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NEW APPROACHES FOR CHANNEL ESTIMATION IN 
WIRELESS COMMUNICATIONS 

Abstract

This thesis first proposes a computationally efficient, pilot-aided linear minimum 

mean square error (MMSE) batch channel estimation algorithm for the orthogonal 

frequency division multiplexing OFDM systems in unknown wireless fading 

channels. The batch linear MMSE will be converted to the sequential linear MMSE 

estimator due to fast convergence property and the simple structure. In addition to 

OFDM systems, focusing on transmit diversity (OFDM) transmission through 

frequency selective channels, this thesis pursues a channel estimation approach in 

time-domain for both space-frequency OFDM (SF-OFDM) and space-time OFDM 

(ST-OFDM) systems. This thesis also proposes a computationally efficient, pilot-

aided linear minimum mean square error (MMSE) time domain batch channel 

estimation algorithm for OFDM systems with transmit diversity in unknown wireless 

fading channels.

The proposed batch approaches (with or without transmit diversity) employ a 

convenient representation of the discrete multipath fading channel based on the 

Karhunen Loeve (KL) orthogonal expansion and finds MMSE estimates of the 

uncorrelated KL series expansion coefficients. Based on such an expansion, no 

matrix inversion is required in the proposed MMSE estimators. Moreover, optimal 

rank reduction is achieved by exploiting the optimal truncation property of the KL 

expansion resulting in a smaller computational load on the estimation algorithm. The 

performance of the proposed approaches is studied through analytical and 

experimental results.  
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Then, in order to explore the performances, the stochastic Cramer-Rao lower bounds 

are considered for the proposed approaches. The effect of a modeling mismatch on 

the performances of the estimator is also analyzed.  

 

In order to explore the performance of the transmit diversity OFDM systems, the 

closed-form expression for the average symbol error rate (SER) probability is also 

derived for the maximum ratio receive combiner (MRRC) in these systems. 

Simulations results confirm our theoretical analysis, and illustrate that the proposed 

channel estimation algorithms for OFDM systems with and without transmit 

diversity are capable of tracking fast fading and frequency selective fading, 

respectively and improving overall performance. 
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TELS Z HABERLE MEDE KANAL KEST R M Ç N
YEN  YAKLA IMLAR

Özet 

Bu tez öncelikle, sönümlemeli, telsiz ileti im kanalı etkisi altındaki dik sıklık

bölü ümlü ço ullama (OFDM) sistemleri için,  i lem yükü az, pilot destekli do rusal 

en küçük ortalama karesel hata (MMSE) toptan kanal kestirimcisi algoritması önerir. 

Toptan do rusal MMSE kanal kestirimcisi, hızlı yakınsaması ve basit bir yapıya 

sahip olmasından dolayı dizisel do rusal MMSE kestirimcisine dönü türülecektir. 

Bunun yanısıra, bu tez; frekans seçici kanallar üzerinden iletim sa layan verici 

çe itlemeli OFDM sistemlerine odaklanarak, zaman düzleminde, hem uzay-zaman 

hem de uzay-frekans çe itlemeli OFDM sistemleri için bir kanal kestirim yakla ımı

ortaya koyma amacını ta ımaktadır. Ayrıca bu tez, sönümlemeli, telsiz ileti im kanalı

etkisi altındaki verici çe itlemeli OFDM sistemleri için de i lem yükü az, pilot 

destekli do rusal en küçük ortalama karesel hata (MMSE) zaman düzlemi kanal 

kestirimcisi algoritması önerir. 

Önerilen toptan yakla ımlar (verici çe itlemeli yada çe itlemesiz), Karhunen Loeve 

(KL) dik açılımına dayanan, ayrık çokyollu sönümlemeli kanalı elveri li

gösterilimine olanak tanır ve ili kisiz KL açılım katsayılarının MMSE kestirim 

de erlerini bulur.  Böyle bir açılıma göre, önerilen MMSE kestirimcilerinde matris 

evri ine gereksinim yoktur. Bunun ötesinde, uygun kerte indirgemesi, kestirim 

algoritması üzerinde daha küçük bir i lem yükü do uran KL açılımının uygun 

kısaltılabilme özelli inin kullanılması ile ba arılır. Önerilen yakla ımların

ba arımları analitik ve deneysel sonuçlarla incelenmektedir.  
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Daha sonra, başarımları araştırmak için önerilen yaklaşımlar için stokastik Cramer-

Rao alt sınırları ele alınmaktadır.  Modelleme hatasının  kestirimcilerin başarımları 

üzerindeki etkileri analiz edilmektedir.  

 

Verici çeşitlemeli OFDM sistemlerinin başarımını araştırmak için en yüksek oran 

alınan sinyal birleştiricisi (MRRC) için  ortalama sembol hata olasılığının (SER) 

çıkartımı da yapılmaktadır. Benzetim sonuçları kuramsal sonuçlarımızı 

doğrulamakta, verici çeşitlemeli veya çeşitlemesiz OFDM  sistemleri için önerilen 

kanal kestirim algoritmaları  sırasıyla hızlı sönümlemeli ve frekans seçici 

sönümlemeli kanalları izlemekte ve  bütün sistemin başarımını arttırmaktadır. 
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ĥ  : Estimation value of the multipath channel h

h
~

 : True value of the multipath channel vector h

ih  : i th element of the multipath channel h

µh  : Multipath channel between the th transmitter and the receiver 

µ
~
h  : True value of µh

)n(h  : Multipath channel for th transmit antenna at time n 

nh  : channel impulse response during the nth OFDM block 
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Chapter 1 

Introduction

With unprecedented demands on bandwidth due to the explosive growth of 

broadband wireless services usage, there is an acute need for a high rate and 

bandwidth efficient digital transmission. In response to this need, the research 

community has been extensively investigating efficient schemes that make efficient 

utilization of the limited bandwidth and cope with the adverse access environments, 

Van Nee and Prasad [1]. These access environments may create different channel 

impairments and dictate unique sets of advanced signal processing algorithms to 

combat specific impairments.  

Multicarrier (MC) transmission scheme, especially, orthogonal frequency division 

multiplexing (OFDM), has recently attracted considerable attention since it has been 

shown to be an effective technique to combat delay spread or frequency selective 

fading of wireless or wireline channels thereby improving the capacity and 

enhancing the performance of transmission.  This approach has been adopted as the 

standards in several outdoor and indoor high-speed wireless and wireline data 

applications, including terrestrial digital broadcasting (DAB and DVB) in Europe, 

and high speed modems over Digital Subscriber Lines in the US. It has also been 

implemented for broadband indoor wireless systems including IEEE802.11a, MMAC 

and HIPERLAN/2. 

An OFDM system operating over a frequency selective wireless communication 

channel effectively forms a number of parallel frequency nonselective fading 

channels thereby reducing intersymbol interference (ISI) and obviating the need for 
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complex equalization thus greatly simplifying channel estimation/equalization task. 

Moreover, OFDM is bandwidth efficient since the spectra of the neighboring 

subchannels overlap, yet channels can still be separated through the use of 

orthogonality of the carriers. Furthermore, its structure also allows efficient hardware 

implementations using fast Fourier transform (FFT) and polyphase filtering, Sari et

al. [2]. 

Transmit diversity can effectively combat multipath channel impairments due to the 

dispersive wireless channel that can cause deep fades in some subchannels. This is 

generally achieved by separating transmit antennas far enough so that to make zero 

or very low correlation between the transmission paths. The combination of the two 

techniques, OFDM and transmit diversity, can further enhance the data rates in a 

frequency selective fading environment. However, this enhancement requires 

accurate and computationally efficient channel estimation methods. 

The motivation for the thesis is to develop a low complexity pilot aided channel 

estimation algorithms for OFDM systems with/without transmit diversity and to 

analyze its performance both theoretically and analytically.

1.1 Previous Works 

Pilot aided channel estimation in OFDM systems with and without transmit diversity 

has been studied in [3–11] and [12–19] respectively. Pilot based algorithms assume 

known symbols (training or pilot symbols) are inserted in the transmitted signals. It 

is then possible to identify the channel at the receiver through exploiting knowledge 

of these known symbols. 

Edfors et al. [3] applied the theory of optimal rank-reduction to linear MMSE 

estimator, and presented a low rank channel estimation algorithm, which exploits 

only the frequency domain channel correlation.  
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Although channel correlation and signal-to-noise ratio (SNR) are needed in the 

channel estimation algorithm, its performance is robust to changes in channel 

correlation and SNR. Two pilot-aided ML and MMSE estimator schemes are 

revisited and compared in terms of computational complexity by Morelli and 

Mengali [4]. The difference between these two estimators is in their assumptions of 

the channels. The ML algorithm regards the channel as a deterministic but unknown 

vector, whereas MMSE algorithm regards the channel as a random vector, whose 

particular realization is to be estimated. The ML algorithm achieves the Cramer-Rao 

Lower Bound (CRLB); therefore it is a Minimum Variance Unbiased (MVU) 

estimator. Minimum MSE is achieved on the condition that the channel is considered 

deterministic and the estimator is unbiased. With the aid of prior channel 

information, the MMSE algorithm outperforms the CRLB, because CRLB is a bound 

for deterministic channel. With more available information about the channel, 

MMSE algorithm obtains a better performance. Li et al. [5] proposed a MMSE 

channel estimator algorithm, which makes full use of the time and frequency 

correlation of the time-varying dispersive channel. The algorithm exploits both time 

domain and frequency domain channel correlation, and makes use of the fact that the 

OFDM channel correlation can be written as the product of time domain channel 

correlation and frequency domain channel correlation. Moreover, a low complexity 

MMSE doubly channel estimation approaches based on embedding Kronecker Delta 

pilot sequences were presented by Schniter [6]. Biglieri et al. [7] studied on 

multipath fading channels extensively, and developed several models to describe 

their variations. In many cases, the channel taps are modeled as general lowpass 

stochastic processes (e.g., Jakes [8]); the statistics depend on mobility parameters. 

Yip and Ng [9] proposed a different approach modeling the multipath channel taps 

by the Karhunen Loeve (KL) series representation. Senol et al. [10] and Siala and 

Dupontiel [11] have also been KL expansion models used in modeling multipath 

channel within OFDM and CDMA scenarios, respectively. 

Transmit antenna diversity technique has been used for combating fading in mobile 

in multipath wireless channels by Li et al. [12], Alamouti [13], and Cirpan and 

Panayirci[14]. Among a number of antenna diversity methods, the Alamouti method  
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is very simple to implement. The simplicity of the receiver is attributed to the 

orthogonal nature of the code by Tarokh et al. [15, 16]. In Alamouti scheme, the 

orthogonal structure of these codes enables the maximum likelihood decoding to be 

implemented in a simple way through decoupling of the signal transmitted from 

different antennas rather than joint detection resulting in linear processing. The use 

of OFDM in transmits diversity systems motives exploitation of the diversity 

dimensions. Inspired by this, a number of coding schemes have been proposed 

recently to achieve maximum diversity gain by Lee and Williams [17], Liu et al.

[18], and Bolcskei and Paulraj [19]. Among them, ST-OFDM has been proposed 

recently for delay-spread channels. On the other hand, transmit OFDM also offers 

the possibility of coding in the form SF-OFDM. Moreover, Lee and Williams [17] 

compared SF-OFDM and ST-OFDM transmit diversity systems, under the 

assumption that the channel responses are known or can be estimated accurately at 

the receiver. It was shown that the SF-OFDM system has the same performance as a 

previously reported ST-OFDM scheme in slow fading environments but shows better 

performance in the more difficult fast fading environments.  

1.2 Contributions of the Thesis 

This thesis is a deep and thorough study of channel estimation problems in OFDM 

systems with or without transmit diversity. Contributions of the thesis can be detailed 

as follows: 

To propose a computationally efficient, pilot aided MMSE channel estimation 

algorithms by exploiting Karhunen Loeve (KL) expansion. Based on such 

representation, no matrix inversion is required in the proposed batch approach. 

Moreover, optimal rank reduction can be achieved by exploiting the optimal 

truncation property of the KL expansion resulting in a smaller computational 

load on the estimation algorithm.  

To propose a simple sequential MMSE estimator implementation for the 

estimation of the KL expansion coefficients since it does not require 

performing matrix inversion as well without transmit diversity only. 
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To propose a computationally efficient MMSE channel estimation algorithm 

for ST-OFDM and SF-OFDM systems focusing on transmit diversity OFDM 

transmissions through frequency selective fading channels. Again, the KL 

expansion scheme is employed in the development of the MMSE channel 

estimation algorithm for ST-OFDM and SF-OFDM systems in order to reduce 

the computational complexity. The complete analytical SER analysis for 2Tx-

1Rx antennas SF/ST-OFDM scheme, which have not appeared in the literature 

yet, is derived.

In the thesis, the performances of the proposed approaches are explored based on the 

evaluation of the stochastic Cramer Rao bound for the random KL coefficients and 

the effect of the modeling mismatch on the performances of the estimators is also 

presented.

1.3 Organization 

This thesis consists of five chapters, six appendices, and a bibliography. A brief 

summary of each chapter follows: 

Chapter 1 is the introduction including the previous works and the contributions of 

the thesis. 

Chapter 2 describes the fading channel types and includes their models needed for 

channel simulation. Basic principles of conventional OFDM systems are also 

included in this chapter.   

Chapter 3 introduces the basic concepts of OFDM systems and presents a 

mathematical model of a conventional OFDM system. According to this 

mathematical model, a computational efficient pilot aided truncated MMSE channel 

estimation algorithm for OFDM systems is proposed and the performance analysis of  

the estimator is given. As an original contribution Chapter 3 includes also a simple 

sequential MMSE estimation for the estimation of the multipath channel KL  
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expansion coefficients and the performance analysis of the sequential estimator. 

Simulation results for both batch and sequential MMSE channel estimators are also 

discussed.

Chapter 4 introduces space-time and space-frequency transmits diversity coding 

scheme employed in an OFDM system. In this chapter, a computational efficient 

pilot-aided truncated MMSE channel estimation algorithm for space-time / space-

frequency coded OFDM systems is proposed and the performance analysis is given. 

Simulation results for pilot aided truncated MMSE channel estimation algorithm for 

space-time / space-frequency coded OFDM systems are also given. 

Finally, Chapter 5 presents the conclusion and the further works. 
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Chapter 2 

Fading Channel Models and OFDM Principles 

In this section, both frequency and time correlation of a channel and their parameters 

will be given. First, fading types will be presented since channel correlations depend 

on fading types effecting the wireless channel. Then, a conventional OFDM systems 

being a superior solution to overcome frequency selective fading  will be introduced. 

The rapid fluctuation of the amplitude of a radio signal over a short period of time is 

described by fading. Interference between attenuated, reflected, refracted, and 

diffracted versions of the transmitted signal causes multipath fading. These signals 

are combined at the receiver antenna, and amplitude and phase of the resulting signal 

can very in amplitude and phase depend on the distribution of the intensity and 

relative propagation time of the waves and the bandwidth of the transmitted signal. 

The most important multipath fading effects can be given as: 

Multiple versions of the transmitted signals caused by multipath propagation 

delays.

Randomness in frequency because of Doppler shifts on different multipath 

signals.

Rapid changes in signal strength over a small time interval. 

There are many physical factors influencing fading. These factors can be 

summarized as follows: 

Reflecting objects and scatters in the channel creates a constantly changing 

environment that dissipates the signal energy in amplitude, phase and time. These 

effects result in multiple versions of the transmitted signal that arrive at the 
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receiving antenna, displaced with respect to one another in time and spatial 

orientation. This causes intersymbol interference (ISI) at the receiver side. 

The relative motion between the base station and the mobile results in random 

frequency modulation due to different Doppler shifts on each of the multipath 

components. Doppler shift can be positive or negative depending on the direction 

of the mobile receiver.

If surrounding objects in the radio channel are in motion, they causes a time 

varying Doppler shift on multipath components. If the surrounding objects move 

at a greater rate than the mobile, then this effect dominates fading. Otherwise, 

only the speed of the mobile need be considered.

If the transmitted radio signal bandwidth is greater than the “bandwidth” of the 

multipath channel, the received signal will be distorted. If the transmitted signal 

has a narrow bandwidth as compared to the channel, the amplitude of the signal 

will change rapidly, but the signal will not be distorted in time. As will be 

shown, the bandwidth of the channel can be quantified by the coherence

bandwidth, which is related to the specific multipath structure of the channel. The 

coherence bandwidth is a measure of the maximum frequency difference for 

which signals are still strongly correlated in amplitude.

2.1 Doppler Shift 

Consider a mobile receiver moving at a velocity v  from A to B and receiving signals 

from a source, as shown in Figure 2.1. t  is the time required for the mobile to 

travel from A to B, and  is assumed to be the same at points A and B because the 

source is assumed to be very far away. The phase change in the received signal due  

to the difference in path lengths is therefore 

)
)()(
cos(

t22
                                    (2.1) 

where  is the spatial angle, and hence the apparent change in frequency, or Doppler 
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shift df  is given as 

)(cos
t

fd
2

1
                                     (2.2)

and the maximum Doppler shift is mf / .

Figure 2.1 Illustration of Doppler Effect 

From Equation (2.2), It can be deduced that if the mobile receiver is moving toward 

the direction of arrival of the wave, the Doppler shift is positive (in other words, 

received frequency is increased), and if the mobile is moving away from the 

direction of arrival of the wave, the Doppler shift is negative (received frequency is 

decreased).

2.2 Multipath Channel Parameters 

The power delay profile plays an important role in the derivation of many multipath 

channel parameters. The power delay profile is the expected power per unit of time 

received with a certain excess delay.  
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2.2.1 Time Dispersion Parameters 

The time dispersive properties of multipath channels are most commonly quantified 

by their mean excess delay )(  and rms delay spread )( rms . The mean excess delay 

and rms delay spread are multipath channel parameters that can be determined from 

a power delay profile. The mean excess delay is the first moment of the power delay 

profile and is defined to be 

0

0

d

d

)(

)(

                                                     (2.3) 

The rms delay spread is the square root of the second central moment of the power 

delay profile and is defined to be

22
rms                 (2.4)

where

0

0

2

2

d

d

)(

)(

                                      (2.5)

In this thesis, the power delay profile for multipath channel will be characterized by 

an exponential function of excess delay  as follows 

rms/
Ce)(                 (2.6) 

where C is the power normalization constant. It should be noted that the power delay
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profile and the frequency domain correlation function of a mobile radio channel are 

related through the Fourier transform. We now assume that the excess delay is in the 

interval L0 . Then the frequency domain correlation function of the channel is 

)(

)()}({)(

)(

)(

ffj

e
Cdeffc

rms

ffjL
L

ffj
f

rms

2
1

1
2

1

0

2F          (2.7) 

where constant C  is calculated as  

rms

L

rms

L

e
d

C

1

11

0

)(

                                                        (2.8) 

for power normalization. Substituting (2.8) in (2.7), frequency domain correlation of 

the channel is obtained as follows, 

)(

)(

)(

ffje

e
ffc

rms

L

rms

ffjL

f

rms

rms

2
1

1

1
2

1

                                          (2.9) 

Replacing )( ff  by Kkk /)(  in (2.9), frequency domain discrete channel 

correlation can also be given as in Edfords et al. [3], 

K

kk
je

e
kkc

rms

L

rms

K

kk
jL

f

rms

rms

)(

)(

)(

21
1

1

21

          (2.10) 
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where K  is the number of the discrete frequency points in the channel bandwidth (or 

the number of the subcarriers in OFDM systems).In this thesis, discrete channel 

correlation in (2.10) is used in order to generate a multipath channel. 

Coherence bandwidth cB is also used to characterize the channel in the frequency 

domain, like delay spread parameters in the time domain. The rms delay spread rms

and coherence bandwidths are inversely proportional to one another. 

2.2.2 Coherence Bandwidth 

Coherence bandwidth cB , is a defined relation derived from the rms delay 

spread rms . Coherence bandwidth is a statistical measure of the range of frequencies 

over which the channel can be considered “flat”. In other words, the channel affects 

two sinusoids with frequency separation greater than cB  quite differently. If the 

coherence bandwidth is defined as the bandwidth over which the frequency 

correlation function is above 0.9, then the coherence bandwidth is approximately, 

rms
cB

50

1
              (2.11)

If the frequency correlation function is above 0.5, then the coherence bandwidth is 

approximately 

rms
cB

5

1
                                (2.12)

and also called as 50% coherence bandwidth. 

2.2.3 Coherence Time 

Coherence bandwidth and delay spread are parameters describing the time dispersive 

nature of the channel in a local area. They don’t offer information about the time 

varying nature of the channel caused by either relative motion between the mobile  
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and the base station, or by movement of objects in the channel. Doppler spread and 

coherence time are parameters describing the time varying nature of the channel. 

Coherence time Tc is the time domain dual of Doppler spread and is used to 

characterize the time varying nature of the frequency dispersiveness of the channel in 

the time domain. The Doppler spread and coherence time are inversely proportional 

to one another. That is, 

m

c
f

T
1

                                      (2.13) 

The definition of coherence time implies that two signals arriving with a time 

separation greater than Tc are affected differently by the channel. If the coherence 

time is defined as the time over which the time correlation function is above 0.5, then 

the coherence time is approximately, 

m
c

f
T

16

9
               (2.14) 

where mf  is the maximum Doppler shift. 

2.3 Fading Types 

The time dispersion and frequency dispersion structures of a mobile radio channel 

lead to four possible distinct fading effects. While multipath delay spread leads to 

time dispersion and frequency selective fading, Doppler spread leads to frequency

dispersion and time selective fading.

The two propagation mechanisms are independent of one another. According to the 

relation between the signal parameters (such as bandwidth, symbol period Ts, etc.) 

and the channel parameters (such as rms delay spread and Doppler spread), four 

types of fading can be defined. Figure 2.2 and Figure 2.3 show a tree of the four 

different types of fading. 
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Fading 

based on multipath delay spread 
     

    

Flat Fading Frequency Selective Fading 

1.) Signal Bandwidth < Channel Bandwidth     1.) Signal Bandwidth > Channel Bandwidth    
2.) Delay Spread < Symbol Period  2.) Delay Spread > Symbol Period 

Figure 2.2 Types of fading based on multipath delay spread 

2.3.1 Flat Fading 

If the channel has a constant gain and linear phase response over a bandwidth, which 

is greater than the bandwidth of the transmitted signal, then the received signal 

undergoes flat fading. Therefore, flat fading channels can be considered as having no 

excess delay. The most common instantaneous amplitude distribution of the channel 

is the Rayleigh distribution. To summarize, a signal undergoes flat fading if 

cs BB                                      (2.15) 

and

rmssymT                                                                       (2.16) 

where Tsym is the symbol period and Bs is the signal bandwidth, respectively, of the 

transmitted modulation, and rms  and Bc are the rms delay spread and coherence 

bandwidth, respectively, of the channel. 

2.3.2 Frequency Selective Fading 

If the channel impulse response has a multipath delay spread, which is greater than 

the symbol period, then the channel creates frequency selective fading on the 

received signal. When this occurs, the received signal includes multiple versions of 

the transmitted waveform, which are attenuated (faded) and delayed in time, and 

hence the received signal is distorted. Thus the frequencies selective fading channel
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results in intersymbol interference (ISI). For frequency selective fading, the spectrum 

of the transmitted signal has a bandwidth, which is greater than the coherence 

bandwidth of the channel. In other words, in the frequency domain, the channel 

becomes frequency selective, where the gain is different for different frequency 

components. To summarize, a signal undergoes frequency selective fading if 

cs BB                                                             (2.17) 

and

rmssymT                                      (2.18)  

Fading 

based on Doppler spread 
     

    

Slow Fading Fast Fading 

1.) Low Doppler Spread  1.) High Doppler Spread 
2.) Coherence Time > Symbol Period  2.) Coherence Time < Symbol Period 

Figure 2.3 Types of fading based on Doppler spread 

2.3.3 Slow Fading 

The radio channel is called as slow fading channel, if the Doppler spread of the 

channel is much less than the bandwidths of the baseband signal. This implies that 

the channel impulse response changes at a rate much slower than the transmitted 

baseband signal. In this case, the channel may be assumed to be static over one or 

several symbol durations. Therefore, a signal undergoes slow fading if 

csym TT                                                              (2.19) 

and

ds BB                (2.20) 

where dB  is the Doppler spread. 
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Note that the velocity of the mobile and the baseband signalling determines whether 

a signal undergoes fast fading or slow fading.  

2.3.4 Fast Fading 

In a fast fading channel, the channel impulse response changes rapidly within the 

symbol duration. That is, the coherence time of the channel is smaller than the 

symbol period of the transmitted signal. Signal distortion due to fast fading increases 

with increasing Doppler spread relative to the bandwidth of the transmitted signal. 

Therefore, a signal undergoes fast fading if 

csym TT                (2.21) 

and

ds BB                                                             (2.22) 

Fast fading only deals with the rate of change of the channel due to motion. In the 

case of the flat fading channel, we can approximate the impulse response to be 

simply a delta function (no time delay). Hence a flat - fast fading channel is a 

channel in which the amplitude of the delta function varies faster than the rate of the 

change of the transmitted baseband signal. In the case of a frequency selective - fast 

fading channel, the amplitudes, phases, and time delays of any one of the multipath 

components vary faster than the rate of change of the transmitted signal. Possible 

combinations of these fadings are illustrated in Figure 2.4 and Figure 2.5. 
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Figure 2.4 Matrix illustrating type of fading as a function of symbol period 

Figure 2.5 Matrix illustrating type of fading as a function of baseband signal 

bandwidth

2.4 Doppler Power Spectrum 

Let )()( ddf fdfp
d

 and )()( dp  denote percent of received power within d  and  

)( dfd  respectively. Where  is the angle of arrival and )(df  is the instantaneous 

Doppler frequency )()( cosff md  as in (2.2). Usually we have no information to 

specify that one angle of arrival is more likely than another, so we take  to be
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uniformly distributed ( )(p =
2

1
). Total received power (as percent) in the interval 

fff dm  can be expressed as 

)/(

)/(

)()()()()()(

m

mm

d

ffarccos

ffarccos

f

f
ddf dpdpfdfp               

)/(

)/(

)()(
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1
         (2.23) 

Differentiating Equation (2.23) with respect to f

df

ffarccosd
fp m

fd

))/((
)(

1

22

1

ffm

  , mff ||           (2.24) 

Doppler power spectrum )(fS  can be obtained as follows 

)()( fpPfS
dfR                          (2.25) 

where RP is total received power. Therefore, as a result Doppler power spectrum 

around the carrier frequency is 

22
)(

)(

cm

R

fff

P
fS  , mc f|ff|                                                       (2.26) 

Doppler spectrum around carrier frequency cf  is shown in Figure 2.6.  
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fcfc - fm fc + fm

f

S( f )

Figure 2.6 Doppler power spectrum around carrier frequency cf

The autocorrelation function due to Doppler spread is the inverse Fourier transform 

of the Doppler power spectrum. Thus, the autocorrelation function is

)t-(tc t = )}({ fS1-F }{
22 ff

P

m

R1-F

)( ttfP mR 20J            (2.27) 

where .0J  is the zero th order Bessel function. In thesis, total received power 

RP will be normalized. Therefore, the autocorrelation function for normalized power 

is

)t-(tc t )( ttfm20J              (2.28) 

Replacing )( tt  by sTnn )( , time domain discrete channel autocorrelation can 

also be given as 

)n-(nc t sm Tnnf )(20J             (2.29) 
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where sT  denotes the sampling period. In this thesis, discrete autocorrelation of the 

transmit diversity OFDM systems will be given by (2.29).  

2.5 Basic Principles of OFDM 

OFDM originated from the need of efficient communications through a frequency-

selective fading channel. A channel is frequency-selective if the frequency response 

of the channel changes significantly within the band of the transmitted signal. While, 

a constant frequency response is called flat fading. Figure 2.7.a, b exemplifies the 

frequency-selective and flat fading channels. Digitally modulated signals going 

through a frequency-selective channel will be distorted, resulting in intersymbol 

interference (ISI). To mitigate the ISI, a complex equalizer is usually needed to make 

the frequency response of the channel flat within the bandwidth of interest; or the 

symbol duration must be long enough so that the ISI affected portion of a symbol can 

be negligible. From the frequency domain viewpoint, the latter approach means to  

transmit a narrow band signal within whose bandwidth the channel can be well 

considered to be flat fading, as shown in Figure 2.7.d.

This fact gives the idea that one can transmit several low rate data streams, each at a 

different carrier frequency through the channel in parallel and each data stream is ISI 

free and only a simple one tap equalizer is need to compensate the flat fading. This 

idea is illustrated in Figure 2.8. That is actually the idea of Frequency Division 

Multiplexing (FDM).  

However, this multi-carrier transmission scheme may suffer inter carrier interference 

(ICI), i.e., the signals of neighboring carriers may interfere each other. To avoid the 

ICI, guarding bands are employed in FDM to separate different sub-carriers.

This results in a waste of the spectrum. OFDM follows the very similar multi-carrier 

modulation strategy. However, it employs the orthogonality among sub-carriers to 

eliminate the ICI without the need of the guarding bands. 
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 (a) A frequency selective fading channel  (b) A flat fading channel 

(c) Modulated signal     (d) Narrow band signal

Figure 2.7 Signals transmitted through frequency-selective channels 

Figure 2.8 Multi carrier modulation scheme 
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Figure 2.9 Frequency Division Multiplexing System

As illustrated in Figure 2.9, frequency-multiplexed digitally modulated signals in one 

symbol duration are of the form 

1
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k
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tfj2
ek)X(n,ts )( , symsym 1)T(ntnT (2.30)

where K information symbols k)X(n, , k=0, …, K-1 are transmitted simultaneously 

and are considered a block, n indicates index block, kf  is the k th sub-carrier, and 

Tsym is the OFDM symbol duration.

In OFDM signaling, the following orthogonality condition is satisfied, 
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That means the space between the frequencies of the sub carriers should be 
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Note that the smallest space for orthogonality is equal to the symbol rate symT1/ .

With the orthogonality, each sub carrier can be demodulated independently without 

ICI. It should be noted that the passbands of the subcarriers may overlap in OFDM, 

as shown in Figure 2.10.

Figure 2.10 An OFDM system with K subcarriers 

This allows one to pack the sub carriers into a given spectral band in a densest 

fashion, so a high spectral efficiency is achieved. Figure 2.11 illustrates the 

difference between the conventional non-overlapping multi carrier technique and the 

OFDM.

OFDM signal (t)sn  in (2.30) can also be obtained using a digital method, as shown 

in Figure 2.12, if we note that the symT/K  rate samples of (t)sn  is the Inverse Fast 

Fourier Transform (IFFT) of the information symbols k)X(n, , k=0, …, K-1,
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(a) conventional multicarrier 

(b) OFDM

Figure 2.11 Comparison between conventional multi carrier technique and OFDM 

Figure 2.12 FFT implementation of transmitted waveform 

Then, the FFT algorithm makes the implementation of the OFDM scheme very 

efficient. In addition to the high spectral efficiency and simple equalization, the 

advantages of OFDM include: 
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OFDM can easily achieve optimal “bit-loading”, i.e., assign different power and 

constellation size to each sub-carrier to enhance system capacity. 

OFDM is robust against narrow band interference because such interference 

affects only sum of the sub carriers. 

OFDM allows efficient FFT implementation. 
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Chapter 3 

Ofdm Channel Estimation by Karhunen Loeve Expansion 

OFDM is a multicarrier modulation technique (or a multiplexing technique) where a 

single data stream is transmitted over a number of lower rate subcarriers. One of the 

main reasons to use OFDM is to increase the robustness against frequency selective 

fading. In a single carrier system, a single fade can cause the entire channel to fail, 

but in a multicarrier system, only a small percentage of the subcarriers will be 

affected.

In order to eliminate ISI arising due to multipath channel and preserve orthogonality 

of the subcarrier frequencies (tones), conventional OFDM systems first take the IFFT 

of data symbols and then insert redundancy in the form of a Cyclic Prefix (CP) of 

length LCP larger than the channel order L. CP is discarded at the receiver and the 

remaining part of the OFDM symbol is FFT processed. Combination of IFFT and CP 

at the transmitter with the FFT at the receiver divides the frequency-selective channel 

into several separate flat-fading subchannels.

An OFDM system with K subcarriers is considered for the transmission of K parallel 

data symbols. Thus, the information stream is parsed into K long blocks: 

T
n KnXnXnX ),(...,),,(),,( 110X  where n = 1, 2,  ...  is the block index and the 

superscript (.)T indicates the vector transpose. The  1K   symbol block is then 

mapped to a 1L)(K  vector by first taking the IFFT of Xn and then replicating the 

last LCP elements as 

T
CPnnnn LKsss )(...,),(),( 110s              (3.1) 
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ns  is serially transmitted over the channel. At the receiver, the CP of length LCP is 

removed first and FFT is performed on the remaining 1K  vector. Therefore, the 

output of the FFT unit in matrix form can be written as 

nnnn HAY                                               (3.2) 

where nA  is the diagonal matrix  }diag{ nn XA  and nH  is the channel vector. The 

elements of nH  are the values of the channel frequency response evaluated at the 

subcarriers.  

Figure 3.1 OFDM system block diagram 

Therefore,
TKKjKj

n enHenHnH ),(,...),,(),,(
/)(/ 1220H  can be written as 

nn hH F  where F is the FFT matrix with (k,i) entry Kkije /2  and 

T
nnnn Lhhh )(,...),(),( 110h . nh  modeled as a complex Gaussian vector with 

)(n hC,0h N~  represents the overall channel impulse response during the nth

OFDM block. Finally, n  is a 1K  zero-mean, i.i.d complex Gaussian vector that 

models additive noise in the K subchannels (tones), and E[ †

nn ]= K
2
I where IK

represents an KK  identity matrix, 2  is the variance of the additive noise entering 

the system and the superscript †(.)  indicates the Hermitian transpose. Based on the 

model (3.2), main objective in this work is to develop both batch and sequential 
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pilot-aided channel estimation algorithm according to MMSE criterion and then 

explore the performance of the estimators. A batch approach adapted herein 

explicitly models the channel parameters by the KL series representation and 

estimates the uncorrelated expansion coefficients. Furthermore, the computational 

load of the proposed MMSE estimation technique is further reduced with the 

application of the KL expansion optimal truncation property, Yip and Ng [9].

3.1 Batch MMSE Channel Estimator 

A low-rank approximation to the frequency-domain linear MMSE channel estimator 

is provided by Edfords et al. [3] to reduce the complexity of the estimator. Optimal 

rank reduction is achieved in this approach by using the singular value 

decomposition (SVD) of the channel attenuations covariance matrix CH of dimension 

KK . In contrast, the MMSE estimator is adopted for the estimation of multipath 

channel parameters h that uses covariance matrix of dimension LL . The proposed 

approach employs KL expansion of multipath channel parameters and reduces the 

complexity of the Singular Value Decomposition (SVD) used in eigen 

decomposition since L is usually much less than K. MMSE batch estimator will be 

now developed for pilot assisted OFDM system in the sequel. 

3.1.1 MMSE Multipath Channel Estimator 

Pilot symbol assisted techniques can provide information about an under sampled 

version of the channel that may be easier to identify. In this thesis, the problem of 

estimating multipath channel parameters is addressed by exploiting the distributed 

training symbols. Considering (3.2), and in order that the pilot symbols are included 

in the output vector for the estimation purposes, let us focus on an under-sampled 

signal model. Assuming Kp pilot symbols are uniformly inserted at known locations 

of the ith OFDM block, the 1Kp  vector corresponding to the FFT output at the 

pilot locations becomes 

hFAY                                                   (3.3) 
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where T
piii KAAA ))((...,),(),( 10A  is a diagonal matrix with pilot symbol 

entries  is pilot spacing interval, F is an LKp  FFT matrix generated based on 

pilot indices, and similarly  is the under-sampled noise vector. 

For the estimation of  h, the new linear signal model can be formed by 

premultiplying both sides of (3.3) by †A  and assuming pilot symbols are taken from 

a Phase Shift Keying (PSK) constellation 
pK

†
IAA , then the new form of (3.3) 

becomes 

FhYA ††

FhY
~~

                                                                                        (3.4) 

where Y
~

 and ~  are related to Y  and  by the linear transformation respectively. 

Furthermore, ~  is statistically equivalent to .

Equation (3.4) offers a Bayesian linear model representation. Based on this 

representation, the minimum variance estimator for the time-domain channel vector 

h for the ith OFDM block, i.e., conditional mean of h given Y
~

, can be obtained 

using MMSE estimator. Let us clearly make the assumptions that )( hC,0h N~  ,  

)( C,0 ~
~ ~ N  and h is uncorrelated with ~ . Therefore, MMSE estimate of h is 

given by Kay[11]: 

YCFCFCFh h

~ˆ
~~
1111 ††

)(                                      (3.5) 

For details of the derivation of (3.5) the reader is referred to Appendix A, where 

summary results of Bayesian estimation are presented. Due to PSK pilot symbol 

assumption together with the result  C~  = E[ †~~ ] = pK
2
I  , (3.5) is therefore 

expressed  by 
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YFCFFh h

~ˆ
††

)( 112                                      (3.6) 

Under the assumption that uniformly spaced pilot symbols are inserted with pilot 

spacing interval  and pKK , correspondingly, FF
†

 reduces to LpK IFF
†

.

Then according to (3.6) and LpK IFF
†

, following expression is obtained 

YFCh h

~ˆ
†

)K( Lp
112

I                                      (3.7) 

Since MMSE estimation still requires the inversion of 1
hC , it therefore suffers from 

a high computational complexity. However, it is possible to reduce complexity of the 

MMSE algorithm by diagonalizing channel covariance matrix with a KL expansion. 

3.1.2 Karhunen Loeve Expansion of Multipath Channel 

Channel impulse response h is a zero-mean Gaussian process with covariance matrix 

h
C . The KL transformation is therefore employed here to rotate the vector h so that 

all its components are uncorrelated. The vector h, representing the channel impulse 

response during ith OFDM block, can be expressed as a linear combination of the 

orthonormal basis vectors as follows: 

1

0

L

g gh                                       (3.8) 

where 110 L,...,,  , ’s are the orthonormal basis vectors, g = [g0, g1,

...gL-1]
T, and g ’s are the weights of the expansion. If the covariance matrix 

h
C  is 

formed as 

†
ghC                                                   (3.9) 
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where g =E [ †gg ], the KL expansion is the one in which g  of  
h
C  is a diagonal 

matrix (i.e., the coefficients are uncorrelated). If g  is diagonal, then the form 

†
g  is called an eigen decomposition of

h
C . The fact that only the eigenvectors 

diagonalize
h
C  leads to the desirable property that the KL coefficients are 

uncorrelated. Furthermore, in Gaussian case, the uncorrelateness of the coefficients 

renders them independent as well, providing additional simplicity. 

Thus, the channel estimation problem in this application is equivalent to estimating 

the independent identical distributed complex Gaussian vector g, KL expansion 

coefficients. 

3.1.3 Estimation of Karhunen Loeve Coefficients 

In contrast to (3.4) in which only h is to be estimated, let us now assume the KL 

coefficients g is unknown. Thus the data model (3.4) is rewritten for each OFDM 

block as 

gFY
~~

                                                (3.10) 

which is also recognized as a Bayesian linear model, and recall that 

)( g,0g N~ . As a result, the MMSE estimator of g is 

YFg gg
~

)K(ˆ ††
Lp I

12

YF
~††                                                 (3.11) 

where

12 )K( Lp Igg                                    (3.12) 
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2
1

1

2
0

0

K
,...,

K
diag

pL

L

p

and 110 L,...,,  are the singular values of g .

It is clear that the complexity of the MMSE estimator in (3.7) is reduced by the 

application of KL expansion. However, the complexity of the ĝ  can be further 

reduced by exploiting the optimal truncation property of the KL expansion, Yip and 

Ng [9]. MMSE estimator of g requires LLKL p 244 2  real multiplications. From 

the results presented in Morelli and Mengali [4], ML estimator of g is obtained as 

follows: 

YFg
~

K

1
ˆ

p

††                                                            (3.13) 

Note that, according to (3.13), the ML estimator of g requires pLKL 44 2 real

multiplications. 

3.1.4 Truncated MMSE Channel Estimator 

A truncated expansion rg  can be formed by selecting r orthonormal basis vectors 

among all basis vectors that satisfy ghC . The optimal one that yields the 

smallest average mean-squared truncation error 
L

1
E[ rr

† ]  is the one expanded with 

the orthonormal basis vectors associated with the first largest r eigen values as given 

by

L

1
E[ rr

† ]
11 L

ri
i

L
                                               (3.14) 

where rr gg . For the problem at hand, truncation property of the KL expansion 
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results in a low-rank approximation as well. Thus, a rank-r approximation to 
rg
 is 

defined as 

00110 ,...,,,...,,diag rrg
                                                        (3.15) 

Since the trailing L-r variances 1L
r}{  are small compared to the leading r

variances 1
0

r
}{ , then the trailing L-r variances are set to zero to produce the 

approximation. However, typically the pattern of eigen values for g splits the 

eigenvectors into dominant and subdominant sets. Then the choice of r is more or 

less obvious. The optimal truncated KL (rank-r) estimator of (3.11) now becomes 

YFg
~

ˆ ††
rr                                                            (3.16) 

where

12 )K( Lrprr Igg                                                          (3.17) 

00
2

1

1
2

0

0 ...,,,
K

,...,
K

diag

pr

r

p

Since the ultimate goal is to obtain MMSE estimator for the channel frequency 

response H, from the invariance property of the MMSE estimator, it follows that if ĝ

is the estimate of g, then the corresponding estimate of H can be obtained for the i th

OFDM block as 

gH ˆˆ F                           (3.18) 

Thus, from (3.16) and (3.17), the truncated MMSE estimator of g requires 

rLKLr p 244  real multiplications. 
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3.1.5 Performance Analysis 

Let us turn our attention to analytical performance results of the batch MMSE 

approach. First, the CRLB and derive the closed-form expression for the random KL 

coefficients will be considered, and then the performance of the MMSE channel 

estimator based on the evaluation of minimum Bayesian MSE will be exploited. 

3.1.5.1 Cramer-Rao Bound for Karhunen Loeve Coefficients

The mean-squared estimation error for unbiased estimation of a nonrandom

parameter has a lower bound, the Cramer-Rao Lower Bound (CRLB), which defines 

the ultimate accuracy of unbiased estimation procedure.  

Suppose ĝ  is an unbiased estimator of a vector of unknown parameters g (i.e. E[ ĝ ]

= g) then the mean-squared error matrix is lower bounded by the inverse of the 

Fisher information matrix (FIM): 

E[
†

))(( gggg ˆˆ ] )ˆ(gJ-1                        (3.19) 

Since the estimation of unknown random parameters g via MMSE approach is 

considered in this work, the modified FIM needs to be taken into account in the 

derivation of stochastic CRLB, Van Trees [12], and Senol et al. [17]. Fortunately, the 

modified FIM can be obtained by a straightforward modification of (3.19) as, 

)()()( PM gJgJgJ                                                    (3.20) 

where )(P gJ  represents the a priori information. 

Under the assumption that g and ~  are independent of each other and ~  is a zero-

mean, from Van Trees [12],  Senol et al. [17] and (3.10) the conditional PDF is given 

by
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†1

K
)-()--(exp

C
)p(

p
gFYCgFYgY

~~

||

|
~

~

~

-1
                          (3.21) 

from which the derivatives follow as 

)-
~

()-
~

(
)

~
(pln 1

~
†

T
gFYCgFY

g

gY -|
                                             (3.22) 

FCF-
gg

gY 1
~

††

T*

)
~

(pln -|
2

                                                                   (3.23) 

where the superscript (.)* indicates the conjugation operation. 

Using
pKI

2C~ , L

†

I  and LpK
†

IFF  and taking the expected value 

yields the following simple form: 

)(gJ - E[
T

pln

gg

gY
*

)
~

( |2

]

        = - E[ - L
pK

I
2

]

        = L
pK

I
2

                               (3.24) 

Second term in  (3.20) is easily obtained as follows. Consider the prior PDF of  g  as, 

 }{exp
||

)p( †

L
ggg g

g

11
                                             (3.25) 

The respective derivatives are found as 

1-†

T
-

)p(ln
gg

g

g
                       (3.26) 
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1-

T
-

)p(ln
g

gg

g
*

2

                                               (3.27) 

Upon taking the negative expectations, second term in (3.20) becomes 

)(P gJ  = - E[
T

)p(ln

gg

g
*

2

]

= - E[ -1- g ]

= -1
g                                                                       (3.28) 

Substituting (3.24) and (3.28) in (3.20) produces for the modified FIM as follows 

)()()( pM gJgJgJ

1-
L

pK
gI

2

)(K Lp
12

2

1
gI

1
2

1
                                                      (3.29) 

Inverting the matrix )(M gJ  yields

)()CRLB( M gJg 1ˆ

2                                                                                 (3.30) 

3.1.5.2 Bayesian MSE 

For the MMSE estimator ĝ, the error is 

gg ˆˆ                                      (3.31) 
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Since the diagonal entries of the covariance matrix of the error represent the 

minimum Bayesian MSE, let us now derive covariance matrix C ˆ  of the error 

vector. From the Performance of the MMSE estimator for the Bayesian Linear model 

Theorem, Kay[11], the error covariance matrix is obtained as 

))()((
†

FCFC g
11

~ˆ

122 )(K -1
Lp gI

2                                      (3.32) 

and then the minimum Bayesian MSE of the full rank estimator becomes (see 

Appendix A) 

)trace(
L

)(BMSE Cg ˆ
ˆ

1 1

0

2

1

11 L

i ip

i

SNRKL
)trace(

L
        (3.33) 

where 21/SNR .

Comparing (3.30) with (3.32), the error covariance matrix of the MMSE estimator 

coincides with the stochastic CRLB of the random vector estimator. Thus, ĝ

achieves the stochastic CRLB. 

As the details are given in Appendix A, )(MSE gB ˆ  given in (3.33) can also be 

computed for the truncated (low-rank) case as follows: 

11

0

1

1

1 L

ri
i

r

i ip

i
MSE

LSNRKL
)( rgB ˆ                                  (3.34) 

Notice that, the second term in (3.34) is the sum of the powers in the KL transform 

coefficients not used in the truncated estimator. Thus, truncated )( rMSE gB ˆ  can be 

lower bounded by 
11 L

ri
i

L
 which will cause an irreducible error floor in the SER 

results.
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3.1.6 Mismatch Analysis 

Once the true frequency-domain correlation, characterizing the channel statistics and 

the SNR, are known. However, in mobile wireless communications, the channel 

statistics depend on the particular environment, for example, indoor or outdoor, 

urban or suburban, and change with time. Hence, it is important to analyze the 

performance degradation due to a mismatch of the estimator to the channel statistics 

as well as the SNR, and to study the choice of the channel correlation, and SNR for 

this estimator so that it is robust to variations in the channel statistics. As a 

performance measure, uncoded Symbol Error Rate (SER) is used for QPSK 

signaling. The SER expression for this case is given in Proakis [13] as a function of 

the SNR and the average )(BMSE ĝ  as follows: 

)(arctanSERQPSK
24

3
                                             (3.35) 

where

)
SNR

())(( MSEg

g

2
1gB ˆ

and g  represents the normalized variance of the channel gains )(
L

i
ig 1

1

0

 and 

21/SNR . In practice, the true channel correlations and SNR are not known. If 

the  MMSE channel estimator is designed to match the correlation of a multipath 

channel impulse response 
h

C~  and SNR, but the true channel parameters h
~

 has the 

correlation 
h

C~  and the true 
~

SNR , then average Bayesian MSE for the designed 

channel estimator is obtained as (see Appendix B and C)  
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SNR mismatch: 

~
ˆ

SNR

SNR
K

SNR)K(L
)(B ip

L

i ip

i
MSE

21

0
2

1
1

1
g                       (3.36) 

Correlation mismatch: 

1

0 1

21 L

i ip

iiiipi
MSE

SNRK

)
~

(SNRK
~

L
)ˆ(gB                                 (3.37) 

where i

~
 is the ith diagonal element of 

hg C~
†

~ , and i  is ith diagonal 

element of the real part of the cross correlation matrix between g~ and g.

3.2 Sequential MMSE Channel Estimator 

Let us now turn our attention to the derivation of the sequential MMSE algorithm 

with simple structure. The sequential MMSE approach is proposed in this work to 

follow the channel variations by exploiting only channel correlations in frequency. 

The block diagram for this is shown in Figure 3.2. To begin with the algebraic 

derivation, let us use (3.10) to write m th component of Y
~

 as

m(m)m † guY
~~

                                               (3.38) 

where (m)†u  is the mth row of  F  and ~ [m] is the mth element of the noise 

vector ~ .

If a MMSE estimator of Y
~

[m+1] can be found based on Y
~

[m], denoted for mm |

~̂

1Y ,

the prediction error mmm m |

~̂~

11 1 YYf  will be orthogonal to mY
~

. Therefore 

g can be projected onto each vector separately and add the results, so that 

111 mmmm fˆˆ gg
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))(mm( m
†

mm guYg ˆ
~

ˆ 111                       (3.39) 

where 1mĝ  is the (m+1)th estimate of g, and 1m  is the gain factor given as 

21
11

1

)(m)(m

)(m

m
†

m
m

uMu

uM
                                                          (3.40) 

Figure 3.2 Block diagram of sequential MMSE estimator 

It can be seen that mM = E[
†

))(( mm gggg ˆˆ ] is needed in (3.40), hence update 

equation for the minimum MSE matrix should also be given. If (3.39) is substituted 

in 1mM = E[
†

))(( mm 11 gggg ˆˆ ], an update equation for 1mM  is obtained as 

m
†

mLm ))(m( MuM 111 I                         (3.41) 

Based on these results, the steps of the sequential MMSE estimator for g can be 

summarized as follows: 

Initialization: Set the parameters to some initial value 00ĝ , gM0

1. Compute the gain 1m  from (3.40) 

2. Update the estimate of g from (3.39) 
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3. Update the minimum MSE matrix from (3.41). 

4. Repeat step 1 - step 3 until m = Kp - 1.

Some remarks and observations are now in order: 

i.No matrix inversions are required. 

ii. Since the MMSE estimator (3.11) requires FF
†

 being equal to LpK I  which is 

satisfied only when pKK /  is an integer. However, the sequential version of 

(3.11) works as long as LK / .

Let us now analyze the complexity of the sequential MMSE algorithm. It follows 

from (3.40) in step 1 that one needs 4L2+5L real multiplications to compute the gain. 

Similarly, from (3.39) in step 2, it requires 5L real multiplications for the estimator 

update. Finally, in step 3, 8L2 real multiplications are needed for the MMSE matrix 

update. Therefore, the total sequential MMSE algorithm requires 12L2 + 10L real 

multiplications for one iteration. 

3.2.1 Performance Analysis 

Let us turn our attention now to the performance analysis of the adaptive algorithm. 

Its convergence properties will be evaluated in terms of mean square error. From 

(3.40) and (3.41),

)(m))(m( m
†

mLm 111
2

1 uMuI

)(mm 11uM                                    (3.42) 

is concluded. Substituting (3.42) in (3.40), following result is found.  

12

2

1 1
11

Lxm

m
†m )(m

)(m)(m
0uM

uMu
M                         (3.43) 
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Based on (3.43) the following recursion is obtained, 

m

m
†m

)(m)(m
M

uMu
M

2

2

1
11

mmm M|1                          (3.44) 

Due to positive definite property of error covariance matrix mM  it follows that 

011 )(m)(m m
† uMu . As a result 10 1mm | . Define average MSE at the 

mth step as )tr(
L

MSE mm M
1

, then it follows from (3.44) that  

mm|mm MSEMSE 11                                    (3.45) 

Thus, as m , 0mMSE . That means mĝ  converges to g in the mean square. 

3.3 Simulation Results 

In this chapter, the merits of proposed channel estimators are illustrated through 

simulations. Let us choose average mean square error (MSE) and symbol-error rate 

(SER) as the figure of merits.  

The fading multipath channel with L paths given by (3.46) with an exponentially 

decaying power delay profile rms/
Ce)(  with delays  that are uniformly 

and independently distributed over the duration LCP is considered. Note that h is 

chosen as complex Gaussian leading to a Rayleigh fading channel with root mean 

square (rms) width rms  and normalizing constant C. In (2.10) and Edfords et al. [3], 

it is shown that the normalized exponential discrete channel correlation for different 

subcarriers is 
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           (3.46)  

The scenario for the simulation study consists of a wireless QPSK OFDM system 

employing the pulse shape as a unit-energy Nyquist root raised cosine shape with roll 

off 20. , with a sampling period (Ts)  of 0.120 s , corresponding to an uncoded 

symbol rate of 8.33 Mbit/s. Transmission bandwidth(5 MHz) is divided into 1024 

tones. Let us assume that the fading multipath channel has L=40 paths with an 

exponentially decaying power delay profile (3.46) with a 5rms  sample (0.6 s )

long.

3.3.1 Batch MMSE Approach 

A QPSK-OFDM sequence passes through channel taps and is corrupted by Additive 

White Gaussian Noise (AWGN), (0dB, 5dB, 10dB, 15dB, 20dB, 25dB and 30dB 

respectively). A pilot symbol for every twenty 20  symbols is used. The MSE at 

each SNR point is averaged over 1000 realizations. The experimental MSE 

performance and its theoretical Bayesian MSE of the proposed full-rank MMSE 

estimator are compared with ML estimator and its corresponding CRLB. Figure 3.3 

confirms that MMSE estimator performs better than ML estimator at low SNR. 

However, the two approaches have comparable performance at high SNRs.  

To observe the performance, the MMSE and ML estimated channel SER results 

together with theoretical SER are also presented in Figure 3.4.

Due to the fact that spaces between the pilot symbols are not chosen as a factor of the 

number of subcarriers, an error floor is observed in Figure 3.3 and Figure 3.4. In the 

case of choosing the pilot space as a factor of number of subcarriers, the error floor 

vanishes because of the fact that the orthogonality condition between the subcarriers 
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at pilot locations is satisfied. In other words, the curves labeled as simulation results 

for MMSE estimator and ML estimator fit to the theoretical curve sat high SNRs. It 

also shows that the MMSE estimated channel SER results are better than ML 

estimated channel SER especially at low SNR. 

3.3.1.1 SNR Design Mismatch

In order to evaluate the performance of the proposed full-rank MMSE estimator to 

mismatch only in SNR design, the estimator is tested when SNRs of 10 and 30 dB 

are used in the design. The SER curves for a design SNR of 10, 30dB are shown in 

Figure 3.5. The performance of the MMSE estimator for high SNR (30 dB) design is 

better than low SNR (10 dB) design across a range of SNR values (0 - 30 dB). These 

results confirm that channel estimation error is concealed in noise for low SNR 

whereas it tends to dominate for high SNR. Thus, the system performance degrades 

especially for low SNR design. 

3.3.1.2 Correlation Mismatch 

In order to analyze full-rank MMSE estimator's performance further, sensitivity of 

the estimator to design errors needs to be studied, i.e., correlation mismatch. 

Therefore the estimator is designed for a uniform channel correlation which gives the 

worst MSE performance among all channels Edfords et al. [3], Li et al. [5] and 

evaluated for an exponentially decaying power-delay profile. The uniform channel 

correlation between the attenuations can be obtained by letting rms  in (3.46), 

resulting in 

K

kkL
j

K

kkL
jexp

kkc f
)(

)
)(

(

)(
2

2
1

                       (3.47) 

Figure 3.6 and Figure 3.7 demonstrate the estimator's sensitivity to the channel 

statistics in terms of average MSE and SER performance measures respectively. As it  
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can be seen from Figure 3.6 and Figure 3.7 only small performance loss is observed 

for low SNRs when the estimator is designed for mismatched channel statistics. This 

justifies the result that a design for worst correlation is robust to mismatch. 

3.3.1.3 Performance of the Truncated Estimator

The truncated estimator performance is also studied as a function of the number of 

KL coefficients. Figure 3.8 presents the MSE result of the truncated MMSE 

estimator for SNR=10, 20 and 30 dB. If only a few expansion coefficients is 

employed to reduce the complexity of the proposed estimator, then the MSE between 

channel parameters becomes large. However, if the number of parameters in the 

expansion is increased, the irreducible error floor still occurs.  

3.3.2 Sequential MMSE Approach 

The MSE results of the sequential full-rank MMSE algorithm are obtained and 

presented in shown in Figure 3.9. In order to better evaluate the performance of the 

proposed sequential MMSE estimation algorithm, it is compared with previously 

developed least mean square (LMS) and recursive least squares (RLS) recursive 

algorithms. It can be seen from simulations that recursive MMSE estimator yields 

better performance than LMS and RLS approaches and achieves Bayesian MSE 

especially for low SNR. 

For the convergence of the proposed adaptive algorithm, MSE versus iteration is 

plotted for SNR=10, 20, 30 and 40 dB in the Figure 3.10. As expected, the proposed 

sequential algorithm converges faster for high SNR values. 

Finally, the performance of the algorithm will be evaluated for different values of 

pilot spacing 10, 20, 30, 40, and 50 by plotting the MSEs and SERs with respect to 

SNR in the Figure 3.11 and Figure 3.12 respectively. For the values pilot spacing 

larger than
L

K
, the SER and MSE performances decrease as  increases. 
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Figure 3.3 Performance of pProposed MMSE and MLE together with BMSE and 

CRLB

Figure 3.4 Symbol Error Rate results 
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Figure 3.5 Effects of SNR design mismatch on SER 

Figure 3.6 Effects of correlation mismatch on MSE 



48

Figure 3.7 Effects of correlation mismatch on SER 

Figure 3.8 MSE as a function of KL expansion coefficients 



49

Figure 3.9 MSE sequential MMSE performance 

Figure 3.10 Convergence of the sequential MMSE estimator 
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Figure 3.11 Performance of the sequential MMSE for different pilot spacing 

Figure 3.12 Symbol Error Rate of the sequential MMSE for different pilot spacing 
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Chapter 4 

Channel Estimation for OFDM System with Transmit Diversity 

In this section, we consider a transmit diversity scheme in conjunction with OFDM 

signaling. Many transmit diversity schemes have been proposed in the literature 

offering different complexity vs. performance trade-offs. Alamouti's transmit 

diversity scheme is chosen in this thesis due to its simple implementation and good 

performance, Alamouti [15]. The Alamouti's scheme imposes an orthogonal spatio-

temporal structure on the transmitted symbols that guarantees full (i.e., order 2) 

spatial diversity. 

We consider the Alamouti transmit diversity coding scheme, employed in an OFDM 

system utilizing K subcarriers per antenna transmissions. Note that K is chosen as an 

even integer. The fading channel between the th transmit antenna and the receive 

antenna is assumed to be frequency selective and is described by the discrete-time 

baseband equivalent impulse response T
L nhnhn )(,...),()( ,,0h  with L

standing for the channel order. 

Each time index n, the input serial information symbols with symbol duration Ts is 

converted into a data vector T
),X(n,K...),X(n,(n) 10X  by means of a serial-to-

parallel converter. Its block duration is KTs. Moreover, ),( knX  denote the kth

forward polyphase component of the serial data symbols, i.e, )(),( knKkn XX

for k=0,1,2,...,K-1 and n=0,1,2,...,N-1.
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Polyphase component ),( knX  can also be viewed as the data symbol to be 

transmitted on the kth tone during the block instant n. The transmit diversity encoder 

arranges )(X n  into two vectors )(n1X  and )(n2X  according to a appropriate coding 

scheme described in Alamouti [15], Lee and Williams [20]. The coded vector )(n1X

is modulated by an IFFT into an OFDM sequence. Then cyclic prefix is added to the 

OFDM symbol sequence, and the resulting signal is transmitted through the first 

transmit antenna. Similarly, )(n2X  is modulated by IFFT, cyclically extended, and 

transmitted from the second transmit antenna. 

At the receiver side, the antenna receives a noisy superposition of the transmissions 

through the fading channels. We assume ideal carrier synchronization, timing and 

perfect symbol-rate sampling, and the cyclic prefix is removed at the receiver end. 

The generation of coded vectors )(n1X  and )(n2X  from the information symbols 

lead to corresponding transmit diversity OFDM scheme. In our system, the 

generation of )(n1X  and )(n2X  is performed via the space-frequency coding and 

space-time coding respectively, which were first suggested in Alamouti[15] and later 

generalized in Liu et al. [21], Bolcskei and Paulraj [22]. 

4.1 Space-Frequency Coding in OFDM Systems 

We first consider a strategy, which basically consists of coding across OFDM tones 

and is therefore called space frequency coding Lee and Williams [20], Liu et al. [21], 

Bolcskei and Paulraj [22]. Resorting to coding across tones, the set of generally 

correlated OFDM subchannels is first divided into groups of subchannels. This 

subchannel grouping with appropriate system parameters does preserve diversity 

gain while simplifying not only the code construction but decoding algorithm 

significantly as well Lee and Williams [20]. 

A block diagram of a two-branch space-frequency OFDM transmit diversity system 

is shown in Figure 8.1.  Resorting subchannel grouping, )(nX  is coded into two 

vectors )(n1X  and )(n2X  by the space-frequency encoder as 
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T** )(n,KX)X(n,K)(n,X)X(n,(n) 12101 ,,,,X

T** )(n,KX)X(n,K)(n,X)X(n,(n) 21012 ,,,,X            (4.1) 

where (.)* stands for complex conjugation. In space-frequency Alamouti scheme, 

)(n1X  and )(n2X  are transmitted through the first and second antenna element 

respectively during the OFDM block instant n.

Figure 4.1 Space-frequency coding on two adjacent FFT frequency bins 

The operations of the space-frequency block encoder can best be described in terms 

of even and odd polyphase component vectors. If we denote even and odd 

component vectors of )(nX   as 

T
e )X(n,K)X(n,K)X(n,)X(n,(n) 2420 ,,,,X

T
o )X(n,K)X(n,K)X(n,)X(n,(n) 1331 ,,,,X                        (4.2) 

then the space-frequency block code transmission matrix may be represented by,  

(n)(n)-

(n)(n)frequency

space

**
eo

oe

X

XX                           (4.3) 
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If the received signal sequence is parsed in even and odd blocks of K/2 tones, 

T
e )Y(n,K)Y(n)Y(n,(n) 220 ,,,,Y  and 

T
o )Y(n,K)Y(n,)Y(n,(n) 131 ,,,Y , the received signal can be expressed in 

vector form as 

(n)(n)(n)(n)(n)(n) e,eo,eee HHY 21 XX

(n)(n)(n)(n)(n)(n) o,oo,ooo

††

HHY 21 XX             (4.4) 

where )(neX  and )(noX  are K/2  K/2 diagonal matrices whose elements are 

)(neX  and )(noX  respectively. K/2 length even and odd component vectors of the 

channel attenuations between the th transmitter and the receiver are 

T
µµµµ,e )(n,KH)(n,H)(n,H(n) 220 ,,,H             (4.5) 

and

T
µµµµ,o )(n,KH)(n,H)(n,H(n) 131 ,,,H                      (4.6)                        

Finally, )(ne  and )(no  are zero-mean, independent identical distributed Gaussian 

vectors with covariance matrix 2
2

/I .

Equation (4.4) shows that the information symbols )(neX  and )(noX  are 

transmitted twice in two consecutive adjacent subchannel groups through two 

different channels. In order to estimate the channels and decode X  with the 

embedded diversity gain through the repeated transmission, for each n, we can write 

the following from (4.4): 

(n)

(n)

(n)

(n)

(n)(n)-

(n)(n)

(n)

(n)

o

e

,e

,e

eo

oe

o

e
††

H

H

Y

Y

2

1

XX

XX
                       (4.7) 
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where the complex channel gains between adjacent subcarriers are assumed to be 

approximately constant, i.e., )()( ,, nn oe 11 HH  and )()( ,, nn oe 22 HH . The effect of 

this assumption allows us to omit dependence of )(, ne1H  and )(, ne2H  on even 

channel components. 

4.2 Space-Time Coding in OFDM Systems 

In contrast to SF-OFDM coding, ST encoder maps every two consecutive symbol 

blocks )(nX  and )( 1nX  to the following 2K  2 matrix: 

(n))(n-

)(n(n)time

space

** XX

XX

1

1                (4.8) 

whose columns are transmitted in successive time intervals with the upper and lower 

blocks in a given column sent simultaneously through the first and second transmit 

antenna respectively as shown in Figure 4.2. 

Figure 4.2 Space time coding on two adjacent OFDM blocks 

If we focus on each received block separately, each pair of two-consecutive received 

block T
)Y(n,K)Y(n,(n) 10 ,,Y  and T

),KY(n),Y(n)(n 11011 ,,Y
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are given by 

)()()()()()( nnnnnn HHY 21 1XX

(n))(n(n))(n)(n)(n
††

HHY 1111 21 XX            (4.9) 

where )(nX  and )( 1nX  are K  K diagonal matrices whose elements are )(nX

and )( 1nX  respectively. )(nH  is the channel frequency response between the µ th 

transmitter and the receiver antenna at the nth time slot which is obtained from 

channel impulse response )(nµh . Finally, )(n  and )( 1n  are zero-mean, 

independent identical distributed Gaussian vectors with covariance matrix I
2  per 

dimension. 

From the above description, it is seen that joint estimation/decoding in an ST-OFDM 

system involves the received signals over two consecutive OFDM blocks. To 

simplify the problem, we assume that the complex channel gains remain constant 

over the duration of one ST-OFDM code word, i.e., )()( 111 nn HH

and )(n(n) 122 HH . As will be seen, such an assumption significantly simplifies 

the channel estimation algorithm. Similarly, the effect of this assumption allows us to 

omit dependence of channel attenuations on two different time indexes. Using (4.9) 

and dropping dependence on n, we have 

)(n

(n)

(n)

(n)

(n))(n-

)(n(n)

)(n

(n)
†† 11

1

1 2

1

H

H

Y

Y

XX

XX
         (4.10) 

4.3 Unifying Space-Frequency and Space-Time OFDM Signal Models

Comparing (4.7) and (4.10), we unify SF-OFDM and ST-OFDM in the following 

equivalent model: 
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2

1

12

21

2

1

H

H

Y

Y

2

1
††

- XX

XX
                       (4.11) 

For convenience, we list the corresponding vectors and matrix for SF-OFDM as 

)(

)(

n

n

o

e

Y

Y

Y

Y

2

1   ,
)()(

)()(

nn

nn
††††

eo

oe

XX

XX

XX

XX

12

21

)(

)(

n

n

,e

,e

2

1

2

1

H

H

H

H
  ,

)(

)(

n

n

o

e

2

1

and for ST-OFDM as 

)(n

(n)

12

1

Y

Y

Y

Y
  ,

)()(

)()(

nn

nn
††††

XX

XX

XX

XX

1

1

12

21

(n)

(n)

2

1

2

1

H

H

H

H
  ,

)(n

(n)

12

1

Relying on the unifying model (4.11), channel estimation algorithms will be 

developed according to the MMSE criterion. A different approach is adapted here to 

explicitly model the channel parameters by the KL series representation since; KL 

expansion allows one to tackle the estimation of correlated parameters as a parameter 

estimation problem of the uncorrelated coefficients. Note that KL expansion is well 

known for its optimal truncation property, Yip and Ng [9]. That is, the KL expansion 

requires the minimum number of terms among all possible series expansions in 

representing a random channel for a given mean-squared error. Thus, the optimal 

truncation property of the KL expansion results in a smaller computational load on 

the channel estimation algorithm. Therefore, first, the KL representation of the 

multipath channel will be summarized in the following section. 
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4.4 MMSE Multipath Channel Estimator for ST/SF-OFDM Systems   

Pilot symbol assisted techniques can provide information about an under sampled 

version of the channel that may be easier to identify. In this paper, we therefore 

address the problem of estimating multipath channel parameters by exploiting the 

distributed training symbols. 

Since both SF and ST block coded OFDM systems have symmetric structure in 

frequency and time respectively, the pilot symbols should be uniformly placed in 

pairs. Specifically, we also assume that even numbers of symbols are placed between 

pilot pairs for SF-OFDM systems. Based on these pilot structures, Equation (4.11) is 

modified to represent the signal model corresponding to pilot symbols as follows: 

ppp

††

p

,p

,p

,p

,p

,p,p

,p,p

,p

,p

-

HY

H

H

Y

Y

2

1

2

1

12

21

2

1

X

XX

XX
                      (4.12) 

where (.)p is introduced to represent the vectors corresponding to pilot locations. 

Assuming pilot symbols are taken from QPSK modulation, the observation model 

can be formed by premultiplying both sides of (4.12) by 
†

pX

ppppppp

†††

HY XXXX              (4.13) 

where
p

†

Kpp 22IXX  and letting ppp

†

YY X
~

 and ppp

†~ X  we get the 

following equation: 

ppp
~~

HY 2                           (4.14) 

namely, 
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,p

,p

,p

,p

,p

,p
~

~

~

~

2

1

2

1

2

1 2
H

H

Y

Y
             (4.15) 

where

,p,p,p,p,p

††~
22111 YYY XX              (4.16) 

,p,p,p,p,p

††

21122 YYY XX
~

,p,p,p,p,p

††

22111 XX
~

,p,p,p,p,p

††

21122 XX
~

and note that )(
p

K,p I
221 ,0N~~  and )(

p
K,p I

222 ,0N~~
. By writing 

each row of the (4.15) separately, we get the following observation equation set to 

estimate the channels ,p1H  and ,p2H .

µ,pµ,pµ,p HY
~~

2  , =1, 2                                  (4.17) 

and substituting µµ,p FhH  in (4.17), we get the following observation models for 

the channel impulse responses µh  is obtained 

µ,pµµ,p FhY
~~

2  , =1, 2                       (4.18) 

where F is a Kp  L FFT matrix generated based on pilot indices and Kp is the 

number of pilot symbols per one OFDM block. Equation (4.18) offers a Bayesian 

linear model representation. Based on these representations, the minimum variance 

estimator for the time-domain channel vectors 1h  and 2h  can be obtained using the
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MMSE estimator. We should clearly make the assumptions that impulse responses  

1h  and 2h  are independent identical zero-mean complex Gaussian vectors with 

covariance hC , and 1h  and 2h  are independent from ,p1
~  and ,p2

~ . Therefore, 

MMSE estimates of 1h  and 2h   are given by Kay [11]: 

µ,pµ
µ,p

†

µ,p

†

)()()( YCFCFCFh h

~ˆ
~~
1

1
11 222  , =1, 2         (4.19) 

Due to PSK pilot symbol assumption together with the result 

)(
p

K,p I
221 ,0N~~ and )(

p
K,p I

222 ,0N~~ we can therefore express 

(4.19) by 

µ,pµ

††

YFCFFh h

~ˆ
1

122  , =1, 2         (4.20) 

Under the assumption that uniformly spaced pilot symbols are inserted with pilot 

spacing interval  and K=  KP , correspondingly, FF
†

 reduces to LpK
†

IFF .

Then according to (20), and LpK
†

IFF , following expression is obtained 

µ,pLpµ
~

Kˆ
†

YFCh h

1122 I  , =1, 2          (4.21) 

As it can be seen from (4.21) MMSE estimation of 1h  and 2h  for SF-OFDM and 

ST-OFDM systems still requires the inversion of 1
hC . Therefore it suffers from a 

high computational complexity. However, it is possible to reduce complexity of the 

MMSE algorithm by expanding multipath channel as a linear combination of 

orthogonal basis vectors. The orthogonality of the basis vectors makes the channel 

representation efficient and mathematically convenient KL transform which amounts 

to a generalization of the FFT for random processes can be employed here. This 

transformation is related to diagonalization of the channel correlation matrix by the 

unitary eigenvector transformation: 
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†Ch                                    (4.22) 

where 110 L,...,, ’s are the orthonormal basis vectors, and g

[ 110 Lggg ,,, ...,,, ] is zero mean Gaussian vector with diagonal covariance matrix 

g
=E [ †gg ].

Thus the vectors 1h  and 2h  can be expressed as a linear combination of the 

orthonormal basis vectors as gh where is the multipath channel index. As 

a result, the channel estimation problem in this application is equivalent to estimating 

the independent identical distributed complex Gaussian vector 1h  and 2h  which 

represent KL expansion coefficients for multipath channels 1h  and 2h .

4.4.1 Estimation of Karhunen Loeve Coefficients  

Substituting gh  in unified signal model (4.18), it can be rewritten as 

µ,pµ,p gFY
~~

2  , =1, 2                       (4.23) 

this is also recognized as a Bayesian linear model, and recalls 

that )(
g

,0g N~ . As a result, the MMSE estimator of µg  for SF-OFDM and 

ST-OFDM systems is 

µ,p
††

Lpµ )K( YFg
gg

~
ˆ I

122                

µ,p
†† YF

~
 , =1, 2 ,                                 (4.24) 

where

122 )K( Lp I
gg
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2
1

1

2
0

0

22 K
,...,

K
diag

pL

L

p

                        (4.25) 

and 110 L,...,,  are the singular values of 
g

.

From the results presented in Morelli and Mengali [4], ML estimator of µg  for SF-

OFDM and ST-OFDM systems can also be obtained as follows: 

µ,p
††

p

~

K2

1
ˆ YFg   , =1, 2 ,                     (4.26) 

It is clear that the complexity of the MMSE estimator in (21) is reduced by the 

application of KL expansion. However, the complexity of the µĝ can be further 

reduced by exploiting the optimal truncation property of the KL expansion, Yip and 

Ng [9]. A truncated expansion g¹r can be formed by selecting r orthonormal basis 

vectors among all basis vectors that satisfy ghC . Thus, a rank-r

approximation to 
rg

is defined as 00110 ,...,,,...,,diag rrg
.

Since the trailing L - r variances 1L
r}{ are small compared to the leading r

variances 1
0

r
}{  , the trailing L - r variances are set to zero to produce the 

approximation. However, typically the pattern of eigen values for g  splits the 

eigenvectors into dominant and subdominant sets. Then the choice of r is more or 

less obvious. The optimal truncated KL (rank-r) estimator of (23) now becomes 

µ,p
††

r
~

ˆ
r

YFg                                                (4.27) 

where

122 )K( Lpr rr
Igg
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00
22 2

1

1
2

0

0
,,,,,

KK
diag

pr

r

p

                                (4.28) 

Since our ultimate goal is to obtain MMSE estimator for the channel frequency 

response µH , from the invariance property of the MMSE estimator, it follows that if 

µĝ  is the estimate of µg , then the corresponding estimate of µH  can be obtained as 

gH ˆˆ F  , =1, 2 ,                       (4.29) 

where F  is a K  K  FFT matrix. 

4.4.2 Performance Analysis 

In this section, we turn our attention again to analytical performance results. 

Derivation details of the subsections will be passed, and follow as chapter 3 since 

observation models (3.10) and (4.23) are similar. 

4.4.2.1 Cramer-Rao Lower Bound for Karhunen Loeve Coefficients 

Under the assumption that g  and p,
~  are independent, the modified FIM as 

follows 

1
2

1
gJ )(M

Inverting the matrix )(gJM  yields 

)()( gJg -1

M
CRLB

2                 (4.30) 
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4.4.2.2  Bayesian MSE 

Keeping in mind gg ˆˆ  and C
µ

2
ˆ , the minimum Bayesian MSE of the 

full rank estimator becomes (see Appendix D and Appendix E) 

)(trace)ˆ(B ˆMSE µ
Cg

L

1

1

0

2

21

1 L

i ip

i

SNRKL
trace

L

1
)(           (4.31) 

where 21/SNR .

As the details are given in Appendix C and Appendix D, )ˆ(B gMSE  given in (4.31) 

can also be computed for the truncated (low-rank) case as follows: 

11

0

1

21

1 L

ri
i

r

i ip

i
MSE

LSNRKLr
)ˆ(B g                       (4.32) 

Notice that, the second term in (4.32) is the sum of the powers in the KL transform 

coefficients not used in the truncated estimator. Thus, truncated )ˆ(B gMSE  can be 

lower bounded by 
11 L

ri
i

L
 which will cause an irreducible error floor in the SER 

results.

4.4.3 Mismatch Analysis 

The proposed estimator will be designed according to the channel statistics and the 

SNR assumptions but these can be different from the true channel statistics and the 

SNR values. This causes the performance degradation.  
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Hence, mismatch analysis is important to explore the performance degradation due to 

a mismatch of the estimator to the channel statistics as well as the SNR, and to study 

the choice of the channel correlation, and SNR for this estimator so that it is robust to 

variations in the channel statistics. As a performance measure, we use uncoded 

Symbol Error Rate (SER) of Maximum Ratio Receive Combiner (MRRC) for QPSK 

signaling. The SER expression for this case is given in Appendix F as a function of 

the SNR as follows: 

1
2
23

3
22

1

2

1

4

3
))(arctan((error)Pr                                         (4.33) 

or approximately we get 

3
3
21(error)Pr                                     (4.34) 

where

)(SNR 12

1
1    ,

2
2

SNR

SNR
  ,

SNR

SNR 3
3

In practice, the true channel correlations and SNR are not known. If the MMSE 

channel estimator is designed to match the correlation of a multipath channel impulse 

response hC  and SNR, but the true channel parameters  h
~

 has the correlation 
h

C~

and the true 
~

SNR , then average Bayesian MSE for the designed channel estimator is 

obtained as (see Appendix D and E)

SNR mismatch: 

~
ˆ

SNR

SNR
K

SNR)K(L
)( ip

L

i ip

i
MSE

21

0
2

21
21

1
gB                     (4.35) 
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Correlation mismatch: 

1

0 21

221 L

i ip

iiiipi
MSE

SNRK

)(SNRK

L
)(

~~

ĝB                      (4.36) 

where i

~
 is the ith diagonal element of 

hg C~~
† , and i  is ith diagonal 

element of the real part of the cross correlation matrix between g~ and g .

4.5 Simulation Results 

In this section, we investigate the performance of the pilot aided MMSE channel 

estimation algorithm proposed for both SF-OFDM and ST-OFDM systems. The 

diversity scheme with two transmit and one receive antenna is considered. Channel 

impulse responses µh  are generated according to FCFC Hh
†

K 2

1
 where  is the 

covariance matrix of the doubly-selective fading channel model. In this model, 

)(kH 's are with an exponentially decaying power delay profile rmseC
/

)( . C

is power normalization constant. Note that the normalized discrete channel-

correlations for different subcarriers and blocks of this channel model were presented 

in Li et al. [5] as follows, 

K

kk
je

e
kkc

rms

L

rms

K

kk
jL

f

rms

rms

)(

)(

)(

21
1

1

21

             (4.37) 

)n-(nc t sm Tnnf )(20J             (4.38) 

where Jo is the zero th-order Bessel function of the first kind and mf  is the maximum 

Doppler frequency.
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The scenario for SF-OFDM simulation study consists of a wireless QPSK OFDM 

system. The system has a 2.34 MHz bandwidth (for the pulse roll-off factor 0.2) and 

is divided into 512 tones with a total period of 136 s , of which 5.12 s  constitute 

the cyclic prefix (L=20). The uncoded data rate is 7.8 Mbit/s. 5
rms

 samples 

(1.28 s ) for the power-delay profile. Keeping the transmission efficiency 3.32 

bits/sec/Hz fixed, we also simulate ST-OFDM system. 

4.5.1 Mean Square Error Performance of the Channel Estimation 

The proposed MMSE channel estimators of (4.24) are implemented for both SF-

OFDM and ST-OFDM, and compared in terms of average Bayesian MSE for a wide 

range of  SNR levels. Average BMSE is defined as the norm of the difference between 

the vectors 
TTT, 21 ggg  and ĝ , representing the true and the estimated values of 

channel parameters, respectively. Namely, 

2

2

1
gg ˆ

L
MSE                 (4.39) 

4.5.2 MMSE Approach 

A pilot symbol for every ten ( 10 ) symbols is used in the simulation. The MSE at 

each SNR point is averaged over 10000 realizations. The experimental MSE 

performance and its theoretical Bayesian MSE of the proposed full-rank MMSE 

estimator with ML estimator and its corresponding CRLB for SF and ST OFDM 

systems are compared. Figure 4.3 and Figure 4.4 confirm that MMSE estimator 

performs better than ML estimator at low SNR. However, the two approaches have 

comparable performance at high SNRs. To observe the performance, the MMSE and 

ML estimated channel SER results together with theoretical SER are also presented 

in Figure 4.5 and Figure 4.6.
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Due to the fact that spaces between the pilot symbols are not chosen as a factor of the 

number of subcarriers, an error floor is observed in Figure 4.3, Figure 4.4, Figure 4.5, 

and Figure 4.6. In the case of choosing the pilot space as a factor of number of 

subcarriers, the error floor vanishes because of the fact that the orthogonality 

condition between the subcarriers at pilot locations is satisfied. In other words, the 

curves labeled as simulation results for MMSE estimator and ML estimator fit to the 

theoretical curves at high SNRs. It also shows that the MMSE estimated channel 

SER results are better than ML estimated channel SER especially at low SNR. 

4.5.2.1 SNR Design Mismatch 

In order to evaluate the performance of the proposed full-rank MMSE estimator to 

mismatch only in SNR design, the estimator is tested when SNRs of 10 and 30 dB 

are used in the design. The SER curves for a design SNR of 10, 30 dB are shown in 

Figures 4.7 and 4.8. The performance of the MMSE estimator for high SNR (30 dB) 

design is better than low SNR (10 dB) design across a range of SNR values (0 - 28 

dB). These results confirm that channel estimation error is concealed in noise for low 

SNR whereas it tends to dominate for high SNR. Thus, the system performance 

degrades especially for low SNR design. 

4.5.2.2 Correlation Mismatch 

To analyze full-rank MMSE estimator's performance further, sensitivity of the 

estimator to design errors, i.e., correlation mismatch needs to be studied. Therefore 

the estimator is designed for a uniform channel correlation which gives the worst 

MSE performance among all channels Edfords et al. [3], Li et al. [5] and evaluated 

for an exponentially decaying power-delay profile. The uniform channel correlation 

between the attenuations can be obtained by letting 
rms

, resulting in 

K

kk
j

e
kkc

K

kk
j

f
)(

)(

)(

2

1

2

                                     (4.40) 
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Figure 4.9 and Figure 4.10 demonstrate the estimator's sensitivity to the channel 

statistics in terms of average MSE performance measure. As it can be seen from 

Figure 4.9 and 4.10 only small performance loss is observed for low SNRs when the 

estimator is designed for mismatched channel statistics. This justifies the result that a 

design for worst correlation is robust to mismatch. 

4.5.2.3 Performance of the Truncated Estimator 

The truncated estimator performance is also studied as a function of the number of 

KL coefficients. Figure 4.11 and Figure 4.12 are plotted for L = 40, 5
rms

sample and L = 40, mf = 100 Hz respectively. Figure 4.11 and Figure 4.12 present 

the MSE result of the truncated MMSE estimator for SNR = 10, 20 and 30 dB. If 

only a few expansion coefficients are employed to reduce the complexity of the 

proposed estimator, then the MSE between channel parameters becomes large. 

However, if the number of parameters in the expansion is increased, the irreducible 

error floor still occurs. 

Figure 4.3 Performance of proposed MMSE and MLE together with BMSE and CRLB 

for SF-OFDM 
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Figure 4.4 Performance of proposed MMSE and MLE together with BMSE and CRLB 

for   ST-OFDM 

Figure 4.5 Symbol Error Rate results for SF-OFDM 
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Figure 4.6 Symbol Error Rate results for ST-OFDM 

Figure 4.7 Effects of SNR mismatch on MSE for SF-OFDM 
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Figure 4.8 Effects of  SNR mismatch on MSE for ST-OFDM( fm=100 Hz )

Figure 4.9 Effects of correlation mismatch on MSE for SF-OFDM 
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Figure 4.10 Effects of correlation mismatch on MSE for ST-OFDM( fm=100 Hz )

Figure 4.11 MSE as a function of KL expansion coefficients for SF-OFDM 
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Figure 4.12 MSE as a function of KL expansion coefficients for ST-OFDM

( fm=100 Hz ) 
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Chapter 5 

Conclusion and Future Works 

In this thesis, the design of low complexity pilot based MMSE channel estimators for 

OFDM systems with and without transmit diversity in unknown wireless dispersive 

fading channels was considered.  In general, MMSE channel estimators require 

inversion of channel covariance matrix. According to OFDM structure, channel 

estimation is mostly performed in frequency domain resulting in higher 

computational complexity due to large of number channel parameters to be estimated 

as well as large channel covariance matrix needed in estimation. Since the number 

channel parameters to be estimated in time domain is much smaller than the 

frequency domain, time domain approaches therefore present alternative low 

complexity solutions.  

In this thesis, optimum time domain channel estimation approaches based on MMSE 

criterion are also proposed , and the complexity of the proposed approaches are 

further reduced by the application of KL expansion. Thus, as a first contribution, a 

low complexity pilot MMSE channel estimator is proposed in time domain. In other 

words, the problem is considered as the multipath channel estimation. Due to the 

invariance property of the MMSE estimator, MMSE estimate of the channel 

frequency response can be obtained by taking FFT of the multipath channel. Taking 

FFT of the multipath channel also provides an interpolation between frequency 

responses at pilot and data locations.

However, in the frequency domain channel estimation approach, a suitable 

interpolation method for finding channel frequency response at data locations by
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making use of frequency response at pilot locations is required. These interpolation 

methods affect the performance of the frequency domain channel estimator.  

Inverse of the channel correlation matrix used in frequency domain MMSE 

estimation results in higher computational complexity. Especially adaptive and 

sequential MMSE estimators must take the inverse of the channel correlation matrix 

in each step of the algorithm. Therefore, computational complexity is a highly 

important issue for adaptive and sequential MMSE estimators. The channel 

estimation problem is therefore considered as the MMSE estimation of the stochastic 

coefficient vector when the stochastic orthogonal expansion representation of the 

multipath is exploited. In this case, computational complexity of the estimator is 

significantly reduced since correlation matrix of the coefficient matrix becomes 

diagonal.

In the case of receiver or transmitter mobility, according to the speed of mobile 

component, channel may vary within OFDM block duration. This causes fast fading 

environments. Alamouti diversity scheme proposes a solution for combating fast 

fading. When Alamouti diversity scheme is applied to OFDM systems, different 

diversity coding types come out such as space-time OFDM, space-frequency OFDM, 

e.t.c.

In this thesis, as a second major contribution the batch MMSE estimators were 

derived based on the stochastic orthogonal expansion representation for ST/SF-

OFDM systems. Based on KL representation, the fact that no matrix inversion is 

needed in the MMSE algorithm is shown. Therefore, the computational costs for 

implementing the proposed MMSE estimators are low and computations are 

numerically stable.  

As a conclusion the contribution of this thesis is summarized as follows: 

-     Time domain MMSE channel estimator is developed and analyzed for OFDM. 
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-    Performance of the proposed batch approach is evaluated based on the evaluation 

of CRLB and Bayesian MSE. 

-  Performance of the low-rank approximation of the proposed estimator and 

theoretical SER results are studied both theoretically and analytically. 

-    Sequential version of the batch estimator is also derived. 

-  The proposed MMSE estimator approach and performance results are then 

extended to transmit diversity OFDM systems. 

In addition to MMSE based estimation approaches proposed in this thesis, 

computationally efficient advanced iterative signal processing algorithms such as 

sequential Monte Carlo (SMC), expectation-maximization (EM), provide MMSE 

solutions will be applied to solve difficult signal processing problems in wireless 

communications in future research. To achieve full benefit of efficient algorithms a 

wide variety of problems, such as synchronization, equalization, and sequence 

estimation problems can be considered. Another possible future work will be the 

development of blind channel estimation approaches that provide much more 

bandwidth efficiency. 
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Appendix A 

Bayesian Estimators 

Bayesian estimation depart from the classical approach to statistical estimation in 

which the parameter of interest is assumed to be a deterministic but unknown 

constant. Instead,  is assumed as a random variable whose particular realization is 

to be estimated. This is the Bayesian approach, so named because its implementation 

is based directly on Bayes’ theorem. The motivation for doing so is twofold. First, if 

some prior knowledge about  is available, it can be incorporated into estimator 

design. The mechanism for doing this requires us to assume that is a random 

variable with a given prior PDF. Classical estimation, on the other hand, finds it 

difficult to make use of any prior knowledge. Bayesian approach can therefore 

improve the estimation accuracy. Second, Bayesian estimation is useful in situations 

where an MVU estimator can not be found. In this case, especially for the classical 

approach, a strategy can be devised to find that estimator by assigning a PDF to .

The resultant estimator  can then be said to be optimal “on the average”. 

In Bayesian estimation, first step is to choose a cost function that is the function of 

estimation error  

ˆ                             (A.1) 

where and ˆ  are true and estimated values of the parameter , respectively.  
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Three well known cost functions are; 

Squared Error 2
)( ,

Figure A.1 Squared error cost function

Absolute Error )( ,

Figure A.2 Absolute error cost function 

Hit-or-miss 
,

,
)(

1

0
,

Figure A.3 Hit-or-miss cost function 
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Cost functions, and  is very small positive number. Also, the averaged cost 

function is termed as the Bayes risk, or 

)(ER                      (A.2)

For a squared error cost function, the mean of the posterior probability density 

function (PDF) or the usual MMSE estimator minimizes the risk. An absolute error 

cost function (A.2) results in an optimal estimator, which is the median of the 

posterior PDF. For a hit-or-miss cost function (A.3) the mode of maximum location 

of the posterior PDF is the optimal estimator termed as the maximum a posteriori 

(MAP) estimator.  

We now determine the optimal estimators for these cost functions. Note that 

depends on  and observation vector , because the estimation value ˆ  in (A.1) is 

a function of observation vector , such that )(ˆˆ . Therefore, the expectation 

integral of the cost function must be taken over the joint probability density function 

of the observation vector  and the parameter  to be estimated. 

)(ER

dp )()(

ddp ),()ˆ(    

dpdp ()|()ˆ(                 (A.3) 

In order to minimize Bayes risk in (A.4), we have to minimize the inner integral 

according to ˆ . First, considering the absolute error cost function and denoting the 

inner integral by )ˆ( , we have for the inner integral of (A.4) 

dp )|(|ˆ|)ˆ(                                     (A.4) 
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and differentiate with respect to ˆ

dp )|(
ˆ

|ˆ|
ˆ

)ˆ(

        0
ˆ

ˆ

)|()|( dpdp

or

ˆ

ˆ

)|()|( dpdp                         (A.5) 

By definition ˆ  is the median of the posterior PDF or the point for which 

2

1
ˆ)|(Prˆ)|(Pr . Now, MAP and MMSE estimators will be 

considered. These two estimator types are most commonly used in channel 

estimation problems. 

A.1 Maximum A Posteriori (MAP) Estimator 

For the hit-or-miss cost function, the inner integral in (A.4) is 

|ˆ|||

)|()|(.)ˆ( dpdp1

ˆ

ˆ

)|()|( dpdp

ˆ

ˆ

)|()|( dpdp

ˆ

ˆ

)|( dp1               (A.6)  
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)ˆ(  can be minimized by maximizing the following integral 

ˆ

ˆ

)|( dp                              (A.7) 

This integral is maximized by choosing ˆ  corresponding to the location of the 

maximum of )|ˆ(p . The estimator that minimizes the Bayes risk for the hit-or-

miss cost function is therefore the location of the maximum of the posterior 

probability density function. It is termed as the maximum a posteriori (MAP) 

estimator. 

A.2 Minimum Mean Square Error (MMSE) Estimator 

For the MMSE estimator, the cost function is squared error, 2
)( , and the Bayes 

risk is the MSE. Therefore, the MMSE estimator minimizes the MSE. The inner 

integral in (A.4) turns to 

dp )|()ˆ()ˆ(
2                          (A.8) 

and is differentiated with respect to ˆ  as follows 

dp )|(
ˆ

)ˆ(
ˆ

)ˆ( 2

  02 dp )|()ˆ(

This yield 

dpdp )|()|(ˆ

1

dp )|(
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Therefore, the MMSE estimator is obtained as 

|ˆ E                                         (A.9) 

the mean of the posterior PDF. For this reason it is also commonly referred as the 

conditional mean estimator. Nevertheless, the prior PDF of , )(p , plays an 

important role in MMSE estimator, because posterior PDF )|(p depends on prior 

PDF )(p . This can be proved by Bayes rule as follows: 

)(

),(
)|(

p

p
p

dpp

pp

)()|(

)()|(
                                  (A.10) 

For the vector parameter T
N....21 which has independent identical 

distributed elements, 

T
NEEE |....||ˆ

21

|E                                        (A.11)

Note that the vector MMSE estimator E  minimizes the mean squared error 

(MSE) for each component of the unknown vector parameter. The minimum 

Bayesian MSE for a scalar parameter is the posterior PDF variance when averaged 

over the PDF of . This is because 

iiiii dpE )|()|()ˆ(
2

2

|i

   , i=1, 2, . . ., N                                            (A.12) 
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and replacing this result by the inner integral in (A.3), we obtain minimized risk 

function, in other words, minimum Bayesian MSE as follows 

d(p)( 2
iMSE |i

B                      (A.13)

In order to obtain a scalar MSE measure for the vector parameter 

T
N....21 , the minimum Bayesian MSE’s of the elements  can be 

averaged as follows 

N

1i
iMSEMSE )(B

N

1
)(B               (A.14) 

Bearing in mind
ii

i
,|

|

C2  and substituting (A.13) in (A.14) 

N

i
MSE dp

N i1

21
()(

|

B

dp
N

N

i i

(
|

1

21

dptrace
N

(|C
1

             (A.15) 

where |C  is the posterior covariance matrix of the vector parameter , and 

trace{.} operator represents sum of diagonal entries of a square matrix. If variances 

N
i

i
1

2
}{

|

 does not depend on the observation vector , the minimum Bayesian 

MSE in (A.15) is 

1

1
dptrace

N
MSE ()( |CB
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|Ctrace
N

1
                                     (A.16) 

If the observed data can be modeled as  

U                                     (A.17) 

where  is an 1M data vector, U  is a known NM  matrix,  is a 1N  random 

vector with prior PDF )(E C,N , and is an 1M  noise vector with PDF 

)( C,0N  and independent of , then the posterior PDF  )|(p  is Gaussian 

with mean[11, pp.364] 

EEE 1-1-1- UCUCUCU w
T

w
T 1

|                      (A.18) 

and covariance 

11-1-
| CUCUC w

T             (A.19) 

For the complex Gaussian parameter  to be estimated, replace transpose operator 

(.)T in (A.18) and (A.19) by Hermitian transpose operator †(.) .
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Appendix B 

Bayesian MSE for Truncated MMSE KL Estimator under SNR   

Mismatch in OFDM Systems Without Diversity 

Substituting (3.11) in (3.16), truncated MMSE KL estimator becomes 

Fgg
~ˆ ††

rrpr K                                     (B.1)

The estimation error 

rr gg ˆˆ

Fgg
~††

rrpK

Fg
~††

rrpK
L

I                                     (B.2) 

and then the average Bayesian MSE is 

)tr(
L

)( rMSE r
Cg ˆ

ˆB
1

2
rprp K)K(trace

L Lg
221 ~

I                

1

0

1
2

2
2

2

2

1
1

1 r

i

L

ri
i

pi

i
p

pi

i
pi

LK
K

K
K

L
~

11

0
22

42
11 L

ri
i

r

i pi

ip
i

LK

K

L )(

~

 where 
SNR

12 ,
SNR

12~
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11

0

2

2

1
1

1

1 L

ri
i

r

i
ip

ip

i

L
SNR

SNR
K

SNR)K(L ~
                                  (B.3) 

Based on the result obtained in (B.3), Bayesian estimator performance can be further 

elaborated for the following scenarios: 

By taking 
~

SNRSNR , the performance result for the case of no SNR

mismatch is 

11

0

1

1

1 L

ri
i

r

i ip

i
rMSE

LSNRKL
)(gB ˆ                                    (B.4) 

As Lr  in (B.3), )(MSE gB ˆ  under SNR mismatch results in the following 

Bayesian MSE: 

1

0

2

2
1

1

1 L

i
ip

ip

i
MSE

SNR

SNR
K

SNR)K(L
)(

~
ĝB            (B.5)  

Finally, the Bayesian MSE in the case of no SNR mismatch is also be obtained 

as,

1

0 1

1 L

i p
MSE

SNRKL
)(

i

igB ˆ                                    (B.6) 
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Appendix C 

  Bayesian MSE for Truncated MMSE KL Estimator under 

Correlation Mismatch in OFDM Systems Without Diversity

In this appendix, the Bayesian MSE of the truncated MMSE KL estimator under 

correlation mismatch will be derived. Although the real multipath channel h
~

 has the 

expansion correlation 
h

C~ , the estimator is designed for the multipath channel 

gh  with correlation hC . To evaluate the estimation error rgg
~~  in the same 

space, the real channel h
~

 is expanded onto the eigen space of gh
~~

 resulting in 

correlated expansion coefficients. For the real channel, data model in (3.10) can be 

rewritten as 

gFY
~~~

                                      (C.1) 

and substituting in (3.16), truncated MMSE KL estimator now becomes 

Fgg
~ˆ ††

rrpr K                          (C.2) 

For the truncated MMSE estimator, the error is 

rr gg ˆ~ˆ

Fgg
~~ ††

rrpK                           (C.3) 

As a result, the average Bayesian MSE is 
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)trace(
L

)( rMSE r
CgB ˆ

ˆ
1

)KKKtrace(
L

rprprp~ gg 2
1 2222

11

0
2

121 L

ri
i

r

i pi

iiip
i

LK

)(K

L

~~
 and 

SNR

12

11

0

1

1

21 L

ri
i

r

i ip

iiip
i

LSNRK

)(SNRK

L

~~

11

0

1

1

21 L

ri
i

r

i ip

iiiipi

LSNRK

)(SNRK

L

~
~~

                           (C.4) 

where is the real part of E [
†

gg
~

] and i 's are the diagonal elements of  . With 

this result, some special cases can be highlighted as: 

Letting iii

~
 in (B.4) for the case of no mismatch in the correlation of KL 

expansion coefficients, truncated Bayesian MSE is identical to that obtained in 

(B.4).

As Lr  in (B.4), Bayesian MSE under correlation mismatch is obtained to 

yield:

1

0 1

21 L

i ip

iiiipi
MSE

SNRK

)(SNRK

L
)(

~~

ĝB                       (C.5) 

Under no correlation mismatch in (C.4) where iii

~
, Bayesian MSE 

obtained from (C.4) is identical to that in (B.6). 

Also note that as SNR  reduces to )MSE( rgg ˆ~ .



90

Appendix D 

Bayesian MSE for Truncated MMSE KL Estimator under SNR 

Mismatch in  ST/SF – OFDM Systems 

Some derivation steps will be passed in appendices D and E since these steps will be 

taken as in appendices B and C. The estimation error is 

rr µµµ gg ˆˆ  , =1, 2                         (D.1) 

and then the average Bayesian MSE is 

)trace(
L

)(
rMSE

r
Cg ˆ

ˆB
1

2
rprp K)K(trace

L Lg
22 22

1 ~
I

11

0

2

2

1
21

21

1 L

ri
i

r

i
ip

ip

i

L
SNR

SNR
K

SNR)K(L ~
         (D.2) 

Based on the result obtained in (D.2), Bayesian estimator performance can be further 

elaborated for the following scenarios: 

By taking 
~

SNRSNR , the performance result for the case of no SNR

mismatch is 

11

0

1

21

1 L

ri
i

r

i ip

i
MSE

LSNRKL
)(

r
gB ˆ                        (D.3) 
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As Lr  in (D.2), )(
rMSE gB ˆ  under SNR mismatch results in the following 

Bayesian MSE: 

)(
rMSE gB ˆ

1

0

2

2
21

21

1 L

i
ip

ip

i

SNR

SNR
K

SNR)K(L ~                               (D.4) 

Finally, the Bayesian MSE in the case of no SNR mismatch is also be obtained as 

1

0 21

1 L

i ip

i
MSE

SNRKL
)(

r
gB ˆ                                                                (D.5) 
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Appendix E 

Bayesian MSE for Truncated MMSE KL Estimator under 

Correlation Mismatch  in  ST/SF – OFDM Systems 

The truncated estimation error  is  

rr µµµ ˆ~ˆ gg                            (E.1) 

where µg
~  is the KL coefficient vector of the true th multipath channel. As a result, 

the average Bayesian MSE is 

)trace(
L

)ˆ(B ˆrMSE
r

Cg
1

)KKKtrace(
L

rprprp gg 424
1 2222

~

11

0
2

1

2

221 L
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i

r

i pi

iiip
i

LK

)(K

L

~~
 and 

SNR

12

11

0

1

21

221 L

ri
i

r

i ip

iiiipi

LSNRK

)(SNRK

L

~
~~

             (E.2) 

where is the real part of E[
†

gg
~ ] and i 's are the diagonal elements of . With 

this result, we will now highlight some special cases: 

Letting iii

~
 in (E.2) for the case of no mismatch in the correlation of KL 

expansion coefficients, truncated Bayesian MSE is identical to that obtained in 
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(D.3).

As Lr  in (E.2), Bayesian MSE under correlation mismatch is obtained to 

yield:

)(
rMSE ĝB

1

0 21

221 L

i ip

iiiipi

SNRK

)(SNRK

L

~~

                         (E.3) 

Under no correlation mismatch in (E.3) where iii

~
, Bayesian MSE 

obtained from (E.3) is identical to that in (D.5). 

Also note that as SNR , (E.2) reduces to )MSE(
r

gg ˆ~ .
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Appendix F 

Theororetical SER for SF/ST-OFDM Systems 

Define
T

*

21 YYY , and cast (4.11) in a matrix/vector form: 

X

X

X

Y

Y

Y
*
212

* ††
1

2

121

2

1

H

HH

HH

-
                                    (F.1) 

where )diag(
µ

HH . By premultiplying (F.1) by 
†

H  the signal model for 

Maximal Ratio Receive Combiner (MRRC) can be obtained as 

2

1

2

1
22

22

2

1

X

X

0

0

Y

Y

21

21

HH

HH
           (F.2) 

where

*
221

†

YYY HH 11                              (F.3) 

*
212

†

YYY HH 12                 (F.4) 

*
221

†

HH 11                   (F.5) 
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*
212 HH 12                               (F.6) 

Thus, at the output of MRRC the signal for kth subchannel is 

)()()()()( kkkkk XHHY
2

2
2

1                         (F.7) 

Assuming µj
µµ e(k)H  and ),()k( 2

2121 0N~,,,|)( , where 

22
2

2
1

2 )( , and the faded signal energy at MRRC ss E)(E 22
2

2
1 . Thus, 

the symbol error probability of QPSK for given 2121 ,,,  is 

222
2121 2 /EQ/EQerrorPr ss),,,|(

222
2

2
1

2222
2

2
12 /E)(Q/E)(Q ss

SNR)(QSNR)(Q 22
2

2
1

222
2

2
12                       (F.8)

Bearing in mind ),,,|( 2121errorPr  does not depend on 1 and 2 , note that 

12212121 dderrorPrerrorPr ),|,,(),|(

12212121 ddpperrorPr )()(),,,|(

       12212121 ddpperrorPr )()(),,,|(

),,,|( 2121errorPr                 (F.9) 

substituting (F.9) in the following equation: 
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0 0
121221212121 dddderrorPrperrorPr ),,,|(),,,()(

0 0
1212212121 dddderrorPrp ),|(),,,(

0 0
122121 dderrorPrp ),|(),(              (F.10) 

Since channels 1H  and 2H  are independent 1 and 2  are also independent 

)()(),( 2121 ppp . Thus (F.10) takes the following form: 

0 0
122121 dd(errorPrpp(error)Pr ),|)()(     

12
22

2
2
1
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2
1

0 0
21
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2
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ddSNRQSNRQ
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)()(

e

  (F.11) 

If we now apply )(cos1  and )(sin2  transformations we arrive the 

following SER expression for ST-OFDM and SF-OFDM systems, 

0

2

0

2223 22
2/

- ddSNRQSNRQ)e2(sinPr(error)

0

2223 22
2

dSNRQSNRQe-

                 1
2
23

3
22

1

2

1

4

3
))(( arctan           (F.12)  

or by neglecting the .
2Q term in (F.12), simplified form can be obtained as 

3
3
21Pr(error)                                     (F.13)  
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where

)(SNR 12

1
1  , 

2
2

SNR

SNR
 , 

SNR

SNR 3
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