Basit öğe kaydını göster

dc.contributor.authorÖzendi, Mustafaen_US
dc.contributor.authorAkça, Mehmet Devrimen_US
dc.contributor.authorTopan, Hüseyinen_US
dc.date.accessioned2019-04-03T02:34:38Z
dc.date.available2019-04-03T02:34:38Z
dc.date.issued2017-06-26
dc.identifier.citationAkça, M. D., Topan, H. & Özendi, M. (2017). A generic point error model for TLS derived point clouds. Paper presented at the Proceedings of SPIE - The International Society for Optical Engineering, 1-18. doi:10.1117/12.2269373en_US
dc.identifier.isbn9781510611108
dc.identifier.isbn9781510611092
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.urihttps://hdl.handle.net/11729/1522
dc.identifier.urihttp://dx.doi.org/10.1117/12.2269373
dc.description.abstractThis work aims at developing a generic and anisotropic point error model, which is capable of computing magnitude and direction of a priori random errors, described in the form of error ellipsoids for each individual point of the cloud. The direct TLS observations are the range (rho), vertical (alpha) and horizontal (theta) angles, each of which is in fact associated with a priori precision value. A practical methodology was designed and performed in real-world test environments to determine these precision values. The methodology has two experimental parts. The first part is a static and repetitive measurement configuration for the determination of a priori precisions of the vertical (sigma(alpha)) and horizontal (sigma(theta)) angles. The second part is the measurement of a test stand which contains four plates in white, light grey, dark grey and black colors, for the determination of a priori precisions of the range observations (sigma(rho)). The test stand measurement is performed in a recursive manner so that sensor-to-object distance, incidence angle and surface reflectivity are parameterized. The experiment was conducted with three TLSs, namely Faro Focus 3D X330, Riegl VZ400 and Z+F 5010x in the same location and atmospheric conditions. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. Validation of the proposed error model was performed in real world scenarios, which revealed feasibility of the model.en_US
dc.description.sponsorshipSPIEen_US
dc.language.isoengen_US
dc.publisherSPIE-Int Soc Optical Engineeringen_US
dc.relation.ispartofseriesProceedings of SPIEen_US
dc.relation.isversionof10.1117/12.2269373
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTLS (terrestrial laser scanner)en_US
dc.subjectRangeen_US
dc.subjectReflectanceen_US
dc.subjectError ellipsoiden_US
dc.subjectAnisotropicen_US
dc.subjectError modelen_US
dc.subjectVariance-covariance propagationen_US
dc.subjectRegistrationen_US
dc.subjectIncidence angleen_US
dc.titleA generic point error model for TLS derived point cloudsen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.contributor.departmentIşık Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.departmentIşık University, Faculty of Engineering, Department of Civil Engineeringen_US
dc.contributor.authorID0000-0002-1510-8677
dc.identifier.volume10332
dc.identifier.startpage1
dc.identifier.endpage18
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAkça, Mehmet Devrimen_US
dc.relation.indexWOSen_US
dc.relation.indexScopusen_US
dc.relation.indexConference Proceedings Citation Index – Science (CPCI-S)en_US
dc.description.wosidWOS:000412830800014


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster