NEW APPROACHES FOR CHANNEL ESTIMATION
IN
WIRELESS COMMUNICATIONS

HABIB SENOL

ISIK UNIVERSITY
2006



NEW APPROACHES FOR CHANNEL ESTIMATION
IN
WIRELESS COMMUNICATIONS

HABIB SENOL

Submitted to the Graduate School of Science and Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in

Electronics Engineering

[SIK UNIVERSITY
2006



NEW APPROACHES FOR CHANNEL ESTIMATION
IN
WIRELESS COMMUNICATIONS

APPROVED BY:

Assoc. Prof. Ulug BAYAZIT ISIK UNIVERSITY

(Thesis Supervisor)

Assoc. Prof. Hakan A. CIRPAN  ISTANBUL UNIVERSITY

(Thesis Co-supervisor)

Prof. Yorgo ISTEFANOPULOS  ISIK UNIVERSITY

Prof. Erdal PANAYIRCI BILKENT UNIVERSITY

Prof. Umit AYGOLU ISTANBUL TECHNICAL UNIVERSITY

Asst. Prof. Hasan F. ATES  ISIK UNIVERSITY

APPROVAL DATE: 10/March/2006

* "5689 Sayih Kisisel Verilerin Korunmasi Kanunu Hiikiimlerine Gére Cevrimigi Yayin Dosyasinda Bulunan Kisisel Veriler Ve Islak imzalar Silinmistir.”



NEW APPROACHES FOR CHANNEL ESTIMATION IN
WIRELESS COMMUNICATIONS

Abstract

This thesis first proposes a computationally efficient, pilot-aided linear minimum
mean square error (MMSE) batch channel estimation algorithm for the orthogonal
frequency division multiplexing OFDM systems in unknown wireless fading
channels. The batch linear MMSE will be converted to the sequential linear MMSE
estimator due to fast convergence property and the simple structure. In addition to
OFDM systems, focusing on transmit diversity (OFDM) transmission through
frequency selective channels, this thesis pursues a channel estimation approach in
time-domain for both space-frequency OFDM (SF-OFDM) and space-time OFDM
(ST-OFDM) systems. This thesis also proposes a computationally efficient, pilot-
aided linear minimum mean square error (MMSE) time domain batch channel
estimation algorithm for OFDM systems with transmit diversity in unknown wireless

fading channels.

The proposed batch approaches (with or without transmit diversity) employ a
convenient representation of the discrete multipath fading channel based on the
Karhunen Loeve (KL) orthogonal expansion and finds MMSE estimates of the
uncorrelated KL series expansion coefficients. Based on such an expansion, no
matrix inversion is required in the proposed MMSE estimators. Moreover, optimal
rank reduction is achieved by exploiting the optimal truncation property of the KL
expansion resulting in a smaller computational load on the estimation algorithm. The
performance of the proposed approaches is studied through analytical and

experimental results.
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Then, in order to explore the performances, the stochastic Cramer-Rao lower bounds
are considered for the proposed approaches. The effect of a modeling mismatch on

the performances of the estimator is also analyzed.

In order to explore the performance of the transmit diversity OFDM systems, the
closed-form expression for the average symbol error rate (SER) probability is also
derived for the maximum ratio receive combiner (MRRC) in these systems.
Simulations results confirm our theoretical analysis, and illustrate that the proposed
channel estimation algorithms for OFDM systems with and without transmit
diversity are capable of tracking fast fading and frequency selective fading,

respectively and improving overall performance.



TELSIZ HABERLESMEDE KANAL KESTIRIMI iCIN
YENI YAKLASIMLAR

Ozet

Bu tez oncelikle, sonimlemeli, telsiz iletisim kanali etkisi altindaki dik siklik
boliisiimlii cogullama (OFDM) sistemleri i¢in, islem ytikil az, pilot destekli dogrusal
en kiictik ortalama karesel hata (MMSE) toptan kanal kestirimcisi algoritmasi 6nerir.
Toptan dogrusal MMSE kanal kestirimcisi, hizli yakinsamasi ve basit bir yapiya
sahip olmasindan dolay1 dizisel dogrusal MMSE kestirimcisine doniistiriilecektir.
Bunun yanisira, bu tez; frekans secici kanallar tizerinden iletim saglayan verici
cesitlemeli OFDM sistemlerine odaklanarak, zaman diizleminde, hem uzay-zaman
hem de uzay-frekans ¢esitlemeli OFDM sistemleri i¢in bir kanal kestirim yaklagimi
ortaya koyma amacini tasimaktadir. Ayrica bu tez, sontimlemeli, telsiz iletisim kanali
etkisi altindaki verici g¢esitlemeli OFDM sistemleri i¢in de islem yiikii az, pilot
destekli dogrusal en kiiclik ortalama karesel hata (MMSE) zaman diizlemi kanal

kestirimcisi algoritmasi onerir.

Onerilen toptan yaklasimlar (verici ¢esitlemeli yada cesitlemesiz), Karhunen Loeve
(KL) dik acilimma dayanan, ayrik ¢okyollu soniimlemeli kanali elverisli
gosterilimine olanak tanir ve iliskisiz KL a¢ilim katsayilarimin MMSE kestirim
degerlerini bulur. Boyle bir agilima gore, onerilen MMSE kestirimcilerinde matris
evrigine gereksinim yoktur. Bunun o&tesinde, uygun kerte indirgemesi, kestirim
algoritmasi lizerinde daha kii¢iik bir islem yiikii doguran KL ag¢ilimimin uygun
kisaltilabilme o6zelliginin  kullanilmas: ile basarilir. Onerilen yaklasimlarin

basarimlar1 analitik ve deneysel sonuglarla incelenmektedir.

v



Daha sonra, basarimlar1 arastirmak i¢in Onerilen yaklasimlar i¢in stokastik Cramer-
Rao alt sinirlar ele alinmaktadir. Modelleme hatasinin  kestirimcilerin basarimlari

uzerindeki etkileri analiz edilmektedir.

Verici ¢esitlemeli OFDM sistemlerinin basarimini arastirmak i¢in en yiiksek oran
alman sinyal birlestiricisi (MRRC) i¢in ortalama sembol hata olasiliginin (SER)
cikarttmi da  yapilmaktadir. Benzetim sonuglar1 kuramsal sonuglarimizi
dogrulamakta, verici gesitlemeli veya cesitlemesiz OFDM sistemleri i¢in Onerilen
kanal kestirim algoritmalar1  sirasiyla hizli soniimlemeli ve frekans secici

soniimlemeli kanallar1 izlemekte ve biitiin sistemin basarimini arttirmaktadir.
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Chapter 1

Introduction

With unprecedented demands on bandwidth due to the explosive growth of
broadband wireless services usage, there is an acute need for a high rate and
bandwidth efficient digital transmission. In response to this need, the research
community has been extensively investigating efficient schemes that make efficient
utilization of the limited bandwidth and cope with the adverse access environments,
Van Nee and Prasad [1]. These access environments may create different channel
impairments and dictate unique sets of advanced signal processing algorithms to

combat specific impairments.

Multicarrier (MC) transmission scheme, especially, orthogonal frequency division
multiplexing (OFDM), has recently attracted considerable attention since it has been
shown to be an effective technique to combat delay spread or frequency selective
fading of wireless or wireline channels thereby improving the capacity and
enhancing the performance of transmission. This approach has been adopted as the
standards in several outdoor and indoor high-speed wireless and wireline data
applications, including terrestrial digital broadcasting (DAB and DVB) in Europe,
and high speed modems over Digital Subscriber Lines in the US. It has also been
implemented for broadband indoor wireless systems including IEEE802.11a, MMAC
and HIPERLAN/2.

An OFDM system operating over a frequency selective wireless communication
channel effectively forms a number of parallel frequency nonselective fading

channels thereby reducing intersymbol interference (ISI) and obviating the need for

1



complex equalization thus greatly simplifying channel estimation/equalization task.
Moreover, OFDM is bandwidth efficient since the spectra of the neighboring
subchannels overlap, yet channels can still be separated through the use of
orthogonality of the carriers. Furthermore, its structure also allows efficient hardware
implementations using fast Fourier transform (FFT) and polyphase filtering, Sari et

al. [2].

Transmit diversity can effectively combat multipath channel impairments due to the
dispersive wireless channel that can cause deep fades in some subchannels. This is
generally achieved by separating transmit antennas far enough so that to make zero
or very low correlation between the transmission paths. The combination of the two
techniques, OFDM and transmit diversity, can further enhance the data rates in a
frequency selective fading environment. However, this enhancement requires

accurate and computationally efficient channel estimation methods.

The motivation for the thesis is to develop a low complexity pilot aided channel
estimation algorithms for OFDM systems with/without transmit diversity and to

analyze its performance both theoretically and analytically.

1.1 Previous Works

Pilot aided channel estimation in OFDM systems with and without transmit diversity
has been studied in [3—11] and [12—19] respectively. Pilot based algorithms assume
known symbols (training or pilot symbols) are inserted in the transmitted signals. It
is then possible to identify the channel at the receiver through exploiting knowledge

of these known symbols.

Edfors et al. [3] applied the theory of optimal rank-reduction to linear MMSE
estimator, and presented a low rank channel estimation algorithm, which exploits

only the frequency domain channel correlation.



Although channel correlation and signal-to-noise ratio (SNR) are needed in the
channel estimation algorithm, its performance is robust to changes in channel
correlation and SNR. Two pilot-aided ML and MMSE estimator schemes are
revisited and compared in terms of computational complexity by Morelli and
Mengali [4]. The difference between these two estimators is in their assumptions of
the channels. The ML algorithm regards the channel as a deterministic but unknown
vector, whereas MMSE algorithm regards the channel as a random vector, whose
particular realization is to be estimated. The ML algorithm achieves the Cramer-Rao
Lower Bound (CRLB); therefore it is a Minimum Variance Unbiased (MVU)
estimator. Minimum MSE is achieved on the condition that the channel is considered
deterministic and the estimator is unbiased. With the aid of prior channel
information, the MMSE algorithm outperforms the CRLB, because CRLB is a bound
for deterministic channel. With more available information about the channel,
MMSE algorithm obtains a better performance. Li et al. [5] proposed a MMSE
channel estimator algorithm, which makes full use of the time and frequency
correlation of the time-varying dispersive channel. The algorithm exploits both time
domain and frequency domain channel correlation, and makes use of the fact that the
OFDM channel correlation can be written as the product of time domain channel
correlation and frequency domain channel correlation. Moreover, a low complexity
MMSE doubly channel estimation approaches based on embedding Kronecker Delta
pilot sequences were presented by Schniter [6]. Biglieri et al. [7] studied on
multipath fading channels extensively, and developed several models to describe
their variations. In many cases, the channel taps are modeled as general lowpass
stochastic processes (e.g., Jakes [8]); the statistics depend on mobility parameters.
Yip and Ng [9] proposed a different approach modeling the multipath channel taps
by the Karhunen Loeve (KL) series representation. Senol et al. [10] and Siala and
Dupontiel [11] have also been KL expansion models used in modeling multipath

channel within OFDM and CDMA scenarios, respectively.

Transmit antenna diversity technique has been used for combating fading in mobile
in multipath wireless channels by Li et al. [12], Alamouti [13], and Cirpan and

Panayirci[14]. Among a number of antenna diversity methods, the Alamouti method



is very simple to implement. The simplicity of the receiver is attributed to the
orthogonal nature of the code by Tarokh ef al. [15, 16]. In Alamouti scheme, the
orthogonal structure of these codes enables the maximum likelihood decoding to be
implemented in a simple way through decoupling of the signal transmitted from
different antennas rather than joint detection resulting in linear processing. The use
of OFDM in transmits diversity systems motives exploitation of the diversity
dimensions. Inspired by this, a number of coding schemes have been proposed
recently to achieve maximum diversity gain by Lee and Williams [17], Liu ef al.
[18], and Bolcskei and Paulraj [19]. Among them, ST-OFDM has been proposed
recently for delay-spread channels. On the other hand, transmit OFDM also offers
the possibility of coding in the form SF-OFDM. Moreover, Lee and Williams [17]
compared SF-OFDM and ST-OFDM transmit diversity systems, under the
assumption that the channel responses are known or can be estimated accurately at
the receiver. It was shown that the SF-OFDM system has the same performance as a
previously reported ST-OFDM scheme in slow fading environments but shows better

performance in the more difficult fast fading environments.

1.2 Contributions of the Thesis

This thesis is a deep and thorough study of channel estimation problems in OFDM
systems with or without transmit diversity. Contributions of the thesis can be detailed

as follows:

e To propose a computationally efficient, pilot aided MMSE channel estimation
algorithms by exploiting Karhunen Loeve (KL) expansion. Based on such
representation, no matrix inversion is required in the proposed batch approach.
Moreover, optimal rank reduction can be achieved by exploiting the optimal
truncation property of the KL expansion resulting in a smaller computational
load on the estimation algorithm.

e To propose a simple sequential MMSE estimator implementation for the
estimation of the KL expansion coefficients since it does not require

performing matrix inversion as well without transmit diversity only.
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e To propose a computationally efficient MMSE channel estimation algorithm
for ST-OFDM and SF-OFDM systems focusing on transmit diversity OFDM
transmissions through frequency selective fading channels. Again, the KL
expansion scheme is employed in the development of the MMSE channel
estimation algorithm for ST-OFDM and SF-OFDM systems in order to reduce
the computational complexity. The complete analytical SER analysis for 2Tx-
1Rx antennas SF/ST-OFDM scheme, which have not appeared in the literature

yet, is derived.

In the thesis, the performances of the proposed approaches are explored based on the
evaluation of the stochastic Cramer Rao bound for the random KL coefficients and
the effect of the modeling mismatch on the performances of the estimators is also

presented.

1.3 Organization

This thesis consists of five chapters, six appendices, and a bibliography. A brief

summary of each chapter follows:

Chapter 1 is the introduction including the previous works and the contributions of

the thesis.

Chapter 2 describes the fading channel types and includes their models needed for
channel simulation. Basic principles of conventional OFDM systems are also

included in this chapter.

Chapter 3 introduces the basic concepts of OFDM systems and presents a
mathematical model of a conventional OFDM system. According to this
mathematical model, a computational efficient pilot aided truncated MMSE channel
estimation algorithm for OFDM systems is proposed and the performance analysis of
the estimator is given. As an original contribution Chapter 3 includes also a simple

sequential MMSE estimation for the estimation of the multipath channel KL

5



expansion coefficients and the performance analysis of the sequential estimator.
Simulation results for both batch and sequential MMSE channel estimators are also

discussed.

Chapter 4 introduces space-time and space-frequency transmits diversity coding
scheme employed in an OFDM system. In this chapter, a computational efficient
pilot-aided truncated MMSE channel estimation algorithm for space-time / space-
frequency coded OFDM systems is proposed and the performance analysis is given.
Simulation results for pilot aided truncated MMSE channel estimation algorithm for

space-time / space-frequency coded OFDM systems are also given.

Finally, Chapter 5 presents the conclusion and the further works.



Chapter 2

Fading Channel Models and OFDM Principles

In this section, both frequency and time correlation of a channel and their parameters
will be given. First, fading types will be presented since channel correlations depend
on fading types effecting the wireless channel. Then, a conventional OFDM systems

being a superior solution to overcome frequency selective fading will be introduced.

The rapid fluctuation of the amplitude of a radio signal over a short period of time is
described by fading. Interference between attenuated, reflected, refracted, and
diffracted versions of the transmitted signal causes multipath fading. These signals
are combined at the receiver antenna, and amplitude and phase of the resulting signal
can very in amplitude and phase depend on the distribution of the intensity and

relative propagation time of the waves and the bandwidth of the transmitted signal.

The most important multipath fading effects can be given as:

e Multiple versions of the transmitted signals caused by multipath propagation
delays.

e Randomness in frequency because of Doppler shifts on different multipath
signals.

e Rapid changes in signal strength over a small time interval.

There are many physical factors influencing fading. These factors can be

summarized as follows:

e Reflecting objects and scatters in the channel creates a constantly changing
environment that dissipates the signal energy in amplitude, phase and time. These

effects result in multiple versions of the transmitted signal that arrive at the
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receiving antenna, displaced with respect to one another in time and spatial
orientation. This causes intersymbol interference (ISI) at the receiver side.

e The relative motion between the base station and the mobile results in random
frequency modulation due to different Doppler shifts on each of the multipath
components. Doppler shift can be positive or negative depending on the direction
of the mobile receiver.

e If surrounding objects in the radio channel are in motion, they causes a time
varying Doppler shift on multipath components. If the surrounding objects move
at a greater rate than the mobile, then this effect dominates fading. Otherwise,
only the speed of the mobile need be considered.

e [f the transmitted radio signal bandwidth is greater than the “bandwidth” of the
multipath channel, the received signal will be distorted. If the transmitted signal
has a narrow bandwidth as compared to the channel, the amplitude of the signal
will change rapidly, but the signal will not be distorted in time. As will be
shown, the bandwidth of the channel can be quantified by the coherence
bandwidth, which is related to the specific multipath structure of the channel. The
coherence bandwidth is a measure of the maximum frequency difference for

which signals are still strongly correlated in amplitude.

2.1 Doppler Shift

Consider a mobile receiver moving at a velocity v from A to B and receiving signals
from a source, as shown in Figure 2.1. At is the time required for the mobile to
travel from A to B, and a is assumed to be the same at points A and B because the

source is assumed to be very far away. The phase change in the received signal due

to the difference in path lengths is therefore

_ 2n(AY) _ 2n(vAt) o
R K

AD

s(a) (2.1)

where o is the spatial angle, and hence the apparent change in frequency, or Doppler
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shift fy is given as

1 A v
fi=——=—cos 2.2
R v S 22)

and the maximum Doppler shift is f,, = v/&.

A —»v B

Figure 2.1 Illustration of Doppler Effect

From Equation (2.2), It can be deduced that if the mobile receiver is moving toward
the direction of arrival of the wave, the Doppler shift is positive (in other words,
received frequency is increased), and if the mobile is moving away from the
direction of arrival of the wave, the Doppler shift is negative (received frequency is

decreased).

2.2 Multipath Channel Parameters

The power delay profile plays an important role in the derivation of many multipath
channel parameters. The power delay profile is the expected power per unit of time

received with a certain excess delay.



2.2.1 Time Dispersion Parameters

The time dispersive properties of multipath channels are most commonly quantified

by their mean excess delay (T) and rms delay spread(t,,s). The mean excess delay

and rms delay spread are multipath channel parameters that can be determined from
a power delay profile. The mean excess delay is the first moment of the power delay

profile and is defined to be

O])'G(t)r dt
T= ?)o (2.3)
je(r)dr
0

The rms delay spread is the square root of the second central moment of the power

delay profile and is defined to be

Trms = O = -7 (24)
where
o jE)(t)r2 dt
1% = i (2.5)
f@(t)dr
0

In this thesis, the power delay profile for multipath channel will be characterized by

an exponential function of excess delay t as follows

6(1) = Ce~ */Tms (2.6)

where C is the power normalization constant. It should be noted that the power delay
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profile and the frequency domain correlation function of a mobile radio channel are
related through the Fourier transform. We now assume that the excess delay is in the

interval 0 < 1 <L . Then the frequency domain correlation function of the channel is

] L[ ! +j2n(ff’))
ci(f-f)=F {8(0)}= [6(r)e ™" de=C 1—e1 (2.7)
0 S

Trms

where constant C is calculated as

1 1
C=r = — (2.8)

[B(r)dt
0

_ o tms
Tms|1—€

for power normalization. Substituting (2.8) in (2.7), frequency domain correlation of

the channel is obtained as follows,

L( ! +j27‘:(ff')J
l—e Trms

-L
Tms| 1—€ ™™ (

ci(f—f) = 2.9)

+j2n(f - f’)j

Trms

Replacing (f—f') by (k—-k')/K in (2.9), frequency domain discrete channel

correlation can also be given as in Edfords ez al. [3],

_L( 1 +j2n(k—k)J
l—e Trms K

-L
Trms| 1— e ms (

cr(k—k') = (2.10)

1 .2k —k’)J
+]
Trms K
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where K is the number of the discrete frequency points in the channel bandwidth (or
the number of the subcarriers in OFDM systems).In this thesis, discrete channel

correlation in (2.10) is used in order to generate a multipath channel.

Coherence bandwidth B 1is also used to characterize the channel in the frequency
domain, like delay spread parameters in the time domain. The rms delay spread T,y

and coherence bandwidths are inversely proportional to one another.

2.2.2 Coherence Bandwidth

Coherence bandwidthB,, is a defined relation derived from the rms delay
spread T, . Coherence bandwidth is a statistical measure of the range of frequencies
over which the channel can be considered “flat”. In other words, the channel affects
two sinusoids with frequency separation greater than B, quite differently. If the

coherence bandwidth is defined as the bandwidth over which the frequency

correlation function is above 0.9, then the coherence bandwidth is approximately,

y 1
50Tms

2.11)

C

If the frequency correlation function is above 0.5, then the coherence bandwidth is

approximately

B. = !

5Tms

(2.12)

and also called as 50% coherence bandwidth.

2.2.3 Coherence Time

Coherence bandwidth and delay spread are parameters describing the time dispersive
nature of the channel in a local area. They don’t offer information about the time

varying nature of the channel caused by either relative motion between the mobile
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and the base station, or by movement of objects in the channel. Doppler spread and

coherence time are parameters describing the time varying nature of the channel.

Coherence time T, is the time domain dual of Doppler spread and is used to
characterize the time varying nature of the frequency dispersiveness of the channel in
the time domain. The Doppler spread and coherence time are inversely proportional

to one another. That is,

T, ~ 1 (2.13)
S

The definition of coherence time implies that two signals arriving with a time

separation greater than T; are affected differently by the channel. If the coherence

time is defined as the time over which the time correlation function is above 0.5, then

the coherence time is approximately,

9

T
¢ " 16nf,

1N

(2.14)

where f,,, is the maximum Doppler shift.

2.3 Fading Types

The time dispersion and frequency dispersion structures of a mobile radio channel
lead to four possible distinct fading effects. While multipath delay spread leads to
time dispersion and frequency selective fading, Doppler spread leads to frequency

dispersion and time selective fading.

The two propagation mechanisms are independent of one another. According to the
relation between the signal parameters (such as bandwidth, symbol period Ts, etc.)
and the channel parameters (such as rms delay spread and Doppler spread), four
types of fading can be defined. Figure 2.2 and Figure 2.3 show a tree of the four
different types of fading.
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Fading

based on multipath delay spread

Flat Fading Frequency Selective Fading
1.) Signal Bandwidth < Channel Bandwidth 1.) Signal Bandwidth > Channel Bandwidth
2.) Delay Spread < Symbol Period 2.) Delay Spread > Symbol Period

Figure 2.2 Types of fading based on multipath delay spread

2.3.1 Flat Fading

If the channel has a constant gain and linear phase response over a bandwidth, which
is greater than the bandwidth of the transmitted signal, then the received signal
undergoes flat fading. Therefore, flat fading channels can be considered as having no
excess delay. The most common instantaneous amplitude distribution of the channel

is the Rayleigh distribution. To summarize, a signal undergoes flat fading if

B <<B¢ (2.15)
and

Tsym >> Trms (2.16)

where Tsym is the symbol period and Bs is the signal bandwidth, respectively, of the

transmitted modulation, and t,,s and B are the rms delay spread and coherence

bandwidth, respectively, of the channel.

2.3.2 Frequency Selective Fading

If the channel impulse response has a multipath delay spread, which is greater than
the symbol period, then the channel creates frequency selective fading on the
received signal. When this occurs, the received signal includes multiple versions of
the transmitted waveform, which are attenuated (faded) and delayed in time, and

hence the received signal is distorted. Thus the frequencies selective fading channel
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results in intersymbol interference (ISI). For frequency selective fading, the spectrum
of the transmitted signal has a bandwidth, which is greater than the coherence
bandwidth of the channel. In other words, in the frequency domain, the channel
becomes frequency selective, where the gain is different for different frequency

components. To summarize, a signal undergoes frequency selective fading if

B, >B, 2.17)

and
Tsym < Trms (2.18)

Fading
based on Doppler spread
Slow Fading Fast Fading
1.) Low Doppler Spread 1.) High Doppler Spread
2.) Coherence Time > Symbol Period 2.) Coherence Time < Symbol Period

Figure 2.3 Types of fading based on Doppler spread

2.3.3 Slow Fading

The radio channel is called as slow fading channel, if the Doppler spread of the
channel is much less than the bandwidths of the baseband signal. This implies that
the channel impulse response changes at a rate much slower than the transmitted
baseband signal. In this case, the channel may be assumed to be static over one or

several symbol durations. Therefore, a signal undergoes slow fading if

Teym << T¢ (2.19)

and

B, >> By (2.20)

where By is the Doppler spread.
15




Note that the velocity of the mobile and the baseband signalling determines whether

a signal undergoes fast fading or slow fading.

2.3.4 Fast Fading

In a fast fading channel, the channel impulse response changes rapidly within the
symbol duration. That is, the coherence time of the channel is smaller than the
symbol period of the transmitted signal. Signal distortion due to fast fading increases
with increasing Doppler spread relative to the bandwidth of the transmitted signal.

Therefore, a signal undergoes fast fading if

Toym > Te (2.21)

and

B, <By (2.22)

Fast fading only deals with the rate of change of the channel due to motion. In the
case of the flat fading channel, we can approximate the impulse response to be
simply a delta function (no time delay). Hence a flat - fast fading channel is a
channel in which the amplitude of the delta function varies faster than the rate of the
change of the transmitted baseband signal. In the case of a frequency selective - fast
fading channel, the amplitudes, phases, and time delays of any one of the multipath
components vary faster than the rate of change of the transmitted signal. Possible

combinations of these fadings are illustrated in Figure 2.4 and Figure 2.5.
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Figure 2.4 Matrix illustrating type of fading as a function of symbol period
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Figure 2.5 Matrix illustrating type of fading as a function of baseband signal
bandwidth

2.4 Doppler Power Spectrum

Let pg, (fg)d(fy) and p,(a)d(a) denote percent of received power within do and
d(fy) respectively. Where a is the angle of arrival and fy(a) is the instantaneous

Doppler frequency fy(a) =f,cos(a) as in (2.2). Usually we have no information to

specify that one angle of arrival is more likely than another, so we take o to be
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uniformly distributed (p,, (o) =2L). Total received power (as percent) in the interval
T

—f, <fq <f can be expressed as

f —arccos(f/f) T
Jps, (Fq)d(fq) = ) Py (a)d(a) + | Py (a)d(a)
—fn !’ arccos(f/fy)
1 —arccos(f/f,) T
=— | d(a) + [ d(w (2.23)
2m -7 arccos(f/fy)

Differentiating Equation (2.23) with respect to f

1 d(-arccos(f/f,))

T df

S : 1fI<f, (2.24)

N

pr, (F) =

Doppler power spectrum S(f) can be obtained as follows
S(f) = P py, (f) (2.25)

where Pg is total received power. Therefore, as a result Doppler power spectrum

around the carrier frequency is

Pr

anr% _(f_fc)2

S(f) =

| f—f |<f, (2.26)

Doppler spectrum around carrier frequency f, is shown in Figure 2.6.
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Figure 2.6 Doppler power spectrum around carrier frequency f;

The autocorrelation function due to Doppler spread is the inverse Fourier transform

of the Doppler power spectrum. Thus, the autocorrelation function is

P
ci(t-t')=F s =F "{H—=F=}
t myf2 —f2
=Pg J,(2nf, (t-1")) (2.27)

where J,(.) is the zero th order Bessel function. In thesis, total received power

Pr will be normalized. Therefore, the autocorrelation function for normalized power

18
cy(t-t') = J,(2nf, (1 1) (2.28)

Replacing (t—t") by(n—n')Tg, time domain discrete channel autocorrelation can

also be given as

ci(n-n")=J,(2xf,(n-n")T,) (2.29)
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where Tg denotes the sampling period. In this thesis, discrete autocorrelation of the

transmit diversity OFDM systems will be given by (2.29).

2.5 Basic Principles of OFDM

OFDM originated from the need of efficient communications through a frequency-
selective fading channel. A channel is frequency-selective if the frequency response
of the channel changes significantly within the band of the transmitted signal. While,
a constant frequency response is called flat fading. Figure 2.7.a, b exemplifies the
frequency-selective and flat fading channels. Digitally modulated signals going
through a frequency-selective channel will be distorted, resulting in intersymbol
interference (ISI). To mitigate the ISI, a complex equalizer is usually needed to make
the frequency response of the channel flat within the bandwidth of interest; or the
symbol duration must be long enough so that the ISI affected portion of a symbol can
be negligible. From the frequency domain viewpoint, the latter approach means to

transmit a narrow band signal within whose bandwidth the channel can be well

considered to be flat fading, as shown in Figure 2.7.d.

This fact gives the idea that one can transmit several low rate data streams, each at a
different carrier frequency through the channel in parallel and each data stream is ISI
free and only a simple one tap equalizer is need to compensate the flat fading. This
idea is illustrated in Figure 2.8. That is actually the idea of Frequency Division
Multiplexing (FDM).

However, this multi-carrier transmission scheme may suffer inter carrier interference
(ICD), i.e., the signals of neighboring carriers may interfere each other. To avoid the

ICI, guarding bands are employed in FDM to separate different sub-carriers.
This results in a waste of the spectrum. OFDM follows the very similar multi-carrier
modulation strategy. However, it employs the orthogonality among sub-carriers to

eliminate the ICI without the need of the guarding bands.
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Figure 2.7 Signals transmitted through frequency-selective channels
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Figure 2.8 Multi carrier modulation scheme
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Figure 2.9 Frequency Division Multiplexing System

As illustrated in Figure 2.9, frequency-multiplexed digitally modulated signals in one

symbol duration are of the form

j2nf t

K-1
s,(t)= > X(nk)e ;o NTgym <t<(N+1)Tgym (2.30)
k=0

where K information symbols X(n,k), k=0, ..., K-1 are transmitted simultaneously
and are considered a block, n indicates index block, f, is the k th sub-carrier, and

Tsym is the OFDM symbol duration.

In OFDM signaling, the following orthogonality condition is satisfied,

Tom onft -2nft 'om j2n(f —f.
Jefitgdantit _ o Janlhi =ttt _ 231)

[ e

0 0

That means the space between the frequencies of the sub carriers should be

Af =f, —f; = =3 (2.32)

sym
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Note that the smallest space for orthogonality is equal to the symbol rate 1/ Tgy, .

With the orthogonality, each sub carrier can be demodulated independently without
ICIL. It should be noted that the passbands of the subcarriers may overlap in OFDM,

as shown in Figure 2.10.

T K subcarriers —’:* .
— :<_Spamng
1/ Tsym

Figure 2.10 An OFDM system with K subcarriers

This allows one to pack the sub carriers into a given spectral band in a densest
fashion, so a high spectral efficiency is achieved. Figure 2.11 illustrates the
difference between the conventional non-overlapping multi carrier technique and the

OFDM.

OFDM signal s, (t) in (2.30) can also be obtained using a digital method, as shown
in Figure 2.12, if we note that the K/ T, rate samples of s, (t) is the Inverse Fast

Fourier Transform (IFFT) of the information symbols X(n,k), k=0, ..., K-1,

2 k .Tsym ) ik
K—l J T Ts m ! K K—l J T[? i
sn(B)]_ Tom = kz X, (k)e y = kzoxn(k)e ,i=0, .., K-1 (2.33)
K =0 =

where i is the time sample index.
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Figure 2.11 Comparison between conventional multi carrier technique and OFDM
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Figure 2.12 FFT

implementation of transmitted waveform

Then, the FFT algorithm makes the implementation of the OFDM scheme very

efficient. In addition to the high spectral efficiency and simple equalization, the

advantages of OFDM include:
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OFDM can easily achieve optimal “bit-loading”, i.e., assign different power and
constellation size to each sub-carrier to enhance system capacity.

OFDM is robust against narrow band interference because such interference
affects only sum of the sub carriers.

OFDM allows efficient FFT implementation.
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Chapter 3

Ofdm Channel Estimation by Karhunen Loeve Expansion

OFDM is a multicarrier modulation technique (or a multiplexing technique) where a
single data stream is transmitted over a number of lower rate subcarriers. One of the
main reasons to use OFDM is to increase the robustness against frequency selective
fading. In a single carrier system, a single fade can cause the entire channel to fail,
but in a multicarrier system, only a small percentage of the subcarriers will be

affected.

In order to eliminate ISI arising due to multipath channel and preserve orthogonality
of the subcarrier frequencies (tones), conventional OFDM systems first take the IFFT
of data symbols and then insert redundancy in the form of a Cyclic Prefix (CP) of
length Lcp larger than the channel order L. CP is discarded at the receiver and the
remaining part of the OFDM symbol is FFT processed. Combination of IFFT and CP
at the transmitter with the FFT at the receiver divides the frequency-selective channel

into several separate flat-fading subchannels.

An OFDM system with K subcarriers is considered for the transmission of K parallel

data symbols. Thus, the information stream is parsed into K long blocks:
X,y = [X(n,0), X(N,1), ., X(,K = 1)]" where n =1, 2, ... is the block index and the
superscript ()T indicates the vector transpose. The Kx1 symbol block is then

mapped to a (K+L)x1 vector by first taking the IFFT of X, and then replicating the

last Lcp elements as

s, =[8,(0),5,(1), w5, (K+Lcp — D] 3.1)
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S,, is serially transmitted over the channel. At the receiver, the CP of length Lcp is

removed first and FFT is performed on the remaining Kx1 vector. Therefore, the

output of the FFT unit in matrix form can be written as

Y,=A,H,+n, (3.2)

where A, is the diagonal matrix A, =diag{X,,} and H,, is the channel vector. The

elements of H, are the values of the channel frequency response evaluated at the

subcarriers.
s(0) r(0)
| . —’
- }q -
s(L-1) g 5 r{L-1)
X(0) —p M = ® —» Y{0)
: ; =] A :
- =]
= =) »| CHANNEL = =
[ =
; B
= , =
- s(K) é 3 r(K) _
& al
X(K-1) — " . ieet) S | "y Y(K-1)
s(K+L-1)

Figure 3.1 OFDM system block diagram

Therefore, H, :[H(n,O), H(n,e?™'K)y, ...,H(n,ejzn(K*l)/K)]T can be written as
H,=Fh, where F is the FFT matrix with (ki) entry e 2™’/K and
h, = [hn(O), h, (@), ...,h, (L —1)]T. h,, modeled as a complex Gaussian vector with
h, ~ N (0 ) Ch) represents the overall channel impulse response during the nth
OFDM block. Finally, n, is a Kx1 zero-mean, i.i.d complex Gaussian vector that

models additive noise in the K subchannels (tones), and E[nnn$]=021K where Ig

represents an KxK' identity matrix, 02 is the variance of the additive noise entering

the system and the superscript (.)Jr indicates the Hermitian transpose. Based on the

model (3.2), main objective in this work is to develop both batch and sequential
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pilot-aided channel estimation algorithm according to MMSE criterion and then
explore the performance of the estimators. A batch approach adapted herein
explicitly models the channel parameters by the KL series representation and
estimates the uncorrelated expansion coefficients. Furthermore, the computational
load of the proposed MMSE estimation technique is further reduced with the
application of the KL expansion optimal truncation property, Yip and Ng [9].

3.1 Batch MMSE Channel Estimator

A low-rank approximation to the frequency-domain linear MMSE channel estimator
is provided by Edfords et al. [3] to reduce the complexity of the estimator. Optimal
rank reduction is achieved in this approach by using the singular value
decomposition (SVD) of the channel attenuations covariance matrix Cy of dimension
KxK'. In contrast, the MMSE estimator is adopted for the estimation of multipath
channel parameters h that uses covariance matrix of dimension L xL . The proposed
approach employs KL expansion of multipath channel parameters and reduces the
complexity of the Singular Value Decomposition (SVD) used in eigen
decomposition since L is usually much less than K. MMSE batch estimator will be

now developed for pilot assisted OFDM system in the sequel.

3.1.1 MMSE Multipath Channel Estimator

Pilot symbol assisted techniques can provide information about an under sampled
version of the channel that may be easier to identify. In this thesis, the problem of
estimating multipath channel parameters is addressed by exploiting the distributed
training symbols. Considering (3.2), and in order that the pilot symbols are included
in the output vector for the estimation purposes, let us focus on an under-sampled
signal model. Assuming K, pilot symbols are uniformly inserted at known locations

of the ith OFDM block, the K, x1 vector corresponding to the FFT output at the

pilot locations becomes

Y = AFh+n (3.3)
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where A = [Ai(O), Ai(A)s s Aj((Kp — l)A)]T is a diagonal matrix with pilot symbol
entries A is pilot spacing interval, F is an K, xL FFT matrix generated based on

pilot indices, and similarly n is the under-sampled noise vector.

For the estimation of h, the new linear signal model can be formed by
premultiplying both sides of (3.3) by AT and assuming pilot symbols are taken from

a Phase Shift Keying (PSK) constellation ATA = IKp , then the new form of (3.3)

becomes
ATY =Fh+ATn
Y=Fh+0 (3.4)

where Y and N are related to Y and n by the linear transformation respectively.

Furthermore, N is statistically equivalent to n.

Equation (3.4) offers a Bayesian linear model representation. Based on this

representation, the minimum variance estimator for the time-domain channel vector
h for the ith OFDM block, i.e., conditional mean of h given 7, can be obtained

using MMSE estimator. Let us clearly make the assumptions that h ~ N (0 , Ch ) ,
n~N (0 , Cﬁ) and h is uncorrelated with . Therefore, MMSE estimate of h is

given by Kay[11]:
h=(F'cZF+Ci)F C Y (3.5)

For details of the derivation of (3.5) the reader is referred to Appendix A, where

summary results of Bayesian estimation are presented. Due to PSK pilot symbol
assumption together with the result Cz = E[qn'] =021Kp , (3.5) is therefore

expressed by
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h=(F F+o2Ci)'F'¥ (3.6)

Under the assumption that uniformly spaced pilot symbols are inserted with pilot

t t
spacing interval A and K =AxK_, correspondingly, F F reduces to F F=K,I .

Then according to (3.6) and FTF =Kp I, following expression is obtained
h=(K, I +6°Cy)'F'¥ 3.7)

Since MMSE estimation still requires the inversion of Cy,', it therefore suffers from

a high computational complexity. However, it is possible to reduce complexity of the

MMSE algorithm by diagonalizing channel covariance matrix with a KL expansion.

3.1.2 Karhunen Loeve Expansion of Multipath Channel

Channel impulse response h is a zero-mean Gaussian process with covariance matrix
C,,. The KL transformation is therefore employed here to rotate the vector h so that

all its components are uncorrelated. The vector h, representing the channel impulse
response during ith OFDM block, can be expressed as a linear combination of the

orthonormal basis vectors as follows:

L-1
h=>%gw, =Yg (3.8)
/=0

where W = [lpo, Y., lp,__l] , @, ’s are the orthonormal basis vectors, g = [go, 91,

...g|__1]T, and g, ’s are the weights of the expansion. If the covariance matrix C, is

formed as

Cp =YA,¥! (3.9)
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where Ag=E [ggT ], the KL expansion is the one in which Ag of C, is a diagonal

matrix (i.e., the coefficients are uncorrelated). If Ag is diagonal, then the form
‘I’I\g‘I’Jr is called an eigen decomposition of C, . The fact that only the eigenvectors

diagonalize C, leads to the desirable property that the KL coefficients are

uncorrelated. Furthermore, in Gaussian case, the uncorrelateness of the coefficients

renders them independent as well, providing additional simplicity.

Thus, the channel estimation problem in this application is equivalent to estimating
the independent identical distributed complex Gaussian vector g, KL expansion

coefficients.

3.1.3 Estimation of Karhunen Loeve Coefficients

In contrast to (3.4) in which only h is to be estimated, let us now assume the KL
coefficients g is unknown. Thus the data model (3.4) is rewritten for each OFDM
block as

~

Y =F¥g+n (3.10)

which is also recognized as a Bayesian linear model, and recall that

g- W(O ) I\g ) As a result, the MMSE estimator of g is
g=~NAg(KoAg +071)"PTFTY

=ryF'y (3.11)
where

F=Ag(KoAg+0°1)"! (3.12)

31



. )\0 )\L—l
:dlag)\K R 3
0 p+0 L-1 p+0

and Ag,Ap, e, Ay are the singular values of Ag.

It is clear that the complexity of the MMSE estimator in (3.7) is reduced by the
application of KL expansion. However, the complexity of the g can be further

reduced by exploiting the optimal truncation property of the KL expansion, Yip and
Ng [9]. MMSE estimator of g requires 42 + 4LK, +2L real multiplications. From

the results presented in Morelli and Mengali [4], ML estimator of g is obtained as

follows:

g :KLTTFT\? 3.13)

p

Note that, according to (3.13), the ML estimator of g requires 412 +4LK real

multiplications.

3.1.4 Truncated MMSE Channel Estimator

A truncated expansion g, can be formed by selecting r orthonormal basis vectors

among all basis vectors that satisfy C,¥ = WAg. The optimal one that yields the

. 1 . .
smallest average mean-squared truncation error L E[sfsr ] is the one expanded with

the orthonormal basis vectors associated with the first largest » eigen values as given

by

L Efefe, 1= 1S, (3.14)
L Lizr

where €, =g —d,. For the problem at hand, truncation property of the KL expansion
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results in a low-rank approximation as well. Thus, a rank-r approximation to Ag_ is

defined as

Ay =diagihgAy, ..., A 1,0,...,0} (3.15)

9

Since the trailing L-r variances {)\g}lg;rl are small compared to the leading r

variances {)\5}2;10, then the trailing L-r variances are set to zero to produce the
approximation. However, typically the pattern of eigen values for Agsplits the

eigenvectors into dominant and subdominant sets. Then the choice of r is more or

less obvious. The optimal truncated KL (rank-r) estimator of (3.11) now becomes
g =T YFy (3.16)

where

M =Ag (KoAg, +0?1)! (3.17)

= diag Ao T Ary 75 0,...,0
AKp +0O AoKp +0

Since the ultimate goal is to obtain MMSE estimator for the channel frequency
response H, from the invariance property of the MMSE estimator, it follows that if g

is the estimate of g, then the corresponding estimate of H can be obtained for the i th

OFDM block as

H=F¥g (3.18)

Thus, from (3.16) and (3.17), the truncated MMSE estimator of g requires

4Lr +4LK, +2r real multiplications.
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3.1.5 Performance Analysis

Let us turn our attention to analytical performance results of the batch MMSE
approach. First, the CRLB and derive the closed-form expression for the random KL
coefficients will be considered, and then the performance of the MMSE channel

estimator based on the evaluation of minimum Bayesian MSE will be exploited.

3.1.5.1 Cramer-Rao Bound for Karhunen Loeve Coefficients

The mean-squared estimation error for unbiased estimation of a nonrandom
parameter has a lower bound, the Cramer-Rao Lower Bound (CRLB), which defines

the ultimate accuracy of unbiased estimation procedure.

Suppose @ is an unbiased estimator of a vector of unknown parameters g (i.e. E[g]

= @) then the mean-squared error matrix is lower bounded by the inverse of the

Fisher information matrix (FIM):

~ AT 1, A
El(g-9)(9-9) 12J7(9) (3.19)
Since the estimation of unknown random parameters g via MMSE approach is
considered in this work, the modified FIM needs to be taken into account in the

derivation of stochastic CRLB, Van Trees [12], and Senol et al. [17]. Fortunately, the

modified FIM can be obtained by a straightforward modification of (3.19) as,

Jm(9) = J(g)+ Jp(9) (3.20)

where Jp(g) represents the a priori information.

Under the assumption that g and i are independent of each other and R is a zero-

mean, from Van Trees [12], Senol et al. [17] and (3.10) the conditional PDF is given
by
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o(¥|9)= ﬁexp {(F-Frg)c;|(V-Frg)T| (3.21)
TP q

from which the derivatives follow as

onP(Y19) _ ¢ Fwg)tc:I(¥-Frg) (3.22)
og 4
, e
0” In p(YTlg) _ _piEte Ry (3.23)
og’'og "

where the superscript (.)" indicates the conjugation operation.

t t
Using Cg =021Kp , ¥ W=I_ and F F=K_I and taking the expected value

yields the following simple form:

.
Jg)=- TP,

=—1I_ (3.24)
Second term in (3.20) is easily obtained as follows. Consider the prior PDF of g as,

I i}
p(@)=—— A |e><|o{—s:lT/\(_;,lg} (3.25)
T
g

The respective derivatives are found as

0ln ;
PG _ g ]

(3.26)
og'
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2
% —-A] (3.27)
og o9

Upon taking the negative expectations, second term in (3.20) becomes

2
Jp(g) =- [ NP9,
og og

= -E[-A]]

-1
= Ay (3.28)
Substituting (3.24) and (3.28) in (3.20) produces for the modified FIM as follows

Jm(g) = J(9)+Jp(9)

=—r! (3.29)

Inverting the matrix Jy(g) yields

CRLB(g) = Jy/(9)

—-or (3.30)

3.1.5.2 Bayesian MSE

For the MMSE estimator g, the error is

(3.31)

m>
Il
«Q
|
[{e}]
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Since the diagonal entries of the covariance matrix of the error represent the
minimum Bayesian MSE, let us now derive covariance matrix C; of the error

vector. From the Performance of the MMSE estimator for the Bayesian Linear model

Theorem, Kay[11], the error covariance matrix is obtained as

-1 Tl
C: = (Ag +(F¥) CH(F¥))
=0 (Kol +02Ay)™

=o°T (3.32)

and then the minimum Bayesian MSE of the full rank estimator becomes (see

Appendix A)

Lf)‘— (3.33)

A1 1 1
B =—trace(C;)=—trace(cl)=—
mse(@) = -trace(Cg) = L 51+ K A SNR

where SNR=1/c2.

Comparing (3.30) with (3.32), the error covariance matrix of the MMSE estimator
coincides with the stochastic CRLB of the random vector estimator. Thus, @

achieves the stochastic CRLB.

As the details are given in Appendix A, Bygg(@) given in (3.33) can also be

computed for the truncated (low-rank) case as follows:

17l A -1
B _— 3.34
mse(Qr) = C Zol KA snr ; (3.34)

Notice that, the second term in (3.34) is the sum of the powers in the KL transform

coefficients not used in the truncated estimator. Thus, truncated Bygg(@,) can be
L-1

lower bounded by — > A; which will cause an irreducible error floor in the SER
i=r

results.
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3.1.6 Mismatch Analysis

Once the true frequency-domain correlation, characterizing the channel statistics and
the SNR, are known. However, in mobile wireless communications, the channel
statistics depend on the particular environment, for example, indoor or outdoor,
urban or suburban, and change with time. Hence, it is important to analyze the
performance degradation due to a mismatch of the estimator to the channel statistics
as well as the SNR, and to study the choice of the channel correlation, and SNR for
this estimator so that it is robust to variations in the channel statistics. As a
performance measure, uncoded Symbol Error Rate (SER) is used for QPSK

signaling. The SER expression for this case is given in Proakis [13] as a function of

the SNR and the average Bysg(g) as follows:

SERgpsk =§—é—§arctan(<§) (3.35)
4 2 n
where
g= o
A 2
\/(Qg *Buse(@))(1+ o 7)

L-1
and Qg represents the normalized variance of the channel gains (Qq = Z(:))\i =1) and
i=

SNR =1/02. In practice, the true channel correlations and SNR are not known. If

the MMSE channel estimator is designed to match the correlation of a multipath

channel impulse response Ci and SNR, but the true channel parameters h has the

correlation C¢ and the true SNR, then average Bayesian MSE for the designed

channel estimator is obtained as (see Appendix B and C)
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e SNR mismatch:

1L A SNR?
BMSE(Q)— ) ' ’71+Kp)‘i = (3.36)
L 5(1+K,A;SNR)? L SNR
e Correlation mismatch:
B (5) 21)\ +K,SNRA(A; + A —2B) -
use(9) LS 1+K,SNRA, 3.

where Xi is the i diagonal element of Aj =‘I’TCE‘I’, and B; is ith diagonal

element of the real part of the cross correlation matrix between g and g.

3.2 Sequential MMSE Channel Estimator

Let us now turn our attention to the derivation of the sequential MMSE algorithm
with simple structure. The sequential MMSE approach is proposed in this work to
follow the channel variations by exploiting only channel correlations in frequency.

The block diagram for this is shown in Figure 3.2. To begin with the algebraic

derivation, let us use (3.10) to write m th component of Y as
Y[m]=u'(m)g+H[m] (3.38)

where u (m) is the mth row of F¥ and R [m] is the mth element of the noise

vectorh) .

If a MMSE estimator of Y [m+1] can be found based on Y [m], denoted for ?m Hjm s

the prediction error f,,; = V[m + 1]— Vm +im Will be orthogonal to 7[m] Therefore

g can be projected onto each vector separately and add the results, so that

Im+1 = 9m + Kmat sl
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=G + K (Y[m+1]-uT(m+1)8, ) (339)
where @,,,; is the (m+1)" estimate of g, and Ky, is the gain factor given as

M, um+1)
uT(m +1)M, u(m+1)+02

(3.40)

Km+1 =

G2, u (m+1), M,

\"f(m+1)4@—> s _;@ 'amﬂ

~

O

u'(m+1) |

Figure 3.2 Block diagram of sequential MMSE estimator

It can be seen that M,,= E[(g—@m)(g—ﬁm)T] is needed in (3.40), hence update

equation for the minimum MSE matrix should also be given. If (3.39) is substituted

inMp,;=E[(9 -9, )(9— QmH)T ], an update equation for M., is obtained as

M1 = (I —Kpqu (M +1)M, (3.41)

Based on these results, the steps of the sequential MMSE estimator for g can be

summarized as follows:

Initialization: Set the parameters to some initial value g, =0, M, = A g

1. Compute the gain K, from (3.40)
2. Update the estimate of g from (3.39)
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3. Update the minimum MSE matrix from (3.41).
4. Repeat step 1 - step 3 until m = K, - 1.

Some remarks and observations are now in order:

i.No matrix inversions are required.
"
ii. Since the MMSE estimator (3.11) requires F F being equal to K,I} which is
satisfied only when A =K/K, is an integer. However, the sequential version of

(3.11) works as long as A <K/L.

Let us now analyze the complexity of the sequential MMSE algorithm. It follows
from (3.40) in step 1 that one needs 4L+5L real multiplications to compute the gain.
Similarly, from (3.39) in step 2, it requires 5L real multiplications for the estimator
update. Finally, in step 3, 8L? real multiplications are needed for the MMSE matrix
update. Therefore, the total sequential MMSE algorithm requires 12L% + 10L real

multiplications for one iteration.

3.2.1 Performance Analysis

Let us turn our attention now to the performance analysis of the adaptive algorithm.
Its convergence properties will be evaluated in terms of mean square error. From

(3.40) and (3.41),

Km+10-2 =(I_ _Km+1uT(m +1))Mp u(m+1)

=M, ,u(m+1) (3.42)
is concluded. Substituting (3.42) in (3.40), following result is found.

2

(0)
M - M 1)=0 3.43
{ m+1 uT(m+1)Mmu(m+1)+02 m}u(m‘F ) Lx1 ( )
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Based on (3.43) the following recursion is obtained,

0_2

Mm+1 = Mm

u'(m+ DM u(m+1)+c>

= 6m+1|mMm (3.44)

Due to positive definite property of error covariance matrix M, it follows that

uT(m+1)Mmu(m+1)> 0. As a result 0 <Oy <1. Define average MSE at the

mth step as MSE,, = %’[r(Mrn ), then it follows from (3.44) that

Thus, as m — o0, MSE_, — 0. That means g,,, converges to g in the mean square.

3.3 Simulation Results

In this chapter, the merits of proposed channel estimators are illustrated through
simulations. Let us choose average mean square error (MSE) and symbol-error rate

(SER) as the figure of merits.

The fading multipath channel with L paths given by (3.46) with an exponentially

decaying power delay profile 8(t)=Ce Utms with delays t that are uniformly
and independently distributed over the duration Lcp is considered. Note that h is
chosen as complex Gaussian leading to a Rayleigh fading channel with root mean
square (rms) width t,,,¢ and normalizing constant C. In (2.10) and Edfords e? al. [3],

it is shown that the normalized exponential discrete channel correlation for different

subcarriers is
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L( 1 +J.2n(k—k’)J
Trms
cr(k—k') = l-e

- (3.46)

Trms| 1 —€ Frms (

L Ji2n(k —k')j

Trms K

The scenario for the simulation study consists of a wireless QPSK OFDM system
employing the pulse shape as a unit-energy Nyquist root raised cosine shape with roll
off o =0.2, with a sampling period (Ts) of 0.120 us, corresponding to an uncoded
symbol rate of 8.33 Mbit/s. Transmission bandwidth(5 MHz) is divided into 1024
tones. Let us assume that the fading multipath channel has L=40 paths with an

exponentially decaying power delay profile (3.46) with a 1., =5 sample (0.6 us)
long.

3.3.1 Batch MMSE Approach

A QPSK-OFDM sequence passes through channel taps and is corrupted by Additive
White Gaussian Noise (AWGN), (0dB, 5dB, 10dB, 15dB, 20dB, 25dB and 30dB
respectively). A pilot symbol for every twenty A =20 symbols is used. The MSE at
each SNR point is averaged over 1000 realizations. The experimental MSE
performance and its theoretical Bayesian MSE of the proposed full-rank MMSE
estimator are compared with ML estimator and its corresponding CRLB. Figure 3.3
confirms that MMSE estimator performs better than ML estimator at low SNR.

However, the two approaches have comparable performance at high SNRs.

To observe the performance, the MMSE and ML estimated channel SER results
together with theoretical SER are also presented in Figure 3.4.

Due to the fact that spaces between the pilot symbols are not chosen as a factor of the
number of subcarriers, an error floor is observed in Figure 3.3 and Figure 3.4. In the
case of choosing the pilot space as a factor of number of subcarriers, the error floor
vanishes because of the fact that the orthogonality condition between the subcarriers
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at pilot locations is satisfied. In other words, the curves labeled as simulation results
for MMSE estimator and ML estimator fit to the theoretical curve sat high SNRs. It
also shows that the MMSE estimated channel SER results are better than ML

estimated channel SER especially at low SNR.

3.3.1.1 SNR Design Mismatch

In order to evaluate the performance of the proposed full-rank MMSE estimator to
mismatch only in SNR design, the estimator is tested when SNRs of 10 and 30 dB
are used in the design. The SER curves for a design SNR of 10, 30dB are shown in
Figure 3.5. The performance of the MMSE estimator for high SNR (30 dB) design is
better than low SNR (10 dB) design across a range of SNR values (0 - 30 dB). These
results confirm that channel estimation error is concealed in noise for low SNR
whereas it tends to dominate for high SNR. Thus, the system performance degrades

especially for low SNR design.

3.3.1.2 Correlation Mismatch

In order to analyze full-rank MMSE estimator's performance further, sensitivity of
the estimator to design errors needs to be studied, i.e., correlation mismatch.
Therefore the estimator is designed for a uniform channel correlation which gives the
worst MSE performance among all channels Edfords et al. [3], Li et al. [5] and
evaluated for an exponentially decaying power-delay profile. The uniform channel

correlation between the attenuations can be obtained by letting t,,,5 — o in (3.46),

resulting in

| exp( 2K —K)

2Lk —K')
7k

)
cr(k—k)=

(3.47)

Figure 3.6 and Figure 3.7 demonstrate the estimator's sensitivity to the channel

statistics in terms of average MSE and SER performance measures respectively. As it
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can be seen from Figure 3.6 and Figure 3.7 only small performance loss is observed
for low SNRs when the estimator is designed for mismatched channel statistics. This

justifies the result that a design for worst correlation is robust to mismatch.

3.3.1.3 Performance of the Truncated Estimator

The truncated estimator performance is also studied as a function of the number of
KL coefficients. Figure 3.8 presents the MSE result of the truncated MMSE
estimator for SNR=10, 20 and 30 dB. If only a few expansion coefficients is
employed to reduce the complexity of the proposed estimator, then the MSE between
channel parameters becomes large. However, if the number of parameters in the

expansion is increased, the irreducible error floor still occurs.

3.3.2 Sequential MMSE Approach

The MSE results of the sequential full-rank MMSE algorithm are obtained and
presented in shown in Figure 3.9. In order to better evaluate the performance of the
proposed sequential MMSE estimation algorithm, it is compared with previously
developed least mean square (LMS) and recursive least squares (RLS) recursive
algorithms. It can be seen from simulations that recursive MMSE estimator yields
better performance than LMS and RLS approaches and achieves Bayesian MSE
especially for low SNR.

For the convergence of the proposed adaptive algorithm, MSE versus iteration is
plotted for SNR=10, 20, 30 and 40 dB in the Figure 3.10. As expected, the proposed

sequential algorithm converges faster for high SNR values.

Finally, the performance of the algorithm will be evaluated for different values of
pilot spacing 10, 20, 30, 40, and 50 by plotting the MSEs and SERs with respect to
SNR in the Figure 3.11 and Figure 3.12 respectively. For the values pilot spacing A

K :
larger thant , the SER and MSE performances decrease as A increases.
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Chapter 4

Channel Estimation for OFDM System with Transmit Diversity

In this section, we consider a transmit diversity scheme in conjunction with OFDM
signaling. Many transmit diversity schemes have been proposed in the literature
offering different complexity vs. performance trade-offs. Alamouti's transmit
diversity scheme is chosen in this thesis due to its simple implementation and good
performance, Alamouti [15]. The Alamouti's scheme imposes an orthogonal spatio-
temporal structure on the transmitted symbols that guarantees full (i.e., order 2)

spatial diversity.

We consider the Alamouti transmit diversity coding scheme, employed in an OFDM
system utilizing K subcarriers per antenna transmissions. Note that K is chosen as an

even integer. The fading channel between the p 4 transmit antenna and the receive

antenna is assumed to be frequency selective and is described by the discrete-time
baseband equivalent impulse response h (n)= [h 1,0 (s e sy (n)]T with L

standing for the channel order.

Each time index n, the input serial information symbols with symbol duration 75 is
converted into a data vector X(n) = [X(n,O), o, X(n,K —1)]T by means of a serial-to-
parallel converter. Its block duration is KTs. Moreover, X(n,k) denote the kth

forward polyphase component of the serial data symbols, i.e, X(n,k)=X(nK +k)
for k=0,1,2,...,K-1 and n=0,1,2,...,N-1.
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Polyphase component X(n,k) can also be viewed as the data symbol to be
transmitted on the kzh tone during the block instant n. The transmit diversity encoder
arranges X(n) into two vectors X4(n) and X, (n) according to a appropriate coding
scheme described in Alamouti [15], Lee and Williams [20]. The coded vector X4(n)
is modulated by an IFFT into an OFDM sequence. Then cyclic prefix is added to the
OFDM symbol sequence, and the resulting signal is transmitted through the first
transmit antenna. Similarly, X,(n) is modulated by IFFT, cyclically extended, and

transmitted from the second transmit antenna.

At the receiver side, the antenna receives a noisy superposition of the transmissions
through the fading channels. We assume ideal carrier synchronization, timing and
perfect symbol-rate sampling, and the cyclic prefix is removed at the receiver end.

The generation of coded vectors X4(n) and X,(n) from the information symbols
lead to corresponding transmit diversity OFDM scheme. In our system, the
generation of X4(n) and X,(n) is performed via the space-frequency coding and

space-time coding respectively, which were first suggested in Alamouti[15] and later

generalized in Liu et al. [21], Bolcskei and Paulraj [22].

4.1 Space-Frequency Coding in OFDM Systems

We first consider a strategy, which basically consists of coding across OFDM tones
and is therefore called space frequency coding Lee and Williams [20], Liu et al. [21],
Bolcskei and Paulraj [22]. Resorting to coding across tones, the set of generally
correlated OFDM subchannels is first divided into groups of subchannels. This
subchannel grouping with appropriate system parameters does preserve diversity
gain while simplifying not only the code construction but decoding algorithm

significantly as well Lee and Williams [20].

A block diagram of a two-branch space-frequency OFDM transmit diversity system

is shown in Figure 8.1. Resorting subchannel grouping, X(n) is coded into two
vectors X4(n) and X, (n) by the space-frequency encoder as
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X,(n) = [X(n,O), =X (1), -+, X(n,K=2), - X (n,K —1)]T

X,(n) = [X(n.1), - X (n.0), -+, X(nK~1), - X (K ~2)]" @.1)

where ()" stands for complex conjugation. In space-frequency Alamouti scheme,

X (n) and X,(n) are transmitted through the first and second antenna element

respectively during the OFDM block instant 7.

™ X(n,0) ] u
Pilot Inserti NN
VT ilo r:&ser ion 4"
. IFFT
— . —-| &
. Add
X(n,K-2) Cyclic
Prefix
Serial Space - X*(n,K-1) 4
X(n)—m to || Frequency _ _ Tx-z,/"\i"
Parallel Encoding X(n,1) Pilot Insertion
X*(n.0) FET
) &
—= ™ A
X(ek Gree
| X*(nK-2) |

Figure 4.1 Space-frequency coding on two adjacent FFT frequency bins
The operations of the space-frequency block encoder can best be described in terms

of even and odd polyphase component vectors. If we denote even and odd

component vectors of X(#n) as

Xe(n) = [X(n,O), X(n’z)’ ,X(n,K - 4)’ X(n’K - 2)]T

Xo(n) = [X(n1), X(n,3),++, X(n,K=3), X(n,K-1)]" (4.2)

then the space-frequency block code transmission matrix may be represented by,

space —
frequency {Xe(n) Xo(n)} 4.3)
! Xo(n) Xe(n)
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If the received signal sequence is parsed in even and odd blocks of K/2 tones,
Yo(n)=[Y(n0), Y(n,2), -, Y(n,K-2)] and

Y, (n)=[Y(n1), Y(n3),---, Y(n,K—1)]", the received signal can be expressed in

vector form as

Yo(n)= Xe(n)Hl,e(n) + Xo(n)Hz,e(n) +Ne(N)

Yo(n) = —Xo (NHy o(n) + X (MHy, (M) +No() (4.4)

where Xg(n) and X,(n) are K/2 x K/2 diagonal matrices whose elements are
X (n) and X (n) respectively. K/2 length even and odd component vectors of the

channel attenuations between the pth transmitter and the receiver are
H,, o(n) = [Hu(n,0), Hy(n,2) -, Hy(n,K = 2)] T (4.5)
and
-
Hp,o(n) = I:Hp(n,l)a Hp(n,?’)a B Hp(n,K _1)] (46)

Finally, ng(n) and ny(n) are zero-mean, independent identical distributed Gaussian

vectors with covariance matrix 62 I/, .

Equation (4.4) shows that the information symbols Xg(n) and Xgy(n) are

transmitted twice in two consecutive adjacent subchannel groups through two
different channels. In order to estimate the channels and decode X with the
embedded diversity gain through the repeated transmission, for each »n, we can write

the following from (4.4):
{vem)er(n) xom)}[Hl,e(n)Hne(m} )
Yo [-x(n) xe(n)|Hae)] ™ [no(n) |
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where the complex channel gains between adjacent subcarriers are assumed to be

approximately constant, i.e., H; o (N) =H, ,(n) and H, o (n) =H, ;(n). The effect of
this assumption allows us to omit dependence of H;.(n) and H,c(n) on even

channel components.

4.2 Space-Time Coding in OFDM Systems

In contrast to SF-OFDM coding, ST encoder maps every two consecutive symbol

blocks X(n) and X(n+1) to the following 2K x 2 matrix:

space —
time [ X(n) X(n+1) (4.8)
VX (n+1)  X'(n)

whose columns are transmitted in successive time intervals with the upper and lower
blocks in a given column sent simultaneously through the first and second transmit

antenna respectively as shown in Figure 4.2.

— ar m Tx-1
- X X{n,0 “
X n+1.0) (n.0) Pilot Insertion \/"\*
- X*(n+1,1) X(n,1) IFgféT
> ) ) > &
) Add
’ Cyclic
: ' Prefix
Serial Space - X*(n+1,K-1) X{n,K-1) )
X(n)—» to = Time — a o . Tx—2,/\\,."
Parallel Encoding X*(n,0) X(n+1,0) Pilot Insertion
&
X*(n,1) X(n+1,1) IFET
. . &
. . > Add
Cyclic
. . Prefix
X*(n,K-1) X(n+1,K-1)

Figure 4.2 Space time coding on two adjacent OFDM blocks

If we focus on each received block separately, each pair of two-consecutive received

block Y(n) =[Y(n,0), -, Y(n,K=1)]" and Y(n+1)=[Y(n+1,0),---, Y(n+1LK-1)]"
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are given by

Y(n)=x(n)H;(nN)+ xX(n+1)H, (n) +n(n)

Y(n+1)=—x" (n+H (n+1)+ X (MH,(n+1)+n(n) (4.9)

where X(n) and X(n+1) are K x K diagonal matrices whose elements are X(n)
and X(n+1) respectively. H w(n) is the channel frequency response between the p th

transmitter and the receiver antenna at the nth time slot which is obtained from

channel impulse response h,(n). Finally, n(n) and n(n+1) are zero-mean,

independent identical distributed Gaussian vectors with covariance matrix o> I, per

dimension.

From the above description, it is seen that joint estimation/decoding in an ST-OFDM
system involves the received signals over two consecutive OFDM blocks. To
simplify the problem, we assume that the complex channel gains remain constant
over the duration of one ST-OFDM code word, ie., H;(n)=H,(n+1)
andH,(n)=H,(n+1). As will be seen, such an assumption significantly simplifies

the channel estimation algorithm. Similarly, the effect of this assumption allows us to
omit dependence of channel attenuations on two different time indexes. Using (4.9)

and dropping dependence on n, we have
Y(n) || x(n)  X(n+1)| Hy(n) n(n)
= t ¥ + (4.10)
Y(n+1)| |-xX"(n+1) Xx"(n) |Hy(n)| |n(n+1)
4.3 Unifying Space-Frequency and Space-Time OFDM Signal Models

Comparing (4.7) and (4.10), we unify SF-OFDM and ST-OFDM in the following

equivalent model:
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MEER M
Y2 'Xz X] H2 N,
For convenience, we list the corresponding vectors and matrix for SF-OFDM as
[L}:[Ye(n)} Xy Xy | | Xe)  Xo(n)
o Yo T -xn o | Faem xem)
el [
Hy | [Hye] " [ny] [No(M)
and for ST-OFDM as
{L}{ Y(n)} XX { X(n) X(n+l)}
Y, | LY+D] - x| X ey Xy
|l - el
H, Hy(n)| ~ [n, n(n+1)

Relying on the unifying model (4.11), channel estimation algorithms will be

developed according to the MMSE criterion. A different approach is adapted here to
explicitly model the channel parameters by the KL series representation since; KL
expansion allows one to tackle the estimation of correlated parameters as a parameter
estimation problem of the uncorrelated coefficients. Note that KL expansion is well
known for its optimal truncation property, Yip and Ng [9]. That is, the KL expansion
requires the minimum number of terms among all possible series expansions in
representing a random channel for a given mean-squared error. Thus, the optimal
truncation property of the KL expansion results in a smaller computational load on
the channel estimation algorithm. Therefore, first, the KL representation of the

multipath channel will be summarized in the following section.
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4.4 MMSE Multipath Channel Estimator for ST/SF-OFDM Systems

Pilot symbol assisted techniques can provide information about an under sampled
version of the channel that may be easier to identify. In this paper, we therefore
address the problem of estimating multipath channel parameters by exploiting the

distributed training symbols.

Since both SF and ST block coded OFDM systems have symmetric structure in
frequency and time respectively, the pilot symbols should be uniformly placed in
pairs. Specifically, we also assume that even numbers of symbols are placed between
pilot pairs for SF-OFDM systems. Based on these pilot structures, Equation (4.11) is

modified to represent the signal model corresponding to pilot symbols as follows:

Yip _ Xllrp X2T,p Hip N Nip (4.12)
Y2,p _XZ,p XI.P H2,p n2,p
[ — - ——
Yo Xp Hy Np

where (), is introduced to represent the vectors corresponding to pilot locations.

Assuming pilot symbols are taken from QPSK modulation, the observation model

can be formed by premultiplying both sides of (4.12) by X ;
—1 —1— —1
Xp Yp = Xp XpgHg + Xpnp (4.13)

-1 — ~ -1 ~ -1
where X;Xp=2IZKp and letting Y, =X,Y, and n,=x,n, we get the

following equation:

~

Y, =2H, +1, (4.14)

namely,
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Y H A
_p :2{ 1"’} Mip (4.15)
Yap Hop | [N2p

where

~ t t

Yip =XipYip—X2pYap (4.16)
~ t t

Yz,p = Xz,le,p +X1’pY2,p

- t t

r|l,p = Xl,pnl,p - Xz,p"lz,p

- t t

N2p = XopNip + X1pNop

and note that M, ~W(0,202IK ) and 1, ~W(0,202IK ) By writing
P p

each row of the (4.15) separately, we get the following observation equation set to

estimate the channels H; , and H, ;.
Yup=2H,,+ ﬁp,p , u=l1,2 (4.17)

and substituting H,, , =Fh; in (4.17), we get the following observation models for

the channel impulse responses h,, is obtained
Yup=2Fh,+n,, . u=1,2 (4.18)

where F is a K, x L FFT matrix generated based on pilot indices and Kp is the
number of pilot symbols per one OFDM block. Equation (4.18) offers a Bayesian
linear model representation. Based on these representations, the minimum variance

estimator for the time-domain channel vectors h; and h, can be obtained using the
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MMSE estimator. We should clearly make the assumptions that impulse responses

h; and h, are independent identical zero-mean complex Gaussian vectors with

covarianceCy,, and h; and h, are independent from ﬁl,p andﬁzyp. Therefore,

MMSE estimates of h; and h, are given by Kay [11]:

-1
» Tl -1 Tl _
hp:[(zF) - (2F)+Ch) (F)'CF Vp.  w=l2 (4.19)

H.p

Due to PSK pilot symbol assumption together with the result

Nip NW(O , 2021Kp) and Ny NW(O ’2021Kp ) we can therefore express

(4.19) by

A T~

-1
T -
h, :(2F F+02ch1j F Y., , n=1,2 (4.20)

Under the assumption that uniformly spaced pilot symbols are inserted with pilot

t t
spacing interval A and K=A x Kp , correspondingly, F F reduces to F F=K_I .

s
Then according to (20), and F F =K1 , following expression is obtained

h, =K, 1, +o%Ci [ 'E'Y

L , n=1,2 4.21)

As it can be seen from (4.21) MMSE estimation of h; and h, for SF-OFDM and

ST-OFDM systems still requires the inversion of C,:l. Therefore it suffers from a

high computational complexity. However, it is possible to reduce complexity of the
MMSE algorithm by expanding multipath channel as a linear combination of
orthogonal basis vectors. The orthogonality of the basis vectors makes the channel
representation efficient and mathematically convenient KL transform which amounts
to a generalization of the FFT for random processes can be employed here. This
transformation is related to diagonalization of the channel correlation matrix by the

unitary eigenvector transformation:
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C, = YAYT (4.22)

where ‘I‘:[tpo,lpl,...,tpL_l] g, ’s are the orthonormal basis vectors, and @, =

[9,,059y,15 =9y, 1] 1s zero mean Gaussian vector with diagonal covariance matrix

— t
A =Elg,9]]

Thus the vectors h; and h, can be expressed as a linear combination of the
orthonormal basis vectors as h, =¥g, where n is the multipath channel index. As

a result, the channel estimation problem in this application is equivalent to estimating

the independent identical distributed complex Gaussian vector h; and h, which

represent KL expansion coefficients for multipath channelsh; and h, .

4.4.1 Estimation of Karhunen Loeve Coefficients

Substituting h, ='¥g,, in unified signal model (4.18), it can be rewritten as

Y., =2F¥g, +f,, . u=1,2 (4.23)

this is also recognized as a Bayesian linear model, and recalls

thatg, ~ N (0 s A\ g ) As a result, the MMSE estimator of g,, for SF-OFDM and

ST-OFDM systems is

A

g, =N 2KA, +0%1) YTFTY,

SEWTETY,, u=1,2, (4.24)

where

=N 2KpA, +0°1)"!
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AL
_ diag]— Mo s — (4.25)
2AKp +0O 2AN K, +0

and Ag,A, ..., A _; are the singular values of A g

From the results presented in Morelli and Mengali [4], ML estimator of g,, for SF-
OFDM and ST-OFDM systems can also be obtained as follows:

o 1

9

_ tETY _
mn —KT F YlJ:p 5 u—1,2, (426)

It is clear that the complexity of the MMSE estimator in (21) is reduced by the

application of KL expansion. However, the complexity of the Qp can be further

reduced by exploiting the optimal truncation property of the KL expansion, Yip and
Ng [9]. A truncated expansion g’z can be formed by selecting » orthonormal basis

vectors among all basis vectors that satisfy Cp¥ =WAg. Thus, a rank-r

approximation to I\gr is defined as l\gr = diag{)\o,)\l, s )\r_l,O,...,O}.

Since the trailing L - » variances {)\/g}l,z;rl are small compared to the leading r

variances {)\4}2;10 , the trailing L - » variances are set to zero to produce the
approximation. However, typically the pattern of eigen values for Ag splits the

eigenvectors into dominant and subdominant sets. Then the choice of r is more or
less obvious. The optimal truncated KL (rank-r) estimator of (23) now becomes
g, =F, YTFTY (4.27)
9y =1r WP :

where

Fr=Ag 2KpAg +071)"
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= diag{ Ao ¥ A o,---,o} (4.28)

2MKp +02 7 T2A K, +0%

Since our ultimate goal is to obtain MMSE estimator for the channel frequency

response H,, from the invariance property of the MMSE estimator, it follows that if

Qp is the estimate of g, then the corresponding estimate of H,; can be obtained as
H, :T‘I’gu , n=1,2, (4.29)
where F isa K x K FFT matrix.

4.4.2 Performance Analysis

In this section, we turn our attention again to analytical performance results.
Derivation details of the subsections will be passed, and follow as chapter 3 since

observation models (3.10) and (4.23) are similar.

4.4.2.1 Cramer-Rao Lower Bound for Karhunen Loeve Coefficients

Under the assumption that g, and ﬁu,p are independent, the modified FIM as

follows
| T
JM (g n ) = _2 r :
c
Inverting the matrix Jy(g,,) yields

CRLB(g,) =J7(g,)

oo (4.30)
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4.4.2.2 Bayesian MSE

Keeping in mind éu =g, — QH and Cép =62l the minimum Bayesian MSE of the

full rank estimator becomes (see Appendix D and Appendix E)

A 1
Bumse(9,) = Etrace(cép )

1 2= 1 L1 )\i
=—trace(c ) =—> (4.31)
L L Zo1+2K, Aj SNR

where SNR=1/c2.

As the details are given in Appendix C and Appendix D, Byse (9 w) given in (4.31)
can also be computed for the truncated (low-rank) case as follows:
1 r-1 )\i

Byse(@, )=+
mse (9, ) L i§)1+2Kp A SNR

1 L-1
+[ZN (4.32)

Notice that, the second term in (4.32) is the sum of the powers in the KL transform

coefficients not used in the truncated estimator. Thus, truncated Bygg (Qp) can be
L-1

lower bounded by — >'A; which will cause an irreducible error floor in the SER

i=r

results.

4.4.3 Mismatch Analysis

The proposed estimator will be designed according to the channel statistics and the
SNR assumptions but these can be different from the true channel statistics and the

SNR values. This causes the performance degradation.
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Hence, mismatch analysis is important to explore the performance degradation due to
a mismatch of the estimator to the channel statistics as well as the SNR, and to study
the choice of the channel correlation, and SNR for this estimator so that it is robust to
variations in the channel statistics. As a performance measure, we use uncoded
Symbol Error Rate (SER) of Maximum Ratio Receive Combiner (MRRC) for QPSK
signaling. The SER expression for this case is given in Appendix F as a function of

the SNR as follows:

Pr(error) = % ~ (5 + arctan(y,))v3 15 - 137, (4.33)
or approximately we get

Pr(error)=1-1v3 v5 (4.34)

where

1 BIER  SNR+3
2SNR+1) ~ "2"VsNR+2 ~ *7 SNR

1=
In practice, the true channel correlations and SNR are not known. If the MMSE

channel estimator is designed to match the correlation of a multipath channel impulse

response Cj, and SNR, but the true channel parameters Eu has the correlation C

~

and the true SNR, then average Bayesian MSE for the designed channel estimator is

obtained as (see Appendix D and E)

e SNR mismatch:

A ( SNR2

F 2K N (4.35)
(1+ 2K A SNR)? L SNR

Buse(9,) = g‘,
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e Correlation mismatch:

B (,\ )_lLZ:IXi+2KpSNR)\i(Xi+)\i_2Bi) (4 36)
MSESW = & 1+2K,SNRA, '

where Xi is the ith diagonal element of Ag = ‘I’TCE‘I’ , and [; is ith diagonal

element of the real part of the cross correlation matrix between 5” and g,, .

4.5 Simulation Results

In this section, we investigate the performance of the pilot aidled MMSE channel
estimation algorithm proposed for both SF-OFDM and ST-OFDM systems. The

diversity scheme with two transmit and one receive antenna is considered. Channel

impulse responses h,, are generated according to Cp, = KLzFJrCHF where Cyy is the

covariance matrix of the doubly-selective fading channel model. In this model,
H, (k)'s are with an exponentially decaying power delay profile 6(t) = Ce Vs C

is power normalization constant. Note that the normalized discrete channel-
correlations for different subcarriers and blocks of this channel model were presented

in Li et al. [5] as follows,

L( 1 +J.2n(k—k’)]
cr(k—k') = 1= e_L (4.37)
< 1 2k =k’
Trms| 1 —€ ™ [ +) (K )]
Trms
ci(n-n") = J,(2xf,(n—n")T) (4.38)

where J, is the zero th-order Bessel function of the first kind and f,, is the maximum

Doppler frequency.
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The scenario for SF-OFDM simulation study consists of a wireless QPSK OFDM
system. The system has a 2.34 MHz bandwidth (for the pulse roll-off factor 0.2) and
is divided into 512 tones with a total period of 136 us, of which 5.12 us constitute

the cyclic prefix (L=20). The uncoded data rate is 7.8 Mbit/s. Trms =2 samples

(1.28us) for the power-delay profile. Keeping the transmission efficiency 3.32

bits/sec/Hz fixed, we also simulate ST-OFDM system.

4.5.1 Mean Square Error Performance of the Channel Estimation

The proposed MMSE channel estimators of (4.24) are implemented for both SF-
OFDM and ST-OFDM, and compared in terms of average Bayesian MSE for a wide

range of SNR levels. Average Bysg is defined as the norm of the difference between

the vectors g = [ng,g;P and @, representing the true and the estimated values of

channel parameters, respectively. Namely,

2

1 .
MSE =Iug—g (4.39)

4.5.2 MMSE Approach

A pilot symbol for every ten (A =10) symbols is used in the simulation. The MSE at
each SNR point is averaged over 10000 realizations. The experimental MSE
performance and its theoretical Bayesian MSE of the proposed full-rank MMSE
estimator with ML estimator and its corresponding CRLB for SF and ST OFDM
systems are compared. Figure 4.3 and Figure 4.4 confirm that MMSE estimator
performs better than ML estimator at low SNR. However, the two approaches have
comparable performance at high SNRs. To observe the performance, the MMSE and
ML estimated channel SER results together with theoretical SER are also presented
in Figure 4.5 and Figure 4.6.
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Due to the fact that spaces between the pilot symbols are not chosen as a factor of the
number of subcarriers, an error floor is observed in Figure 4.3, Figure 4.4, Figure 4.5,
and Figure 4.6. In the case of choosing the pilot space as a factor of number of
subcarriers, the error floor vanishes because of the fact that the orthogonality
condition between the subcarriers at pilot locations is satisfied. In other words, the
curves labeled as simulation results for MMSE estimator and ML estimator fit to the
theoretical curves at high SNRs. It also shows that the MMSE estimated channel
SER results are better than ML estimated channel SER especially at low SNR.

4.5.2.1 SNR Design Mismatch

In order to evaluate the performance of the proposed full-rank MMSE estimator to
mismatch only in SNR design, the estimator is tested when SNRs of 10 and 30 dB
are used in the design. The SER curves for a design SNR of 10, 30 dB are shown in
Figures 4.7 and 4.8. The performance of the MMSE estimator for high SNR (30 dB)
design is better than low SNR (10 dB) design across a range of SNR values (0 - 28
dB). These results confirm that channel estimation error is concealed in noise for low
SNR whereas it tends to dominate for high SNR. Thus, the system performance
degrades especially for low SNR design.

4.5.2.2 Correlation Mismatch

To analyze full-rank MMSE estimator's performance further, sensitivity of the
estimator to design errors, i.e., correlation mismatch needs to be studied. Therefore
the estimator is designed for a uniform channel correlation which gives the worst
MSE performance among all channels Edfords ez al. [3], Li et al. [5] and evaluated
for an exponentially decaying power-delay profile. The uniform channel correlation

between the attenuations can be obtained by letting t - — oo, resulting in

jzn(k—k’)

. l-e K
Cf(k_k ) = ZTC(k—k’)
ji

K

(4.40)
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Figure 4.9 and Figure 4.10 demonstrate the estimator's sensitivity to the channel
statistics in terms of average MSE performance measure. As it can be seen from
Figure 4.9 and 4.10 only small performance loss is observed for low SNRs when the
estimator is designed for mismatched channel statistics. This justifies the result that a

design for worst correlation is robust to mismatch.

4.5.2.3 Performance of the Truncated Estimator

The truncated estimator performance is also studied as a function of the number of

KL coefficients. Figure 4.11 and Figure 4.12 are plotted for L = 40, t_ =5

sample and L = 40, f,,= 100 Hz respectively. Figure 4.11 and Figure 4.12 present
the MSE result of the truncated MMSE estimator for SNR = 10, 20 and 30 dB. If
only a few expansion coefficients are employed to reduce the complexity of the
proposed estimator, then the MSE between channel parameters becomes large.

However, if the number of parameters in the expansion is increased, the irreducible

error floor still occurs.

Average Mean Square Error(MSE)

_ —— Theoretical Stochastic CRLB for Tms = 5
[..| % MMSE Simulation fort =5

-+ — — Theoretical CRLB
-| . %. MLE Simulation fort =5
rms
.| —o— MMSE Simulation for t =9
rms

. ©. MMSE Simulation fort =9
R . rms

I I I I I
0 5 10 15 20 25
Average SNR (dB)

Figure 4.3 Performance of proposed MMSE and MLE together with Byisg and CRLB
for SF-OFDM
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Figure 4.4 Performance of proposed MMSE and MLE together with Bysg and CRLB
for ST-OFDM
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Figure 4.5 Symbol Error Rate results for SF-OFDM
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Figure 4.6 Symbol Error Rate results for ST-OFDM
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Figure 4.7 Effects of SNR mismatch on MSE for SF-OFDM
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Figure 4.8 Effects of SNR mismatch on MSE for ST-OFDM( f,=100 Hz )
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Figure 4.9 Effects of correlation mismatch on MSE for SF-OFDM
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Figure 4.10 Effects of correlation mismatch on MSE for ST-OFDM( f,=100 Hz )
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Figure 4.11 MSE as a function of KL expansion coefficients for SF-OFDM
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Figure 4.12 MSE as a function of KL expansion coefficients for ST-OFDM
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Chapter 5

Conclusion and Future Works

In this thesis, the design of low complexity pilot based MMSE channel estimators for
OFDM systems with and without transmit diversity in unknown wireless dispersive
fading channels was considered. In general, MMSE channel estimators require
inversion of channel covariance matrix. According to OFDM structure, channel
estimation 1is mostly performed in frequency domain resulting in higher
computational complexity due to large of number channel parameters to be estimated
as well as large channel covariance matrix needed in estimation. Since the number
channel parameters to be estimated in time domain is much smaller than the
frequency domain, time domain approaches therefore present alternative low

complexity solutions.

In this thesis, optimum time domain channel estimation approaches based on MMSE
criterion are also proposed , and the complexity of the proposed approaches are
further reduced by the application of KL expansion. Thus, as a first contribution, a
low complexity pilot MMSE channel estimator is proposed in time domain. In other
words, the problem is considered as the multipath channel estimation. Due to the
invariance property of the MMSE estimator, MMSE estimate of the channel
frequency response can be obtained by taking FFT of the multipath channel. Taking
FFT of the multipath channel also provides an interpolation between frequency

responses at pilot and data locations.

However, in the frequency domain channel estimation approach, a suitable

interpolation method for finding channel frequency response at data locations by
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making use of frequency response at pilot locations is required. These interpolation

methods affect the performance of the frequency domain channel estimator.

Inverse of the channel correlation matrix used in frequency domain MMSE
estimation results in higher computational complexity. Especially adaptive and
sequential MMSE estimators must take the inverse of the channel correlation matrix
in each step of the algorithm. Therefore, computational complexity is a highly
important issue for adaptive and sequential MMSE estimators. The channel
estimation problem is therefore considered as the MMSE estimation of the stochastic
coefficient vector when the stochastic orthogonal expansion representation of the
multipath is exploited. In this case, computational complexity of the estimator is
significantly reduced since correlation matrix of the coefficient matrix becomes

diagonal.

In the case of receiver or transmitter mobility, according to the speed of mobile
component, channel may vary within OFDM block duration. This causes fast fading
environments. Alamouti diversity scheme proposes a solution for combating fast
fading. When Alamouti diversity scheme is applied to OFDM systems, different
diversity coding types come out such as space-time OFDM, space-frequency OFDM,

e.t.c.

In this thesis, as a second major contribution the batch MMSE estimators were
derived based on the stochastic orthogonal expansion representation for ST/SF-
OFDM systems. Based on KL representation, the fact that no matrix inversion is
needed in the MMSE algorithm is shown. Therefore, the computational costs for
implementing the proposed MMSE estimators are low and computations are

numerically stable.

As a conclusion the contribution of this thesis is summarized as follows:

- Time domain MMSE channel estimator is developed and analyzed for OFDM.
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- Performance of the proposed batch approach is evaluated based on the evaluation
of CRLB and Bayesian MSE.

- Performance of the low-rank approximation of the proposed estimator and
theoretical SER results are studied both theoretically and analytically.

- Sequential version of the batch estimator is also derived.

- The proposed MMSE estimator approach and performance results are then

extended to transmit diversity OFDM systems.

In addition to MMSE based estimation approaches proposed in this thesis,
computationally efficient advanced iterative signal processing algorithms such as
sequential Monte Carlo (SMC), expectation-maximization (EM), provide MMSE
solutions will be applied to solve difficult signal processing problems in wireless
communications in future research. To achieve full benefit of efficient algorithms a
wide variety of problems, such as synchronization, equalization, and sequence
estimation problems can be considered. Another possible future work will be the
development of blind channel estimation approaches that provide much more

bandwidth efficiency.
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Appendix A

Bayesian Estimators

Bayesian estimation depart from the classical approach to statistical estimation in
which the parameter © of interest is assumed to be a deterministic but unknown
constant. Instead, ® is assumed as a random variable whose particular realization is
to be estimated. This is the Bayesian approach, so named because its implementation
is based directly on Bayes’ theorem. The motivation for doing so is twofold. First, if
some prior knowledge about ® is available, it can be incorporated into estimator
design. The mechanism for doing this requires us to assume that ® is a random
variable with a given prior PDF. Classical estimation, on the other hand, finds it
difficult to make use of any prior knowledge. Bayesian approach can therefore
improve the estimation accuracy. Second, Bayesian estimation is useful in situations
where an MVU estimator can not be found. In this case, especially for the classical
approach, a strategy can be devised to find that estimator by assigning a PDF to © .

The resultant estimator can then be said to be optimal “on the average”.

In Bayesian estimation, first step is to choose a cost function that is the function of

estimation error

£e=0-0 (A.1)

where ® and © are true and estimated values of the parameter ® , respectively.
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Three well known cost functions are;

e Squared Error Q(e) =¢2,

A Qe)=¢

vo

0

Figure A.1 Squared error cost function

e Absolute Error Q(g) = ¢

2

Qe 5|

Yo

0

Figure A.2 Absolute error cost function

0 , |8|<6

Hit-or-miss Q(g) = ,
e Hit-or Q(e) {1 ’ |8|>6

0

Figure A.3 Hit-or-miss cost function
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Cost functions, and & is very small positive number. Also, the averaged cost

function is termed as the Bayes risk, or
R =E[Q(9)] (A.2)

For a squared error cost function, the mean of the posterior probability density
function (PDF) or the usual MMSE estimator minimizes the risk. An absolute error
cost function (A.2) results in an optimal estimator, which is the median of the
posterior PDF. For a hit-or-miss cost function (A.3) the mode of maximum location
of the posterior PDF is the optimal estimator termed as the maximum a posteriori

(MAP) estimator.

We now determine the optimal estimators for these cost functions. Note that ¢
depends on ® and observation vector Z , because the estimation value O in (A1) 1s
a function of observation vector Z , such that 6= (:)(Z). Therefore, the expectation

integral of the cost function must be taken over the joint probability density function

of the observation vector Z and the parameter ® to be estimated.

R =E[Q(e)]
= [Q(e)p(e) de

= T +}OQ(@ ~®)p(Z,0)dZde

—00 —00

= | [ [Qe-6)p(©|2)d6e Jp(Z)dZ (A.3)

—00 —00

In order to minimize Bayes risk in (A.4), we have to minimize the inner integral
according to 0. First, considering the absolute error cost function and denoting the

inner integral by u((:)) , we have for the inner integral of (A.4)

u@)= [|0-0|p@©|Z)de (A.4)

—00
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and differentiate with respect to 0

ou(®) _*Ta|®—é)|

o0 06 p(@]2)d0
G o0
= [ p@©]Z)d0- [p(©]|Z)d6=0
—o0 ®
or
o a0
[p©]Z)dO = [p©]Z)dO (A.5)
—0 ®

By definition ® is the median of the posterior PDF or the point for which
Pr{(@ | Z) < é)}: Pr{(@ | Z) > (:)}:% Now, MAP and MMSE estimators will be

considered. These two estimator types are most commonly used in channel

estimation problems.

A.1 Maximum A Posteriori (MAP) Estimator

For the hit-or-miss cost function, the inner integral in (A.4) is

W)= [1.p(©|Z)de = [p©12)d®
le|>8 |0-0]>8

0-5 +00
= jp(®|Z)d®+ fp(®|Z)d®
-0 O+5
+00 6+8
= jp(@ | Z)do — A j p(®|Z)de
—00 0-95
6+5
=1- [p(®|Z)d® (A.6)
6-5
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u((:)) can be minimized by maximizing the following integral

6+
[p@]2)d0® (A7)
0-3

This integral is maximized by choosing 6) corresponding to the location of the
maximum of p((:) | Z) . The estimator that minimizes the Bayes risk for the hit-or-

miss cost function is therefore the location of the maximum of the posterior
probability density function. It is termed as the maximum a posteriori (MAP)

estimator.
A.2 Minimum Mean Square Error (MMSE) Estimator

For the MMSE estimator, the cost function is squared error, Q(g) = g2 , and the Bayes

risk is the MSE. Therefore, the MMSE estimator minimizes the MSE. The inner
integral in (A.4) turns to

u(®) = +}O((a—(:))2 p(®|Z)de (A.8)

—00
and is differentiated with respect to ® as follows

ou(®) _ Ta (©-0)>

- p(©|Z)d0 = —27(@ ~0)p(©®]Z)dO =0

00 —0

—00

This yield

A to +00 —+00
O [p®|Z)dO= [Op©O|Z)d6 = [ Op(®|Z)dO
—00 1 —00 —00
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Therefore, the MMSE estimator is obtained as
©=E[0|Z] (A.9)

the mean of the posterior PDF. For this reason it is also commonly referred as the

conditional mean estimator. Nevertheless, the prior PDF of ®, p(®), plays an
important role in MMSE estimator, because posterior PDF p(® | Z) depends on prior

PDF p(®). This can be proved by Bayes rule as follows:

P(Z,0)
p(O|Z)="—"""-
P(Z)
- P(Z|©)p(®) (A.10)
[p(Z|©)p(®)de
For the vector parameter ® = [@1 O, ... Oy ]T which has independent identical
distributed elements,
6=[Elo,|z] E[®,|Z] .... E[oy|Z]]
-E[®|Z] (A.11)

Note that the vector MMSE estimator E[@ | Z] minimizes the mean squared error

(MSE) for each component of the unknown vector parameter. The minimum
Bayesian MSE for a scalar parameter is the posterior PDF variance when averaged

over the PDF of Z . This is because

u@) = [ (©—E[®,1Z)?p(©, |Z)de,

—00

=c* , i=1,2,...,N (A.12)
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and replacing this result by the inner integral in (A.3), we obtain minimized risk

function, in other words, minimum Bayesian MSE as follows
B.s: (@)= [0’ p(Z)dZ (A.13)

In order to obtain a scalar MSE measure for the vector parameter

Q= [@1 0, ... ®N]T , the minimum Bayesian MSE’s of the elements can be

averaged as follows
1 N
BMSE (®) =EZBMSE (®i) (A.14)
i=1

Bearing in mind o2 = [C@)IZ ]i i and substituting (A.13) in (A.14)

6j|Z

N +oo

1
Buse(®) = | o, ,P(D)AZ

1+oo

—00

N
(z o2 | ]p(Z) dz
i-1 il

= %Ttrace {C®|z }p(Z) dz (A.15)

where Cgz is the posterior covariance matrix of the vector parameter®, and

trace{.} operator represents sum of diagonal entries of a square matrix. If variances

2
Gi|Z

{c }ir\il does not depend on the observation vectorZ, the minimum Bayesian

MSE in (A.15) is

1 +00
BMSE(®)=Ntrace{C®|Z} [ p(Z)dz

%/_/
1
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= ﬁtrace{cglz} (A.16)

If the observed data Z can be modeled as

Z=U® +w (A.17)

where Z is an Mx1data vector, U is a known MxN matrix, ® is a Nx1 random

vector with prior PDF ‘N (E[@], Co ), and wis an Mx1 noise vector with PDF

N (0 ) CW) and independent of ®, then the posterior PDF p(® | Z) is Gaussian

with mean[11, pp.364]
E[®|Z]=E[6]+ (UTc;ﬂv U+Cgq )‘luTcﬂv (z-UE[®)) (A.18)
and covariance

Copz =UTCU+CE )" (A.19)

For the complex Gaussian parameter ® to be estimated, replace transpose operator

(.)" in (A.18) and (A.19) by Hermitian transpose operator(.)Jr .
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Appendix B

Bayesian MSE for Truncated MMSE KL Estimator under SNR
Mismatch in OFDM Systems Without Diversity

Substituting (3.11) in (3.16), truncated MMSE KL estimator becomes
9, =K g+ ¥TFTR (B.1)

The estimation error

ér =9- Qr
~g-(K,rg+r ¥iFTR)

— (1, -K, T Ja-r¥Fiq (B.2)

and then the average Bayesian MSE is

A 1
Buse(9r) = 1r(Cy)

1 2 ~2r2
:Etrace(Ag(IL —K,I )" +Kpo Ty )

2 2
r-1 . : L-1
:lz )\i l—KpLz +Kp82 LZ +lZ)\i
Lizo AK, +o AK, +o L i

r—1 ~2K A+ 4 L-1
:l i—G P 262+12)\i whereczz;,azz;
Li=0 ()\iKp + 0O ) L i=r SNR SNR
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r-1 : 2 L-1
:l )\I 2 1+Kp)\i£ +lZ)\i (B3)
Lico(1+K,ASNR) snr | b=

Based on the result obtained in (B.3), Bayesian estimator performance can be further

elaborated for the following scenarios:

By taking SNR =SNR, the performance result for the case of no SNR

mismatch is

1r-1 A 1 L-1

Byse(§,) =~y ———i L) B.4
mse(9r) Li_zO1+KpAiSNR+Li§" (B.4)

As r—L in (B.3), Byse(g) under SNR mismatch results in the following

Bayesian MSE:
L 1K A SNR?
Buse(9)=— 2 : + KA ——— (B.5)
L % (1+KpASNR)? SNR

Finally, the Bayesian MSE in the case of no SNR mismatch is also be obtained

as,

= i
L 5 1+K,A SNR

—

Buse(9) = (B.6)
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Appendix C

Bayesian MSE for Truncated MMSE KL Estimator under
Correlation Mismatch in OFDM Systems Without Diversity

In this appendix, the Bayesian MSE of the truncated MMSE KL estimator under

correlation mismatch will be derived. Although the real multipath channel h has the

expansion correlation Ci-, the estimator is designed for the multipath channel
h =Yg with correlation Cy,. To evaluate the estimation error g—g, in the same

space, the real channel h is expanded onto the eigen space of h= ¥g resulting in

correlated expansion coefficients. For the real channel, data model in (3.10) can be

rewritten as

Y =F¥Yg+n (C.1)
and substituting in (3.16), truncated MMSE KL estimator now becomes

a9, =K, Ig+r¥'FR (C.2)

For the truncated MMSE estimator, the error is

ér = 5 _gr
=g-K,rg-r¥TFq{ (C.3)

As a result, the average Bayesian MSE is
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A 1
Buse(9r) = trace(Cy )

= %trace(l\g +KoMAg +0°K 7 —2K, I B)

r—1f ~ K A(A —2B; L-1 o
=%Z )\i+L2B') +lz A and 02:L
i=0_ )\iKp +0 L i=r SNR

-1l K, SNRA; (A; — 2B L-1
:lz )\i+ p |( i B|) +1 .
L5 1+K, SNR A

1IN HKSNRA (R +A -2B) 1
L& 1+K, SNRA, LS

(C.4)

where A is the real part of E [§gJr ] and /3;'s are the diagonal elements of £. With

this result, some special cases can be highlighted as:

o Letting B; =A; = Xi in (B.4) for the case of no mismatch in the correlation of KL

expansion coefficients, truncated Bayesian MSE is identical to that obtained in
(B.4).

e As r—L in (B.4), Bayesian MSE under correlation mismatch is obtained to

yield:
. 1A K SNRA (A + A —2B;)
5 1 C5
wse(@) = 2 1+K, SNR A, )

e Under no correlation mismatch in (C.4) where B; =A, :Xi, Bayesian MSE
obtained from (C.4) is identical to that in (B.6).

e Also note that as SNR — oo reduces to MSE(g—-g;).
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Appendix D

Bayesian MSE for Truncated MMSE KL Estimator under SNR

Mismatch in ST/SF — OFDM Systems

Some derivation steps will be passed in appendices D and E since these steps will be

taken as in appendices B and C. The estimation error is
spr zgp_gpr ’ n=l1,2
and then the average Bayesian MSE is

A 1
Buse(9,,) = Etrace(C;_ )

Hr

=%trace(Ag(IL —2K,f})? +2K,G°T 2 )

r-1 . 2 L—1
:lz )\I 2 1+2Kp)\i% +lZ)\i
Lizo(1+2K,A\SNR) SNR ir

(D.1)

(D.2)

Based on the result obtained in (D.2), Bayesian estimator performance can be further

elaborated for the following scenarios:

e By taking SNR =SNR, the performance result for the case of no SNR

mismatch is

B R 1r-1 A 1 L—l)\
use(Gy,) Li§)1+2KpAiSNR LE !

90

(D.3)



e As r—L in (D.2), BMSE(gur) under SNR mismatch results in the following

Bayesian MSE:

L
B,y(@, ) = lz 12k, 5, SN (D.4)
LS (1+2K, i SNR) " GNR

¢ Finally, the Bayesian MSE in the case of no SNR mismatch is also be obtained as

L-1 .
Iy A (D)

B ag )=
wse(9y,) L 51+ 2K,ASNR
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Appendix E

Bayesian MSE for Truncated MMSE KL Estimator under
Correlation Mismatch in ST/SF — OFDM Systems

The truncated estimation error is

~ ~ ~

SUr zgu _gUr (El)

where ﬁp is the KL coefficient vector of the true uth multipath channel. As a result,

the average Bayesian MSE is

o 1
Buse(@,) = - trace(Ce, )

r

:%trace(l\g +4Ko TP NG +20°K 7 — 4K, T B)

r-1 2K, A (N —2B; L1 -
:lz o+ pAi(A; 2B|) "'lz)\i and 62 — 1
Lizo 2AK, +0 L iz SNR
—IA + 2K, SNRA; (A + A —2B;) 1Ll ~
:lz i p i (A + A B|)+l y (£.2)
L5 1+2K, SNRA, L&

where S is the real part of E[ﬁug ;] and [3;'s are the diagonal elements of 8. With

this result, we will now highlight some special cases:

o Letting B; =A; = Xi in (E.2) for the case of no mismatch in the correlation of KL
expansion coefficients, truncated Bayesian MSE is identical to that obtained in
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(D.3).
As r—L in (E.2), Bayesian MSE under correlation mismatch is obtained to

yield:

1IN + 2K, SNRA (A + A - 2B;)
LS 1+2K, SNRA,

(E.3)

Under no correlation mismatch in (E.3) wheref; =A; = Xi , Bayesian MSE
obtained from (E.3) is identical to that in (D.5).
Also note that as SNR — o0, (E.2) reduces to MSE(§H - Qur ).
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Appendix F

Theororetical SER for SF/ST-OFDM Systems

—_ LT
Define Y = [Yl Y, ] , and cast (4.11) in a matrix/vector form:

Y H, H, | X
Y, Hy -Hy | X, n2
_ 7
s X

where H u =diag(HM). By premultiplying (F.1) by H ! the signal model for

Maximal Ratio Receive Combiner (MRRC) can be obtained as

et e TR .

Y2 0 |24 + 722" (X2 1 12

where
Y= Hy Y+ Y, (F.3)
Y, =H Y, - Y, (F.4)
iy = H4ny + 3,05 (F.5)
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ﬁz=5‘[2n1—}[1n5 (F.6)
Thus, at the output of MRRC the signal for k™ subchannel is

Y, () = [Hy 00 +H, 00 X, () + 8, (k

W () =Hi (" + Hy (" X (k) + 1, (6) (F.7)

Assuming Hp(k) = ppe_j% and (ﬁu(k) [P1sP2sd1502) ~ NO’GZ) ,  where

62 = (p12 +p%)cr2 , and the faded signal energy at MRRC ES = (912 +p%)2ES. Thus,

the symbol error probability of QPSK for given p;,p,,¢1,0, is

Pr(error | pj,pa,1,47) = ZQ[\/ES/BZ ) - Qz( E./c? )

= 2Q(J(pf +p3)°Eglo? j —sz(pl2 +p§)2Es/02)

_ 2Q(\/(p12 +p§)ZSNRj —QZ(J(pf ; pg)zsNRj (F.8)

Bearing in mind Pr(error | p;,p,,0;,0,) does not depend on ¢, and ¢,, note that

T

T
Pr(error | py,py) = | [Pr(error, 1,4, | p1,p2)dd, dd,

—T -7

T T

= [ [ Pr(error [py,py,01,02) P(0;)P(;)dd, di,

-T -7

=Pr(error | py,p2,01,92) [ [ P(0)P(,)dd, diy

- -7

=Pr(error | py,p5,¢1,¢5) (F.9)

substituting (F.9) in the following equation:

95



Pr(error) = |
0

S 38

f jp(pl,p2,¢1,¢2)Pr(error [P15P251,02)dd, dy dp, dp,y

S8

T T
[ [p(p1sp2s>91,92)Pr(error|py,p,)dd, do, dp, dp,
—T —T

= J J P(py,p2)Pr(error | py,p,)dp, dp, (F.10)
00

Since channels H; and H, are independent p; and p, are also independent
P(P1,P2) =P(P1)P(P5) . Thus (F.10) takes the following form:
Pr(error)= [ [ p(p;)p(p,)Pr(error | py,p,)dp, dp;
00

0}4[31 0, e P14P3)

O'-—.8

(F.11)

0
(2@(@»? +p3)?SNR | -Q*({p? +p%)2SNRde2 dp;

If we now apply p; =ccos(er) and p, =gsin(e) transformations we arrive the

following SER expression for ST-OFDM and SF-OFDM systems,

o /2
Pr(error) = | 2g3$in(2<ae)e'gz (ZQ(\KZSNR) -Q? (\IQZSNRD decdg
0

O;f 2g3e'§2(2Q(w/g2 SNR)—QZ(\/QZ SNRDdg

1 1
=2 —(=+—arctan(y,))y375 — 7371 (F.12)
4 2 &

[98)

or by neglecting the Q? () term in (F.12), simplified form can be obtained as

Pr(error) :1—y§y3 (F.13)
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where

o [ s\R  SNR+3
ToomsNR+1) © 2TyYsNnrR+2 0 TSR
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