR.

The counting scripts produce results which contain pairs, sources and counts.

After counting is completed, we merge these counts into a matrix. Each row of

matrix contains term pair and counts with respect to the source combinations.

An sample matrix of merged pair counts is shown in Table 3.2.

24



3.4 Context Clustering

Clustering can be defined as unsupervised grouping of patterns into clusters.

In general, clustering algorithms group similar instances according to distance

metrics such as Euclidean Distance, Manhattan Distance, term frequencies etc.

In our work, we use the count of term pairs, similar to term frequency, as the

distance metric, which also represents the relation between words[32].

Graph clustering is another method of clustering. Graphs are data structures

which consist of vertices (nodes) and edges. Edges connect vertices and they may

have properties such as weights. Graph clustering is a clustering method which

groups similar vertices using edges and their weights as distance metric. [33]

On the other hand context clustering is a more abstract concept that represents

grouping similar documents by using context information as distance metric. Us-

ing term frequencies in documents is a common way to cluster context. However,

since the relationships between terms more like a network that can be represent

as graph, in our work, we represent relation of words in graph format and apply

graph clustering to cluster contexts.

In order to cluster contexts, first, we build a graph of terms. Terms are con-

nected via distances generated from pair counts that are previously calculated.

In order to calculate distances of terms, first we normalize pair counts using

max-min normalization. Then we merge counts from different source combina-

tions (LCN-LCN, LCN-DBPD, DBPD-WNDB etc) by assigning weights for each

source combination. Then we sum all weighted scores from source combinations.

Second step is clustering graph. In order to cluster our graph of terms, we use

Markov Cluster Algorithm (MCL Algorithm)[34]. The MCL algorithm is a fast

and scalable unsupervised cluster algorithm for graphs. It is based on an esti-

mated simulation of a graph. Dongen explained the paradigm of MCL alogrithm

in his PHD thesis as: “A random walk in G that visits a dense cluster will likely

not leave the cluster until many of its vertices have been visited.”[35]. The MCL

25



algorithm does random walks on graph and calculates probabilities of going to

other nodes using “Markov Chains”. Since the Markov process does not show

cluster structure in its underlying graph, MCL algorithm adds another operator

called “inflation” to calculation process. The inflation process uses entry-wised

Hadamard-Schur product combined with diagonal scaling. It is responsible for

both strengthening and weakening of flow which allows flow to connect other

regions of graph[35].

Finally, we export cluster context-term mapping which shows clusters that contain

context terms. In the next section labeling documents with clusters and scoring

are explained.

3.5 Labeling & Scoring

In this part of our work, we label documents with clusters, in order to find which

document belongs to which cluster. For labeling, we use context clusters which

are generated previously and the context information which is extracted for each

document to assign clusters to documents. We also label queries with clusters as

well. Then we use co-existing clusters between documents and queries in order

to score results. In order to label documents and score results we use Apache

solr[36] as standalone full-text search engine.

Apache Solr[36] is the popular, fast, scalable, opensource search engine that built

on Apache Lucene Project. Solr is standalone full-featured search engine that

provide all capabilities that we need to index and retrieve documents. Since Solr

is a wrapper of Lucene library, it provides all capabilities of Lucene. We use Solr

in order to index document (labeled or not labeled) and retrieve them.[36]

First, we index documents using SOLR and retrieve results for the queries which

we have listed in corpus section. There are 30 queries and we reorder result set

of each query.

26



Second, we label documents. In order to label documents we need context in-

formation of each document. In the context extraction step we have extracted

contexts for each document so we have context terms that represents contexts of

each document. We also have cluster context-term mapping which has generated

in clustering step. We label documents using context clusters and context-terms.

Each document has several clusters and cluster-counts for each cluster.

Third, we label queries. In order to label, we need context information for each

query. We also have extracted contexts of queries using context analyzers. Then

we label queries with using context information that represents queries and cluster

context-term mapping.

Next, we calculate new scores of documents. In order to calculate new scores

we use dot product of cluster-counts of documents and queries. Then we sort

results for each query according to new calculated scores. Since we have seven

different clusters for seven different context source combination, in scoring step

we generate seven different lists for each query.

27



Chapter 4

Experiments

4.1 Experimental Setup

The experimental setup consist of two main steps. First step is the implementa-

tion of the system itself. Second step is collecting data to compare results of our

system.

4.1.1 System Implementation

The system that we have implemented to apply context over content approach

consists of five different steps. These are data sources, context extraction, context

clustering, labeling, and scoring.

First step is data sources. The data source part consists of two components

corpus and queries. Corpus is the collection of documents that we analyzed in

the next steps. As a corpus we have selected Westbury Lab Wikipedia Corpus

(WLC). WLC is a snapshot of Wikipeda (April 2010). WLC contains over 2

million articles. We select 8000 document randomly in the preprocessing step as

it is mentioned previously. We select 30 queries for the testing step. In order to

select queries, first we select 30 different documents randomly. Then we select a

small portion of each selected document. Since selected portions may not form

sentences that can be used as queries, we rewrite them as queries.

28



Second part of the system is context extraction. In the implementation of context

extraction step, we used Java language. Context extraction application is a multi-

thread application that is designed to process multiple documents at the same

time. The computer that we used to run context extraction application has eight

core Intel i7 2.3 mhz processor and 32 GB ram. Context extraction application

is also responsible for pairing terms. Total completion time of extraction and

pairing process is 4 days. Next, we count extracted pairs using Amazon elastic

map reduce (EMR) service. We use 100 different computers for counting on EMR.

Each computer has 7.5 GB ram and 4 EC2 Compute Units. After counting

is completed, we merge and normalize counts using Python scripts. In order

to merge scores from different context sources, we use weights that shown in

table 4.1.

Table 4.1: Weight Sets for Merging

LCN
LCN

LCN
DBPD

LCN
WNDB

DBPD
DBPD

DBPD
WNDB

WNDB
WNDB

1 0.167 0.167 0.167 0.167 0.166 0.166

2 1 0 0 0 0 0

3 0 1 0 0 0 0

4 0 0 1 0 0 0

5 0 0 0 1 0 0

6 0 0 0 0 1 0

7 0 0 0 0 0 1

Third part of the system is context clustering. We use MCL implementation

distributed by Linux Mint. We use a computer which has eight core Intel i7 2.3

mhz processor and 32 GB ram for clustering. We cluster context terms according

to merged scores which merged by using weights in table 4.1. After clustering is

completed we had 7 different clusters.

29



Fourth part of the system is context labeling. We use Python scripts to map

context information of documents with the context clusters. Then we score us-

ing context-labels and context-clusters then we sort results using new calculated

scores for each cluster set.

4.1.2 Data Collection & Comparing

Figure 4.1: Test Data Collection Tool

In order to measure performance, we need reference data to compare re-scored

results. Therefore, we have designed and implemented a web application for

data collection. The application retrieves top 50 results from SOLR without any

extra scoring and shows these results to the user without ordering. The user can

categorize the results into four categories. These categories are “not related”, “a

little related”, “related” and “very related”. Then the application stores the user

selections as scores. Each category has score between zero and three according

to its degree of relatedness. A screen-shot of the application shown in figure 4.1.

30



The categorized results of 30 different queries are obtained by our application and

are given to several different users. Each query has a set of results for each user.

Then we calculate means of scores that are given to each result of query. Then

we reorder results according to new scores.

Following, in order to measure performance, we calculate precision, recall, and f-

measure. First we calculate precision, recall, and f-measure for default result sets

of SOLR. Second, since we have seven clusters for each merged scores (merged

with parameters in Table 4.1), we calculate performance for each cluster. Third

we compare results. Results of comparison are given in the next section.

4.2 Experiment Results

In order to measure performance of our study, we use metrics that frequently used

in the literature. These metrics are precision, recall, and f-measure. We also use

Spearman’s rank correlation coefficient to compare rankings.

Since we have 7 different group of weights (Table 4.1)) we have 7 different clusters

for each group of weights. Characteristics of each group is shown as follows:

• First group includes all source combinations into calculation equally.

• Second group focuses on LCN

• Third group bring forwards LCN-DBPD combination.

• Fourth group reveals characteristics of LCN-WNDB combination.

• Fifth group focuses on DBPD

• Sixth group bring forwards DBPD-WNDB combination

• Seventh group focuses on WNDB

31



Figure 4.2: Precision

Comparison of these groups are shown in Tables 4.2, 4.3, 4.4. According to

results first and second groups are slightly better than the others but in general

all clusters has similar affect on calculations.

Next we compare our results with results of Solr. Comparison for top 20 results of

Solr and first cluster, is shown in Table 4.5. According to results, precision of Solr

is slightly better. On the other hand recall of cluster is a little better than Solr.

In general performance for both Solr and Clusters are almost same. Precision

(Figure 4.2), recall (Figure 4.3), and f-measure (Figure 4.4) charts are also indicate

similarities between performances. Spearman’s rank correlation coefficient is also

used to compare rankings of the queries. Comparing with Spearman also indicate

that there are not any significant improvement on rankings (17 of 30 queries are

better). Results are shown in Table 4.6

The corpus that we use, contains 8000 documents. This size of corpus is small for

a search engine. Using small corpus might be the reason that clusters have not

formed good enough to distinguish concepts. Since concepts are not distinguished

well enough, rescoring with clusters are not changed results significantly.

32



Figure 4.3: Recall

Figure 4.4: F-Measure

33



Table 4.2: Cluster Precision Table for Top 20 Result

Query ID Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

1 0.70 0.70 0.55 0.75 0.55 0.60 0.70

2 0.85 0.90 0.80 0.85 0.80 0.85 0.85

3 0.85 0.90 0.85 0.85 0.85 0.85 0.85

4 0.95 0.95 1.00 0.95 1.00 0.95 0.95

5 0.95 0.95 0.95 1.00 0.95 0.95 0.95

6 0.85 0.85 0.95 0.85 0.95 0.85 0.85

7 0.55 0.55 0.35 0.55 0.35 0.40 0.50

8 1.00 0.95 1.00 0.95 0.95 1.00 1.00

9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.80 0.75 0.75 0.75 0.70 0.80 0.75

11 0.95 1.00 0.95 0.95 0.95 0.95 0.95

12 1.00 1.00 1.00 1.00 1.00 1.00 1.00

13 0.90 0.90 0.90 0.90 0.90 0.90 0.90

14 0.95 0.95 1.00 1.00 1.00 1.00 0.95

15 0.85 0.80 0.80 0.80 0.80 0.80 0.85

16 0.95 0.95 0.95 0.95 0.95 0.95 0.95

17 0.65 0.70 0.80 0.60 0.85 0.85 0.65

18 0.25 0.30 0.30 0.25 0.35 0.30 0.30

19 0.90 0.90 0.85 0.90 0.85 0.90 0.90

20 0.90 0.90 0.95 0.90 0.95 0.90 0.90

21 0.85 0.85 0.85 0.80 0.85 0.80 0.85

22 0.75 0.80 0.85 0.80 0.80 0.85 0.75

23 0.55 0.55 0.55 0.55 0.55 0.55 0.55

24 0.75 0.75 0.70 0.75 0.70 0.70 0.75

25 1.00 1.00 0.95 0.95 0.90 0.95 1.00

26 0.35 0.35 0.35 0.35 0.40 0.30 0.35

27 0.25 0.25 0.35 0.25 0.35 0.30 0.35

28 0.75 0.75 0.70 0.75 0.65 0.60 0.75

29 0.90 0.90 0.80 0.90 0.80 0.80 0.90

30 0.95 0.95 0.95 0.95 0.95 0.95 0.90

Avg 0.80 0.80 0.79 0.79 0.79 0.79 0.80

34



Table 4.3: Cluster Recall Table for Top 20 Result

Query ID Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

1 0.45 0.45 0.36 0.48 0.36 0.39 0.45

2 0.43 0.45 0.40 0.43 0.40 0.43 0.43

3 0.50 0.53 0.50 0.50 0.50 0.50 0.50

4 0.39 0.39 0.41 0.39 0.41 0.39 0.39

5 0.40 0.40 0.40 0.42 0.40 0.40 0.40

6 0.40 0.40 0.44 0.40 0.44 0.40 0.40

7 0.55 0.55 0.35 0.55 0.35 0.40 0.50

8 0.42 0.40 0.42 0.40 0.40 0.42 0.42

9 0.41 0.41 0.41 0.41 0.41 0.41 0.41

10 0.43 0.41 0.41 0.41 0.38 0.43 0.41

11 0.40 0.43 0.40 0.40 0.40 0.40 0.40

12 0.41 0.41 0.41 0.41 0.41 0.41 0.41

13 0.38 0.38 0.38 0.38 0.38 0.38 0.38

14 0.40 0.40 0.43 0.43 0.43 0.43 0.40

15 0.37 0.35 0.35 0.35 0.35 0.35 0.37

16 0.41 0.41 0.41 0.41 0.41 0.41 0.41

17 0.38 0.41 0.47 0.35 0.50 0.50 0.38

18 0.33 0.40 0.40 0.33 0.47 0.40 0.40

19 0.43 0.43 0.41 0.43 0.41 0.43 0.43

20 0.39 0.39 0.41 0.39 0.41 0.39 0.39

21 0.39 0.39 0.39 0.36 0.39 0.36 0.39

22 0.38 0.40 0.43 0.40 0.40 0.43 0.38

23 0.37 0.37 0.37 0.37 0.37 0.37 0.37

24 0.46 0.46 0.42 0.46 0.42 0.42 0.46

25 0.44 0.44 0.41 0.41 0.39 0.41 0.44

26 0.37 0.37 0.37 0.37 0.42 0.32 0.37

27 0.25 0.25 0.35 0.25 0.35 0.30 0.35

28 0.41 0.41 0.38 0.41 0.35 0.32 0.41

29 0.43 0.43 0.38 0.43 0.38 0.38 0.43

30 0.41 0.41 0.41 0.41 0.41 0.41 0.39

Avg 0.41 0.41 0.40 0.40 0.40 0.40 0.41

35



Table 4.4: Cluster F-Measure Table for Top 20 Result

Query ID Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

1 0.55 0.55 0.43 0.59 0.43 0.47 0.55

2 0.57 0.60 0.53 0.57 0.53 0.57 0.57

3 0.63 0.67 0.63 0.63 0.63 0.63 0.63

4 0.55 0.55 0.58 0.55 0.58 0.55 0.55

5 0.56 0.56 0.56 0.59 0.56 0.56 0.56

6 0.54 0.54 0.60 0.54 0.60 0.54 0.54

7 0.55 0.55 0.35 0.55 0.35 0.40 0.50

8 0.59 0.56 0.59 0.56 0.56 0.59 0.59

9 0.58 0.58 0.58 0.58 0.58 0.58 0.58

10 0.56 0.53 0.53 0.53 0.49 0.56 0.53

11 0.57 0.60 0.57 0.57 0.57 0.57 0.57

12 0.58 0.58 0.58 0.58 0.58 0.58 0.58

13 0.54 0.54 0.54 0.54 0.54 0.54 0.54

14 0.57 0.57 0.60 0.60 0.60 0.60 0.57

15 0.52 0.49 0.49 0.49 0.49 0.49 0.52

16 0.58 0.58 0.58 0.58 0.58 0.58 0.58

17 0.48 0.52 0.59 0.44 0.63 0.63 0.48

18 0.29 0.34 0.34 0.29 0.40 0.34 0.34

19 0.58 0.58 0.55 0.58 0.55 0.58 0.58

20 0.55 0.55 0.58 0.55 0.58 0.55 0.55

21 0.53 0.53 0.53 0.50 0.53 0.50 0.53

22 0.50 0.53 0.57 0.53 0.53 0.57 0.50

23 0.44 0.44 0.44 0.44 0.44 0.44 0.44

24 0.57 0.57 0.53 0.57 0.53 0.53 0.57

25 0.61 0.61 0.58 0.58 0.55 0.58 0.61

26 0.36 0.36 0.36 0.36 0.41 0.31 0.36

27 0.25 0.25 0.35 0.25 0.35 0.30 0.35

28 0.53 0.53 0.49 0.53 0.46 0.42 0.53

29 0.58 0.58 0.52 0.58 0.52 0.52 0.58

30 0.58 0.58 0.58 0.58 0.58 0.58 0.55

Avg 0.53 0.53 0.52 0.53 0.52 0.52 0.53

36



Table 4.5: Solr-Cluster Comparision for Top 20 Result

Query ID Precision
Solr

Recall
Solr

F-Measure
Solr

Precision
Cluster

Recall
Cluster

F-Measure
Cluster

1 0.650 0.419 0.510 0.700 0.452 0.549

2 0.800 0.400 0.533 0.850 0.425 0.567

3 0.800 0.471 0.593 0.850 0.500 0.630

4 1.000 0.408 0.580 0.950 0.388 0.551

5 1.000 0.417 0.588 0.950 0.396 0.559

6 0.950 0.442 0.603 0.850 0.395 0.540

7 0.400 0.400 0.400 0.550 0.550 0.550

8 1.000 0.417 0.588 1.000 0.417 0.588

9 1.000 0.408 0.580 1.000 0.408 0.580

10 0.950 0.514 0.667 0.800 0.432 0.561

11 0.900 0.383 0.537 0.950 0.404 0.567

12 0.950 0.388 0.551 1.000 0.408 0.580

13 1.000 0.426 0.597 0.900 0.383 0.537

14 1.000 0.426 0.597 0.950 0.404 0.567

15 0.900 0.391 0.545 0.850 0.370 0.515

16 0.900 0.391 0.545 0.950 0.413 0.576

17 0.650 0.382 0.481 0.650 0.382 0.481

18 0.500 0.667 0.571 0.250 0.333 0.286

19 0.850 0.405 0.548 0.900 0.429 0.581

20 1.000 0.435 0.606 0.900 0.391 0.545

21 1.000 0.455 0.625 0.850 0.386 0.531

22 0.850 0.425 0.567 0.750 0.375 0.500

23 0.450 0.300 0.360 0.550 0.367 0.440

24 0.600 0.364 0.453 0.750 0.455 0.566

25 0.900 0.391 0.545 1.000 0.435 0.606

26 0.500 0.526 0.513 0.350 0.368 0.359

27 0.400 0.400 0.400 0.250 0.250 0.250

28 0.850 0.459 0.596 0.750 0.405 0.526

29 0.750 0.357 0.484 0.900 0.429 0.581

30 0.900 0.391 0.545 0.950 0.413 0.576

Avg 0.813 0.422 0.544 0.797 0.405 0.528

37



Table 4.6: Comparision with Spearman’s rank Correlation Coefficient

Query Id Solr Spearman Score Cluster Spearman Score

1 0.184 -0.220

2 -0.093 0.171

3 -0.181 -0.041

4 0.123 -0.149

5 0.161 -0.015

6 0.253 -0.006

7 -0.240 -0.018

8 0.140 0.044

9 -0.107 0.078

10 0.089 -0.347

11 -0.004 0.187

12 -0.044 0.078

13 -0.063 -0.203

14 0.037 -0.012

15 0.095 -0.005

16 0.219 -0.165

17 -0.113 -0.084

18 -0.026 0.035

19 0.001 0.034

20 -0.139 0.206

21 -0.160 -0.060

22 -0.163 0.111

23 0.218 -0.117

24 0.011 0.147

25 0.172 0.095

26 -0.045 0.311

27 -0.308 -0.029

28 0.100 -0.070

29 -0.214 0.184

30 -0.092 -0.007

38



Chapter 5

Conclusion

The main problem of search engines is retrieving most relevant documents to the

user from large amount of data according to the given query by the user. Both,

the size of the data that is needed to be indexed and finding relevant information

according to the users need make the problem challenging.

In this thesis, we focus on retrieving relevant data instead of processing big

amounts of data. Llian’s context over content approach of human brain has

inspired us to develop a method which will improve search engine performance

using a similar way to human thinking process. In our work we propose a method

which uses the context information of documents to improve the search engine

performance. The steps we have applied as follows:

• A corpus is prepared out of a small portion of Westbury Lab Corpus.

• Queries are prepared using documents in corpus

• The Context information of documents in corpus is extracted using context

analyzers (Lucene Analyzer, DBPedia Spotlight Analyzer, Wordnet Ana-

lyzer).

• For each document, extracted terms that represent context information are

paired according to their sources

39



• Term pairs are counted, merged and normalized to represent how close the

relationship is between terms.

• Graph structure is formed using terms and weights (scores calculated in the

previous step).

• Graph is clustered using Markov Cluster Algorithm. Cluster context-term

mapping is generated

• Documents and queries are labeled with clusters using their context infor-

mation and clusters context-term mappings

• Results of queries are re-scored using labels of documents and queries.

• Test data is collected using web application that is specifically designed for

this process.

• Both raw results and re-scored results are compared using collected test

data.

As a result, we could not improve search engine performance significantly. The

reason, mostly, is dependent to our corpus size. Because lack of computational

power, we could use 8000 documents which is very small set for a search en-

gine. Using limited amount of documents is prevented forming clusters well-

enough. Rescoring with using non well-formed clusters did not make any signifi-

cant change.

Our content over context approach, that we presented, forms a basis for our future

work. In the future, we plan to implement our design on a distributed system

such as Hadoop so that we can process much bigger corpus. We also plan to

extend context sources that we used to extract context information.

40



References

[1] World internet users and population stats. URL http://www.

internetworldstats.com/stats.htm.

[2] Rodolfo R. Llinas. i of the vortex From Neurons to Self. MIT Press, 2002.

[3] Apache lucene. URL http://lucene.apache.org/core/.

[4] Apache foundation. URL http://www.apache.org/.

[5] Dbpedia spotlight, . URL https://github.com/dbpedia-spotlight/

dbpedia-spotlight/wiki.

[6] Pablo N. Mendes, Max Jakob, Andres Garcia-Silva, and Christian Bizer.

Dbpedia spotlight: Shedding light on the web of documents. In Proceedings of

the 7th International Conference on Semantic Systems (I-Semantics), 2011.

[7] Dbpedia, . URL http://wiki.dbpedia.org/About.

[8] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-

tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick

van Kleef, Sören Auer, and Christian Bizer. DBpedia - a large-scale, mul-

tilingual knowledge base extracted from wikipedia. Semantic Web Journal,

2014.

[9] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,

38(11):39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748.

URL http://doi.acm.org/10.1145/219717.219748.

41

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://lucene.apache.org/core/
http://www.apache.org/
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://wiki.dbpedia.org/About
http://doi.acm.org/10.1145/219717.219748


[10] P. J. Brown and G. J. F. Jones. Context-aware retrieval: Exploring a new

environment for information retrieval and information filtering. Personal

Ubiquitous Comput., 5(4):253–263, January 2001. ISSN 1617-4909. doi: 10.

1007/s007790170004. URL http://dx.doi.org/10.1007/s007790170004.

[11] Ph. Mylonas, D. Vallet, P. Castells, M. FernÁndez, and Y. Avrithis. Per-

sonalized information retrieval based on context and ontological knowl-

edge. Knowl. Eng. Rev., 23(1):73–100, March 2008. ISSN 0269-8889.

doi: 10.1017/S0269888907001282. URL http://dx.doi.org/10.1017/

S0269888907001282.

[12] Lin Li, Luo Zhong, Guandong Xu, and Masaru Kitsuregawa. A feature-free

search query classification approach using semantic distance. Expert Syst.

Appl., 39(12):10739–10748, September 2012. ISSN 0957-4174. doi: 10.1016/

j.eswa.2012.02.191. URL http://dx.doi.org/10.1016/j.eswa.2012.02.

191.

[13] Ofer Egozi, Shaul Markovitch, and Evgeniy Gabrilovich. Concept-based

information retrieval using explicit semantic analysis. ACM Trans. Inf. Syst.,

29(2):8:1–8:34, April 2011. ISSN 1046-8188. doi: 10.1145/1961209.1961211.

URL http://doi.acm.org/10.1145/1961209.1961211.

[14] Atanas Kiryakov, Borislav Popov, Ivan Terziev, Dimitar Manov, and

Damyan Ognyanoff. Semantic annotation, indexing, and retrieval. Web Se-

mant., 2(1):49–79, December 2004. ISSN 1570-8268. doi: 10.1016/j.websem.

2004.07.005. URL http://dx.doi.org/10.1016/j.websem.2004.07.005.

[15] Debajyoti Mukhopadhyay and Sukanta Sinha. A new approach to design

graph based search engine for multiple domains using different ontologies. In

Proceedings of the 2008 International Conference on Information Technology,

ICIT ’08, pages 267–272, Washington, DC, USA, 2008. IEEE Computer

Society. ISBN 978-0-7695-3513-5. doi: 10.1109/ICIT.2008.46. URL http:

//dx.doi.org/10.1109/ICIT.2008.46.

42

http://dx.doi.org/10.1007/s007790170004
http://dx.doi.org/10.1017/S0269888907001282
http://dx.doi.org/10.1017/S0269888907001282
http://dx.doi.org/10.1016/j.eswa.2012.02.191
http://dx.doi.org/10.1016/j.eswa.2012.02.191
http://doi.acm.org/10.1145/1961209.1961211
http://dx.doi.org/10.1016/j.websem.2004.07.005
http://dx.doi.org/10.1109/ICIT.2008.46
http://dx.doi.org/10.1109/ICIT.2008.46


[16] Santosh Kumar Ray, Shailendra Singh, and B. P. Joshi. A semantic ap-

proach for question classification using wordnet and wikipedia. Pattern

Recogn. Lett., 31(13):1935–1943, October 2010. ISSN 0167-8655. doi: 10.

1016/j.patrec.2010.06.012. URL http://dx.doi.org/10.1016/j.patrec.

2010.06.012.

[17] Celina Santamaŕıa, Julio Gonzalo, and Javier Artiles. Wikipedia as sense in-

ventory to improve diversity in web search results. In Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, ACL ’10,

pages 1357–1366, Stroudsburg, PA, USA, 2010. Association for Computa-

tional Linguistics. URL http://dl.acm.org/citation.cfm?id=1858681.

1858819.

[18] Michael Schuhmacher and Simone Paolo Ponzetto. Exploiting dbpedia for

web search results clustering. In Proceedings of the 2013 Workshop on Au-

tomated Knowledge Base Construction, AKBC ’13, pages 91–96, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2411-3. doi: 10.1145/2509558.

2509574. URL http://doi.acm.org/10.1145/2509558.2509574.

[19] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. Introduction

to Information Retrieval. Cambridge University Press, 2009.

[20] Westbury C. Shaoul C. (2010) the westbury lab wikipedia corpus, edmon-

ton, ab: University of alberta. URL http://www.psych.ualberta.ca/

~westburylab/downloads/westburylab.wikicorp.download.html.

[21] Otis Gospodnetic Michael McCandless, Erik Hatcher. Lucene In Action.

Manning Publications, 2010.

[22] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Chris-

tian Becker, Richard Cyganiak, and Sebastian Hellmann. {DBpedia}

- a crystallization point for the web of data. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 7(3):154 – 165,

2009. ISSN 1570-8268. doi: http://dx.doi.org/10.1016/j.websem.2009.

43

http://dx.doi.org/10.1016/j.patrec.2010.06.012
http://dx.doi.org/10.1016/j.patrec.2010.06.012
http://dl.acm.org/citation.cfm?id=1858681.1858819
http://dl.acm.org/citation.cfm?id=1858681.1858819
http://doi.acm.org/10.1145/2509558.2509574
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html


07.002. URL http://www.sciencedirect.com/science/article/pii/

S1570826809000225. The Web of Data.

[23] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Intro-

duction to WordNet: an on-line lexical database. International Journal of

Lexicography, 3(4):235–244, 1990. URL http://wordnetcode.princeton.

edu/5papers.pdf.

[24] Jwi 2.3.3. URL http://projects.csail.mit.edu/jwi/.

[25] Mark Alan. Java libraries for accessing the princeton wordnet: Comparison

and evaluation. In Proceedings of the 7th Global Wordnet Conference. Tartu,

Estonia., 2014.

[26] Hadoop. URL http://hadoop.apache.org/.

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing

on large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-

0782. doi: 10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/

1327452.1327492.

[28] Tom White. Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media /

Yahoo Press, 2012.

[29] Alex Holmes. Hadoop in Practice. Manning Publications, 2012.

[30] Amazon elastic mapreduce. URL http://aws.amazon.com/

elasticmapreduce/.

[31] Amazon elastic mapreduce. URL https://pythonhosted.org/mrjob/.

[32] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM

Comput. Surv., 31(3):264–323, September 1999. ISSN 0360-0300. doi: 10.

1145/331499.331504. URL http://doi.acm.org/10.1145/331499.331504.

[33] Satu Elisa Schaeffer. Survey: Graph clustering. Comput. Sci. Rev., 1(1):27–

64, August 2007. ISSN 1574-0137. doi: 10.1016/j.cosrev.2007.05.001. URL

http://dx.doi.org/10.1016/j.cosrev.2007.05.001.

44

http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://wordnetcode.princeton.edu/5papers.pdf
http://wordnetcode.princeton.edu/5papers.pdf
http://projects.csail.mit.edu/jwi/
http://hadoop.apache.org/
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
https://pythonhosted.org/mrjob/
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.cosrev.2007.05.001


[34] Mcl - a cluster algorithm for graphs. URL http://micans.org/mcl/.

[35] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, Uni-

versity of Utrecht, 2000.

[36] Apache solr. URL https://lucene.apache.org/solr/.

45

http://micans.org/mcl/
https://lucene.apache.org/solr/


Curriculum Vitae

46


	Abstract
	Özet
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Information Retrieval
	1.3 Context Sources
	1.4 Problem
	1.5 Our Solution

	2 Related Works
	2.1 A New World: Contexts and Concepts
	2.2 A New World: Contexts and Concepts
	2.3 Wikipedia and Wordnet: Two New Actors in The Game

	3 System
	3.1 System Overview
	3.2 Corpus
	3.3 Context Extraction
	3.3.1 Context Analyzers
	3.3.1.1 Lucene Context Analyzer - LCA
	3.3.1.2 DBPedia Spotlight Analyzer - DSCA
	3.3.1.3 Wordnet Analyzer - WNCA

	3.3.2 Pairing & Pair Counting

	3.4 Context Clustering
	3.5 Labeling & Scoring

	4 Experiments
	4.1 Experimental Setup
	4.1.1 System Implementation
	4.1.2 Data Collection & Comparing

	4.2 Experiment Results

	5 Conclusion
	References
	Curriculum Vitae

