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COOPERATIVE STRATEGIES, ACHIEVABLE RATES

AND RESOURCE ALLOCATION FOR OFDMA

CHANNELS

Abstract

The design of next generation wireless communication systems brings along new

challenges, since the degrading factors such as fading and multi-user interference

become harder to deal with as the number of users and the bandwidth require-

ments increase. Orthogonal Frequency Division Multiple Access (OFDMA) is a

multiple accessing technique which provides a solution to both of the problems

above: it provides a relatively simple way of assigning available bandwidth to

users, while avoiding interference; and at the same time, it converts a frequency

selective fading channel, to parallel flat fading subchannels, hence reducing the

effects of intersymbol interference. However, in wireless channels, what is tradi-

tionally considered as interference is in fact side information, and combined with

the diversity created by the orthogonal subchannels in OFDMA, this side infor-

mation can be carefully taken advantage of to increase the rates achievable by

the users. In our thesis, without imposing any prior constraints on subchannel

allocation, we investigate cooperation strategies, achievable rates and resource

allocation for OFDMA channels.

We propose new cooperative encoding strategies for wireless communication net-

works over OFDMA channels. We particularly focus on a two user cooperative

OFDMA system, based on block Markov superposition encoding (BMSE). We

obtain expressions of the resulting achievable rate regions for all proposed co-

operative encoding strategies. We show that, by allowing for re-partitioning and

re-encoding of the cooperative messages across subchannels, it is possible to better

exploit the diversity created by OFDMA, and higher rates can be achieved.

In order to take full advantage of the diversity created by OFDMA, we then

introduce a channel adaptive cooperation strategy for OFDMA, and optimize the

transmit powers as a function of the channel states. We provide the optimality

conditions that need to be satisfied by the powers associated with the users’

codewords and derive the closed form expressions for the optimal powers. We
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propose two algorithms that can be used to optimize the powers to achieve any

desired rate point on the rate region boundary. We observe that, utilization

of power control to take advantage of the diversity offered by the cooperative

OFDMA system, not only leads to a remarkable improvement in achievable rates,

but also may help determine how the subchannels have to be instantaneously

allocated to various tasks in cooperation.
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DFBÇE KANALLARI İÇİN İŞBİRLİKÇİ

STRATEJİLER, ERİŞİLEBİLİR VERİ HIZLARI VE

KAYNAK TAHSİSİ

Özet

Yeni nesil kablosuz haberleşme sistemlerinde, kullanıcı sayısı ve bantgenişliği

talebindeki artış sebebiyle, sönümlenme ve çoklu-kullanıcı karışımı gibi sorun-

larla başa çıkılması ve uygun protokollerin tanımlaması gittikçe zorlaşmaktadır.

Dik Frekans Bölmeli Çoklu Erişim (DFBÇE) yukarıdaki iki probleme de çözüm

sağlayan bir çoklu erişim tekniğidir: Kullanıcılara sahip olunan frekans tayfını dik

olarak dağıtmak suretiyle karışımı engellerken aynı zamanda frekans seçici sönüm-

lenmeli bir kanalı, paralel düz sönümlü alt kanallara çevirir, böylelikle sem-

boller arası karışımın etkilerini azaltır. Hâlbuki kablosuz kanallarda, karışım

olarak adlandırılan şey aslında yan bilgidir ve bu yan bilgi DFBÇE’nin ortogo-

nal alt kanallarının çeşitliliği ile uygun bir şekilde birleştirildiğinde, kullanıcıların

erişebilecekleri veri hızlarını arttırmak için kullanılabilir. Tezimizde, kanal ata-

ması ile ilgili herhangi bir önkoşul koymadan, DFBÇE kanalları için işbirlikçi

stratejileri, erişilebilir veri hızlarını ve kaynak tahsis tekniklerini inceliyoruz.

Önce, DFBÇE altyapısı kullanan kablosuz haberleşme şebekeleri için yeni işbirlikçi

kodlama stratejileri öneriyoruz. Özellikle, blok Markov bindirmeli kodlama uygu-

layan iki kullanıcılı DFBÇE sistemine yoğunlaşıyoruz. Önerdiğimiz tüm işbirlikçi

kodlama stratejileri için erişilebilir veri hızı bölgelerini elde ediyoruz. Mesajların

alt kanallara yeniden bölüştürülmesi ve yeniden kodlanmasına müsaade edilmesi

ile, DFBÇE’nin beraberinde getirdiği çeşitlilikten daha fazla faydalanılabileceğini

ve daha yüksek veri hızlarına ulaşılabileceğini gösteriyoruz.

Daha sonra, DFBÇE’nin oluşturduğu çeşitliliğin getirdiği faydalardan tam olarak

yararlanmak amacıyla, DFBÇE için kanal uyarlamalı bir işbirlikçi strateji öneri-

yoruz ve çıkış güçlerini kanal durumlarının fonksiyonu olarak eniyiliyoruz. Kul-

lanıcıların kodkelimelerine ilişkin güçlerinin sağlaması gereken eniyilik koşulla-

rını buluyoruz ve en iyi güç değerleri için kapalı form denklemlerini türetiyoruz.

Veri hızı bölgesinin sınırında herhangi bir noktaya ulaşılmasını sağlayan güçleri
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eniyilemek için kullanılabilecek iki algoritma öneriyoruz. İşbirlikçi DFBÇE sis-

teminin sunduğu çeşitlilikten yararlanan güç kontrolünü uygulamanın sadece erişi-

lebilir veri hızlarında önemli bir iyileşme sağlamakla kalmadığını, aynı zamanda

anlık olarak hangi alt kanalın hangi amaç için kullanılması gerektiğini belirlemede

de fayda sağlayabileceğini kanıtlıyoruz.
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Chapter 1

Introduction

The design of next generation wireless communication systems brings along new

challenges, since the degrading factors such as fading and multi-user interfer-

ence become harder to deal with as the number of users and the bandwidth

requirements increase. Efficient utilization of the orthogonal structure of the vec-

tor multiple accessing techniques may be useful to overcome these challenges.

In particular, OFDMA is a vector multiple accessing technique that provides a

relatively simple way of assigning available bandwidth to users, while avoiding in-

terference; and at the same time, it converts a frequency selective fading channel,

to parallel flat fading subchannels, hence reducing the effects of intersymbol in-

terference. With effective allocation of resources like power, bandwidth and time,

we can overcome the mentioned problems and even increase the achievable rates

by using diversity techniques employing the time and frequency varying structure

of the channel.

One of the resources to be carefully allocated in a communication system, is

the transmitter’s power. Power allocation is one of the fundamental problems of

wireless communications, different approaches have been provided for the related

constraints to be satisfied and performance criteria. By looking at the most gen-

eral case, we can say that there are two main approaches for power allocation.

In the first approach, the aim is to guarantee quality of service (QoS) and to

provide a minimum level of QoS by increasing the power level when the channel
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states get worse [1, 2]. This type of power control is generally used for real-time

applications sensitive to delay (guaranteed service) like voice and video. In the

second approach of power allocation, the main goal is to maximize the informa-

tion theoretical capacity over longer time intervals by using average rates as the

objective functions. Power allocation protocols in this type are more profitable:

when the channel states get worse, instead of increasing power, they save from

the average transmitter power and when the channel conditions become better,

they use more power and maximize the achievable rates in the long run. This

type of power allocation is more suitable for scenarios requiring higher data rates,

like data or file transfer (best-effort services), that are not as sensitive to delay as

the real-time applications. Recently, higher demand for this type of applications,

made information theoretical approach to power control more important. In this

thesis, we investigate information theoretical approach to resource allocation for

ergodic fading cooperative channels [3].

Power control for the fading point-to-point channels was first studied by Gold-

smith and Varaiya [4]. There, for a system with one transmitter, one receiver

and both with full channel state information (CSI), the optimal adaptive trans-

mission scheme was shown to use water-pouring in time for power adaptation,

and a variable-rate multiplexed coding scheme. It was proved that waterfilling

algorithm is the optimum power allocation strategy that offers power allocation

directly related to the channel states (quality). In this strategy, more power is

used in good channel states, less power is used in bad channel states and no power

is used in very bad channel states. For the multi-user system, power allocation

for maximizing the overall system throughput was obtained by Knopp and Hum-

blet [5]. The optimum power allocation strategy came up with the interesting

result that at any time, only the user with the best channel state should transmit

with the power level calculated by waterfilling algorithm as if it was the only

user in the system, while the others should not transmit at that time and should

wait. Therefore, power allocation problem actually also determines the optimum

method for finding out who should access the system at each channel state. This
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shows the importance of power allocation in system design. Rate region maxi-

mization problem for multi-user systems was solved by Tse and Hanly [6]. It was

proved that the optimum codebook selection could also be done by multiplying

the codewords in a certain codebook with the instantaneously varying power lev-

els instead of a variable-rate multiplexed coding scheme. Thereby, it was shown

that power control is not only necessary to achieve maximum achievable rate in

the case of full CSI, but is also sufficient. In this thesis we utilize an approach

similar to that of Tse and Hanly.

Power allocation for Gaussian multiple access channels (MAC) was investigated

in [7] and it was shown that power allocation in each dimension can be obtained

by iterative waterfilling algorithm over the users. Accordingly, in each power cal-

culation, all users’ power levels in all dimensions are fixed except for one user and

power allocation for this user is performed, and it was shown that by performing

this method iteratively over all users, the optimum resource allocation can be

achieved for the system. Similar results were obtained for Code Division Multiple

Access (CDMA), that is also an example of vector multiple access channels [8, 9].

In OFDMA systems, there are two major resource allocation problems: power

allocation and subchannel allocation. Jang and Lee [10], solved the problem of

power and subchannel allocation by dividing the problem into two phases: first

of all, each subchannel is assigned to the user with the best channel state. Then,

since the problem will be in orthogonal structure, optimum power allocation

is solved with single user waterfilling algorithm in parallel Gaussian channels.

Actually this two-phase solution is not necessary, the optimum power allocation

solution actually gives the same result without forcing the constraint that every

subchannel should be used by only one user. This kind of solution may be optimal

for the network, but it may not be fair for the users. Solution of a similar

problem with proportional fairness consideration was presented by Shen, Andrews

and Evans [11]. In this paper, the authors criticized the high complexity of the

waterfilling algorithm and instead of this method, they proposed a new algorithm

with linear complexity for a two user system whose result is close to the optimum
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solution. Gao and Cui dealt with the problem of maximizing the achievable

sum rate while guaranteeing a minimum individual rate for each user [12]. Their

method first considered the minimum individual rate criteria and then considered

allocating the remaining subchannels by solving the joint power, subchannel and

rate optimization problem together. A similar problem was solved in [13] by

optimizing a utility function, which is assumed to be a function of the rates.

There, Lagrange techniques and Karush-Kuhn-Tucker (KKT) conditions, which

are widely used methods in convex optimization, were used and an algorithm with

relatively low complexity was proposed.

Monahram and Bhashyam [14], solved the resource allocation problem in OFDMA

downlink scenario by using joint subcarrier and power allocation for channel-aware

queue-aware scheduling. Wong and Evans formulated and solved continuous and

discrete ergodic weighted sum rate maximization by employing Lagrange tech-

niques and offered algorithms with almost optimal rate in OFDMA downlink

assuming the availability of perfect CSI [15]. Phischella and Belfiore, addressed

resource allocation in multi-cell OFDMA networks with a heuristic method for

distributed sum power minimization under target data rate requirements [16].

The proposed method establishes a set of target signal to interference plus noise

ratio (SINR) per user and subcarrier, determined to reach the target data rate

of each user, power control is then performed independently over each subcar-

rier. Resource allocation for downlink OFDMA systems that yields a multiuser

waterfilling structure was presented in [17].

In a wireless communication system traffic does not have to be either delay-

constrained (DC) data or non-delay-constrained (NDC) data. There are some

heterogenous networks carrying both DC and NDC data (e.g. file transfer to-

gether with voice). Such a heterogeneous multiuser Orthogonal Frequency Di-

vision Multiplexing (OFDM) system with both types of traffic is investigated in

[18] and it was proved that the optimal power allocation over subcarriers follows

a multi-level waterfilling principle; moreover, the valid candidates competing for

each subcarrier include only one NDC user but all DC users.
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While orthogonal MAC techniques such as OFDMA traditionally use orthogonal

transmission to mitigate interference, we direct our attention to an alternative

approach to managing “interference” in wireless networks. In wireless channels,

what is traditionally considered as interference, is in fact side information, and

this side information can be carefully taken advantage of to increase the rates

achievable by the users through intelligently designed protocols. When users can

decode the other users’ messages, they behave like a virtual multi-antenna system

and therefore attain diversity gain through cooperative coding and obtain higher

achievable rates. Although the idea of cooperation in wireless communication

networks has become more important recently, it roots from quite old information-

theoretic works. The simplest form of cooperation is the relay channel, which was

first studied by van der Meulen [19]. Then, fundamental capacity and achievable

rate theorems for the relay channel were proved, and several coding and decoding

techniques were proposed by Cover and El Gamal in their groundbreaking paper

[20]. In the relay channel, there is one source, one relay and one receiver. The

only goal here, is to successfully transmit the message of the source to the receiver

with the help of the relay. Most of the research in the literature, deals with this

kind of one-sided cooperative relay model, but these strategies are not suitable

for the systems where all cooperative users have their own information. On the

other hand, next generation communication systems require to support high data

rates for multi-users simultaneously.

The fundamentals of the mentioned real bidirectional cooperative systems, based

on the two user problem, was solved in the beginning of 1980’s [21]-[22]. Firstly,

Cover and Leung [21], determined the achievable rate region for a discrete mem-

oryless multiple access channel with feedback. The region found by Cover and

Leung for the discrete memoryless multiple access channel with feedback to both

encoders, is proved to be achievable also with feedback to only one encoder by

Willems and van der Meulen [23]. Willems and van der Meulen introduced a com-

munication situation in which the encoders of a MAC are partially cooperating

where the encoders are connected by communication links with finite capacities
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and established the capacity region of the MAC with partially cooperating en-

coders in [24]; later determined the capacity regions for various communication

situations in which one or both encoders for a MAC crib from the other en-

coder [22]. This type of channel models are important to give upper bounds for

the achievable rate regions for more realistic channels with limited cooperation

opportunity.

Due to the information spreading property of wireless communication channels,

these channels are best described using, the multiple access channel with gener-

alized feedback (MAC-GF) proposed by Carleial [25] and later by Willems et al.

[26]. According to this model, users are fedback two different channel outputs and

these channel outputs represent the “overheard” information. The first achiev-

able rate region for this model by Carleial [25] was improved by Willems et al. by

utilizing block Markov superposition encoding (BMSE) and backward decoding

[26]. More recently, in [27], the MAC-GF was used by Sendonaris, Erkip and

Aazhang to model a fading cooperative additive white Gaussian noise (AWGN)

channel, and the results therein offering high gains made cooperative communi-

cations very attractive. Meanwhile Laneman, Tse and Wornell provided outage

analysis for a more practical cooperative system employing half-duplex operation

[28].

Intensive research has been conducted and plenty of development has been achieved

in the above mentioned fields, over the last ten years. An important part of this

development has been for the case where the number of the cooperative users is

more than two. In most of these works, cooperation is limited with dedicated

relays assigned only to help other users or a single relay assigned to help multi-

ple users. Examples of the most significant of these are; Multiple Access Relay

Channels [29], Single Source Multiple Level Relay Channel [30] and Parallel Re-

lay Networks [31]. More recently, some works on bidirectional cooperation for

multi-user systems also started appearing in the literature, and it was shown

that important rate gains can be achieved [32]. A large number of references on

cooperative relay systems can be found in [33].
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In cooperative communications, one of the critical issues is resource allocation,

especially power allocation. Most the of work in this field, again focuses on the

scenario of relay networks with only one-sided cooperation where relays do not

have their own messages. Research on resource allocation for the bidirectional

cooperation employing Decode and Forward (DF) approach (where encoding and

decoding is much more complex) is quite limited. Works in this field show that

utilizing optimum power control simplifies the cooperation strategy and increases

the achievable rates significantly, just like in CDMA and OFDMA systems [34].

Summarizing all these, we can conclude that in multiple access systems (like

OFDMA and CDMA) employing cooperation, resource allocation is both an im-

portant and a promising problem.

The use of cooperative protocols in OFDM systems was investigated extensively

by many authors over the recent years. One of the first works that considers

OFDM together with cooperation is [35]. There Yatawatta and Petropulu, di-

vided the subchannels of OFDM into two, used Amplify and Forward (AF) coop-

eration scheme in orthogonal structure and showed the performance improvement

in terms of channel capacity and diversity. In [36], Lin and Stefanov studied

pairwise error probability for single antenna OFDM systems using cooperative

convolutional codes.

Generic relay and subcarrier allocation schemes for multicarrier (MC) system with

AF relays were proposed in [37]. The outage probability bounds were derived

analytically for each scheme and the average best relay selection scheme, was

shown to be best suited for practical implementation. In [38], an optimally joint

subcarrier matching and power allocation scheme to further maximize the total

channel capacity with the constrained total system power was proposed. First, the

problem is formulated as a mixed binary integer programming problem. Second,

by making use of the equivalent channel power gain for any matched subcarrier

pair, a low complexity scheme is proposed.

Based on the above summary of results, we can conclude that, there has been
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an intensive research on power control and subchannel allocation in OFDMA, on

power control in cooperative communications, on relay selection in cooperative

systems, and on resource allocation in one-sided cooperative OFDMA systems.

However, the problems of achievable rates and optimum resource allocation in

a mutually cooperative OFDMA system employing DF cooperation and design

of cooperative protocols for OFDMA channels have not been investigated and

solved yet. One of the basic advantages of OFDMA channels is that they allow

simultaneous transmission over different subchannels, therefore it is clear that

techniques will bring up new opportunities for exploiting the diversity via new

cooperative strategies. In this thesis, without imposing any prior constraints

on subchannel allocation or orthogonalization, we will investigate cooperation

strategies, achievable rates and resource allocation for next generation wireless

networks.

This thesis is organized as follows; we present some general information about the

techniques used throughout the thesis in Chapter 2. In Chapter 3, the proposed

cooperative strategies for OFDMA and achievable rates for the two user cooper-

ative OFDMA channels are explained. We apply resource allocation for the two

user cooperative OFDMA channels and describe the applied resource allocation

in Chapter 4. Conclusion of the thesis is given in Chapter 5. The interested

readers can find more detailed information related to the proves of the theorems

and the lemma in the appendixes.
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Chapter 2

Background

2.1 Overview

In this thesis, various topics and techniques from wireless communications, in-

formation theory and optimization are employed. These include OFDMA, chan-

nel capacity and achievable rates for wireless channels and convex optimization

methods. In the following sections we provide some general information about

the techniques used.

2.2 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a technique employed by many telecommunication systems, such as

Digital Video Broadcasting (DVB), local area networks and Long Term Evolution

(LTE) [39]. OFDM is a MC modulation that divides a given bandwith into

many parallel subchannels or subcarriers, so that multiple symbols can be sent

in parallel.

The first OFDM schemes were presented by Chang [40] and Saltzberg [41]. OFDM

became more practical through work of Chang and Gibby [42], Weinstein and

Ebert [43], Peled and Ruiz [44] and Hirosaki [45]. OFDM using the Discrete

Fourier transform (DFT) was developed by [43], OFDM with a cyclic prefix was

developed by [44]. The DFT (implemented with a Fast Fourier Transform (FFT))
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and the cyclic prefix have made OFDM both practical and attractive. OFDM is

often attractive by its two main features: it is considered to be spectrally efficient

and it offers a clever way to deal with equalization of dispersive slowly fading

channels.

OFDM is a block transmission technique. In the baseband, complex-valued data

symbols modulate a large number of carrier waveforms. The transmitted OFDM

signal multiplexes several low-rate data streams, each data stream is carried by

a given subcarrier. The main advantage of this concept in a radio environment

is that each of the data streams is transmitted through an almost flat fading

channel. Orthogonal subcarriers of OFDM signal, modulated by these parallel

data streams are of the form:

φk(t) = ej2πfkt, (2.1)

where fk is the frequency of the kth subcarrier. One baseband OFDM symbol

(without a cyclic prefix) multiplexes N modulated subcarriers:

s(t) =
1√
N

N−1
∑

n=0

xkφk(t), 0 < t < NT, (2.2)

where xk is the kth complex data symbol, T is the sampling period and NT is the

length of the OFDM symbol. The subcarrier frequencies, fk are equally spaced

fk =
k

NT
, (2.3)

which makes the subcarriers φk(t) on 0 < t < NT orthogonal. The signal (2.2)

separates data symbols in frequency by overlapping subcarriers, thus using the

available spectrum in an efficient way. As the OFDM signal is the sum of a

large number of independent and identically distributed (i.i.d.) components, its

amplitude distribution becomes approximately Gaussian due to the central limit

theorem.

10
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Figure 2.1: Block Diagram of an OFDM System Using FFT, Pilot PN Sequence
and a Guard Bit Insertion [47].

T-spaced sampling of the in-phase and quadrature components of the OFDM

symbol gives

s(nT ) =
1√
N

N−1
∑

n=0

xke
j2π nk

N , 0 < t < NT, (2.4)

which is the Inverse Discrete Fourier Transform (IDFT) of the constellation sym-

bols [46]. Therefore, demodulation of the sampled data can be performed using

DFT operation. This is one of the key properties of OFDM, first proposed by

Weinstein and Ebert [43].

OFDM also has some disadvantages. Firstly, like all orthogonal transmission

techniques, OFDM incurs some rate penalty. Because OFDM divides a given

bandwidth into many narrow subcarriers each with relatively small carrier spac-

ing, it is sensitive to carrier frequency errors. Furthermore, to preserve the or-

thogonality between subcarriers, the amplifiers need to be linear. OFDM systems

also should have a high peak-to-average power ratio, which may require a large

amplifier power back-off and a large number of bits in the analog-to-digital (A/D)

and digital-to-analog (D/A) designs.

OFDM divides the spectrum into many parallel subchannels or subcarriers and

is a special case of parallel Gaussian channels. In the next subsection, we provide
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an overview for the parallel Gaussian channel and the channel capacity for these

channels.

2.2.1 Capacity of Parallel Gaussian Channel

Information capacity of a discrete memoryless channel is given by

C = max
p(x)

I(X ; Y ), (2.5)

where the maximum is taken over all possible input distributions p(x) [48]. Chan-

nel capacity is defined as the highest rate at which information can be transmit-

ted with arbitrarily low probability of error through the channel. The Gaussian

channel is the most commonly encountered continuous alphabet channel. In the

Gaussian channel, the output Yi at time i, is the sum of the input, Xi and the

noise, Zi, where the noise Zi is zero-mean, i.i.d. from a Gaussian distribution

with variance N , i.e., Zi ∼ N (0, N). The Gaussian channel, shown in Figure 2.2

is described by

Yi = Xi + Zi, i = 1, ..., n. (2.6)

Let us assume that for any codeword (x1, x2, ..., xn) transmitted over the channel,

there is an average power constraint,

1

n

n
∑

i=1

xi
2 ≤ P. (2.7)
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The capacity of the Gaussian channel with power constraint P and noise variance

N is

C =
1

2
log

(

1 +
P

N

)

bits per transmission. (2.8)

Assume that there are a set of Gaussian channels in parallel as shown in Figure

2.3, for each Gaussian channel j, the output is the sum of the input and the

Gaussian noise

Yj = Xj + Zj, j = 1, 2, ..., k, (2.9)

where the noise, Zj ∼ N (0, Nj) is assumed to be independent from channel to

channel. We assume that there is a common power constraint on total power

used over all channels, i.e.,

E
n
∑

j=1

Xj
2 ≤ P. (2.10)
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Here, the goal is to maximize the total capacity by distributing power among the

channels. The information capacity of the parallel Gaussian channel is

C = max
f(x1,x2,...,xk):

∑
EX2

i ≤P
I(X1, X2, ..., Xk; Y1, Y2, ..., Yk). (2.11)

Since Z1, Z2,...,Zk are independent it can be shown that [48]

C = I(X1, X2, ..., Xk; Y1, Y2, ..., Yk) ≤
1

2

k
∑

i=1

log

(

1 +
Pi

Ni

)

. (2.12)

From this point on, the problem becomes that of finding a power allocation policy

that maximizes the capacity subject to the power constraint, i.e.,
∑

Pi = P . This

is a standard optimization problem and can be solved by Lagrange multipliers.

We can write the following Lagrangian function (see section 2.4).

L(P1, ..., Pk) =
1

2

k
∑

i=1

log

(

1 +
Pi

Ni

)

+ λ(
k
∑

i=1

Pi), (2.13)

and differentiating with respect to Pi, we achieve

Pi = ν −Ni. (2.14)

Pi’s must be non-negative, therefore the solution of the power level at each channel

becomes

Pi = (ν −Ni)
+, (2.15)

where (x)+ is max(x, 0). ν is chosen such that

∑

(ν −Ni)
+ = P. (2.16)

As a result, there is a certain power limit, ν in each channel. Power is distributed

among the channels like the way water distributes itself in a vessel. This power

allocation procedure is referred as “waterfilling”.
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In our thesis we employ a cooperative OFDMA system with parallel OFDMA

subchannels and obtain optimal power distribution with the aim to maximize

the achievable rate region of the system. Details on resource allocation for the

cooperative OFDMA channels can be found in Chapter 4.

2.3 Cooperative Models

In the simplest form of communications, data is transmitted directly between the

transmitter and the receiver. In these communication systems users do not help

each other. Recently, networks with the so-called “cooperative” nodes, assisting

other nodes have been introduced. Cooperative communication utilizes the fact

that the transmitted messages are actually “overheard” by other users. This

cooperation can be unidirectional or bidirectional. As a result of the cooperative

communication, we can improve the achievable rates, coverage area and battery

life [49].

Van der Meulen was the first to introduce the idea of cooperation [19] in informa-

tion theory and established the roots of the relay channel. The general three-node

relay channel, shown in Figure 2.4, consists of Terminal 1 (source), Terminal 3

(destination) and Terminal 2 (relay). Here, the goal is to have the highest rate

form Terminal 1 to Terminal 3 with the support of Terminal 2. Terminal 2 does

not have its own message, it just serves in order to improve the direct link’s rate

between Terminal 1 to Terminal 3.
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Van der Meulen, calculated the capacity of the relay channel in [19] for some spe-

cific channels. In their seminal paper [20], Cover and El Gamal further developed

communication/relaying methodologies in a general relay channel. They studied

the memoryless relay channel and provided two relaying techniques in [20]; DF

and Compress and Forward (CF). The capacity of the general relay channel has

not been solved for over thirty years. Willems’ MAC-GF model [26] was a mile-

stone in mutual cooperation. The recent papers on cooperative communications

like [27] and [28] made cooperative communications very attractive. The authors

showed the advantages of mutual cooperation in fading environments in [27].

The offered gain improvements and the ability to apply these techniques made

cooperative communications and related topic, one of the key research areas.

We now introduce the full-duplex relay channel to model unidirectional coopera-

tion and describe the three fundamental relaying protocols AF, DF and CF. We

then describe the MAC-GF model to explain mutual cooperation.

2.3.1 Relaying

The basic relay channel model is shown in Figure 2.5, where p(yR, yD|xS, xR)

is the discrete memoryless channel, W denotes the message, XS and XR are the

transmitted signals at the source and the relay, YR and YD are the received signals

at the relay and at the destination, and Ŵ is the destination’s estimate of W .

If the channel is real AWGN, then we can write

YR = hSRXS + ZR, (2.17)
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YD = hSDXS + hRDXR + ZD, (2.18)

where hSR, hSD and hRD are respectively the channel gains between the source and

the relay, the source and the destination, and the relay and the destination. The

AWGN noise at the relay and destination are respectively denoted by ZR and ZD,

which are assumed to be zero mean and unit variance. There are individual power

constraints for both the source and the relay, PS and PR. The objective is to find

the capacity, the maximum achievable rate beyond which reliable communication

is not possible. In [48] it is proved that if R is an the achievable rate,

R ≤ max
p(xS ,xR)

min {I(XS; YR, YD); I(XS, XR; YD)} , (2.19)

which becomes

R ≤ max
ρ∈[0,1]

min

{

1

2
log(1 + ρh2

SRPS + ρh2
SDPS),

1

2
log(1 + h2

SDPS + h2
SDPR + 2

√

(1− ρ)h2
SDh

2
RDPSPR)

}

, (2.20)

for the Gaussian case where ρ denotes the correlation between source and relay

signals.

AF, DF and CF are the relaying techniques proposed in [20] and [28] for the

general relay channel. In AF, the relay amplifies the received signal, and forwards

it to the destination. In DF, the relay decodes its received signal, re-encodes it,

and forwards it to the destination. In CF, the relay first compresses its received

signal and then forwards the compressed signal through the relay-destination

channel. In the following section, we describe the general structure of these

protocols.
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2.3.1.1 Amplify and Forward

AF scheme, the relay only scales its received signal to satisfy its own power con-

straint and re-transmits to the destination [50]. This scheme uses the original

message and the repeated message to the destination by the relay, but the repe-

tition also amplifies its noise to the destination [28].

2.3.1.2 Decode and Forward

In the Decode and Forward (DF) protocol, the source, and the relay utilize BMSE.

In the destination either sliding window or backward decoding can be used [33],

[30], [51], [22]. In our thesis, we performed backward decoding, therefore we will

explain the backward decoding here shortly. Transmission occurs in B blocks,

where each block consists of N symbols, with N and B both large. The source

transmits a length-N codeword xS(wb−1, wb) in each block b. The initial message

and the message in the Bth block are equal to 1, i.e., w0 = 1 wB = 1. The relay

decodes the source message correctly, with very high probability, i.e., ŵb = wb, if

the source rate, R(DF ) satisfies the following condition:

R(DF ) ≤ I(XS; YR|XR). (2.21)

When this is satisfied, the relay finds an estimate ŵb for wb at the end of block b

and sends xR(ŵb) in block b + 1. In the first block the relay transmits a prede-

termined codeword xR(1). In block b+1 the source repeats wb, the relay and the

source can perform the cooperation.

The destination starts decoding after all B blocks are received and moves back-

wards [33], [51], [22]. At block B, no fresh information is sent and the destination

tries to decode wB−1. Successful decoding occurs if

R(DF ) ≤ I(XS, XR; YD). (2.22)
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As soon as the destination decodes wB−1, it moves backwards to decode wB−2,...,w1,

performing similar decoding. Combining the constraints (2.21) and (2.22), we

conclude that for a fixed input distribution p(xS, xR),

R(DF ) ≤ min {I(XS; YR|XR), I(XS, XR; YD)} , (2.23)

is achievable. Maximizing over all input distributions, we can write the maximum

rate the DF protocol achieves is

R(DF )
max = max

p(xS ,xR)
min {I(XS; YR|XR), I(XS, XR; YD)} . (2.24)

2.3.1.3 Compress and Forward

In the DF protocol the relay decodes and makes a decision about the source

message. However, letting relay decide about the source message may cause some

decrease in the rates. Instead of this strategy, in Simple Compress and Forward

(SCF) the relay compresses its received signal YR in block b to form ŶR, maps

this to the channel codeword XR and transmits XR to the destination in block

b + 1 [49]. The relay can listen and compress the message in the current block

simultaneously while transmitting the compressed signal of the previous block,

since the relay is full duplex. Therefore the received signal YD in the destination

in block b is a function of both the source and the relay signals XS and XR

transmitted in the same block.

The destination starts decoding after all B blocks are transmitted, performing

backward decoding. It first decodes the relay signal XR, treating the source signal

as noise and recovers ŶR. If the relay’s compression rate is below the relay-to-

destination achievable rate considering the source signal as noise, we say we have

reliable transmission. For this, the following condition has to be satisfied for a

fixed input distribution p(xS)p(xR)p(ŷR|xR, yR)p(yR, yD|xS, xR)

I(ŶR; YR|XR) ≤ I(XR; YD). (2.25)
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After decoding ŶR at the destination, ŶR and YD from the previous block are both

used at the destination to determine the original source signal XS. This can be

done reliably if

R(SCF ) < I(XS; ŶR, YD|XR). (2.26)

If Wyner-Ziv type compression [52] is employed instead of simple compression,

the performance of the CF can be improved. The Wyner-Ziv technique allows for

lower compression rates if correlated side information is available at the decoder.

In the relay channel, the direct signal from the source received at the destination in

the previous block can be thought of as the side information. Therefore correlated

side information is available at the decoder in the relay channel. The benefit

of this in CF is that, this side information lowers the compression rate from

I(ŶR; YR|XR) to I(ŶR; YR|XR, YD) yielding

I(ŶR; YR|XR, YD) ≤ I(XR; YD). (2.27)

When Wyner-Ziv type compression is used the overall CF achievable rate becomes

R(CF ) = I(XS; ŶRYD|XR), (2.28)

subject to (2.27) where the joint probability distribution is p(xS)p(xR)p(ŷR|xR, yR)

p(yR, yD|xS, xR). Achievable rates are potentially higher when Wyner-Ziv type

compression is used, because (2.27) is looser than (2.25).

AF, DF and CF protocols model relaying or unidirectional cooperation. We now

explain the MAC-GF model to describe mutual cooperation.

2.3.2 MAC with Generalized Feedback

Cooperation roots from the relay channel. In the relay channel, the relay node

does not have its own information to send; it only serves to improve achievable
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Figure 2.6: The Multiple Access Channel with Generalized Feedback.

communication rates. So, in relay channel, there is actually only unidirectional

communication. In case of mutual cooperation in the MAC with generalized

feedback (MAC-GF), there are two or more sources, all which have their own

information and the sources communicate bidirectionally to attain better rates.

The two-user discrete-memoryless MAC-GF is shown in Figure 2.6, where W1

and W2 denote the messages of source 1 (S1) and source 2 (S2), XS1 and XS2

denote the source signals, p(yS1, yS2, yD|xS1 , xS2) is the channel, YS1 , YS2 and

YD are respectively the received signals at S1, S2 and the destination, and Ŵ1

and Ŵ2 are the destination’s estimate of original messages W1 and W2. Mutual

cooperation is possible in the MAC-GF model as the user assist each other. The

achievable rate region is the collection of all achievable rate pairs. In the MAC-

GF, the cooperative partner (relay) is another source node, which has its own

information to transmit.

Achievable rate region for partial DF based MAC-GF was developed in [26]. The

relay only decodes part of the source message, and the remaining part is directly

sent to the destination without the relay’s help in partial DF. In each block, each

source’s messages are considered to be composed of three parts. The first part

of the message is sent directly to the destination without other’s assistance. The

second part of S1’s message in block b is aimed to be decoded only at S2 at the

end of block b. Decoding this part of the message, S2 forms the third part of its

message in block b + 1. Similarly, at the end of block b, S1 decodes the second

part of S2’s message, and re-encoding it forms the third part of its own message in
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block b+1. This procedure enables bidirectional communication simultaneously.

The achievable rate region analysis can be found in [26] and [53].

We propose two mutually cooperative encoding strategies using DF approach and

based on BMSE and backward decoding, details of which can be found in Chapter

3.

The following subsection gives a review of basic optimization techniques that we

utilize while dealing with power allocation to maximize the achievable rates of

the proposed cooperative OFDMA systems.

2.4 Optimization

Most information theoretical capacity or achievable rate maximization problems

are convex in nature. In our thesis we deal with convex optimization problems

for achievable rate maximization.

An optimization problem, of the following form

minimize f0(x), (2.29)

subject to fi(x) ≤ 0, i = 1, ..., m,

hi(x) = 0, i = 1, ..., p,

describes the problem of finding an x that minimizes f0(x) among all x that

satisfy the conditions fi(x) ≤ 0, i = 1, ..., m, and hi(x) = 0, i = 1, ..., p. Here,

the vector x = (x1, ..., xn), x ∈ Rn is the optimization variable of the problem,

the function, f0 : Rn → R is the objective function or cost function, the

functions fi : Rn → R, i = 1, ..., m, are the inequality constraint functions

and hi : Rn → R, i = 1, ..., p, are the equality constraint functions (or we can

take −f0(x) as the the objective function and deal with maximizing the objective

function). The domain is denoted by, D =
⋂m

i=0 dom fi ∩ ⋂p
i=1 dom hi. p∗ is
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the optimal value of the problem (2.29) if it satisfies the following:

p∗ = inf {f0(x) | fi(x) ≤ 0, i = 1, ..., hi(x) = 0, i = 1, ..., p} . (2.30)

Let x∗ be an optimal point or a solution for the problem (2.29). The optimal set

is the set of all optimal points is denoted by

Xopt = {x | fi(x) ≤ 0, i = 1, ..., hi(x) = 0, i = 1, ..., p, f0(x) = p∗} . (2.31)

An important set of optimization problems are convex optimization problems.

In a convex optimization problem, the objective and the inequality constraint

functions must be convex, meaning they must satisfy the inequality [54]

fi(αx+ βy) ≤ αfi(x) + βfi(y), (2.32)

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0 and the equality

constraint functions, hi(x) = aTi x− bi must be affine. The problems we tackle in

our thesis can be formed as convex optimization problems. Therefore, we present

convex optimization techniques briefly.

2.4.1 The Lagrangian

Lagrangian duality is formed by adding the objective function and a weighted

sum of the constraint functions in (2.29). The Lagrangian associated with the

problem (2.29) is defined as, L : Rn ×Rm ×Rp× → R

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi, (2.33)

where λi is the Lagrange multiplier associated with the ith inequality constraint,

fi(x) ≤ 0 and νi is the Lagrange multiplier associated with the ith equality
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constraint, hi(x) = 0. λ and ν vectors are called the Lagrange multiplier or dual

variables vector, associated with the problem (2.29).

The Lagrange dual function, g : Rm ×Rp → R is defined as

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(

f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi

)

. (2.34)

2.4.2 KKT Optimality Conditions

If f0, ..., fm, h1, ..., hp are differentiable, fi are convex, hi are affine and x̃, λ̃, ν̃ are

any points satisfying the following KKT conditions

fi(x̃) ≤ 0, i = 1, ..., m, (2.35)

hi(x̃) = 0, i = 1, ..., p, (2.36)

λ̃i ≥ 0, i = 1, ..., m, (2.37)

λ̃ifi(x̃) = 0, i = 1, ..., m, (2.38)

∇f0(x̃) +

m
∑

i=1

λ̃i∇fi(x̃) +

p
∑

i=1

ν̃i∇hi(x̃) = 0, (2.39)

then x̃, (λ̃, ν̃) are primal and dual optimal, with zero duality gap. Here, (2.35) and

(2.36) let us conclude that x̃ is primal feasible. Using (2.37), we see that L(x, λ̃, ν̃)

is convex in x. (2.39) shows that the gradient of L(x, λ̃, ν̃) with respect to x

vanishes at x = x̃, therefore x̃minimizes L(x, λ̃, ν̃) over x. In some cases, the KKT

conditions can be solved analytically, giving the global optimal solution. In cases

where they can not, these optimization problems can be solved using iterative

algorithms. Gradient/subgradient algorithms are effective iterative algorithms

that can be used to solve the constrainted optimization problems. In the next

subsection, we describe such techniques that we utilized in our thesis in Chapter

4.
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2.4.3 Gradient Algorithm

Descent methods produce a minimizing sequence x(k) where

x(k+1) = x(k) + t(k)△x(k),

△x(k) denote the step or search direction, k = 1, ... denotes the iteration number,

t(k) > 0 (except for the optimal x(k)) denote the step size at the kth iteration.

In gradient algorithm (or gradient descent method) search direction is the neg-

ative gradient, △x(k) = −∇f(x). Gradient algorithm is explained briefly below

[54]:

Given a stating point x ∈ dom f .

Repeat

1. △x := −∇f(x).

2. Choose step size, t via exact or backtracking line search.

3. Update x := x+ t△x.

Until Stopping criterion.

The stopping criterion is usually of the form ‖∇f(x)‖2 ≤ η, where η is small

and positive. The main advantage of the gradient algorithm is its simplicity.

The main disadvantage is, convergence can be very slow, even for problems with

number of condition in the 100s. When the number of condition is larger, it may

not be practical to use the gradient method. Another disadvantage is that the

convergence depends on the choice of backtracking parameters α, β.

The subgradient methods and gradient methods are in fact very similar, however

in subgradient method the objective functions not necessarily monotonically non-

decreasing/non-increasing. Subgradient gives affine global underestimator of f .

If f is convex, it has at least one subgradient at every point in relint dom f , if

f is convex and differentiable, ∇f(x) is a subgradient of f at x [54].
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Let us denote the objective function by f(x). A subgradient is any vector g ∈
Rn, at x ∈ dom f if for all z ∈ dom f that satisfies

f(z) ≥ f(x) + gT (z − x). (2.40)

The subgradient method uses the following iteration to minimize f

x(k+1) = x(k) − αkg
(k),

where x(k) is the kth iterate, g(k) is any subgradient of f at x(k), and αk > 0 is the

kth step size. We actually take a step in the direction of a negative subgradient

at each iteration of the subgradient method. There are some step size rules used

in subgradient method. Three examples are given below:

1) First of all, the subgradient method may use a constant step size, i.e., αk = h is

a constant, independent of k. Step lengths are fixed ahead of time, instead of an

exact or approximate line search as in the gradient method, i.e., αk = h/‖g(k)‖2,
meaning ‖x(k+1) − x(k)‖2 = h.

2) Step sizes are square summable but not summable, i.e.,
∑∞

k=1 α
2
k < ∞,

∑∞
k=1 αk =

∞. A common example of such a step size is αk = a/(b + k), where a > 0 and

b > 0.

3) Step sizes are nonsummable diminishing, i.e., limk→∞ αk = 0,
∑∞

k=1 αk = ∞.

A typical example is αk = a/
√
k, where a > 0.

The projected subgradient method is an extension of the subgradient method

which solves the following constrained convex optimization problem

minimize f(x),

subject to x ∈ C, (2.41)
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where C is a convex set. The projected subgradient method is defined as

x(k+1) = P
(

x(k) − αkg
(k)
)

, (2.42)

where P is (Euclidean) projection on C, and g(k) is any subgradient of f at

x(k). The size step sizes rules for subgradient method also apply to the projected

subgradient method.

In our thesis we utilize a projected subgradient algorithm, and an iterative water-

filling-like algorithm based on KKT conditions on optimality to determine the

optimal power distribution for the cooperative OFDMA system achieving an ar-

bitrary rate point on the achievable rate region boundary.
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Chapter 3

Cooperative Strategies And Achievable Rates For Two

User OFDMA Channels

3.1 Introduction

The idea of cooperative communications roots from the simplest form of coop-

erative channel model: the relay channel. This channel was first studied in [19].

Later, in the seminal paper [20], fundamental capacity and achievable rate the-

orems for the relay channel were proved, and several coding and decoding tech-

niques were proposed. The extension of the one-sided cooperative relay model to

mutual cooperation was made possible by the introduction of MAC-GF [25, 26].

In [26], an achievable rate region, which was larger than that of [25], was obtained

by utilizing BMSE and backward decoding. More recently, in [27], the MAC-GF

was used to model a fading cooperative AWGN channel, and the results therein

made cooperative communications very attractive.

The use of cooperative protocols in OFDM systems was investigated extensively

by many authors over the recent years. In [36], the authors obtained bounds on

pairwise error probability for single antenna OFDM systems employing cooper-

ative convolutional codes. In [55], per subcarrier hybrid cooperation strategies

were proposed, with the goal of minimizing the error probability. Methods for

subcarrier selection in multihop OFDM systems were developed in [56].
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The works in the literature related to cooperative OFDM, some examples of

which are listed above, either consider a one-sided cooperation strategy, or a

mutually cooperative strategy based on two parallel dedicated relay channels, or

mutual cooperation based on a time division protocol. In this thesis, without

imposing any prior constraints on which users will use which subchannels, we

propose two full duplex cooperative encoding strategies: intra-subchannel and

inter-subchannel cooperative encoding. These strategies use DF approach and are

based on BMSE. Intra-subchannel cooperative encoding is an extension of the two

user cooperative strategy in [26, 27] to OFDMA, and inter-subchannel cooperative

encoding is a novel method which allows for re-partitioning and re-encoding of the

cooperative messages across subchannels. We further propose another cooperative

OFDMA system with half-duplex operation in each subchannel. We obtain the

achievable rate regions for all three strategies, and compare them with the non-

cooperative OFDMA capacity region. We demonstrate through simulations that,

cooperative OFDMA may provide significant rate improvements over its non-

cooperative counterpart.

3.2 System Model

We consider a fading two user cooperative OFDMA system with N subchan-

nels. On each subchannel, unless otherwise stated, each user is capable of both

transmitting and receiving signals. The system is illustrated in Figure 3.1, and

is modelled by,

Y
(i)
0 = h

(i)
10X

(i)
1 + h

(i)
20X

(i)
2 + Z

(i)
0 , (3.1)

Y
(i)
1 = h

(i)
21X

(i)
2 + Z

(i)
1 , (3.2)

Y
(i)
2 = h

(i)
12X

(i)
1 + Z

(i)
2 , (3.3)

where, for each subchannel i ∈ {1, . . . , N}, X(i)
k is the symbol transmitted by

node k, Z
(i)
j is the zero-mean additive white Gaussian noise at node j, h

(i)
kj is the
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Figure 3.1: Gaussian Cooperative OFDMA Channel.

fading coefficient between nodes k and j, and Y
(i)
j is the symbol received at node

j; with k ∈ {1, 2}, j ∈ {0, 1, 2} and k 6= j. Here, the receiver is denoted by j = 0.

The variance of Z
(i)
j is given by σ

(i)
j

2
. To simplify the notation throughout the

thesis, we define the normalized power-fading coefficients s
(i)
kj =

(h
(i)
kj

)2

σ
(i)
j

2 , and the

Gaussian capacity function, C(x) , 1
2
log(1 + x).

Note that, this model can be extended to a more general setting with many users,

if we assign different subsets of available subchannels to separate pairs of users,

and the results we obtain in this thesis will be readily extendable, thanks to the

orthogonal nature of the channel.

3.3 Coding Techniques and Rate Regions for Cooperative OFDMA

The channel model given in (3.1)-(3.3) consists of N orthogonal two user coop-

erative multiple access channels (CMAC) in parallel, over which users 1 and 2

communicate with a common receiver. Therefore, the encoding and decoding

techniques known for the two user CMAC [27] can be easily extended to this

system with N subchannels in parallel, by simply dividing the total message to
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be transmitted into smaller submessages, and encoding each submessage inde-

pendently over the orthogonal cooperative channels. This approach, which we

call intra-subchannel cooperative encoding, is relatively easy to implement,

but it does not allow us to take full advantage of the diversity created across

subchannels by the OFDM system. For instance, if on one subchannel, the inter-

user link is very strong, but user-destination links are consistently very weak, the

total data rate of the submessage on that link will be dictated by the weaker link.

If, however, we allow submessages received by a user on each subchannel to be

combined, re-encoded and forwarded to the intended receiver by a re-allocation

of the received message onto the subchannels, we will potentially obtain better

rates. Therefore, we propose an implementation of such an approach, and call it

inter-subchannel cooperative encoding. Since both of the encoding policies

rely on the same message generation process, we first discuss how the messages

to be transmitted are formed. Next, the two encoding policies briefly explained

above, will be presented in more detail and their corresponding achievable rate

regions will be derived.

3.3.1 Message Generation

We assume that users 1 and 2 have independent messages, w1 and w2 respec-

tively, to be conveyed to the receiver. These messages are first divided into two

submessages, i.e., w1 = {w10, w12} and w2 = {w20, w21}, as in [26, 27]. Here, wkj

is intended to be decoded by user j and the receiver, and wk0 is intended to be

decoded by the receiver, where j, k ∈ {1, 2} and j 6= k. These two submessages

are further divided into N submessages each, to be separately transmitted over

N subchannels:

wk0 =
{

w
(1)
k0 , ..., w

(N)
k0

}

,

wkj =
{

w
(1)
kj , ..., w

(N)
kj

}

, (3.4)

with the respective rates
{

R
(1)
k0 , ..., R

(N)
k0

}

and
{

R
(1)
kj , ..., R

(N)
kj

}

.
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3.3.2 Intra-subchannel Cooperative Encoding

This encoding strategy is a rather trivial extension of the BMSE used in scalar

channels [26, 27, 34], to OFDMA. The encoding in each subchannel is done in-

dependently, by mapping the submessages w
(i)
k0 and w

(i)
kj onto codewords X

(i)
k for

each subchannel i. Following the notation in [27] and [34], and the message gen-

eration process described in (3.4), the transmitters divide their messages w
(i)
k (b)

in block b = 1, · · · , B into submessages,
{

w
(i)
k0 (b), w

(i)
kj (b)

}N

i=1
. These submessages

are then encoded using block Markov encoding, i.e.,

X
(i)
k0

(

w
(i)
k0 [b], u

(i)(w
(i)
kj [b− 1], ŵ

(i)
jk [b− 1])

)

, (3.5)

X
(i)
kj

(

w
(i)
kj [b], u

(i)(w
(i)
kj [b− 1], ŵ

(i)
jk [b− 1])

)

, (3.6)

U
(i)
k

(

w
(i)
kj [b− 1], ŵ

(i)
jk [b− 1]

)

. (3.7)

Here, X
(i)
k0 carries the fresh information intended for the receiver, X

(i)
kj carries the

information intended for transmitter j for cooperation in the next block and U
(i)
k

is the common information sent by both transmitters for the resolution of the

remaining uncertainty from the previous block, all of which are transmitted over

the ith subchannel and chosen from unit Gaussian distributions. The caret, as

in ŵ
(i)
jk [b− 1], will be used to denote the estimates of messages in the cooperative

partner throughout the thesis. Note that ŵ
(i)
kj [b − 1] = w

(i)
kj [b − 1] when u

(i)
1 and

u
(i)
2 are identical, i.e., u

(i)
1 = u

(i)
2 = u(i). Finally, user k’s codeword in subchannel

i is formed by the superposition of the codewords (3.5)-(3.7),

X
(i)
k =

√

p
(i)
k0X

(i)
k0 +

√

p
(i)
kjX

(i)
kj +

√

p
(i)
Uk
U

(i)
k , (3.8)

for j, k ∈ {1, 2}, k 6= j. The codewords (3.5)-(3.7) in each subchannel, are

assigned separate powers, which are required to satisfy the following average

power constraints:

N
∑

i=1

p
(i)
k0 + p

(i)
kj + p

(i)
Uk

=

N
∑

i=1

p
(i)
k ≤ p̄k, k = 1, 2. (3.9)
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Due to the orthogonal structure of OFDMA, the signals in separate subchannels

may be independently decoded using backward decoding at the receiver, without

interfering with each other. Therefore, by suitably extending the results in [27] to

N parallel subchannels, it can be shown that the rate region given in the following

theorem is achievable:

Theorem 3.1. For a two user cooperative OFDMA channel which employs intra-

subchannel cooperative encoding described by (3.5)-(3.8), an achievable rate region

is given by the closure of the convex hull of all rate pairs (R1, R2) satisfying

R
(i)
12 < C

(i)
12 , E

[

C

(

s
(i)
12p

(i)
12

s
(i)
12p

(i)
10 + 1

)]

, (3.10)

R
(i)
21 < C

(i)
21 , E

[

C

(

s
(i)
21p

(i)
21

s
(i)
21p

(i)
20 + 1

)]

, (3.11)

R
(i)
10 < C

(i)
10 , E

[

C
(

s
(i)
10p

(i)
10

)]

, (3.12)

R
(i)
20 < C

(i)
20 , E

[

C
(

s
(i)
20p

(i)
20

)]

, (3.13)

R
(i)
10 +R

(i)
20 < C

(i)
0 , E

[

C
(

s
(i)
10p

(i)
10 + s

(i)
20p

(i)
20

)]

, (3.14)

R
(i)
1 +R

(i)
2 < C(i)

s , E

[

C

(

s
(i)
10p

(i)
1 + s

(i)
20p

(i)
2 + 2

√

s
(i)
10s

(i)
20p

(i)
U1
p
(i)
U2

)]

, (3.15)

where C(x) , 1
2
log(1 + x); R1 =

∑N

i=1R
(i)
1 ,

∑N

i=1R
(i)
10 +R

(i)
12 , R2 =

∑N

i=1R
(i)
2 ,

∑N

i=1R
(i)
20 + R

(i)
21 , and the convex hull is taken over all power allocation policies

that satisfy (3.9).

It is more instructive to express the rate constraints in terms of R1 and R2 directly,

rather than expressing them in terms of the rates of individual submessages as in

Theorem 3.1. This is done in the following corollary.

Corollary 3.2. The achievable rate region given in Theorem 3.1 is equivalent to

the closure of the convex hull of all rate pairs (R1, R2) satisfying

R1 <
N
∑

i=1

min
{

C
(i)
12 + C

(i)
10 , C

(i)
s

}

, (3.16)
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R2 <

N
∑

i=1

min
{

C
(i)
21 + C

(i)
20 , C

(i)
s

}

, (3.17)

R1 +R2 <

N
∑

i=1

min
{

C(i)
s , C

(i)
12 + C

(i)
21 + C

(i)
0

}

. (3.18)

Proof. On each subchannel i, the rates of submessages w
(i)
12 and w

(i)
21 are subject

to two constraints, one for the inter-user link and one for the user-receiver links.

Therefore, the rate R
(i)
k for user k on subchannel i is restricted by the minimum

of C
(i)
kj + C

(i)
k0 and C

(i)
s (note that unlike a traditional MAC with no cooperation,

the sum rate bound required for error free decoding at the receiver may in fact be

stricter than the single user bound, hence the need for the minimum operation).

A similar argument is valid for the sum rate. Then, since the OFDMA channel

consists of parallel channels over which independent messages are transmitted,

the total rate Rk, k = 1, 2 and the sum rate R1 +R2, are simply bounded by the

sum of their counterparts on each subchannel.

The minimum operations, required over each subchannel as in (3.16)-(3.18), pre-

vent us from efficiently exploiting the diversity offered by OFDMA. Therefore,

we propose a new encoding strategy, explained in the following section, which

removes the obligation to transmit the same submessages on user-user and user-

receiver links over each subchannel, thereby moving the minimum operations in

(3.16)-(3.18) outside of the summations.

3.3.3 Inter-subchannel Cooperative Encoding

The BMSE relies on users decoding part of each other’s messages in each block,

and re-encoding them in the next block. Although this can be done on a subchan-

nel (and hence submessage) basis as described in Section 3.3.2, it can also be done

by re-encoding the overall message received over all subchannels, by an appro-

priate re-partitioning of that message to subchannels, to be used in conjunction

with the message generation process described in Section 3.3.1.
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Figure 3.2: Re-partitioning of cooperative messages in inter-subchannel coopera-
tive encoding. For the ease of demostration, the transmission to the receiver in
block b− 1, and the transmissions among the users in block b are not shown.

Let us denote, the estimate at user j, of the message transmitted in the previous

block by user k over subchannel i, by ŵ
(i)
kj , j 6= k. Since user j’s real objective

is to decode the overall message wkj and re-encode it, in the re-encoding process

wkj can be divided into new submessages with different rates:

w12 =
{

v
(1)
12 , ..., v

(N)
12

}

, w21 =
{

v
(1)
21 , ..., v

(N)
21

}

. (3.19)

The corresponding submessages over each subchannel have the rates
{

R
′(1)
12 , ..., R

′(N)
12

}

and
{

R
′(1)
21 , ..., R

′(N)
21

}

, respectively. The exchange of coopera-

tive messages, their re-partitioning, retransmission and decoding is illustrated in

Figure 3.2. It is assumed that a table to match the new cooperative submes-

sages, v
(i)
kj , to the cooperative submessages received in the previous block, w

(i)
kj , is

available at the users and the receiver. Hence, the receiver can obtain wkj upon

decoding v
(i)
kj for all i.

It is important to note that, since
{

w
(i)
kj

}N

i=1
and

{

v
(i)
kj

}N

i=1
, are just different

partitionings of the same message wkj, their total rates have to be the same, i.e.,

2nR12 = 2nR
(1)
12 +...+nR

(N)
12 = 2nR

′(1)
12 +...+nR

′(N)
12 , (3.20)
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2nR21 = 2nR
(1)
21 +...+nR

(N)
21 = 2nR

′(1)
21 +...+nR

′(N)
21 . (3.21)

An achievable rate region obtained using the re-partitioning in (3.19) is given in

the following theorem.

Theorem 3.3. For a two user cooperative OFDMA channel, the rate region de-

scribed by the closure of the convex hull of all rate pairs (R1, R2) satisfying

R1 =
N
∑

i=1

R
(i)
10 +R

(i)
12 =

N
∑

i=1

R
(i)
10 +R

′(i)
12 , (3.22)

R2 =

N
∑

i=1

R
(i)
20 +R

(i)
21 =

N
∑

i=1

R
(i)
20 +R

′(i)
21 , (3.23)

with

R
(i)
12 < C

(i)
12 , (3.24)

R
(i)
21 < C

(i)
21 , (3.25)

R
(i)
10 < C

(i)
10 , (3.26)

R
(i)
20 < C

(i)
20 , (3.27)

R
(i)
10 +R

(i)
20 < C

(i)
0 , (3.28)

R
′(i)
12 +R

′(i)
21 +R

(i)
10 +R

(i)
20 < C(i)

s , (3.29)

is achievable; where the convex hull is taken over all power allocation policies that

satisfy (3.9), and C
(i)
12 , C

(i)
21 , C

(i)
10 , C

(i)
20 , C

(i)
0 and C

(i)
s are defined in (3.10)-(3.15).

Proof. Although the statement of the theorem is very similar to that of Theorem

3.1, there are now two sets of rates, R
(i)
kj and R

′(i)
kj , arising from the modifica-

tion we propose in block Markov encoding. The codebook generation, encoding,

and decoding policies are obtained by an extension of the approach in [26], to

accommodate multiple submessages, as described below.
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Codebook Generation:

The following codebook generation procedure is repeated for each subchannel

i = 1, · · · , N .

• Generate 2n(R
′(i)
12 +R

′(i)
21 ) length n sequences u(i) with i.i.d. unit Gaussian en-

tries, and assign them to distinct message pairs {v(i)12 , v
(i)
21 } ∈ {1, · · · , 2nR

′(i)
12 }×

{1, · · · , 2nR
′(i)
21 }, to form u(i)(v

(i)
12 , v

(i)
21 ).

• For every u(i)(v
(i)
12 , v

(i)
21 ), generate 2nR

(i)
12 length n sequences x

(i)
12 , and 2nR

(i)
10

length n sequences x
(i)
10 from independent unit Gaussian distributions, and

assign them to distinct w
(i)
12 ∈ {1, · · · , 2nR(i)

12 } and w
(i)
10 ∈ {1, · · · , 2nR(i)

10 }
respectively; to form x

(i)
12 (w

(i)
12 , u

(i)(v
(i)
12 , v

(i)
21 )) and x

(i)
10 (w

(i)
10 , u

(i)(v
(i)
12 , v

(i)
21 )).

• For every u(i)(v
(i)
12 , v

(i)
21 ), generate 2nR

(i)
21 length n sequences x

(i)
21 and 2nR

(i)
20

length n sequences x
(i)
20 from independent unit Gaussian distributions, and

assign them to distinct w
(i)
21 ∈ {1, · · · , 2nR(i)

21 } and w
(i)
20 ∈ {1, · · · , 2nR(i)

20 }
respectively; to form x

(i)
21 (w

(i)
21 , u

(i)(v
(i)
12 , v

(i)
21 )) and x

(i)
20 (w

(i)
20 , u

(i)(v
(i)
12 , v

(i)
21 )).

Encoding:

The way BMSE is executed is mostly similar to the case of intra-subchannel

cooperative encoding, with the key difference that, in block b, the cooperative

codewords U
(i)
k of each user k are now assigned to v̂

(i)
jk [b− 1] and v

(i)
kj [b− 1], which

are re-partitionings of the cooperative messages exchanged in the previous block.

Then, in each block b = 1, · · · , B, appropriate codewords, which correspond to

the messages from previous and current block, are selected from the randomly

generated codebook above, i.e.,

X
(i)
k0

(

w
(i)
k0 [b], u

(i)(v
(i)
kj [b− 1], v̂

(i)
jk [b− 1])

)

, (3.30)

X
(i)
kj

(

w
(i)
kj [b], u

(i)(v
(i)
kj [b− 1], v̂

(i)
jk [b− 1])

)

, (3.31)

U
(i)
k

(

v
(i)
kj [b− 1], v̂

(i)
jk [b− 1]

)

. (3.32)
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These codewords are superposed using (3.8), and are subject to the power con-

straint (3.9) as in Section 3.3.2.

Note that, in the first block, b = 1, cooperative messages are set to {v(i)12 [1], v
(i)
21 [1]} =

{1, 1}; and in the last block, b = B, the fresh information is set to {w(i)
12 (B), w

(i)
10 (B),

w
(i)
21 (B), w

(i)
20 (B)} = {1, 1, 1, 1}, over each subchannel i = 1, · · · , N .

Decoding:

For decoding, in each block b, and on each subchannel i, each user j uses joint

typicality check to decode ŵ
(i)
kj (b), using X

(i)
kj , and treating X

(i)
k0 as noise, leading

to the constraints (3.34), (3.35). The receiver on the other hand uses backward

decoding [26] to determine the transmitted messages. That is, in block B, the

receiver decodes ṽ
(i)
12 [B − 1] and ṽ

(i)
21 [B − 1] over each subchannel i using joint

typicality check, and therefore also knows w̃12[B − 1] and w̃21[B − 1]. Then,

in block B − 1, it uses this information to jointly decode {ṽ(i)12 [B − 2], w̃
(i)
10 [B −

1], ṽ
(i)
21 [B − 2], w̃

(i)
20 [B − 1]}, based on which it may also deduce w̃12[B − 2] and

w̃21[B − 2], and this process continues until the first block.

The decoding operation in an arbitrary block b for each subchannel i = 1, ..., N ,

is equivalent to finding ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1], w̃

(i)
10 [b] and w̃

(i)
20 [b] for which

{

y(i)[b], u(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1]), x

(i)
12 (w̃

(i)
12 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])),

x
(i)
21 (w̃

(i)
21 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])), x

(i)
1 (w̃

(i)
10 [b], w̃

(i)
12 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])),

x
(i)
2 (w̃

(i)
20 [b], w̃

(i)
21 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1]))

}

(3.33)

are jointly typical. The estimates of the re-partitioned cooperative messages

ṽ
(i)
kj [b− 1] are converted to estimates of the cooperative messages w̃

(i)
kj [b− 1] using

the match-up table available at the users and the receiver.

Using this decoding strategy, and well known properties of jointly typical se-

quences [26, 48], we show in the Appendix A that for n large enough, the average

error probability can be made arbitrarily close to zero provided that the rates
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satisfy the following constraints:

R
(i)
12 < I(X

(i)
12 ; Y

(i)
2 |X(i)

2 , U (i)), (3.34)

R
(i)
21 < I(X

(i)
21 ; Y

(i)
1 |X(i)

1 , U (i)), (3.35)

R
(i)
10 < I(X

(i)
1 ; Y (i)|X(i)

2 , X
(i)
12 , U

(i)), (3.36)

R
(i)
20 < I(X

(i)
2 ; Y (i)|X(i)

1 , X
(i)
21 , U

(i)), (3.37)

R
(i)
10 +R

(i)
20 < I(X

(i)
1 , X

(i)
2 ; Y (i)|X(i)

12 , X
(i)
21 , U

(i)), (3.38)

R
′(i)
12 +R

′(i)
21 +R

(i)
10 +R

(i)
20 < I(X

(i)
1 , X

(i)
2 ; Y (i)). (3.39)

Finally, evaluating (3.34)-(3.39) for Gaussian codewords, we obtain the desired

result.

The improvement in the set of achievable rate pairs (R1, R2), obtained by inter-

subchannel cooperative encoding, becomes more apparent if we restate the achiev-

able rates in Theorem 3.3 in terms of total rates of the users:

Corollary 3.4. The achievable rate region given in Theorem 3.3 is equivalent to

the closure of the convex hull of all rate pairs (R1, R2) satisfying

R1 <
N
∑

i=1

C
(i)
12 + C

(i)
10 , (3.40)

R2 <

N
∑

i=1

C
(i)
21 + C

(i)
20 , (3.41)

R1 +R2 < min

{

N
∑

i=1

C(i)
s ,

N
∑

i=1

C
(i)
12 + C

(i)
21 + C

(i)
0

}

. (3.42)

Proof. Constraints (3.40)-(3.41) follow trivially from (3.22)-(3.28). Constraint

(3.42) follows from (3.22)-(3.25), (3.28)-(3.29) and the fact that R
(i)
kj and R

′(i)
kj are

constrained separately, and need not be equal on a given subchannel i; as long as

their sum over all subchannels remains the same.
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Comparing the achievable rate region (3.40)-(3.42) of Corollary 2 with (3.16)-

(3.18) of Corollary 1, we see that the minimum operations required for the in-

dividual rate constraints for each subchannel are removed, and the minimum

operation required for the sum rate constraint (3.18) is taken outside the sum-

mation over the subchannels. This eliminates possible bottlenecks on achievable

rates, caused by the per-subchannel constraints, and the rate region obtained by

inter-subchannel cooperative encoding contains that obtained by intra-subchannel

cooperation. The rate regions achievable by both strategies will be compared for

some sample fading scenarios, in Section 3.4.

3.3.4 Half-duplex Cooperative Encoding

The two cooperative OFDMA models proposed so far assumed full-duplex opera-

tion in each subchannel. However, in practice, due to the vast difference between

the transmitted and received signal strengths, it is not possible to transmit and

receive simultaneously on the same band. Hence, in this section, we define a

more practical orthogonal cooperative encoding strategy, with half-duplex oper-

ation in each subchannel. The available subchannels are first divided into three

sets, i.e., I , {1, . . . , N} = {I1, I2, I3}. On subchannels i ∈ I1, user 1 trans-

mits, while user 2 and the receiver listen, on subchannels i ∈ I2, user 2 transmits

while user 1 and the receiver listen, and on i ∈ I3, both users transmit simul-

taneously, to obtain coherent combining gain, while only the receiver listens.

The encoding is done across subchannels, allowing the messages received in the

previous block to be re-partitioned in the next block. Therefore, our proposed

half-duplex scheme is a special case of inter-subchannel cooperative encoding,

with p
(i)
20 = p

(i)
21 = p

(i)
U1

= p
(i)
U2

= 0 for i ∈ I1, p
(i)
10 = p

(i)
12 = p

(i)
U1

= p
(i)
U2

= 0 for i ∈ I2

and p
(i)
12 = p

(i)
21 = 0 for i ∈ I3. Substituting these power levels in (3.40)-(3.42), we

obtain the following theorem [57], which describes the achievable rate region for

the half-duplex cooperative encoding strategy.
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Theorem 3.5. For a two user cooperative OFDMA channel which employs half-

duplex cooperative encoding, an achievable rate region is given by the closure of

the convex hull of all rate pairs (R1, R2) satisfying

R1 <
∑

i∈I1

E

[

C

(

s
(i)
12p

(i)
12

s
(i)
12p

(i)
10 + 1

)]

+
∑

i∈{I1,I3}

E
[

C
(

s
(i)
10p

(i)
10

)]

, (3.43)

R2 <
∑

i∈I2

E

[

C

(

s
(i)
21p

(i)
21

s
(i)
21p

(i)
20 + 1

)]

+
∑

i∈{I2,I3}

E
[

C
(

s
(i)
20p

(i)
20

)]

, (3.44)

R1 +R2 < min

{

∑

i∈I3

E

[

C

(

s
(i)
10p

(i)
1 + s

(i)
20p

(i)
2 + 2

√

s
(i)
10s

(i)
20p

(i)
U1
p
(i)
U2

)]

+
∑

i∈I1

E
[

C
(

s
(i)
10 (p

(i)
10 + p

(i)
12 )
)]

+
∑

i∈I2

E
[

C
(

s
(i)
20 (p

(i)
20 + p

(i)
21 )
)]

, (3.45)

∑

i∈I1

E

[

C

(

s
(i)
12p

(i)
12

s
(i)
12p

(i)
10 + 1

)

+ C
(

s
(i)
10p

(i)
10

)

]

+
∑

i∈I2

E

[

C

(

s
(i)
21p

(i)
21

s
(i)
21p

(i)
20 + 1

)

+ C
(

s
(i)
20p

(i)
20

)

]

+
∑

i∈I3

E
[

C
(

s
(i)
10p

(i)
10 + s

(i)
20p

(i)
20

)]

}

. (3.46)

Proof. The proof relies on the key observation that our proposed half-duplex

scheme may be viewed as a special case of inter-subchannel cooperative encoding,

with p
(i)
20 = p

(i)
21 = p

(i)
U1

= p
(i)
U2

= 0 for i ∈ I1, p
(i)
10 = p

(i)
12 = p

(i)
U1

= p
(i)
U2

= 0 for i ∈ I2

and p
(i)
12 = p

(i)
21 = 0 for i ∈ I3. Substituting these power levels in (3.40)-(3.42), we

obtain the desired result.

3.4 Simulation Results

In this section we evaluate the achievable rate regions (3.40)-(3.42) for inter-

subchannel cooperative encoding and (3.16)-(3.18) for intra-subchannel coopera-

tive encoding, and compare them with the capacity region of a non-cooperative
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Figure 3.3: Achievable rate regions for fading scenario 1.

OFDMA system, as well as the achievable rate region of our half-duplex cooper-

ative encoding strategy (3.43)-(3.46). We assume that, for all four protocols, the

users are able to allocate their total power across subchannels and codewords,

and the achievable rate regions are generated by taking the convex hull over all

valid power allocation policies. Note however that adaptive power allocation in

terms of instantaneous fading states is not considered, the power assigned to each

subchannel and codeword remains the same throughout the transmission. The

total power of each user and the noise variances are both set to unity (except for

Figure 3.5 where Signal to Noise Ratio (SNR) is varied).

In Figure 3.3 the achievable rate/capacity regions are generated for fading sce-

nario 1, where we choose channel gains from independent Rayleigh distributions,

the means of which are shown in the figure. For half-duplex cooperation, we

simply set I1 = {1}, I2 = {2} and I3 = {3}, which is in fact optimal among

all fixed subchannel allocations. We see that the single user achievable rates for

both cooperative strategies are similar, but the gap between the achievable rates
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of the two policies increase near the sum rate point. This can be explained as

follows: the cooperative links on the first two subchannels are better on aver-

age, while the direct link is better on the third. Therefore, although the term

C
(i)
s is not very restrictive on the single user rates (3.16)-(3.17), it is restrictive

for the sum rate (3.18). Since inter-subchannel cooperative coding can assign

powers to cooperative codewords so that it mostly uses the third subchannel to

send the cooperative codeword U , and the first two for cooperation among users,

its advantage near the sum rate point is more pronounced. Under these chan-

nel conditions, we see that sum rates for both cooperative strategies are always

higher than non-cooperative OFDMA while the sum rate of half-duplex cooper-

ative encoding is higher than that of the intra-subchannel cooperative strategy

since the direct links are stronger over the first and second subchannels and the

cooperative link is stronger over the third subchannel, and with our selection of

I1, I2 and I3, the half-duplex cooperative encoding uses subchannels 1 and 2 to

create common information, and subchannel 3 for direct transmission to obtain

coherent combining gain.

In Figure 3.4, we switch to the fading scenario 2, and the gap among the two

cooperative policies becomes more apparent. Note that the direct link gain of

user 1 is worse than user 2 on subchannel 1, and vice versa on subchannel 2.

Therefore, the rate gains achievable in those subchannels are hindered by the

per-subchannel constraints of intra-subchannel cooperation, and in fact around

the sum rate point it achieves rates only slightly better than non-cooperative

OFDMA, while inter-subchannel cooperation still gives large gains. The sum

rate of half-duplex cooperation, which uses the same optimal channel assignment

as above, is less than both full-duplex cooperative strategies due to the fact that

the achievable rate of the half-duplex cooperative encoding relies heavily on the

direct link gains on subchannel 3, that is relatively weak for this fading scenario.

In Figure 3.5, we provide further simulation results comparing the sum rates

achievable by intra and inter-subchannel cooperation, as a function of the average

transmit signal power to noise power ratio, for three other fading scenarios (3-5)
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Figure 3.4: Achievable rate regions for fading scenario 2.
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Figure 3.6: Comparison of varying subchannel assignments for a simple half-
duplex setup with three subchannels.

described in the respective figures. We observe the relative behavior for varying

SNR to depend highly on the fading statistics, but especially when the fading

is asymmetric, the gain is more pronounced for low and moderate SNR values.

The performance depends on relative average strengths of fading coefficients on

subchannels, rather than SNR: in scenarios 4 and 5, there is nearly 2dB gain at

low and moderate SNR values respectively, in the symmetric scenario 3 where

no subchannel provides a relative advantage to either policy, inter-subchannel

cooperation only slightly outperforms intra-subchannel cooperation over almost

all SNR values.

While the general rate expressions for half-duplex strategy are derived for an

arbitrary channel assignment, for the simple simulation setting with three sub-

channels allocated for the pair of users, we assigned the channels so that the first

subchannel, with the best average channel gain from user 1 to user 2, is selected

as I1, dedicated for user 1 to user 2 (and hence automatically for user 1 to the

receiver) transmission, likewise subchannel two is selected as I2, and subchannel
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three, with better direct link gains is selected as I1, to convey established com-

mon information to the receiver. In fact, this strategy is also optimal for the case

in question, as it is rather easy to search over all possible subchannel allocations.

To demonstrate the optimality, we performed a simple simulation, and obtained

the rate regions achievable by other possible assignments, as given in Figure 3.6.

Note that only those allocations leading to different rate regions are plotted.

3.5 Conclusion

In this chapter we introduced a two user cooperative OFDMA system, and we pro-

posed two full duplex encoding strategies: intra-subchannel cooperative encoding

and inter-subchannel cooperative encoding, based on BMSE. We derived rate re-

gion expressions for both encoding strategies and showed that re-partitioning and

re-encoding of the cooperative messages across subchannels, i.e., inter-subchannel

cooperative encoding, is always superior to intra-subchannel cooperative encod-

ing, and provides significant rate gains. We further proposed a half-duplex imple-

mentation of cooperation based on inter-subchannel cooperative encoding, and

showed that despite its orthogonal structure, it too may outperform the full du-

plex intra-subchannel cooperation. Achievable rates for all three proposed sce-

narios show that it is very advantageous to make use of overheard information,

especially taking into account the added diversity created by the OFDMA sub-

channels. The results provided in this chapter were presented in part in [58], and

were published in [57].

46



Chapter 4

Resource Allocation For Two User Cooperative OFDMA

Channels

4.1 Introduction

The ability of OFDMA to cope with both intersymbol and interuser interference,

combined with its low complexity of implementation, have made it a popular

choice for the next generation wireless networks. As a result, the problem of

resource allocation in OFDMA systems was studied extensively in the literature.

One example is [59], where it was proved that in an OFDMA uplink system, al-

locating subcarriers to the users with the maximum marginal rate is a necessary

condition for maximizing the system throughput. A similar problem was solved

in [13] using KKT conditions, by optimizing a utility function which was assumed

to be a function of the rates. In [12], a low-complexity algorithm for subcarrier,

power, and rate allocation for OFDMA was proposed, to maximize the sum rate

under individual rate constraints to guarantee fairness. The downlink ergodic sum

rate maximization problem was considered in [15], where the authors developed

a linear complexity subcarrier and power allocation algorithm. These works, as

well as many others on OFDMA, naturally assume orthogonal multiple access,

thereby choosing to avoid interference. However, like all orthogonal transmission

techniques, OFDMA incurs some rate penalty. Moreover, “interference” in wire-

less channels is in fact free side information, and not ignoring it opens up the

possibility of user cooperation. Therefore, in this chapter, we focus on resource
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allocation for a two user OFDMA channel, which allows for mutual cooperation

among the users over each subchannel, each taking into account the available side

information.

The overheard information in a typical wireless MAC, is captured by modeling

the system as a MAC-GF [26]. In [26], achievable rates for the MAC-GF were

obtained based on BMSE and backwards decoding. In [27], these encoding and

decoding techniques were applied to a Gaussian MAC in fading, and the resulting

rate regions were characterized. In [34], power allocation policies that maximize

the rates achievable by BMSE for the same model were obtained.

While the above works all deal with a scalar MAC-GF, some works on resource

allocation for user cooperation in vector channels, specifically OFDMA, also ex-

ist. A cooperative OFDMA system where each user is allowed to transmit and

receive at the same time, but necessarily on different subcarriers, was consid-

ered in [60]. Subcarrier and power allocation schemes for a time division duplex

amplify and forward protocol were employed in [61] with the aim of maximizing

system throughput and enhancing fairness in a cooperative OFDMA uplink sys-

tem. Resource allocation and cooperative partner selection in cooperative OFDM

networks was investigated with the objective of minimizing the overall power in

[62]. However, these works consider either a one sided cooperation strategy, or

a mutually cooperative strategy based on two parallel dedicated relay channels,

or mutual cooperation based on a time division protocol. We introduced a more

general cooperative OFDMA model based on parallel MAC-GFs, which does not

make any prior assumptions about the way in which the subchannels are assigned

to the users in Chapter 3, where two full-duplex cooperative encoding strategies,

namely intra-subchannel cooperative encoding and inter-subchannel cooperative

encoding were proposed. However, in Chapter 3 we did not apply power allo-

cation as a function of fading states, which can further take advantage of the

temporal diversity over each subchannel.
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In this chapter, we extend the cooperative OFDMA model proposed in Chap-

ter 3, to a channel adaptive scenario, and we solve the problem of power opti-

mization with the goal of maximizing the achievable rates. We first obtain the

properties of the power allocation policy that maximizes the sum rate of the co-

operative OFDMA system employing intra-subchannel cooperative encoding and

inter-subchannel cooperative encoding. We then focus on the inter-subchannel

cooperative encoding, which provably outperforms intra-subchannel cooperative

encoding and derive the expressions of the optimum power levels that maximize

the rate region achievable by the inter-subchannel cooperative encoding strategy.

Despite the complex re-encoding structure employed in inter-subchannel cooper-

ative encoding, and the fact that the powers allocated to each subchannel have

to satisfy a sum power constraint over subchannels, the achievable rate region

turns out to be of a relatively similar form to its scalar counterpart, and we are

able to extend some properties of the optimal power allocation derived in [34] for

scalar cooperative MAC, to cooperative OFDMA. As a result, the weighted sum

of rates, which can be used to obtain any point on the rate region boundary, be-

comes concave, and convex optimization techniques can be employed. To obtain

an arbitrary rate point on the achievable rate region boundary, we first employ a

projected subgradient algorithm that converges to the optimum and maximizes

the achievable rate region. Next, we derive the optimality conditions, and closed

form expressions for optimum powers analytically. We are then able to propose an

alternative efficient iterative algorithm with a much lower complexity, to obtain

the rate points on the achievable rate region boundary. This algorithm works

by solving the KKT optimality conditions iteratively over the users, to obtain

the optimal powers. As a result, we demonstrate that by jointly exploiting the

diversity provided by OFDMA’s parallel subchannels, and the temporal diversity

created by the time varying channel, we obtain very promising gains in achiev-

able rates. More interestingly, we observe that the optimal power allocation may

automatically dictate that some subchannels are assigned exclusively to certain

users/tasks, depending on the instantaneous channel state.
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4.2 System Model

We consider a two user cooperative OFDMA system withN subchannels. On each

subchannel, unless otherwise stated, each user is capable of both transmitting and

receiving signals. The system model given in Chapter 3, Figure 3.1 is repeated

here for convenience:

Y
(i)
0 = h

(i)
10X

(i)
1 + h

(i)
20X

(i)
2 + Z

(i)
0 , (4.1)

Y
(i)
1 = h

(i)
21X

(i)
2 + Z

(i)
1 , (4.2)

Y
(i)
2 = h

(i)
12X

(i)
1 + Z

(i)
2 . (4.3)

For a real number x, we define (x)+ = max(x, 0) and introduce the function

f(a, b, c) =

(−b+
√
b2 − 4ac

2a

)+

, (4.4)

which will be used extensively while characterizing the optimum power allocation,

as some of the optimal powers turn out to be the non-negative roots of certain

quadratic equations.

4.3 Long-Term Achievable Rates for Cooperative OFDMA

While the system model is the same as the system model in Chapter 3, we now

assume that the users and the receiver have full CSI of both the cooperative links

and the direct link. Therefore, differently from Chapter 3, the users can further

adapt their transmitted symbols X
(i)
k as a function of the joint fading state, s, i.e.,

X
(i)
k (s), and perform the channel adaptation through powers. There are two ways

to view the channel adaptive transmission that maximizes the long term (ergodic)

achievable rates: we can either use a variable power, variable rate codebook, as in

[4], or we can use a single codebook, whose rate is supported by the channel in the

long term, and perform the channel adaptation by simply multiplying entries from

this codebook by channel adaptive powers, as in [6]. In our thesis, we employ the
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latter approach, and propose a channel adaptive version of the encoding strategies

in Chapter 3, where we scale each of the above codewords by variable powers,

X
(i)
k =

√

p
(i)
k0(s)X

(i)
k0 +

√

p
(i)
kj (s)X

(i)
kj +

√

p
(i)
Uk
(s)U

(i)
k , (4.5)

where k, j ∈ {1, 2}, k 6= j, i= 1, · · · , N . The powers are subject to the average

power constraints,

N
∑

i=1

E
[

p
(i)
k0(s) + p

(i)
kj (s) + p

(i)
Uk
(s)
]

,

N
∑

i=1

E
[

p
(i)
k (s)

]

≤ p̄k. (4.6)

The achievable rate regions for power controlled intra-subchannel cooperative

encoding and inter-subchannel cooperative encoding are obtained by extending

Theorem 3.1 and Theorem 3.3 respectively, using the new the channel adaptive en-

coding defined in (4.5). The resulting achievable rate region for intra-subchannel

cooperative encoding with power control is given by the closure of the convex hull

of all rate pairs (R1, R2) satisfying

R1 <
N
∑

i=1

min

{

E

[

C

(

s
(i)
12p

(i)
12 (s)

s
(i)
12p

(i)
10 (s) + 1

)

+ C
(

s
(i)
10p

(i)
10 (s)

)

]

,

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]}

, (4.7)

R2 <

N
∑

i=1

min

{

E

[

C

(

s
(i)
21p

(i)
21 (s)

s
(i)
21p

(i)
20 (s) + 1

)

+ C
(

s
(i)
20p

(i)
20 (s)

)

]

,

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]}

, (4.8)

R1 +R2 <

N
∑

i=1

min

{

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]

,

E

[

C

(

s
(i)
12p

(i)
12 (s)

s
(i)
12p

(i)
10 (s)+1

)

+C

(

s
(i)
21p

(i)
21 (s)

s
(i)
21p

(i)
20 (s)+1

)

+C
(

s
(i)
10p

(i)
10 (s) + s

(i)
20p

(i)
20 (s)

)

]}

,

(4.9)

and the achievable rate region for inter-subchannel cooperative encoding with

power control is given by the closure of the convex hull of all rate pairs (R1, R2)
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satisfying

R1 <
N
∑

i=1

E

[

C

(

s
(i)
12p

(i)
12 (s)

s
(i)
12p

(i)
10 (s) + 1

)

+ C
(

s
(i)
10p

(i)
10 (s)

)

]

, (4.10)

R2 <

N
∑

i=1

E

[

C

(

s
(i)
21p

(i)
21 (s)

s
(i)
21p

(i)
20 (s) + 1

)

+ C
(

s
(i)
20p

(i)
20 (s)

)

]

, (4.11)

R1 +R2 < min

{

N
∑

i=1

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]

,

N
∑

i=1

E

[

C

(

s
(i)
12p

(i)
12 (s)

s
(i)
12p

(i)
10 (s)+1

)

+C

(

s
(i)
21p

(i)
21 (s)

s
(i)
21p

(i)
20 (s)+1

)

+C
(

s
(i)
10p

(i)
10 (s)+s

(i)
20p

(i)
20 (s)

)

]}

,

(4.12)

where the convex hulls are taken over all valid power allocation policies. In the

next section, we obtain the power allocation policies which achieve the rate tuples

on the rate region boundary. To do this, we first derive a simplifying property

of the optimal power allocation for both cooperative encoding strategies, and

then we focus on inter-subchannel cooperative encoding that provides superior

achievable rates.

4.4 Channel Adaptive Power Allocation

If we set N = 1 in (4.7)-(4.9) or (4.10)-(4.12), the problem reduces to a scalar

cooperative MAC. In [34], it was shown for this scalar case that, based on the

instantaneous channel state, the optimal power allocation dictates that each user

either sends cooperative information, or fresh information, but not both. Al-

though in OFDMA, there is a sum power constraint over the subchannels, and

one would expect the power allocation over each subchannel to be dependent on

the powers assigned to the other subchannels, we show that many properties of

the optimal power allocation for the proposed cooperative OFDMA system re-

main surprisingly parallel to those in the scalar case [34], and the codewords that

should be used over each subchannel are determined solely by the instantaneous
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fading coefficients over that particular subchannel, as stated in the following the-

orem:

Theorem 4.1. The power allocation policy that maximizes the sum rate of a co-

operative OFDMA system using intra-subchannel cooperative encoding and inter-

subchannel cooperative encoding should satisfy;

1. p
(i)∗
10 (s) = p

(i)∗
20 (s) = 0, if s ∈ S1,

2. p
(i)∗
10 (s) = p

(i)∗
21 (s) = 0, if s ∈ S2,

3. p
(i)∗
12 (s) = p

(i)∗
20 (s) = 0, if s ∈ S3,

4. p
(i)∗
12 (s) = p

(i)∗
21 (s) = 0 or p

(i)∗
10 (s) = p

(i)∗
21 (s) = 0 or p

(i)∗
12 (s) = p

(i)∗
20 (s) = 0,

if s ∈ S4,

where S1 = {s : s
(i)
12 > s

(i)
10 , s

(i)
21 > s

(i)
20}, S2 = {s : s

(i)
12 > s

(i)
10 , s

(i)
21 ≤ s

(i)
20},

S3 = {s : s
(i)
12 ≤ s

(i)
10 , s

(i)
21 > s

(i)
20}, S4 = {s : s

(i)
12 ≤ s

(i)
10 , s

(i)
21 ≤ s

(i)
20}.

Proof. Assume that we know the total optimal power p
(i)∗
k (s), allocated to each

subchannel i at each channel state s. Then, for intra-subchannel cooperative

encoding, the sum rate (4.9) is maximized if each term in the summation is

maximized. Since the total power allocated to each term is fixed, we have N

independent optimization problems, and by [34, Proposition 1] the result follows.

For inter-subchannel cooperative encoding, the sum rate (4.12) is maximized if

each argument of the minimum operation is maximized. The first argument of

(4.12) is insensitive to the choice of p
(i)∗
k0 (s) or p

(i)∗
kj (s), as long as their sum is

fixed; whereas the second argument is maximized if we separately maximize its

summands for each i. The result follows by noting that this is also equivalent

to N independent optimization problems, each yielding a scalar case, and [34,

Proposition 1] holds, giving the desired result. A more detailed proof is given in

Appendix B.
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An important observation is that, setting two of the powers equal to zero as

suggested by Theorem 4.1, is also optimal for the entire rate region maximization,

as the right hand sides of all three constraints, for both policies, are maximized

by choosing the powers according to Theorem 4.1.1 Therefore, from now on we

focus only on policies that satisfy Theorem 4.1.

Note that, the bounds (4.10), (4.11) and (4.12) on R1, R2 and R1 + R2 respec-

tively for inter-subchannel cooperative encoding are looser than the corresponding

bounds (4.7), (4.8) and (4.9) for intra-subchannel cooperative encoding, as the

minimum operations in (4.7), (4.8) are removed, and the minimum in (4.9) is taken

outside the summation, to obtain (4.10), (4.11) and (4.12). As a result, the achiev-

able rate region of inter-subchannel cooperative encoding contains that of intra-

subchannel cooperative encoding. Hence, it is sufficient to limit our focus on the

inter-subchannel cooperative encoding strategy, which results in a uniformly bet-

ter rate region. Then, it is easy to check that the rate constraints in (4.10)-(4.12)

now become concave in the power vector p(s) = [p
(i)∗
10 (s), p

(i)∗
12 (s), p

(i)∗
U1

(s), p
(i)∗
20 (s),

p
(i)∗
21 (s), p

(i)∗
U2

(s), i = 1, . . . , N ], lending themselves to well known techniques in

convex optimization, which we discuss in the next sections.

4.4.1 Achievable Rate Maximization Using Projected Subgradient

Since all bounds of the achievable rate region are concave in powers, so is any

weighted sum µ1R1 + µ2R2 at the corners. Moreover, it is easy to show that the

rate region is strictly convex [6, 34]. Therefore, we can obtain points on the rate

region boundary by maximizing Rµ = µ1R1 +µ2R2, where {R1, R2} is the corner

of the pentagon obtained for a given power allocation policy, defined by (4.10)-

(4.12). Assuming µ1 > µ2 without loss of generality, and employing Theorem 4.1

to simplify (4.10)-(4.12), the optimization problem can be stated as:

1We choose the first option for s ∈ S4, which may cause a slight deviation from optimality
for the sum rate. However, this case rarely occurs in practice, and this suboptimality can be
ignored, as it has been done in [34].
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max
p(s)

(

(µ1 − µ2)

N
∑

i=1

(

ES1,S2

[

C
(

s
(i)
12p

(i)
12 (s)

)]

+ ES3,S4

[

C
(

s
(i)
10p

(i)
10 (s)

)])

+ µ2min

{

N
∑

i=1

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]

,

N
∑

i=1

ES1

[

C
(

s
(i)
12p

(i)
12 (s)

)

+ C
(

s
(i)
21p

(i)
21 (s)

)]

+

N
∑

i=1

ES2

[

C
(

s
(i)
12p

(i)
12 (s)

)

+ C
(

s
(i)
20p

(i)
20 (s)

)]

+
N
∑

i=1

ES3

[

C
(

s
(i)
10p

(i)
10 (s)

)

+ C
(

s
(i)
21p

(i)
21 (s)

)]

+
N
∑

i=1

ES4

[

C
(

s
(i)
10p

(i)
10 (s) + s

(i)
20p

(i)
20 (s)

)]

})

, (4.13)

s.t.

N
∑

i=1

E
[

p
(i)
k0(s) + p

(i)
kj (s) + p

(i)
Uk
(s)
]

≤ p̄k,

p
(i)
k0(s), p

(i)
kj (s), p

(i)
Uk
(s) ≥ 0, k, j ∈ {1, 2}, k 6= j,

where ESd
denotes the expectation over s ∈ Sd, d = 1, 2, 3, 4.

Due to the minimum operation in (4.13), the gradient of the objective function

does not exist everywhere. In particular, there are two gradient vectors, depend-

ing on which argument of the minimum in (4.13) is active. Yet, these vectors may

be viewed instead as subgradients, which makes it possible to employ the method

of projected subgradients, for power optimization. Due to the convex nature of

our constraints, this method is guaranteed to converge to the global optimum

[63], with a diminishing stepsize normalized by the norm of the subgradient.

Since the calculation of the subgradients requires rather tedious formulas which

give little insight, we will instead directly provide some examples of the achiev-

able rate region, and the resulting power allocation policy, based on simulations

in Section 4.5 instead. The major drawbacks of the subgradient algorithm are its

slow rate of convergence, and complexity. As the number of subchannels increase,

so does the size of the vector of power variables, making the process of comput-

ing the subgradients, and the projection operations formidable. Hence, we next
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obtain the analytical expressions for weighted sum-rate optimal power control,

and propose an alternative iterative implementation which converges much faster

than the subgradient algorithm.

4.4.2 Iterative Achievable Rate Maximization Based on KKT Condi-

tions

The problem (4.13), can be stated in an equivalent differentiable form:

max
p(s)

Rµ

s.t. Rµ ≤ (µ1 − µ2)
N
∑

i=1

(

ES1,S2

[

C
(

s
(i)
12p

(i)
12 (s)

)]

+ ES3,S4

[

C
(

s
(i)
10p

(i)
10 (s)

)])

+ µ2

N
∑

i=1

E

[

C

(

s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)

)]

,

(4.14)

Rµ ≤ (µ1 − µ2)
N
∑

i=1

(

ES1,S2

[

C
(

s
(i)
12p

(i)
12 (s)

)]

+ ES3,S4

[

C
(

s
(i)
10p

(i)
10 (s)

)])

+ µ2

N
∑

i=1

(

ES1

[

C
(

s
(i)
12p

(i)
12 (s)

)

+ C
(

s
(i)
21p

(i)
21 (s)

)]

+ ES2

[

C
(

s
(i)
12p

(i)
12 (s)

)

+ C
(

s
(i)
20p

(i)
20 (s)

)]

+ ES3

[

C
(

s
(i)
10p

(i)
10 (s)

)

+ C
(

s
(i)
21p

(i)
21 (s)

)]

+ ES4

[

C
(

s
(i)
10p

(i)
10 (s) + s

(i)
20p

(i)
20 (s)

)]

)

, (4.15)

N
∑

i=1

(

ES3,S4

[

p
(i)
10 (s)

]

+ ES1,S2

[

p
(i)
12 (s)

]

+ E
[

p
(i)
U1
(s)
])

≤ p̄1, (4.16)

N
∑

i=1

(

ES2,S4

[

p
(i)
20 (s)

]

+ ES1,S3

[

p
(i)
21 (s)

]

+ E
[

p
(i)
U2
(s)
])

≤ p̄2, (4.17)

p
(i)
10 (s), p

(i)
12 (s), p

(i)
U1
(s), p

(i)
20 (s), p

(i)
21 (s), p

(i)
U2
(s) ≥ 0, ∀s. (4.18)

Note that (4.14)-(4.18) is a convex optimization problem, with differentiable con-

straints, and hence the KKT conditions are necessary and sufficient for optimality.
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Assigning the Lagrange multipliers γ1, γ2, λ1, λ2 to the constraints (4.14)-(4.17),

and ǫ
(i)
t (s), t = 1, ..., 6, to the positivity constraints (4.18), we obtain the condi-

tions for optimality, given in the following lemma.

Lemma 4.2. Define the variable A(i), i = 1, · · · , N ; and the indices m, n as

follows:

A(i) = 1 + s
(i)
10p

(i)
1 (s) + s

(i)
20p

(i)
2 (s) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s), (4.19)

m =







0, if s ∈ S3 ∪ S4

2, if s ∈ S1 ∪ S2

, n =







0, if s ∈ S2 ∪ S4

1, if s ∈ S1 ∪ S3

. (4.20)

A power allocation policy p
(i)
1m(s), p

(i)
2n(s), p

(i)
U1
(s), p

(i)
U2
(s) is optimal for the problem

(4.14)-(4.18), if and only if it satisfies, for s ∈ S1 ∪ S2 ∪ S3 , Sc
4,

λ1 ≥ (µ1 − µ2 + γ1µ2)
s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

+ γ2µ2
s
(i)
10

A(i)
, (4.21)

λ2 ≥ γ1µ2
s
(i)
2n

1 + s
(i)
2np

(i)
2n(s)

+ γ2µ2
s
(i)
20

A(i)
, (4.22)

λk ≥ γ2µ2

√

s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√

p
(i)
Uk
(s)

A(i)

√

p
(i)
Uk
(s)

, k ∈ {1, 2}, (4.23)

and for s ∈ S4,

λ1 ≥ (µ1 − µ2)
s
(i)
10

1 + s
(i)
10p

(i)
1m(s)

+ γ1µ2
s
(i)
10

1 + s
(i)
10p

(i)
1m(s) + s

(i)
20p

(i)
2n(s)

+ γ2µ2
s
(i)
10

A(i)
, (4.24)

λ2 ≥ γ1µ2
s
(i)
20

1 + s
(i)
20p

(i)
2n(s) + s

(i)
10p

(i)
1m(s)

+ γ2µ2
s
(i)
20

A(i)
, (4.25)

λk ≥ γ2µ2

√

s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√

p
(i)
Uk
(s)

A(i)

√

p
(i)
Uk
(s)

, k, j ∈ {1, 2}, (4.26)

where the Lagrange multipliers γ1, γ2 = 1 − γ1, λ1, and λ2 are selected so that

the constraints (4.14)-(4.17) are satisfied with equality. Each of the constraints

(4.21), (4.22) and (4.23) when s ∈ S1 ∪ S2 ∪ S3 (correspondingly (4.24), (4.25)
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and (4.26) when s ∈ S4) are satisfied with equality if and only if the respective

power levels, p
(i)
1m(s), p

(i)
2n(s) or p

(i)
Uk
(s) are positive.

Proof. See Appendix C.

The optimality conditions given in Lemma 4.2 for each power component are

heavily coupled, thereby making the computation of the optimal power allocation

policy seemingly difficult. Yet, in the following theorem, we show that, after some

non-trivial observations, the coupling among the constraints is partially removed,

and as a result, we are able to provide closed form expressions for the optimal

power levels.

Theorem 4.3. For a cooperative OFDMA system employing inter-subchannel

cooperative encoding, the optimal power allocation, p
(i)
1m(s), p

(i)
2n(s), p

(i)
U1
(s), p

(i)
U2
(s),

that solves (4.14)-(4.18) is given by

p
(i)
Uk

(s) = s
(i)
k0

µ2(1−γ1)
λk

(

s
(i)
k0 + λk

λj
s
(i)
j0

)

−
(

1 + s
(i)
10 p

(i)
1m + s

(i)
20 p

(i)
2n

)

(

s
(i)
k0 + λk

λj
s
(i)
j0

)2 , (4.27)

p
(i)
1m(s) =







































(

(µ1−µ2+γ1µ2)
(

λ2s
(i)
10 +λ1s

(i)
20

)

λ2
1s

(i)
20

− 1

s
(i)
1m

)+

, if s ∈ Sc
4 (4.28a)

f

(

s
(i)
10

2
,
(λ1s

(i)
20 +λ2s

(i)
10 )(µ1−µ2+γ1µ2)s

(i)
10

2
−λ1

2s
(i)
20 (2s

(i)
10 +s

(i)
10 s

(i)
20 p

(i)
2n(s))

−λ1
2s

(i)
20

,

(λ1s
(i)
20 +λ2s

(i)
10 )

[

(µ1−µ2+γ1µ2)+(µ1−µ2)s
(i)
20 p

(i)
2n(s)

]

s
(i)
10 −λ1

2s
(i)
20 (1+s

(i)
20 p

(i)
2n(s))

−λ1
2s

(i)
20

)

, o.w. (4.28b)

p
(i)
2n(s) =



















(

γ1µ2

(

λ2s
(i)
10 +λ1s

(i)
20

)

λ2
2s

(i)
10

− 1

s
(i)
2n

)+

, if s ∈ Sc
4 (4.29a)

(

γ1µ2

(

λ2s
(i)
10 +λ1s

(i)
20

)

λ2
2s

(i)
10

− 1

s
(i)
20

− s
(i)
10

s
(i)
20

p
(i)
1m(s)

)+

, if s ∈ S4 (4.29b)

if the powers obtained from (4.27) are positive, i.e., p
(i)
Uk
(s) > 0; and

p
(i)
Uk

(s) = 0, (4.30)
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p
(i)
1m(s) =







































f
(

λ1s
(i)
10 s

(i)
1m,−µ1s

(i)
10 s

(i)
1m + λ1(s

(i)
10 + s

(i)
1m + s

(i)
1ms

(i)
20 p

(i)
2n(s)), λ1(1 + s

(i)
20 p

(i)
2n(s))

− (µ1 − µ2 + γ1µ2) s
(i)
1m(1 + s

(i)
20 p

(i)
2n(s))− µ2(1 − γ1)s

(i)
10

)

, if s ∈ Sc
4 (4.31a)

f
(

λ1s
(i)
10

2
,−µ1s

(i)
10

2
+ λ1s

(i)
10 (2 + s

(i)
20 p

(i)
2n(s)) ,

−µ1s
(i)
10 − (µ1 − µ2)s

(i)
10 s

(i)
20 p

(i)
2n(s) + λ1(1 + s

(i)
20 p

(i)
2n(s))

)

, if s ∈ S4 (4.31b)

p
(i)
2n(s) =



























f
(

λ2s
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20 s
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20 s
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2n + λ2(s

(i)
20 + s

(i)
2n + s

(i)
10 s

(i)
2np

(i)
1m(s)), λ2(1 + s

(i)
10 p

(i)
1m(s))

−γ1µ2s
(i)
2n(1 + s

(i)
10 p

(i)
1m(s))− µ2(1− γ1)s

(i)
20

)

, if s ∈ Sc
4 (4.32a)

(

µ2

λ2
− 1

s
(i)
20

− s
(i)
10

s
(i)
20

p
(i)
1m(s)

)+

, if s ∈ S4 (4.32b)

otherwise, where γ1, λ1 and λ2 are selected to satisfy the constraints (4.14)-(4.17)

with equality, and f(·) is defined in (4.4).

Proof. We start by noting that, to obtain coherent combining gain, the optimal

cooperative powers p
(i)
Uk
(s), k = 1, 2, over a given subchannel and given channel

state s, should either be both positive, or both zero. Let us first assume that both

p
(i)
U1
(s) and p

(i)
U2
(s) are positive. Then, the constraints (4.23), (equivalently (4.26))

should be satisfied with equality, for k = 1, 2. Evaluating (4.23), (equivalently

(4.26)) separately for k = 1, 2, and dividing the two resulting equalities, we get

√

s
(i)
20

√

p
(i)
U2
(s) +

√

s
(i)
10

√

p
(i)
U1
(s)

√

s
(i)
10

√

p
(i)
U1
(s) +

√

s
(i)
20

√

p
(i)
U2
(s)

√

s
(i)
10

√

s
(i)
20

√

p
(i)
U2
(s)

√

p
(i)
U1
(s)

=
λ1

λ2

, (4.33)

which yields

p
(i)
U1
(s) =

λ2
2s

(i)
10

λ2
1s

(i)
20

p
(i)
U2
(s). (4.34)

Plugging (4.34) into (4.23) (equivalently (4.26)), we achieve the following crucial

equality

γ2µ2

A(i)
=

λ1λ2

λ1s
(i)
20 + λ2s

(i)
10

. (4.35)

The significance of (4.35) is that, its left hand size, which involves all power

components through A(i), and appears in all of (4.21)-(4.26), can be replaced by
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a term which depends only on the fixed Lagrange multipliers, λ1 and λ2, and the

direct link gains, s
(i)
k0 . Therefore, the optimality constraints for p

(i)
1m(s) and p

(i)
2n(s)

can be rewritten independently of p
(i)
Uk
(s). For example, using (4.35) in (4.21), we

get

(µ1 − µ2 + γ1µ2)
s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

≤ λ1
2s

(i)
20

λ1s
(i)
20 + λ2s

(i)
10

, (4.36)

which yields the waterfilling solution, (4.28a). Similarly, using (4.35) in (4.22),

(4.24) and (4.25), we obtain (4.29a), (4.28b) and (4.29b) respectively. The ex-

pression, (4.27), of optimal p
(i)
U1
(s) follows from (4.23), (4.34) and (4.35).

Note however that, p
(i)
Uk
(s) obtained by (4.27) is not guaranteed to be positive. In

case it is not, this means that (4.23) (equivalently (4.26)) is satisfied with strict

inequality, the optimal solution for p
(i)
Uk
(s) should be set to 0 and (4.35) can no

longer be used. Then, when p
(i)
Uk
(s) = 0, instead of (4.21)-(4.22) and (4.24)-(4.25)

we have to apply the conditions:

(µ1 − µ2 + γ1µ2)
s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

+ γ2µ2
s
(i)
10

1 + s
(i)
10p

(i)
1m(s) + s

(i)
20p

(i)
2n(s)

≤ λ1, (4.37)

γ1µ2
s
(i)
2n

1 + s
(i)
2np

(i)
2n(s)

+ γ2µ2
s
(i)
20

1 + s
(i)
10p

(i)
1m(s) + s

(i)
20p

(i)
2n(s)

≤ λ2, (4.38)

for s ∈ S1 ∪ S2 ∪ S3, and

(µ1 − µ2)
s
(i)
10

1 + s
(i)
10p

(i)
1m(s)

+ µ2
s
(i)
10

1 + s
(i)
10p

(i)
1m(s) + s

(i)
20p

(i)
2n(s)

≤ λ1, (4.39)

µ2
s
(i)
20

1 + s
(i)
20p

(i)
2n(s) + s

(i)
10p

(i)
1m(s)

≤ λ2, (4.40)

for s ∈ S4.

When p
(i)
Uk
(s) = 0, k = 1, 2; the powers p

(i)
1m(s) and p

(i)
2n(s) are automatically

independent of p
(i)
Uk
(s). However, (4.37) and (4.38); (4.39) and (4.40) are coupled,

and each should be solved by finding the positive roots of a quadratic equation.

Since all power values are non-negative, i.e., p
(i)
1m(s) ≥ 0 and p

(i)
2n(s) ≥ 0, we can
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achieve p
(i)
1m(s) in (4.31a), p

(i)
2n(s) in (4.32a) by solving (4.37) and (4.38). Similarly,

p
(i)
1m(s) in (4.31b) and p

(i)
2n(s) in (4.32b) can be obtained using (4.39) and (4.40). γ1,

λ1 and λ2 are selected in such a way that, when the power levels in (4.27)-(4.32b)

are used, the constraints (4.14)-(4.17) are satisfied.

The power levels of the cooperative codewords on each subchannel, p
(i)
1m(s) and

p
(i)
2n(s) in (4.28a) and (4.29a), have an interesting single user waterfilling type

interpretation, as they solely depend on the channel gains of only that particular

subchannel, and the fixed Lagrange multipliers. The water level is determined by

the direct link gains. However, in (4.31a) and (4.32a) the power p
(i)
1m(s) depends on

p
(i)
2n(s), and vice-versa: increasing one of the powers will decrease the other, should

the constraints (4.37)-(4.40) be satisfied with equality, and we now have a multi-

user waterfilling type solution. This is somewhat different than the observations in

[34], which conjectured that a single user waterfilling type solution for cooperative

powers would be sufficient in all scenarios, for the much simpler case of the scalar

MAC, and sum rate maximization only.

At this point, it should be clear that although (4.28a)-(4.29b) and (4.31a)-(4.32b)

do not explicitly depend on p
(i)
Uk
(s), the decision regarding which of these equa-

tions should be used while computing p
(i)
kj (s) does. Likewise, p

(i)
Uk
(s) are clearly

functions of p
(i)
kj (s), which makes equations (4.28a)-(4.29b), (4.31a)-(4.32b) and

(4.37)-(4.40) coupled. Note however that, the way we proved Theorem 1 auto-

matically suggests a natural way of solving the KKT conditions iteratively. To

this end, we propose an algorithm which performs updates on the powers of the

users, one-user-at-a-time: given p
(i)
U1
(s) and p

(i)
12 (s), it computes p

(i)
U2
(s) and p

(i)
21 (s),

and using these new values for user 2, it re-iterates the powers of user 1. The

outline of the algorithm is given below:
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Algorithm 1 Iterative Power Allocation Algorithm

for µ2 = 0 : 1 do
while (4.14)-(4.15) are not satisfied do
while (4.16) is not satisfied do

Calculate p
(i)
1m(s) using (4.28a)-(4.28b) and p

(i)
U1
(s) using (4.27) assuming

p
(i)
U1
(s) > 0, ∀i

while ∃ s′ s.t. p
(i)
U1
(s′) < 0 do

Set p
(i)
U1
(s′) = 0 and re-calculate p

(i)
1m(s

′) using (4.31a)-(4.31b) and

p
(i)
U1
(s′) using (4.27)

end while
Update λ1

end while
while (4.17) is not satisfied do

Calculate p
(i)
2n(s) using (4.29a)-(4.29b) and p

(i)
U2
(s) using (4.27) assuming

p
(i)
U2
(s) > 0, ∀i

while ∃ s′ s.t. p
(i)
U2
(s′) < 0 do

Set p
(i)
U2
(s′) = 0 and re-calculate p

(i)
2n(s

′) using (4.32a)-(4.32b) and

p
(i)
U2
(s′) using (4.27)

end while
Update λ2

end while
Update γ1

end while
end for

This algorithm simplifies the seemingly difficult task of obtaining the optimal

powers from the coupled equations, and due to the convex nature of the problem,

and the Cartesian nature of the constraints across users, it provably converges to

the optimal solution, as at the end of the iterations, the KKT conditions will be

satisfied.

Perhaps the most important feature of this algorithm is that, regardless of the

number of subchannels used, we only need to solve for three Lagrange multipliers,

which relate the powers allocated to the subchannels, to obtain the optimum

power allocation. This reduces the complexity of the algorithm dramatically,

and makes it scalable, compared to the subgradient algorithm. As a result, the

convergence is much faster.
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4.5 Simulation Results

In order to obtain the optimal power allocation policy, and the resulting achiev-

able rate region, we implement the projected subgradient algorithm, and the

iterative waterfilling-like algorithm based on KKT conditions on optimality, for

a simple case with only three subchannels. The achievable rate region for the

inter-subchannel cooperative encoding strategy is obtained by running this algo-

rithm for varying priorities µk, and then by taking a convex hull over the resulting

power optimized regions. In Figure 4.1, we compare the achievable rate region

for power controlled cooperative OFDMA utilizing the projected subgradient al-

gorithm and the iterative algorithm, with those for several enconding strategies

without power control, from [57]. We assume that, for the channel non-adaptive

protocols, the users are still able to allocate their total power across subchannels

and codewords. The total power of each user and the noise variances are set

to unity. The fading coefficients are chosen from independent Rayleigh distribu-

tions, the means of which are shown in Figure 4.1. We observe that, when the

powers are chosen jointly optimally with inter-subchannel cooperative encoding,

there is a major improvement in achievable rates. This unusually high gain from

power control can be attributed to our ability to take advantage of the additional

diversity created by OFDMA: power allocation not only allows us to use the

subchannels at time varying instantaneous rates based on the channel qualities,

but also to use them adaptively for varying purposes, i.e., cooperation, common

message generation or direct transmission. The gain achieved by power control

through the iterative algorithm always exceeds the projected subgradient algo-

rithm, especially in the sum rate region. The main reason is that, the subgradient

algorithm had still not fully converged, when it was stopped at 10000 iterations,

while the iterative algorithm did fully converge to the optimal power allocation,

and in a much shorter time.

In Figure 4.2, we compare the rate regions in a uniform fading environment with

means expressed on the figure. Here we ensure s ∈ S1, with the motivation of
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Figure 4.1: Achievable rate regions in Rayleigh fading.

obtaining a strictly optimal power allocation, and a simpler description of the

power distributions. In this setting, since some of the power values are always

zero, the number of power variables is less, and hence the subgradient algorithm

nearly converges to the optimum within 10000 iterations, and the rate regions of

subgradient and iterative algorithms nearly coincide. For this setting, we further

analyze the optimal power distributions over the channel states, in Figures 4.3(a)-

4.3(c), 4.4(a)-4.4(c) and 4.5(a)-4.5(c).

Figures 4.3(a)-4.3(c) and 4.4(a)-4.4(c) demonstrate the optimal powers allocated

to subchannel 1, as functions of the inter-user link gains, when the direct link

gains are fixed to two different sets specified on the figures. Powers p
(1)
U2

are

not shown, to save space, as they are identical to p
(1)
U1

due to the symmetry in

fading. In Figures 4.3(a)-4.3(c), the direct link gains are at their maximum, hence
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the cooperative powers, p
(1)
Uk
, are always positive. In this case, we observe the

expected single user waterfilling type behavior for the distributions of p
(1)
12 (s) and

p
(1)
21 (s). In Figures 4.4(a)-4.4(c) however, when the direct links are moderate on

the average, we have a more interesting scenario: when s
(1)
21 is significantly stronger

instantaneously, only user 2 uses the subchannel. When both inter-user links

are instantaneously strong, the users exchange information using simultaneous

waterfilling, and set p
(1)
Uk

to zero. When both inter-user links are weak, the users

use the subchannel solely to convey common information to the RX, by using

only p
(1)
U1

and p
(1)
U2
. An important observation is that, although we make no prior

assumptions on subchannel allocation to users/codewords, the optimal powers

sometimes dictate exclusive use of some subchannels for dedicated tasks. The

resulting power distributions show that the KKT conditions are indeed satisfied

at the fixed point of our iterative algorithm, verifying convergence.
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Figure 4.3: Optimal power allocation when s
(1)
10 and s

(1)
20 are maximum (i.e., s

(1)
10 =

s
(1)
20 = 0.25), fixed and always less than s

(1)
12 and s

(1)
21 . p

(1)
Uk

are always positive,

to take advantage of strong direct links. p
(1)
kj obey single user waterfilling, as

expected.
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Figure 4.4: Optimal power allocation when s
(1)
10 = s

(1)
20 = 0.15, fixed and always

less than s
(1)
12 and s

(1)
21 . When p

(1)
Uk

is positive, p
(1)
kj obey single user waterfilling.

As the inter-user links get stronger, it becomes more profitable to create common
information, p

(1)
Uk

become 0, and the users perform simultaneous waterfilling.
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Figure 4.5: Power allocation obained after 10000 iterations of the subgradient
algorithm, when s

(1)
10 = s

(1)
20 = 0.15, fixed and always less than s

(1)
12 and s

(1)
21 . The

algorithm has not yet converged to the optimum value, despite a much longer
running time compared to the iterative algorithm. Achievable rates are nearly
within 0.1% of the optimum value.
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Figure 4.6: Results of power allocation when s
(1)
10 and s

(1)
20 are minimum (i.e.,

s
(1)
10 = s

(1)
20 = 0.025), fixed and always less than s

(1)
12 and s

(1)
21 .

In Figures 4.5(b)-4.5(c), we plot the power distributions obtained using the sub-

gradient algorithm instead, for the same setting as in Figures 4.4(a)-4.4(c). The

subgradient algorithm is terminated after 10000 iterations. It is observed that

while the powers p
(1)
12 (s) and p

(1)
21 (s) seem to have nearly converged to the optimal

values shown in Figures 4.4(a)-4.4(c) (only p
(1)
21 (s) is shown, as p

(1)
12 (s) is simply

symmetrical), the cooperative power p
(1)
U1
(s) has still not fully converged, though

it is close to its optimal distribution. Note that, the effect of this is negligible on

the rate regions, as was shown in Figure 4.2.

We observe that when both direct links are in deep fading, no power is allocated

to any user for any purpose, as can be seen in Figures 4.6(a)-4.6(d).

Figures 4.7(a)-4.7(d) show an interesting result; although s
(1)
12 and s

(1)
21 have same
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Figure 4.7: Results of power allocation when s
(1)
10 = 0.125, s

(1)
20 = 0.175, fixed and

always less than s
(1)
12 and s

(1)
21 .

average channel states, more power is allocated to the p
(1)
21 , since s

(1)
20 > s

(1)
10 in this

case. Only when s
(1)
12 is maximum, a little amount of power is reserved for p

(1)
12 ,

other than that all power is used for p
(1)
21 , like a single-user filling algorithm. In

this case, no power is allocated to pUk
.

For the case where the cooperative links have the least values, shown in Figures

4.8(a)-4.8(d), when the cooperative links are at their worst states, no power is

allocated to any user, nor for cooperation, neither for direct transmission purpose.

As both direct links’ channel states get better and better, power is distributed

to both users. But when only one user’s direct link states achieve higher states,

power distributed to this user via waterfilling algorithm.

At the situation where both cooperative links have the highest channel states,

when both direct links have high channel states, power is distributed to both

users for both purposes, cooperation and direct transmission. But when only one
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Figure 4.8: Results of power allocation when s
(1)
12 and s

(1)
21 are minimum (i.e.,

s
(1)
12 = s

(1)
21 = 0.26), fixed and always more than s

(1)
10 and s

(1)
20 .
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Figure 4.9: Results of power allocation when s
(1)
12 and s

(1)
21 are maximum (i.e.,

s
(1)
12 = s

(1)
21 = 0.35), fixed and always more than s

(1)
10 and s

(1)
20 .
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user has a good direct link, then power is allocated to that user through single

user waterfilling, as shown in Figures 4.9(a)-4.9(d).

4.6 Conclusion

We obtained the optimum power allocation policies for a cooperative OFDMA

channel employing intra-subchannel cooperative encoding and inter-subchannel

cooperative encoding strategies. We developed a subgradient algorithm which

converges to the optimum power allocation policies that maximize the achiev-

able rate region, and a more efficient iterative algorithm which maximizes the

achievable rate region. The number of iterations of the algorithm does not de-

pend on the number of subchannels, which makes the algorithm scalable. We

demonstrated that the optimal power allocation may also serve as a guideline

for subchannel assignment to the users’ cooperative codewords, and that power

allocation for cooperative OFDMA provides significant rate improvements, due

to its ability to exploit the diversity provided by OFDMA.
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Chapter 5

Conclusion

5.1 Summary of the Results

We proposed and evaluated three encoding strategies for a two user coopera-

tive OFDMA system, based on block Markov superposition encoding, by allow-

ing pairs of users to share the subchannels. We utilized mutual cooperation

in OFDMA channels. The inter-subchannel cooperative encoding strategy is a

novel extension of block Markov encoding for MAC-GF. We obtained the expres-

sions for the resulting achievable rate regions for all three encoding strategies.

We show that, by allowing for re-partitioning and re-encoding of the coopera-

tive messages across subchannels, it is possible to better exploit the diversity

created by OFDMA, and higher rates can be achieved through the full-duplex

inter-subchannel cooperative encoding strategy. We demonstrated potential rate

gains attained by cooperative OFDMA, through simulations.

For a two user cooperative OFDMA system with full CSI, we obtained the optimal

power allocation policies which maximize the rate region achievable by a channel

adaptive implementation of inter-subchannel BMSE, used in conjunction with

backwards decoding. We provided the optimality conditions that need to be

satisfied by the powers associated with the users’ codewords and derived the closed

form expressions for the optimal powers. We proposed two algorithms that can

be used to optimize the powers to achieve any desired rate pair on the rate region
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boundary: a projected subgradient algorithm, and an iterative waterfilling-like

algorithm based on KKT conditions for optimality, which operates one user at a

time and converges much faster. We observed that, utilization of power control to

take advantage of the diversity offered by the cooperative OFDMA system, not

only leads to a remarkable improvement in achievable rates, but also may help

determine how the subchannels have to be instantaneously allocated to various

tasks in cooperation.

5.2 Future Directions

The main focus of our thesis is to develop cooperative strategies, determine the

achievable rates and apply resource allocation to the cooperative OFDMA sys-

tems, but actually OFDMA is a specific case of the vector multiple access chan-

nels, with diagonal channel matrix. An interesting problem can be extending

the cooperative encoding strategies and resource allocation methods proposed in

our thesis to a more general condition, to vector multiple access channels where

the channel matrix is not necessarily diagonal, especially to cooperative MIMO

systems. Deriving achievable rate region expressions and investigating optimum

power allocation protocols for the vector multiple access channels employing mu-

tual cooperation can be a very challenging research topic. We hope that applying

our proposed cooperative encoding strategies and resource allocation techniques

to vector multiple access channels (specifically MIMO systems) can further in-

crease the gains provided in our thesis to cooperative OFDMA channels.
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Appendix A

Probability Of Error Analysis In The Achievability Proof

In decoding, an error occurs either if one or more of the codewords violate the

power constraint, or if one or more of the decoded submessages in any of the B

blocks of transmission are not equal to the transmitted submessages, i.e., {ṽ(i)kj [b] 6=
v
(i)
kj [b]} or {w̃(i)

kj [b] 6= w
(i)
kj [b]}, or {w̃(i)

k0 [b] 6= w
(i)
k0 [b]}, for some i ∈ {1, ..., N} and

some b ∈ {1, ..., B}. The probability of error, averaged over all random codebooks

and all messages [48], is given by

PB
e = Pr

{

B
⋃

b=1

[

N
⋃

i=1

(

{ṽ(i)12 [b] 6= v
(i)
12 [b]} ∪ {ṽ(i)21 [b] 6= v

(i)
21 [b]} ∪ {ŵ(i)

12 [b] 6= w
(i)
12 [b]}

∪{ŵ(i)
21 [b] 6= w

(i)
21 [b]} ∪ {w̃(i)

10 [b] 6= w
(i)
10 [b]} ∪ {w̃(i)

20 [b] 6= w
(i)
20 [b]}

)

∪ EbP

]}

,

(A.1)

where, EbP denotes the event that the power constraint is violated by the code-

words of some user. The transmitters and the receiver all use joint typicality

decoding. Let us define the following events to be used in the error probability

calculation.

Event E
(i)
bŵkj

represents the event that the received codewords at user j over the

ith subchannel in block b are jointly typical with the codewords corresponding to

message ŵ
(i)
kj , i.e.,

E
(i)
bŵkj

=
{(

u(i)(v̂
(i)
kj [b− 1], v

(i)
jk [b− 1]), x

(i)
kj (ŵ

(i)
kj [b], u

(i)(v̂
(i)
kj [b− 1], v

(i)
jk [b− 1])),
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x
(i)
jk (w

(i)
jk [b], u

(i)(v̂
(i)
kj [b− 1], v

(i)
jk [b− 1])),

x
(i)
j (w

(i)
j0 [b], w

(i)
jk [b], u

(i)(v̂
(i)
kj [b− 1], v

(i)
jk [b− 1])), y

(i)
j [b]

)

∈ Aε(U
(i), X

(i)
kj , X

(i)
jk , X

(i)
j , Y

(i)
j )
}

. (A.2)

Event F
(i)
bṽ12,ṽ21,w̃10,w̃20

represents the event that the codewords received by the

receiver over the ith subchannel in block b are jointly typical with codewords

corresponding to ṽ
(i)
12 , ṽ

(i)
21 , w̃

(i)
10 , w̃

(i)
20 :

F
(i)
bṽ12,ṽ21,w̃10,w̃20

=
{(

y(i)[b], u(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1]),

x
(i)
12 (w̃

(i)
12 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])),

x
(i)
21 (w̃

(i)
21 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])),

x
(i)
1 (w̃

(i)
10 [b], w̃

(i)
12 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1])),

x
(i)
2 (w̃

(i)
20 [b], w̃

(i)
21 [b], u

(i)(ṽ
(i)
12 [b− 1], ṽ

(i)
21 [b− 1]))

)

∈ Aε(Y
(i), U (i), X

(i)
12 , X

(i)
21 , X

(i)
1 , X

(i)
2 )
}

. (A.3)

Using the above defined events, and the union bound, we have

PB
e ≤

B
∑

b=1

Pr{EbP}+
N
∑

i=1

(

B−1
∑

b=1

Pr
{(

E
(i)
bŵ12

)c}

+
B−1
∑

b=1

Pr
{(

E
(i)
bŵ21

)c}

+

B−1
∑

b=1

∑

ŵ
(i)
12 [b] 6=w

(i)
12 [b]

Pr
{

E
(i)
bŵ12

}

+

B−1
∑

b=1

∑

ŵ
(i)
21 [b] 6=w

(i)
21 [b]

Pr
{

E
(i)
bŵ21

}

+
B
∑

b=1

Pr
{(

F
(i)
bṽ12,ṽ21,w̃10,w̃20

)c}

+

B
∑

b=1

∑

(ṽ
(i)
12 [b],ṽ

(i)
21 [b],w̃

(i)
10 [b],w̃

(i)
20 [b])6=(v

(i)
12 [b],v

(i)
21 [b],w

(i)
10 [b],w

(i)
20 [b])

Pr
{

F
(i)
bṽ12,ṽ21,w̃10,w̃20

}

)

. (A.4)

To give bounds on the average error probability, we assume without loss of gen-

erality, ∀b ∈ {1, · · · , B} and ∀i ∈ {1, · · · , N} that (v
(i)
12 [b − 1], v

(i)
21 [b − 1], w

(i)
12 [b],

w
(i)
21 [b], w

(i)
10 [b], w

(i)
20 [b]) = (1, 1, 1, 1, 1, 1). Then, by dropping the block index, we

redefine the events (A.2) and (A.3) as E
(i)
ŵkj

, F
(i)
ṽ12,ṽ21,w̃10,w̃20

, and the average error
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probability expression can be rewritten as

PB
e ≤

N
∑

i=1

(

(B − 1)Pr
{(

E
(i)
ŵ12

)c}

+ (B − 1)Pr
{(

E
(i)
ŵ21

)c}

+ (B − 1)
∑

ŵ
(i)
12 6=1

Pr
{

E
(i)
ŵ12

}

+ (B − 1)
∑

ŵ
(i)
21 6=1

Pr
{

E
(i)
ŵ21

}

+ Pr
{(

F
(i)
ṽ12,ṽ21,1,1

)c}

+
∑

w̃
(i)
10 6=1

Pr
{

F
(i)
1,1,w̃10,1

}

+
∑

w̃
(i)
20 6=1

Pr
{

F
(i)
1,1,1,w̃20

}

+
∑

(ṽ
(i)
12 ,ṽ

(i)
21 )6=(1,1)

Pr
{

F
(i)
ṽ12,ṽ21,1,1

}

+ (B − 2)Pr
{(

F
(i)
ṽ12,ṽ21,w̃10,w̃20

)c}

+ (B − 2)
∑

(ṽ
(i)
12 ,ṽ

(i)
21 )6=(1,1)

Pr
{

F
(i)
ṽ12,ṽ21,w̃10,w̃20

}

+ (B − 2)
∑

w̃
(i)
10 6=1,w̃

(i)
20 6=1

Pr
{

F
(i)
1,1,w̃10,w̃20

}

+ (B − 2)
∑

w̃
(i)
10 6=1

Pr
{

F
(i)
1,1,w̃10,1

}

+ (B − 2)
∑

w̃
(i)
20 6=1

Pr
{

F
(i)
1,1,1,w̃20

}

+ Pr
{(

F
(i)
1,1,w̃10,w̃20

)c}

+
∑

w̃
(i)
10 6=1,w̃

(i)
20 6=1

Pr
{

F
(i)
1,1,w̃10,w̃20

}

)

+
B
∑

b=1

Pr{EbP}.

(A.5)

By the law of large numbers, ∃n1 such that ∀n > n1, Pr{EbP} < ǫ, ∀ǫ > 0 [48].

Also, due to asymptotic equipartition property (AEP) [48], ∀ǫ > 0, ∃n2 such that

∀n > n2, we have

Pr
{(

E
(i)
ŵ12

)c}

≤ ε,P r
{(

E
(i)
ŵ21

)c}

≤ ε,

P r
{(

F
(i)
ṽ12,ṽ21,1,1

)c}

≤ ε,P r
{(

F
(i)
ṽ12,ṽ21,w̃10,w̃20

)c}

≤ ε, P r
{(

F
(i)
1,1,w̃10,w̃20

)c}

≤ ε.

Note that, the average probability that event E
(i)
ŵ12

occurs, ∀i, i = 1, ..., N is;

Pr
{

E
(i)
ŵ12

}

=
∑

(u(i),x
(i)
12 ,x

(i)
21 ,x

(i)
2 ,y

(i)
2 )∈Aε(U (i),X

(i)
12 ,X

(i)
21 ,X

(i)
2 ,Y

(i)
2 )

P (u(i))P (x
(i)
12 |u(i))P (x

(i)
21 |u(i))P (x

(i)
2 |x(i)

21 , u
(i))P (y

(i)
2 |x(i)

2 , x
(i)
21 , u

(i)),

≤2n(H(U (i),X
(i)
12 ,X

(i)
21 ,X

(i)
2 ,Y

(i)
2 )+ε)2−n(H(U (i),X

(i)
12 ,X

(i)
21 ,X

(i)
2 )−ε)2−n(H(Y

(i)
2 |U (i),X

(i)
21 ,X

(i)
2 )−2ε),

=2−n(I(X
(i)
12 ;Y

(i)
2 |X

(i)
2 ,X

(i)
21 ,U (i))−4ε),

=2−n(I(X
(i)
12 ;Y

(i)
2 |X

(i)
2 ,U (i))−4ε) if ŵ

(i)
12 6= 1. (A.6)
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Similarly, using AEP, the probability of each event (A.5) can easily be derived,

leading to the following bounds:

Pr
{

E
(i)
ŵ21

}

≤ 2−n(I(X
(i)
21 ;Y

(i)
1 |X

(i)
1 ,U (i))−4ε) if ŵ

(i)
21 6= 1, (A.7)

Pr
{

F
(i)
ṽ12,ṽ21,1,1

}

≤ 2−n(I(X
(i)
1 ,X

(i)
2 ;Y (i))−3ε) if (ṽ

(i)
12 , ṽ

(i)
21 ) 6= (1, 1),

(A.8)

Pr
{

F
(i)
ṽ12,ṽ21,w̃10,w̃20

}

≤ 2−n(I(X
(i)
1 ,X

(i)
2 ;Y (i))−3ε) if (ṽ

(i)
12 , ṽ

(i)
21 ) 6= (1, 1),

(A.9)

Pr
{

F
(i)
1,1,w̃10,w̃20

}

≤ 2−n(I(X
(i)
1 ,X

(i)
2 ;Y (i)|X

(i)
12 ,X

(i)
21 ,U(i))−4ε) if w̃

(i)
10 6= 1, w̃

(i)
20 6= 1,

(A.10)

Pr
{

F
(i)
1,1,w̃10,1

}

≤ 2−n(I(X
(i)
1 ;Y (i)|X

(i)
2 ,X

(i)
12 ,U (i))−4ε) if w̃

(i)
10 6= 1, (A.11)

Pr
{

F
(i)
1,1,1,w̃20

}

≤ 2−n(I(X
(i)
2 ;Y (i)|X

(i)
1 ,X

(i)
21 ,U (i))−4ε) if w̃

(i)
20 6= 1. (A.12)

Plugging (A.6)-(A.12) into the average probability of error equation, for n large

enough, we obtain

PB
e ≤

B
∑

b=1

ǫ+

N
∑

i=1

[

(B − 1)
(

ε+ ε+ 2nR
(i)
12 2−n(I(X

(i)
12 ;Y

(i)
2 |X

(i)
2 ,U (i))−4ε)

+ 2nR
(i)
21 2−n(I(X

(i)
21 ;Y

(i)
1 |X

(i)
1 ,U (i))−4ε)

)

+ ε+ 2n(R
′(i)
12 +R

′(i)
21 )2−n(I(X

(i)
1 ,X

(i)
2 ;Y (i))−3ε)

+ (B − 2)

(

ε+ 2n(R
′(i)
12 +R

′(i)
21 +R

(i)
10 +R

(i)
20 )2−n(I(X

(i)
1 ,X

(i)
2 ;Y (i))−3ε)

+ 2n(R
(i)
10 +R

(i)
20 )2−n(I(X

(i)
1 ,X

(i)
2 ;Y (i)|X

(i)
12 ,X

(i)
21 ,U(i))−4ε)

+ 2nR
(i)
10 2−n(I(X

(i)
1 ;Y (i)|X

(i)
2 ,X

(i)
12 ,U(i))−4ε)

+ 2nR
(i)
20 2−n(I(X

(i)
2 ;Y (i)|X

(i)
1 ,X

(i)
21 ,U(i))−4ε)

)

+ ε

+ 2n(R
(i)
10 +R

(i)
20 )2−n(I(X

(i)
1 ,X

(i)
2 ;Y (i)|X

(i)
12 ,X

(i)
21 ,U(i))−4ε)

+ 2nR
(i)
10 2−n(I(X

(i)
1 ;Y (i)|X

(i)
2 ,X

(i)
12 ,U(i))−4ε)

+ 2nR
(i)
20 2−n(I(X

(i)
2 ;Y (i)|X

(i)
1 ,X

(i)
21 ,U(i))−4ε)

]

. (A.13)

Finally, note that ∃n3 such that ∀n > n3, all the terms that involve the rates
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and mutual informations on the right hand side of (A.13) can be made arbitrarily

small (say < ǫ each), if R
′(i)
12 , R

′(i)
21 , R

(i)
12 , R

(i)
21 , R

(i)
10 , R

(i)
20 satisfy the following rate

inequalities:

R
(i)
12 ≤ I(X

(i)
12 ; Y

(i)
2 |X(i)

2 , U (i))− 4ε, (A.14)

R
(i)
21 ≤ I(X

(i)
21 ; Y

(i)
1 |X(i)

1 , U (i))− 4ε, (A.15)

R
(i)
10 ≤ I(X

(i)
1 ; Y (i)|X(i)

2 , X
(i)
12 , U

(i))− 4ε, (A.16)

R
(i)
20 ≤ I(X

(i)
2 ; Y (i)|X(i)

1 , X
(i)
21 , U

(i))− 4ε, (A.17)

R
(i)
10 +R

(i)
20 ≤ I(X

(i)
1 , X

(i)
2 ; Y (i)|X(i)

12 , X
(i)
21 , U

(i))− 4ε, (A.18)

R
′(i)
12 +R

′(i)
21 +R

(i)
10 +R

(i)
20 ≤ I(X

(i)
1 , X

(i)
2 ; Y (i))− 3ε. (A.19)

Therefore, taking n > n0 , max{n1, n2, n3}, the average error probability is

bounded by PB
e ≤ N(9B − 8)ε + Bε, and using standard arguments such as

selecting the best codebook and throwing away the worst half of the codewords,

the maximum probability of error per block can be made arbirtarily small.

Evaluating the rate constraint (A.14) for R
(i)
12 for Gaussian codewords, we have

R
(i)
12 ≤ I(X

(i)
12 ; Y

(i)
2 |X(i)

2 , U (i)),

= h(Y
(i)
2 |X(i)

2 , U (i))− h(Y
(i)
2 |X(i)

12 , X
(i)
2 , U (i)),

= h(X
(i)
10 +X

(i)
12 + U (i) + Z

(i)
2 |X(i)

2 , U (i))

− h(X
(i)
10 +X

(i)
12 + U (i) + Z

(i)
2 |X(i)

12 , X
(i)
2 , U (i)),

= h(X
(i)
10 +X

(i)
12 + Z

(i)
2 |X(i)

2 , U (i))− h(X
(i)
10 + Z

(i)
2 |X(i)

12 , X
(i)
2 , U (i)),

= h(X
(i)
10 +X

(i)
12 + Z

(i)
2 )− h(X

(i)
10 + Z

(i)
2 ),

= C

(

s
(i)
12p

(i)
12

s
(i)
12p

(i)
10 + 1

)

. (A.20)

Likewise, the following rate constraints can be derived, thereby proving the the-

orem

R
(i)
21 ≤ C

(

s
(i)
21p

(i)
21

s
(i)
21p

(i)
20 + 1

)

, (A.21)
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R
(i)
10 ≤ C

(

s
(i)
10p

(i)
10

)

, (A.22)

R
(i)
20 ≤ C

(

s
(i)
20p

(i)
20

)

, (A.23)

R
(i)
10 +R

(i)
20 ≤ C

(

s
(i)
10p

(i)
10 + s

(i)
20p

(i)
20

)

, (A.24)

R
′(i)
12 +R

′(i)
21 +R

(i)
10 +R

(i)
20 ≤ C

(

s
(i)
10p

(i)
1 s

(i)
20p

(i)
2 + 2

√

s
(i)
10s

(i)
20p

(i)
u1p

(i)
u2

)

. (A.25)
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Appendix B

Proof Of Theorem 4.1 In Chapter 4

Let p
(i)
k (s) = p

(i)
k0(s) + p

(i)
kj (s) + p

(i)
Uk
(s). To simplify the notation, let us drop the

dependency of the powers on the channel states in each subchannel and define

the following equations.

A(i) = 1 + s
(i)
10p

(i)
1 + s

(i)
20p

(i)
2 + 2

√

s
(i)
10s

(i)
20p

(i)
U1
p
(i)
U2
,

B(i) =
1 + s

(i)
10p

(i)
10 + s

(i)
20p

(i)
20

(1 + s
(i)
12p

(i)
10 )(1 + s

(i)
21p

(i)
20 )

,

C(i) = (1 + s
(i)
12 (p

(i)
10 + p

(i)
12 ))(1 + s

(i)
21 (p

(i)
20 + p

(i)
21 )).

Then the sum rate becomes:

Rsum =

N
∑

i=1

(

R
(i)
1 +R

(i)
2

)

= min

{

1

2

N
∑

i=1

E
[

log(A(i))
]

,
1

2

N
∑

i=1

E
[

log(B(i)C(i))
]

}

.

Let us fix p
(i)
k , as well as p

(i)
Uk
, then A(i) and C(i) will be fixed since A(i) is a function

of p
(i)
k and p

(i)
Uk
, C(i) is a function of

(

p
(i)
k − p

(i)
Uk

)

. Only B(i) will have variables,

so for maximizing the sum rate, we can focus on the maximization B(i).

max
p
(i)
10 ,p

(i)
20

B(i)(p
(i)
10 , p

(i)
20 ),

s.t. p
(i)
10 + p

(i)
12 = p

(i)
1 − p

(i)
U1

and p
(i)
20 + p

(i)
21 = p

(i)
2 − p

(i)
U2
.
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We take partial derivatives with respect to p
(i)
10 and p

(i)
20 to determine how to

maximize Rsum:

∂B(i)

∂p
(i)
10

=
s
(i)
10 − s

(i)
12 (1 + s

(i)
20p

(i)
20 )

(1 + s
(i)
12p

(i)
10 )(1 + s

(i)
21p

(i)
20 )

,

∂B(i)

∂p
(i)
20

=
s
(i)
20 − s

(i)
21 (1 + s

(i)
10p

(i)
10 )

(1 + s
(i)
21p

(i)
20 )(1 + s

(i)
12p

(i)
10 )

.

1. if s
(i)
12 > s

(i)
10 and s

(i)
21 > s

(i)
20 ⇒ ∂B(n)

∂p
(n)
10

< 0 and ∂B(n)

∂p
(n)
20

< 0.

Therefore B(i)(p
(i)
10 , p

(i)
20 ) is monotically decreasing in both p

(i)
10 and p

(i)
20 .

Rsum

(

B(i)(p
(i)
10 , p

(i)
20 )
)

is maximized at p
(i)
10 = p

(i)
20 = 0.

2. if s
(i)
12 > s

(i)
10 and s

(i)
21 ≤ s

(i)
20 ⇒ ∂B(i)

∂p
(i)
10

< 0 therefore p
(i)
10 = 0, ∂B(i)

∂p
(i)
20

> 0 when

p
(i)
10 = 0 and ∂2B(i)

∂p
(i)
20

2 =
−2s

(i)
21 (s

(i)
20−s

(i)
21 )

(1+s
(i)
21 p

(i)
20 )

3
< 0 when p

(i)
10 = 0.

Therefore p
(i)
20 should take its maximum possible value, i.e., p

(i)
21 = 0 (p

(i)
20 =

p
(i)
2 − p

(i)
U2
).

Rsum

(

B(i)(p
(i)
10 , p

(i)
20 )
)

is maximized at p
(i)
10 = p

(i)
21 = 0.

3. if s
(i)
12 ≤ s

(i)
10 and s

(i)
21 > s

(i)
20 ⇒ ∂B(i)

∂p
(i)
20

< 0 therefore p
(i)
20 = 0, ∂B(i)

∂p
(i)
10

> 0 when

p
(i)
20 = 0 and ∂2B(i)

∂p
(i)
10

2 =
−2s

(i)
12 (s

(i)
10−s

(i)
12 )

(1+s
(i)
12 p

(i)
10 )

3
< 0 when p

(i)
20 = 0.

Therefore p
(i)
10 should take its maximum possible value, i.e., p

(i)
12 = 0 (p

(i)
10 =

p
(i)
1 − p

(i)
U1
).

Rsum

(

B(i)(p
(i)
10 , p

(i)
20 )
)

is maximized at p
(i)∗
12 = p

(i)∗
20 = 0,

4. if s
(i)
12 ≤ s

(i)
10 and s

(i)
21 ≤ s

(i)
20 ⇒ ∂2B(i)

∂p
(i)
10

2 =
−2s

(i)
12 (s

(i)
10 −s

(i)
12 (1+s

(i)
20 p

(i)
20 ))

(1+s
(i)
12 p

(i)
10 )

3(1+s
(i)
21 p

(i)
20 )

< 0 and

∂2B(i)

∂p
(i)
20

2 =
−2s

(i)
21 (s

(i)
20 −s

(i)
21 (1+s

(i)
10 p

(i)
10 ))

(1+s
(i)
21 p

(i)
20 )

3(1+s
(i)
12 p

(i)
10 )

< 0.

Determinant of the Hessian matrix < 0, therefore it is a saddle point.

Rsum

(

B(i)(p
(i)
10 , p

(i)
20 )
)

is maximized at one of the boundaries;

p
(i)∗
12 = p

(i)∗
21 = 0 or p

(i)∗
10 = p

(i)∗
21 = 0 or p

(i)∗
12 = p

(i)∗
20 = 0.
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Appendix C

Proof Of Lemma 4.2 In Chapter 4

Note that KKT conditions are necessary and sufficient for optimality. To obtain

the KKT conditions we first assign the Lagrange multipliers γ1, γ2, λ1 and λ2

to the inequality constraints (4.14), (4.15), (4.16), (4.17) respectively, and we

further assign ǫit(s), t = 1, . . . , 6, ∀s to the positivity constraints (4.18), to obtain

the Lagrangian

L = Rµ + γ1

[

(µ1 − µ2)

(

N
∑

i=1

ES1,S2

[

C(p
(i)
12 (s)s

(i)
12 )
]

+
N
∑

i=1

ES3,S4

[

C(p
(i)
10 (s)s

(i)
10 )
]

)

+ µ2

N
∑

i=1

(

ES1

[

C(p
(i)
12 (s)s

(i)
12 ) + C(p

(i)
21 (s)s

(i)
21 )
]

+ ES2

[

C(p
(i)
12 (s)s

(i)
12 ) + C(p

(i)
20 (s)s

(i)
20 )
]

+ ES3

[

C(p
(i)
10 (s)s

(i)
10 ) + C(p

(i)
21 (s)s

(i)
21 )
]

+ ES4

[

C(p
(i)
10 (s)s

(i)
10 + p

(i)
20 (s)s

(i)
20 )
]

)

−Rµ

]

+ γ2

[

(µ1 − µ2)

(

N
∑

i=1

E
[

C(p
(i)
1m(s)s

(i)
1m)
]

)

+ µ2

N
∑

i=1

E
[

C
(

s
(i)
10 (p

(i)
1m(s) + p

(i)
U1
(s))

+s
(i)
20 (p

(i)
2n(s) + p

(i)
U2
(s)) + 2

√

s
(i)
10s

(i)
20p

(i)
U1
(s)p

(i)
U2
(s)
)]

− Rµ

]

+ λ1

(

p̄1 −
N
∑

i=1

(

ES3,S4

[

p
(i)
10 (s)

]

+ ES1,S2

[

p
(i)
12 (s)

]

+ E
[

p
(i)
U1
(s)
])

)

+ λ2

(

p̄2 −
N
∑

i=1

(

ES2,S4

[

p
(i)
20 (s)

]

+ ES1,S3

[

p
(i)
21 (s)

]

+ E
[

p
(i)
U2
(s)
])

)

+ǫ
(i)
1 (s)p

(i)
10 (s)+ǫ

(i)
2 (s)p

(i)
12 (s)+ǫ

(i)
3 (s)p

(i)
U1
(s)+ǫ

(i)
4 (s)p

(i)
20 (s)+ǫ

(i)
5 (s)p

(i)
21 (s)+ǫ

(i)
6 (s)p

(i)
U2
(s).

(C.1)
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For s ∈ S1 ∪ S2 ∪ S3, we take partial derivatives of the Lagrangian function, L
with respect to p

(i)
1m(s), p

(i)
2n(s), and p

(i)
Uk
(s), ∀i and ∀s, to obtain the respective

conditions

γ2µ2

(

s
(i)
10

A(i)

)

+ (µ1 − µ2 + γ1µ2)

(

s
(i)
1m

1 + s
(i)
1mp

(i)
1m(s)

)

− λ1 + ǫ(i)e1
(s) = 0, (C.2)

γ2µ2

(

s
(i)
20

A(i)

)

+ γ1µ2

(

s
(i)
2n

1 + s
(i)
2np

(i)
2n(s)

)

− λ2 + ǫ(i)e2
(s) = 0, (C.3)

γ2µ2







√

s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√

p
(i)
Uk
(s)

A(i)

√

p
(i)
Uk
(s)






− λk + ǫ(i)e3

(s) = 0, (C.4)

where e1 ∈ {1, 2}, e2 ∈ {4, 5} and e3 ∈ {3, 6} take their values based on with

respect to which power the derivative is taken. Likewise, for s ∈ S4, and the

respective partial derivatives yield

γ2µ2

(

s
(i)
10

A(i)

)

+ (µ1 − µ2)

(

s
(i)
10

1 + s
(i)
10p

(i)
1m(s)

)

+γ1µ2

(

s
(i)
10

1 + s
(i)
10p

(i)
1m(s) + s

(i)
20p

(i)
2n(s)

)

− λ1 + ǫ(i)e1
(s) = 0, (C.5)

γ2µ2

(

s
(i)
20

A(i)

)

+ γ1µ2

(

s
(i)
20

1 + s
(i)
10p

(i)
1m(s) + s

(i)
2np

(i)
20 (s)

)

− λ2 + ǫ(i)e2
(s) = 0, (C.6)

γ2µ2







√

s
(i)
k0s

(i)
j0 p

(i)
Uj
(s) + s

(i)
k0

√

p
(i)
Uk
(s)

A(i)

√

p
(i)
Uk
(s)






− λk + ǫ(i)e3

(s) = 0. (C.7)

Since the optimal power allocation policy should satisfy the complementary slack-

ness constraints,

p
(i)
10 (s)ǫ

(i)
1 (s) = 0, p

(i)
12 (s)ǫ

(i)
2 (s) = 0, p

(i)
U1
(s)ǫ

(i)
3 (s) = 0,

p
(i)
20 (s)ǫ

(i)
4 (s) = 0, p

(i)
21 (s)ǫ

(i)
5 (s) = 0, p

(i)
U2
(s)ǫ

(i)
6 (s) = 0, (C.8)

we can either drop ǫ
(i)
t (s) in each of (C.2)-(C.7), if the corresponding power is

positive; or we can replace the equality by a strict inequality, meaning that ǫ
(i)
t (s)
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is non-zero but its corresponding power is zero. Hence, using the relevant con-

ditions from (C.8) in (C.2)-(C.7), and dropping the dependencies on ǫ
(i)
t (s), we

write the conditions for optimality in terms of inequalities instead, which yield

(4.21)-(4.26). The inequalities hold with equality if and only if the corresponding

power level is positive, and with strict inequality of that power level is zero.

Partial derivatives with respect to the dual variables dictate that the conditions

(4.14)-(4.17) are satisfied. Finally, partial derivatives with respect to Rµ yields

γ1 + γ2 = 1, hence the condition γ1 = 1− γ2.
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