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HEAD-ON COLLISIONS OF SOLITARY WAVES

Abstract

The interaction of solitary waves in various physical media is a long time
studied subject in nonlinear wave theory. For overtaking collision between
solitary waves, one can use the inverse scattering transform method to obtain
the overtaking colliding effect of solitary waves. However, for the head-on
collision between solitary waves, one must employ some kind of asymptotic
expansion to solve the original field equations.
This thesis addresses head-on collision problem between two solitary waves.
The head-on collision of solitary waves in shallow water is re-examined upon
discovering the wrongness of the statement about the secular terms in the
pioneering work of Su and Mirie (J. Fluid Mech., 98:509-525, 1980). In the
first part, based on the above argument, the head-on collision of two solitary
waves propagating in shallow water is studied by introducing a set of stretched
coordinates that includes some unknown trajectory functions which are to
be determined so as to remove secularities that might occur in the solution.
Expanding the field variables and trajectory functions into power series, a set of
differential equations governing various terms in the perturbation expansion
is obtained. By solving them under non-secularity condition, the evolution
equations and also the expressions for phase shifts are determined. As opposed
to the result of previous studies our calculation shows that the phase shifts
depend on amplitudes of both colliding waves. In the second part, the head-
on-collision of solitary waves in shallow water theory is examined through
the use of extended Poincaré-Lighthill-Kuo(PLK) method. Following a similar
procedure with the previous part, the speed correction terms and the trajectory
functions are determined. The result obtained here is exactly same with that
found in the first part. In the third part, the head-on collision of the solitary
waves in fluid-filled elastic tubes is studied by employing the extended PLK
method. Pursuing the procedure in the previous part, the speed correction
terms and the trajectory functions are obtained. The results of our calculation
show that both the evolution equations and the phase shifts are quite different
from those of Xue (Phys. Lett. A, 331:409-413, 2004). As opposed to the
result of previous works on the same subject, the phase shifts depend on the
amplitudes of both colliding waves.
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SOLİTER DALGALARIN KAFA KAFAYA ÇARPIŞMASI

Özet

Nonlineer dalga teorisinde soliter dalgaların çeşitli fiziksel ortamlardaki etki-
leşimi uzun zamandır üzerinde çalışılan bir konudur. Soliter dalgaların ay-
nı yönde hareket ederken birinin diğerini yakalayarak çarpışması durumunda,
bu çarpışmanın etkilerini ortaya çıkarmak için ters saçılım dönüşümü(inverse
scattering transform) yöntemi kullanılabilir. Ancak, zıt yönde hareket eden
soliter dalgaların kafa kafaya çarpışması durumunda alan denklemlerini çöz-
mek için bir çeşit asimptotik açılım kullanılmalıdır.
Bu tezde iki soliter dalganin kafa kafaya çarpışması problemi incelenecektir.
Su ve Mirie’nin (J. Fluid Mech., 98:509-525, 1980) öncülük eden çalışma-
sındaki seküler terimlerle ilgili ifadelerinin yanlışlığının tarafımızdan ortaya
çıkarılması sonucunda, sığ sudaki yalnız dalgaların kafa kafaya çarpışması prob-
lemi yeniden incelenmiştir. İlk kısımda, yukarıdaki argümanı temel alarak,
sığ suda yayılan iki soliter dalganın kafa kafaya çarpışması problemi ele alın-
mıştır. Bunun için çözüm sırasında meydana gelebilecek seküler terimlerin
ortadan kaldırılmasıyla belirlenebilecek bilinmeyen bazı yörünge fonksiyon-
ları içeren gerilmiş koordinatlar kullanılmıştır. Alan değişkenlerini ve yörünge
fonksiyonlarını kuvvet serilerine açarak, pertürbasyon açılımındaki çeşitli te-
rimleri yöneten diferansiyel denklemler elde edilmiştir. Çözümlerin seküler te-
rim içermeme koşulu altında evolüsyon denklemleri ve faz farklarının ifadeleri
bulunmuştur. Hesaplamalar sonucunda, daha önceki çalışmaların aksine faz
farklarının çarpışan her iki dalganın genliğine bağlı olduğu görülmüştür. İkinci
kısımda, sığ su teorisinde soliter dalgaların kafa kafaya çarpışması problemi,
genişletilmiş Poincaré-Lighthill-Kuo(PLK) yöntemi kullanılarak incelenmiştir.
Bir önceki kısımla benzer bir yol takip edilerek hız düzeltme terimleri ve
yörünge fonksiyonları elde edilmiştir. Burada bulunan sonuçların ilk kısım-
da bulunan sonuçlarla tamamen aynı olduğu görülmüştür. Üçüncü kısımda
ise genişletilmiş PLK yöntemi kullanılarak akışkan ile dolu elastik tüplerde so-
liter dalgaların kafa kafaya çarpışması problemi incelenmiştir. Önceki kısımda
uygulanan yöntem takip edilerek hız düzeltme terimleri ve yörünge fonksiyon-
ları elde edilmiştir. Sonuç olarak, elde edilen evolüsyon denklemlerinin ve faz
farklarının Xue’nin (Phys. Lett. A, 331:409-413, 2004) çalışmasındakilerden
farklı olduğu tespit edilmiştir. Aynı konuda daha önce yapılan çalışmaların
aksine faz farklarının çarpışan dalgaların her ikisinin genliğine bağlı olduğu
gösterilmiştir.

iii



Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Hilmi Demiray for the continuous support of my Ph.D study and research, for

his patience, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis.

I am deeply grateful to my co-supervisor Prof. Nalan Antar for her support

in the beginning of my Ph.D study and for her encouragement and help in

difficult times.

I am very much indebted to Assoc.Prof. Banu Uzun for her endless support

to enable me to pursue my doctoral study.

A very special word of thanks goes for my family. I thank my parents for their

support and encouragement through this long journey. Finally, I thank my

wife who has been a constant source of love, concern, support and patience.

iv



Table of Contents

Abstract ii
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Chapter 1

Introduction

The interaction of solitary waves in various physical media is a long time stud-

ied subject in nonlinear wave theory. The interaction problem have attracted

considerable amount of interest and curiosity whether the process is elastic or

not since the introduction of the concept of solitary wave. The study of solitary

waves began with the observations by J. Scott Russell [1, 2] over a century ago.

Russell introduced the concept of solitary wave with the following description

[2]: “a large solitary elevation, a rounded, smooth and well defined heap of

water, which continued its course along the channel apparently without change

of form or diminution of speed... Its height gradually diminished, and after a

chase of one or two miles I lost it in the windings of the channel. Such, in

the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon”. Russell did extensive experiments in a laboratory

scale wave tank in order to study this phenomenon and further investigations

were undertaken by several researchers to understand this phenomenon. In

1895 Korteweg and deVries [3] provided a simple analytic foundation for the

study of solitary waves by developing an equation, now known as KdV equa-

tion, for shallow water waves. Their equation had permanent wave solutions,

including solitary waves.

One of the important behaviors of solitary waves is the interaction of mul-

tiple solitary waves. Interactions of solitary waves can be classified as head-on

collisions (the counterpropagating waves) and overtaking collisions (the co-

propagating waves). The overtaking collision is also called as strong inter-

action which is the consequence of a relatively long interaction time and the

head-on collision of solitary waves is called weak interaction, instead, owing to
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its relatively short interaction time. In 1965, Zabusky and Kruskal [4] discov-

ered numerically that the interaction of two solitary waves is elastic in their

study of the continuum approximation to the nonlinear discrete mass string of

Fermi-Pasta-Ulam [5]. Until this time, it was generally supposed that if two

solitary waves collided, the nonlinear interaction upon collision would com-

pletely destroy their integrity and identity. Two solitary waves with different

amplitudes propagating in the same direction can collide, exchange their en-

ergies and position with one another, and, then separate off, regaining their

original forms. Throughout the whole process of the collision, the solitary

waves are remarkably stable entities preserving their identities through the in-

teraction. Each solitary wave reemerges from the collision retaining its original

identity, except for a phase shift, that is, they are shifted in position relative to

where they would have been had no interaction occurred. The taller (faster)

wave is shifted to the right and the shorter (slower) to the left. The features

of the overtaking collision, that were mentioned here, had been revealed by

the foundation of the inverse scattering transform (IST) method which pro-

vides solution to the KdV equation. Since IST gives solutions which are KdV

solitary waves that travel in the same direction under the boundary condi-

tions vanishing at infinity, it can be used to discover the effects of overtaking

collision between solitary waves.

However, for the head-on collision case, some kind of numerical or asymp-

totic method should be employed to study the collision of the solitary waves

propagating in the opposite direction. As is shown in the next chapter, there

are various studies in this regard including Su and Mirie’s fundamental study

[6] in which they employed an asymptotic expansion called the Poincaré-

Lighthill-Kuo (PLK) method. Based on Su and Mirie’s approach, the head-

on collision problems in various physical media had been studied by several

researchers from the time the article [6] was published to present with an in-

creasing amount of interest. This situation motivated us to study the head-on

collision problem and in this manner we examined the Su and Mirie’s approach

to the problem of the head-on collision of two solitary waves propagating in the

shallow water. Su and Mirie [6] introduced a set of stretched coordinates where

some unknown trajectory functions were presented. These unknown functions,

characterizing the phase shifts after collision, are to be determined from the

requirements of non-secular solutions of the field quantities. By expanding the
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field variables and the unknown trajectory functions, they obtained a set of

differential equations. They tried to obtain solutions to these evolution equa-

tions under the restrictions of non-secularity of the solution. They made a

statement that “although this term does not cause any secularity at this order

but it will cause the secularity at higher order expansion, therefore, that term

must vanish”. As a consequence of this statement, they were able to evaluate

the unknown trajectory functions, that is, the phase shifts after the collision

had been computed. So this statement is the most interesting part of their

analysis. As a result of our calculations for higher order expansion, we observe

that this is not the case. This observation constitutes the point of origin of

this thesis.

This thesis is organized as follows. In Chapter 2, a review of previous ex-

perimental, theoretical and numerical investigations, the derivation of the field

equations for shallow water waves and fluid-filled elastic tubes and a review of

the reductive perturbation and Poincaré-Lighthill-Kuo methods are summa-

rized. The head-on collision problem between two solitary waves in shallow

water is re-examined in view of the above mentioned observation in Chapter 3,

which includes evaluation of the surface elevation parameter, the axial veloc-

ity parameter and the explicit expressions of phase shifts. Also the differences

between the phase shifts obtained in previous studies and the present work

are discussed. In Chapter 4, head-on collision between two solitary waves in

shallow water is investigated by employing the extended PLK method and

the expressions of phase shifts, surface elevation and axial velocity parameters

are obtained. The variations of the wave profiles for right-going wave before

and after the collision are illustrated. Also, the obtained results are discussed

in comparison with the previous chapter and Su and Mirie [6]. In Chapter

5, head-on collision problem of the solitary waves in fluid-filled elastic tubes

is studied by using the extended PLK method and the differences between

the results of Xue [7], in which the same problem had been studied by using

Su and Mirie’s approach, and the present work are discussed. Finally overall

conclusions are presented in Chapter 6.
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Chapter 2

State of the Art and the Summary of Field

Equations

2.1 Solitary Waves

The solitary wave, so-called, occurs as this single entity and is localised, and

was first observed by J. Scott Russell on the Edinburgh Glasgow canal in 1834;

he called it the ‘great wave of translation’. Russell reported his observations

to the British Association in his 1844 ‘Report on Waves’ [2]. Russell also

performed some laboratory experiments, generating solitary waves by dropping

a weight at one end of a water channel. He was able to deduce empirically

that the speed, c, of the solitary wave is obtained from

c2 = g(h+ a), (2.1)

where a is the amplitude of the wave, h the undisturbed depth of water and g

the acceleration of the gravity. Further investigations were undertaken by Airy

[8], Stokes [9],Boussinesq [10] and Rayleigh [11] in an attempt to understand

this phenomenon. Both Boussinesq and Rayleigh assumed that a solitary

wave has a length scale much greater than the depth of the water. They

deduced, from the equations of motion for an inviscid incompressible fluid,

Russell’s formula for wave speed. In fact they also showed that the wave

profile z = ζ(x, t) is given by

ζ(x, t) = a sech2{β(x− ct)}, (2.2)

4



where β−2 = 4h2(h + a)/3a for any a > 0, although the sech2 profile is only

correct if a < h. These investigations provoked much lively discussion and

controversy as to whether the inviscid equations of water waves would possess

such solitary wave solutions. The issue was finally resolved by Korteweg and

de Vries [3]. They derived a nonlinear evolution equation governing long,

that is, equilibrium level(depth) is small relative to the water wavelength, one

dimensional, small amplitude, surface gravity waves propagating in a shallow

water channel

∂η

∂τ
=

3

2

√
g

h

∂

∂ξ

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂ξ2

)
, σ =

1

3
h3 − Th/(ρg), (2.3)

where η is the surface elevation of the wave above the equilibrium level h,

α a small arbitrary constant related to the uniform motion of liquid, g the

gravitational constant, T the surface tension and ρ the density (the terms

“long” and “small” are meant in comparison to the depth of the channel).

The controversy was now resolved since the equation (2.3), now known as the

Korteweg-de Vries (KdV) equation, has permanent wave solutions, including

solitary wave solutions. Equation (2.3) may be brought into nondimensional

form as

ut + 6uux + uxxx = 0, (2.4)

where subscripts denote partial differentiations. To get the above specific form,

we have rescaled and translated the dependent and independent variables in

various applications to eliminate the physical constants. Any desired coeffi-

cients can be inserted into the equation by such transformations. From the

original form of the KdV equation (2.3), the transformations

t =
1

2

√
g

hσ
τ, x = −σ−1/2ξ, u =

1

2
η +

1

3
α

give us (2.4). Note that (2.4) is invariant to arbitrary translations in x and

t since they appear only in the differentiations. Also, because all derivatives

are of odd order, reversing the signs of both x and t does not alter the equa-

tion. Moreover, the KdV equation is Galilean invariant, that is, it remains

unchanged by the transformation

t
′
= t, x

′
= x− ct, u

′
(x

′
, t

′
) = u(x, t)− 1

6
c,
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where c is some constant. This corresponds to a steady moving reference frame

with velocity c.

In spite of this early derivation of the KdV equation, not much progress

is made until a new application of the model equation found in the study

of collision-free hydromagnetic waves by Gardner and Morikawa [12]. Subse-

quently the KdV equation has arisen in a number of other physical contexts,

stratified internal waves, ion-acoustic waves, plasma physics, lattice dynamics,

etc. Kruskal [13] and Zabusky [14–16] showed the KdV equation governs longi-

tudinal waves propagating in a one-dimensional lattice of equal masses coupled

by nonlinear springs, the Fermi-Pasta-Ulam problem [5]. Other applications

to plasma physics were given by Berezin and Karpman [17] and by Washimi

and Taniuti [18] in their study of ion-acoustic waves in a cold plasma. Wijn-

gaarden [19] found it described pressure waves in a liquid-gas bubble mixture.

Shen [20] derived the KdV equation in the study of 3-dimensional water waves.

Su and Gardner [21] and Taniuti and Wei [22] showed it arises from several

general classes of equations. For details and further references see, [23–26].

It has been known for a long time that the KdV equation (2.4) possesses

the solitary wave solution of the form

u(x, t) = 2a2sech2[a(x− 4a2t− x0)], (2.5)

where a and x0 are constants and also x0 is the location of the center of the

symmetrical wave at time t = 0. Note that the solitary wave moves to the right

at a velocity 4a2 which is proportional to its amplitude 2a2, therefore taller

waves travel faster than shorter ones. Zabusky and Kruskal [4] discovered

numerically that these solitary wave solutions have the remarkable property

that the interaction of two solitary wave solutions is elastic in their study of

the continuum approximation to the nonlinear discrete mass string of Fermi-

Pasta-Ulam. The critical observation was that the pulses seemed to retain

their identities after each interaction. Because of their preservation of form

through nonlinear interaction and their resemblance to particles, Zabusky and

Kruskal [4] coined the name soliton for such waves.

6



2.2 Solitary Wave Interactions

It is well-known that long-time asymptotic behaviour of two dimensional uni-

directional shallow water waves in the case of weak nonlinearity is described

by the Korteweg-de Vries (KdV) equation [3]. Since, the inverse scattering

transform (IST) for exactly solving the KdV equation was found by Gard-

ner, Kruskal and Miura [27], the interesting features of the collision between

solitary waves had been revealed: When two solitary waves approach closely,

they interact, exchange their energies and position with one another, and, then

separate off, regaining their original forms. Throughout the whole process of

the collision, the solitary waves are remarkably stable entities preserving their

identities through the interaction. The unique effect due to the collision is

their phase shifts. It is believed that this striking colliding property of solitary

waves can only be preserved in a conservative system.

The interactions of solitary waves can be classified as head-on collisions

(the counterpropagating waves) and overtaking collisions (the copropagating

waves). According to IST, all the KdV solitary waves travel in the same di-

rection, under the boundary conditions vanishing at infinity [27, 28]; so for

overtaking collision between solitary waves, one can use the IST to obtain the

overtaking colliding effect of solitary waves. However, for the head-on collision

between solitary waves, one must employ some kind of asymptotic expansion

to solve the original field equations. In this regard, it is useful to briefly re-

view the studies on the head-on collision between two solitary waves in the

free surface of an inviscid homogeneous fluid lying over a horizontal bottom.

Byatt-Smith [29] investigated the interaction between two weakly nonlinear

solitary waves travelling in opposite directions and explicitly determined the

maximum amplitude of the collision. When, in the absence of viscosity and

surface tension, two waves of equal amplitude collide, one has the problem of

solitary wave reflection from a vertical wall. For this case the maximum ele-

vation of the wave at the wall, the run-up, exceeds twice the amplitude of the

incident solitary wave. Oikawa and Yajima [30] explicitly computed the spatial

phase shift incurred after collision by adopting a perturbation approach. Max-

worthy [31] performed experiments in a wave tank investigating both endwall

and wave-wave collisions. Results of the experiment show that run-ups are

7



in qualitative agreement with [29]. However, his measured phase shifts were,

within experimental error, independent of ε thus the dependence on ε was not

verified with [30]. After that, Su and Mirie [6] carried out a perturbation

analysis of two colliding solitary waves to third order approximation. They

found that, the maximum amplitude during the collision agree very well with

the reflexion experiments of Maxworthy [31]. They are consistently lower than

the wave-wave experiment of Maxworthy. The total phase shifts represent a

retardation of the waves during their collision. However, they do not seem able

to account for the experimental result which measured amplitude-independent

phase shifts. Each solitary wave sheds a secondary wave. These secondary

waves propagate in the opposite direction of their parent waves. Their ampli-

tudes decrease in time owing to dispersion. Maxworthy indicates appearance

of the secondary wave in his reflexion experiment. For a comparison with the

numerical results, we can refer Fenton and Rienecker [32], Cooker et al. [33]

and Craig et al. [34]. As is stated by Cooker et al. [33], the numerical results

on run-up are consistent with the predictions of Su and Mirie [6]. Both Cooker

et al. [33] and Craig et al. [34] have the results correspond to the experimental

observations in Maxworthy [31]. The existence of a residual is qualitatively

consistent with the asymptotic predictions of Su and Mirie [6], however, on a

quantitative level numerical data of Craig et al. [34] are at odds with their

findings.

2.3 Water Waves

In fluid dynamics, the physical quantities, such as mass, velocity, energy, etc.,

are usually regarded as being spread continuously throughout the region of

consideration; this is often termed the continuum assumption and continuum

derivations are based on conservation principles. Now we focus on the results

derived from conservation laws and, in particular, how they relate to water

waves. We will use ρ = ρ(x?, t?) to denote the fluid mass density, v = v(x?, t?)

the fluid velocity, P the pressure, F a given external force, and ν the kine-

matic viscosity that is due to frictional forces. In vector notation, the relevant

8



equations of fluid dynamics we will consider are:

∂ρ

∂t?
+∇ · (ρv) = 0,

ρ

(
∂v

∂t?
+ (v · ∇)v

)
= F −∇P + ν∆v,

where the former is called conservation of mass and the latter is conservation of

linear momentum. When ρ = ρ0 is constant, the first equation then describes

an incompressible fluid: ∇ · v = 0, also called the divergence equation. The

divergence and the momentum equations are often called the incompressible

Navier-Stokes equations. We will consider the free surface water wave problem,

which (interior to the fluid) is the inviscid reduction (ν = 0) of the above

equations; these equations are called the Euler equations.

For our discussion of water waves, we will use the incompressible Navier-

Stokes description with constant density ρ = ρ0 and we will assume an ideal

fluid: that is, a fluid with zero viscosity. Thus, an ideal, incompressible fluid

is described by the following Euler equations:

∇ · v = 0, (2.6)

∂v

∂t?
+ (v · ∇)v =

1

ρ0
(F −∇P ). (2.7)

Suppose now that the external force is conservative, that is, we can write

F = −∇U , for some scalar potential U . We can then write the equation (2.7)

as
∂v

∂t?
+ (v · ∇)v = −∇

(
U + P

ρ0

)
.

Using the vector identity

(v · ∇)v =
1

2
∇(v · v)− v × (∇× v),

gives
∂v

∂t?
− v × (∇× v) = −∇

(
1

2
v · v +

U + P

ρ0

)
. (2.8)

Now define the vorticity vector as ω = ∇ × v, which is a local measure of

the degree to which the fluid is spinning; more precisely,
1

2
‖∇× v‖ (note that

‖v‖2 = v ·v) is the angular speed of an infinitesimal fluid element. Taking the

9



curl of the last equation and noting that the curl of a gradient vanishes,

∂ω

∂t?
−∇× (v × ω) = 0.

Finally, using the vector identity ∇ × (F × G) = (G ·∇)F − (F ·∇)G +

(∇ · G)F − (∇ · F )G for vector functions F and G and recalling that the

divergence of the curl vanishes, we arrive at the so-called vorticity equation:

∂ω

∂t?
= (ω ·∇)v − (v ·∇)ω (2.9)

or
Dω

Dt?
= ω ·∇v, (2.10)

where the notation
D

Dt?
=

∂

∂t?
+ (v ·∇)

have been used to signify the so-called convective or material derivative that

moves with the fluid particle. Hence ω = 0 is a solution; moreover, from (2.10),

it can be proven that if the vorticity is initially zero, then (if the solution

exists) it is zero for all times. Such a flow is called irrotational. Physically, in

an ideal fluid there is no mechanism that will produce “local rotation” if the

fluid is initially irrotational. Often it is a good approximation to assume that a

fluid is irrotational, with viscosity effects occurring only in thin regions of the

fluid flow called boundary layers. Since we will consider water waves and will

assume that the flow is irrotational. In such circumstances, it is convenient

to introduce a velocity potential v =∇ψ?. Notice that the vorticity equation

(2.10) is trivially satisfied since

∇× (∇ψ?) = 0.

The Euler equations inside the fluid region can now also be simplified as

∇ · v =∇ · ∇ψ? = ∆ψ? = 0, (2.11)

which is Laplace’s equation; it is to be satisfied internal to the fluid, 0 <

z? < h?(x?, y?, t?), where we denote the height of the fluid free surface to be

h?(x?, y?, t?) and the fluid is supported by a horizontal plane at z? = 0.

10



Next we discuss the boundary conditions that lead to complications; i.e.,

an unknown free surface and nonlinearities. We assume a flat, impenetrable

bottom at z? = 0, so that no fluid can flow through. This results in the

condition
∂ψ?

∂z?
= 0, z? = 0, (2.12)

that is, normal velocity vanishes at the bottom z? = 0. On the free surface

z? = h?(x?, y?, t?) there are two conditions. The first is obtained from (2.8).

Using the fact that ∇ and
∂

∂t
commute,

∇
(
∂ψ?

∂t?
+

1

2
‖v‖2 +

U + P

ρ0

)
= 0,

which gives
∂ψ?

∂t?
+

1

2
‖v‖2 +

U + P

ρ0
= f(t?), (2.13)

where we recall ‖v‖2 = ψ?2x?+ψ?2y?+ψ?2z? . Since the physical quantity is v =∇ψ?,
we can add an arbitrary function of time (independent of space) to ψ?,

ψ? → ψ? +

t?∫
0

f(τ)dτ,

to get the so-called Bernoulli, dynamic, or pressure equation,

∂ψ?

∂t?
+

1

2
‖v‖2 +

U + P

ρ0
= 0. (2.14)

From now on, we will neglect surface tension and assume that the dominant

force is the buoyancy force, F = −∇(ρ0gz
?), which implies that U = ρ0gz

?,

where g is the gravitational constant of acceleration. Also, we take the pressure

to vanish (i.e., P = 0) on the free surface, yielding:

∂ψ?

∂t?
+

1

2
‖∇ψ?‖2 + gh? = 0, z? = h?(x?, y?, t?), (2.15)

on the free surface.

We consider the case of a body of water with air above it and let the

11



interface be described by

F (x?, y?, z?, t?) = 0. (2.16)

The second equation governing the free surface is derived from the assumption

that the interface is defined by the property that fluid does not cross it. Hence

the velocity of the fluid normal to the interface must be equal to the velocity

of the interface normal to itself. The normal velocity of a surface defined by

(2.16) is
−Ft?√

F 2
x? + F 2

y? + F 2
z?

.

The normal velocity of the fluid is

v ·∇F√
F 2
x? + F 2

y? + F 2
z?

.

The condition that these be equal is

DF

Dt?
=
∂F

∂t?
+ v ·∇F = 0. (2.17)

This shows that if a fluid packet is initially on the free surface, then it will

stay there. It is convenient to describe the surface by z? = h?(x?, y?, t?) and

choose F = z? − h?(x?, y?, t?) = 0 in (2.17). Then

Dz?

Dt?
=
Dh?

Dt?

implies
∂ψ?

∂z?
=
∂h

∂t?
+ v ·∇h?, z? = h?(x?, y?, t?), (2.18)

on the free surface where we have used v =

(
Dx?

Dt?
,
Dy?

Dt?
,
Dz?

Dt?

)
. Equation

(2.18) is often referred to as the kinematic condition (For a more detailed

discussion, see [35]).
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2.4 Fluid-filled Elastic Tubes

The propagation of linear and nonlinear waves in fluid-filled elastic tubes is a

problem of interest since the time of Thomas Young [36]. The measurement

[37] for the simultaneous changes in amplitudes and form of the flow and

pressure waves at five sites from the ascending aorta to the saphenous artery

in dog shown that the pulsatile character of the blood wave is soliton-like and

it suggests a possible interpretation in terms of solitons. The blood flow in

arteries can be considered as an incompressible fluid flowing in a thin non-

linear elastic tube. Theoretical investigations for the blood waves by weakly

nonlinear theory have been developed by [38–41]. It is shown that the dynamics

of the blood waves are governed by the KdV or modified KdV equations.

The solitary wave model gives a reasonable explanation for the peaking and

steepening of pulsatile waves in arteries. Head-on collision of solitary waves

in fluid-filled elastic tubes (a model for arteries) had been studied by several

researchers [7, 42, 43], in all of which the method proposed by Su and Mirie

[6] have been employed.

To study the head-on collision of the blood solitary waves, we assume that

the blood waves propagate in a one- dimensional elastic tube, which is deemed

to be a model for large artery, filled with an incompressible inviscid fluid, which

is considered to be a simple model for blood. We also assume that the arteries

are circularly cylindrical homogeneous tube with non-linear elasticity. Then,

the equations governing the conservation of mass and of the balance of linear

momentum in the axial direction may be given as follows, respectively [44],

∂A

∂t?
+

∂

∂x?
(Av?) = 0, (2.19)

∂v?

∂t?
+ v?

∂v?

∂x?
+

1

ρ

∂P ?

∂x?
= 0, (2.20)

where ρ is the density of fluid, A(x?, t?) denotes the cross-sectional area of the

tube, v? the axial velocity of the fluid and P ? the pressure of the fluid.

Equations (2.19) and (2.20) give only two relations to determine the un-

known functions A, v? and P ?. In order to have a complete determination of

these field variables, a third equation describing the radial motion of the wall
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Figure 2.1: Small segment of the tube wall and forces acting on this segment.

under the forces exerted by the fluid is necessary (These forces are shown in

Figure 2.1). Thus, by using the assumptions given in [45], this equation can

be given as follows:

ρ0H

2πR0

∂2S?

∂t?2
= (P ? − Pe)−

Eh

2R0

S?

πR2
0

(
1 + α S?

2πR2
0

)
(

1 + S?

2πR2
0

) (2.21)

where ρ0 denotes the constant mass density of the wall of the tube, R0 equilib-

rium radius of the tube, H effective inertial thickness, h thickness of the wall

in which the material participates in the elastic deformation, Pe the pressure

outside the tube which can be regarded as same as the atmospheric pressure, E

the Young’s modulus, α the nonlinear coefficient of elasticity and S? = A−A0

the change in the cross-sectional area of the tube. Here, it was assumed that

the variable S? ≈ 2πR0ur where ur = R− R0 is the radial displacement. The

incompressibility of the wall and the tissue gives the following equations

RH = R0H0, Rh = R0h0, (2.22)

in which H0 and h0 denote the equilibrium values of effective inertial thickness

and the thickness of the wall, respectively. Now it is convenient to introduce
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the following non-dimensional quantities

x? = X0x, t? = T0t, v? =
X0

T0
v, P ? − Pe = p0P, S? = πR2

0S, (2.23)

where

X0 =

(
ρ0R0H0

2ρ

)1/2

, T0 =

(
ρ0R

2
0H0

Eh0

)1/2

, p0 =
Eh0
2R0

.

Introducing (2.22) and (2.23) into the equations (2.19)-(2.21), the following

non-dimensional equations are obtained

∂S

∂t
+
∂v

∂x
+

∂

∂x
(Sv) = 0, (2.24)

∂v

∂t
+
∂P

∂x
+

∂

∂x

(
v2

2

)
= 0, (2.25)

P =
2

2 + S

∂2S

∂t2
+

2S(2 + αS)

(2 + S)2
. (2.26)

A more detailed discussion can be found in [44–46].

2.5 Perturbation Methods

If one wants to study physical problems then the general equations obtained

from first principles (like the Euler or Navier-Stokes equations governing fluid

motion on a free surface mentioned in the previous section) are too difficult to

handle using linear methods or, in most situations, by direct numerical simu-

lation. Therefore, before we can study the solutions of the governing equations

we must first obtain useful and manageable equations. For that we need to

simplify the general equations, while retaining the essential phenomena we

want to study. For this purpose, we introduce, first, the reductive perturba-

tion method and then Poincaré-Lighthill-Kuo (PLK) method.
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2.5.1 Reductive Perturbation Method

In the study of the asymptotic behaviour of nonlinear dispersive waves, Gard-

ner and Morikawa [12] introduced the scale transformation

ξ = εα(x− λt),

τ = εβt.

This scale transformation, called the Gardner-Morikawa transformation, may

be derived from the linearized asymptotic behaviour of long waves. Gardner

and Morikawa combined this transformation with a perturbation expansion of

the dependent variable so as to describe the nonlinear asymptotic behaviour

and they arrived the KdV equation as a single tractable equation describing

the asymptotic behaviour of a wave. The reductive perturbation method has

been developed and formulated in a general way by Taniuti and Wei [22],

Taniuti and Washimi [47], Taniuti and Yajima [48] and Taniuti [49].

2.5.2 The long wave approximation

The reductive perturbation method for long waves was established by Taniuti

and Wei [22]. This method is applicable to both dispersive and dissipative

systems governed by the system of equations given as:

∂U

∂t
+ A

∂U

∂x
+

s∑
β=1

p∏
α=1

(Hβ
α

∂

∂t
+ Kβ

α

∂

∂x
)U = 0, p ≥ 2, (2.27)

where U is a column vector with the n components u1, u2, ..., un. Here A,Hβ
α

and Kβ
α are n × n matrices, all of which are functions of U . Introducing the

Gardner-Morikawa transformation

ξ = εa(x− λt),

τ = εa+1t,

a =
1

p− 1
, (2.28)
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we shall assume expansions around a constant solution U 0 of the form

U =
∞∑
j=1

εjU j, A =
∞∑
j=0

εjAj, H
β
α =

∞∑
j=0

εjHβ
αj, K

β
α =

∞∑
j=0

εjKβ
αj. (2.29)

Substituting (2.29) into (2.27) and using (2.28) enables us to rewrite (2.27) in

terms of derivatives with respect to ξ and τ . Equating the coefficients of like

powers in ε to zero we obtain

O(εα+1) : (A0 − λI)
∂U 1

∂ξ
= 0, (2.30)

O(εα+2) : (A0 − λI)
∂U 2

∂ξ
+
∂U 1

∂τ
+ [U 1 · (∇uA)0]

∂U 1

∂ξ

+
s∑

β=1

p∏
α=1

(−λHβ
α0 + Kβ

α0)
∂pU 1

∂ξp
= 0, (2.31)

where ∇u denotes the gradient operator with respect to U , and U · ∇u repre-

sents the operator Σn
i=1ui(∂/∂ui) and A1 is written as U 1·(∇uA)0. Introducing

the right eigenvector R of A0 corresponding to λ, so that

(A0 − λI)R = 0, (2.32)

we can solve (2.30) in the form

U 1 = φ1(ξ, τ)R + V 1(τ) (2.33)

where φ1 is one of the components of U 1. Here V 1 is an arbitrary vector valued

function of τ to be determined according to an appropriate boundary condition

for U 1. In order that (2.31) is solvable algebraically for ∂U 2/∂ξ, there must

exist a compatibility condition. To obtain this condition we multiply equation

(2.31) on the left by the left eigenvector L, when we get

L· ∂U 1

∂τ
+L·[U 1 ·(∇UA)0

∂U 1

∂ξ
)+L·

s∑
β=1

p∏
α=1

(−λHβ
α0+Kβ

α0)
∂pU 1

∂ξp
= 0. (2.34)
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When the boundary condition for U 1 is such that U → U 0 as x→∞, so that

U i → 0 as x → ∞, (i ≥ 1), we may set V 1 equal to zero in (2.33). Using

(2.33) with V 1 = 0 in (2.34), we get

∂φ1

∂τ
+ c1φ1

∂φ1

∂ξ
+ c2

∂pφ1

∂ξp
= 0. (2.35)

where the constants c1 and c2 are given by

c1 = L · [R · (∇UA)0R]/(L ·R),

c2 = L ·
s∑

β=1

p∏
α=1

(−λHβ
α0 + Kβ

α0)R/(L ·R). (2.36)

When p = 3, equation (2.35) is the KdV equation, whereas for p = 2, equation

(2.35) is Burgers’ equation for the one dimensional flow of a compressible

viscous fluid.

2.5.3 Poincaré-Lighthill-Kuo (PLK) Method

This method goes back to the nineteenth century when astronomers, such as

Lindstedt [50], Bohlin [51] and Gyldén [52] devised techniques to avoid the

appearance of secular terms in perturbation solutions of differential equations.

Poincaré [53] devised a method for finding the periodic solution of a system of

first order equations

dXi

dt
= Xi(x1, x2, . . . , xn; ε), (i = 1, 2, . . . , n), (2.37)

where t is the time variable and ε is a small parameter representing the pertur-

bation influences. The equations with ε = 0, corresponding to the unperturbed

system, are particularly simple, and a periodic solution with period T0 can be

easily found. The essence of Poincaré’s method is the expansion of the per-

turbed solution in the parameter ε. Not only the variables

xi = x
(0)
i + εx

(1)
i + ε2x

(2)
i + . . .
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are expanded, but also the period T

T = T0 + εT1 + ε2T2 + . . . .

However, for nearly sixty years no extension of the principle of this method was

made, and the full potentiality of Poincaré’s invention remained unexploited.

Lighthill [54] developed a technique for rendering approximate solutions to

physical problems uniformly valid and introduced a very important extension

of Poincaré’s method. Lighthill’s objective was to improve the well-known

method of perturbation for calculating the approximate solution of a physical

problem. The perturbation method is based upon the concept of expanding

the exact solution in a power series of the small parameter ε, the zeroth order

solution being independent of ε, the first order solution proportional to ε, etc.

This method, elementary in principle and straightforward in execution, is very

effective and yields useful results for a large class of problems. Nevertheless

there are problems, not at all infrequent, where the zeroth order solution con-

tains a singularity at a point or on a line within the domain of interest. Then

not only will the singularity again appear at the same location in the higher

order solutions, but it will become progressively more severe as the order of

the solution increases. The power series expansion in ε breaks down near such

singularities, and the classical perturbation fails to give a usable solution near

the singular points.

Lighthill’s method is designed to eliminate such difficulties and to render

the expansion uniformly valid, or of uniform accuracy, over the whole domain

of interest. The principle is to expand not only the dependent variable u, but

also the independent variables x and y in power series of ε. Then

u = u0(ξ, η) + εu1(ξ, η) + ε2u2(ξ, η) + . . . , (2.38)

x = ξ + εx1(ξ, η) + ε2x2(ξ, η) + . . . , (2.39)

y = η + εy1(ξ, η) + ε2y2(ξ, η) + . . . , (2.40)

where ξ, η take the place of the original independent variables x, y. If we

neglect the higher order terms in u of (2.38), then the approximate solution is

simply the zeroth order perturbation solution with the coordinates stretched

or distorted by the transformations (2.39) and (2.40). This fact has led several
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authors to call Lighthill’s method, the method of coordinate perturbation or

method of strained coordinates.

Lighthill applied his method to problems involving partial differential equa-

tions when the zeroth order solution is obtained from a reduced linear equa-

tion of equal order as the exact equation. It soon becomes apparent, however,

that Lighthill’s original purpose of uniform validity throughout the domain of

interest cannot always be realized. In many problems a good zeroth order ap-

proximation can be obtained only if a “boundary layer” solution is used. Kuo

[55] first recognized this necessity in his solution of the problem of the lami-

nar incompressible boundary layer on a flat plate and extended the Poincaré’s

original concept.

To illustrate the principle of the PLK method, let us consider the following

first order ordinary differential equation

(x+ εu)
du

dx
+ u = 0, (2.41)

which can also be written as

d

dx

(
xu+ ε

u2

2

)
= 0.

Then by integration, we obtain

xu+ ε
u2

2
= C0. (2.42)

If we impose the boundary condition u(1) = 1, the exact solution of the equa-

tion (2.41) is

u = −x
ε

+

√(x
ε

)2
+

2

ε
+ 1. (2.43)

Now let us apply the classical perturbation method for the equation (2.41),

i.e., expand u in powers of ε

u(x) = u0(x) + εu1(x) + ε2u2(x) + . . . . (2.44)

Substituting (2.44) into (2.41), and then equating the like powers of ε, we have

O(ε0) : x
du0
dx

+ u0 = 0, (2.45)

20



O(ε) : x
du1
dx

+ u1 = −u0
du0
dx

, (2.46)

O(ε2) : x
du2
dx

+ u2 = −u0
du1
dx
− u1

du0
dx

. (2.47)

Then the solution of the O(ε0) equation with the boundary condition u(1) = 1

yields

u0(x) =
1

x
. (2.48)

Substituting (2.48) into (2.46), we obtain the solution of the O(ε) equation as

u1(x) = − 1

2x3
+
C1

x
.

But now the boundary condition requires u1(1) = 0 which gives C1 =
1

2
. Then

we have

u1(x) =
1

2x

(
1− 1

x2

)
. (2.49)

Similarly, for the solution of the equation (2.47), we obtain

u2(x) =
1

2x

(
1− 1

x2

)
− 1

2x

(
1− 1

x4

)
. (2.50)

The function u0(x) has a singularity at x = 0, and (2.49) and (2.50) show

that this singularity becomes worse as the order of the perturbation solution

is increased. The solution so obtained is thus worthless near x = 0.

Now let us apply a different procedure, expand both u and x in powers of

ε as required by the PLK method:

u = u0(ξ) + εu1(ξ) + . . . ,

x = ξ + εx1(ξ) + . . . . (2.51)

The differential equation (2.41) can now be written as

(x+ εu)
du

dξ
+ u

dx

dξ
= 0, (2.52)

where
dx

dξ
= 1 + εx

′

1(ξ) + . . . .
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By introducing (2.51) into (2.52) and equating the like powers of ε, we obtain

O(ε0) : ξ
du0
dξ

+ u0 = 0, (2.53)

O(ε) : ξ
du1
dξ

+ u1 = −(x1 + u0)
du0
dξ
− u0

dx1
dξ

. (2.54)

Now the solution of (2.53) gives

u0(ξ) =
C2

ξ
.

If we impose the condition x1(1) = 0 such that x = 1 for ξ = 1, then u0(1) = 1

is required by the boundary condition u(1) = 1. Thus

u0(ξ) =
1

ξ
. (2.55)

By introducing (2.55) into (2.54), we obtain

d

dξ
(ξu1) = −1

ξ

dx1
dξ

+
1

ξ2
x1 +

1

ξ3
. (2.56)

Now, if we ignore x1(ξ), the equation (2.56) yields the same solution as (2.49),

in which the singularity becomes worse than the lower order solution as men-

tioned before. In order to avoid this, we take advantage of the additional

freedom in the choice of x1 by setting

1

ξ

dx1
dξ
− 1

ξ2
x1 =

1

ξ3
. (2.57)

The solution of (2.57) with the boundary condition x1(1) = 0 is

x1(ξ) =
ξ

2

(
1− 1

ξ2

)
. (2.58)

Now with x1(ξ) so determined, the solution of the equation (2.56) with the

boundary condition u1(1) = 0 yields u1 ≡ 0. Then, up to this order of approx-

imation, we have

u =
1

ξ
,
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x = ξ + ε
ξ

2

(
1− 1

ξ2

)
. (2.59)

Now the interesting fact is that by eliminating ξ from the pair (2.59), we have

exactly the solution for u as given by (2.43). Therefore in this case the PLK

method not only removes the difficulty of the singularity at x = 0, but yields a

solution which is, in fact, the exact solution. More detailed discussions about

the PLK method can be found in Tsien [56] and Nayfeh [57].

23



Chapter 3

Re-examining the Head-on Collision Problem

Between Two Solitary Waves in Shallow Water

3.1 Introduction

It is well known that one of the striking properties of solitons is their asymp-

totic preservation of form when they undergo a collision, as first remarked by

Zabusky and Kruskal [4]. The unique effect due to collision is their phase

shift. In a one-dimensional system, there are two distinct soliton interactions.

One is the overtaking collision and the other is the head-on collision. Because

of the multisoliton solutions of the Korteweg-de Vries (KdV) equation, the

overtaking collision of solitary waves can be studied by the inverse scatter-

ing transformation method [27, 28] and Zou and Su [58]. For the numerical

analysis of overtaking collisions of solitary waves it is worth of mentioning the

works by Li and Sattinger [59] and Haragus et al. [60]. However, for the head-

on collision between two solitary waves, one must examine the solitary waves

propagating in opposite directions, and hence we need to employ a suitable

asymptotic expansion to solve the original conducting fluid equations.

There have been several attempts to resolve the head-on collision problems

in various media (see, for instance [29–31, 61, 62]). In this regard a fundamen-

tal approach for the study of head-on collision problems had been laid down

by Su and Mirie [6], in which the Poincaré-Lighthill-Kuo (PLK) method had

been employed for the asymptotic analysis of such collision problems. The

PLK method is just the combination of the classical reductive perturbation
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method [22] with the strained coordinates. Su and Mirie [6] introduced the

following stretched coordinates

ε
1
2k(x− CRt) = ξ − εkθ(ξ, η),

ε
1
2 l(x+ CLt) = η − εlφ(ξ, η), (3.1)

where ε is the smallness parameter, CR and CL are the speeds of right and left

going waves, k and l are the wave numbers of the right and left going waves,

respectively, θ(ξ, η) and φ(ξ, η) are the trajectory functions which are to be

determined from the requirements of non-secular solutions of the field variables.

By expanding the field variables and the unknown trajectory functions θ(ξ, η)

and φ(ξ, η) into asymptotic series in ε, they obtained a set of partial differential

equations. They tried to obtain solutions to these evolution equations under

the restrictions of non-secularity of the solution.

In their derivation Su and Mirie [6] made a statement, which is the most

attractive point of their analysis, that “although this term does not cause any

secularity at this order but it will cause the secularity at higher order expan-

sion, therefore, that term must vanish”. Assuming that this statement is cor-

rect, several researchers (see, for instance [42, 43, 63–70]) studied the head-on

collision problems in various physical media and published them in various

respected journals. But our calculations for higher order expansion showed

that the term mentioned in their work does not cause any secularity in the

solution; it rather occurs in the next order equation. This means the order of

trajectory functions should be ε2, not ε.

In this chapter, based on the above argument, we have studied the head-on

collision of two solitary waves propagating in the shallow water by introducing

a set of stretched coordinates in which the trajectory functions are of order

of ε2. Taking the non-dimensional form of the field equations used by Su and

Mirie [6] and expanding the field variables and trajectory functions into power

series of ε we obtained a set of differential equations governing the various

terms in the perturbation expansion. By solving these equations under the

non-secularity conditions we obtained the evolution equations which give the

solitary wave solutions for both right and left going waves. Moreover, by deriv-

ing non-secular solutions for ε3 order equations we obtained some restrictions

which makes it possible to determine the trajectory functions of order ε2. Us-
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ing the conventional definition of phase shifts we determined the expressions of

phase shifts of right and left going waves. As opposed to the results of previous

studies our calculation shows that the phase shifts depend on both amplitudes

of colliding waves and they are order of ε2.

3.2 Basic Equations

We consider a plane irrotational flow of an incompressible fluid. Let ψ?(x?, y?, t?)

be the velocity potential related to the velocity components u? and v? in the

x? and y? directions, respectively, by

u? =
∂ψ?

∂x?
, v? =

∂ψ?

∂y?
. (3.2)

Then the Laplace equation (2.11) reads

∂2ψ?

∂x?2
+
∂2ψ?

∂y?2
= 0. (3.3)

Figure 3.1: The geometry of the shallow water wave problem

The boundary conditions (2.12), (2.15) and (2.18) become

∂ψ?

∂y?
= 0 at y? = 0,

∂h?

∂t?
+
∂ψ?

∂x?
∂h?

∂x?
− ∂ψ?

∂y?
= 0 on y? = h?,
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∂ψ?

∂t?
+

1

2

[(
∂ψ?

∂x?

)2

+

(
∂ψ?

∂y?

)2
]

+ g(h? − h0) = 0 on y? = h?, (3.4)

where g is gravity acceleration of the earth. At this stage it is convenient to

introduce the following non-dimensional quantities

x? = h0x, y? = h0y, t? =

(
h0
g

)1/2

t,

h? = h0(1 + ζ), ψ? =
(
gh30
)1/2

ψ, (3.5)

where h0 is the still water level from the horizontal bottom. Introducing (3.5)

into (3.3)-(3.4), the following non-dimensional equations are obtained

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0, (3.6)

∂ψ

∂y
= 0 at y = 0,

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂x
− ∂ψ

∂y
= 0 at y = 1 + ζ,

∂ψ

∂t
+

1

2

[(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2
]

+ ζ = 0 at y = 1 + ζ. (3.7)

Here we seek a power series solution for ψ of the form

ψ =
∞∑
n=0

an(x, t)y2n. (3.8)

Introducing (3.8) into the Laplace equation (3.6) we obtain

a1 = − 1

2!

∂2a0
∂x2

, a2 =
1

4!

∂4a0
∂x4

, .... (3.9)

Denoting the value of ψ(x, y, t) at y = 0 by Ψ(x, t), the solution (3.8) can be

written as follows

ψ =
∞∑
n=0

(−1)n

(2n)!

∂2nΨ

∂x2n
y2n. (3.10)

The solution (3.10) also satisfies the boundary condition at y = 0. Using the
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other boundary conditions we obtain

∂ζ

∂t
+

∂

∂x

{
(1 + ζ)w +

∞∑
n=1

(−1)n
(1 + ζ)2n+1

(2n+ 1)!

∂2nw

∂x2n

}
= 0, (3.11)

∂w

∂t
+

∂

∂x

{
ζ +

w2

2
+
∞∑
n=1

(−1)n
(1 + ζ)2n

(2n)!

[
∂2nw

∂t∂x2n−1

+
1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mw

∂xm
∂2n−mw

∂x2n−m

]}
= 0, (3.12)

where w =
∂Ψ

∂x
and

(
2n

m

)
is the binomial coefficient.

3.3 PLK Method

As stated in the Introduction section, following Su and Mirie [6], we introduce

the following stretched coordinates

ε
1
2k(x− CRt) = ξ − εkθ(ξ, η), (3.13)

ε
1
2 l(x+ CLt) = η − εlφ(ξ, η), (3.14)

where ε is the smallness parameter representing the order of nonlinearity, k

and l are the dimensionless wave numbers of order unity for the right and left

going waves, respectively, and CR and CL, are the speeds of right and left going

waves, θ(ξ, η) and φ(ξ, η) are two unknown functions to be determined from

the solution. Then, the following differential operators can be introduced:

∂

∂t
+ CR

∂

∂x
=
ε
1
2

D
(CR + CL)

[
l
∂

∂η
+ εkl

(
∂θ

∂η

∂

∂ξ
− ∂θ

∂ξ

∂

∂η

)]
, (3.15)

∂

∂t
− CL

∂

∂x
= −ε

1
2

D
(CR + CL)

[
k
∂

∂ξ
+ εkl

(
∂φ

∂ξ

∂

∂η
− ∂φ

∂η

∂

∂ξ

)]
, (3.16)

where

D =

(
1− εk∂θ

∂ξ

)(
1− εl∂φ

∂η

)
− ε2kl ∂θ

∂η

∂φ

∂ξ
. (3.17)
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Introducing (3.15) and (3.16) into (3.11) and (3.12) we obtain[
∂

∂t
± CR,L

∂

∂x

]
[w ± ζ] +

∂

∂x
F± = 0, (3.18)

where F± is defined by

F± =± (1− CR,L)(w ± ζ) +
w2

2
± ζw +

∞∑
n=1

(−1)n
(1 + ζ)2n

(2n)!

×

[
∂2nw

∂t∂x2n−1
± (1 + ζ)

2n+ 1

∂2nw

∂x2n
+

1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mw

∂xm

×∂
2n−mw

∂x2n−m

]
. (3.19)

For our future purposes it is convenient to introduce the following change of

dependent variables

w + ζ = 2εα, w − ζ = −2εβ. (3.20)

Then, the equation (3.18) takes the following form

2ε(CR + CL)

[
l
∂α

∂η
+ εkl

(
∂θ

∂η

∂α

∂ξ
− ∂θ

∂ξ

∂α

∂η

)]
+

{
k
∂

∂ξ
+ l

∂

∂η
+ εkl

[
∂

∂η
(θ − φ)

∂

∂ξ
− ∂

∂ξ
(θ − φ)

∂

∂η

]}
F+ = 0. (3.21)

A similar expression is valid for β provided that (α, β), (ξ, η), (k, l), (θ, φ)

and (F+, F−) are replaced with each other. We shall assume that the field

quantities may be expanded into asymptotic series in ε as follows:

α(ξ, η) = α0 + εα1 + ε2α2 + ... ,

β(ξ, η) = β0 + εβ1 + ε2β2 + ... ,

θ(ξ, η) = εθ1 + ε2θ2 + ... ,

φ(ξ, η) = εφ1 + ε2φ2 + ... ,

CR = 1 + εaR1 + ε2a2R2 + ... ,

CL = 1 + εbL1 + ε2b2L2 + ... . (3.22)
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Here it is to be noted that the terms θ0 and φ0 in Su and Mirie’s [6] work are

set equal to zero. This means that in the present work the order of trajectory

functions is assumed to be of order ε2.

3.4 Solution of the field equations

Introducing (3.22) into (3.21) and setting the coefficients of like powers of ε

equal to zero the following sets of differential equations are obtained

O (ε) equations:

∂α0

∂η
= 0,

∂β0
∂ξ

= 0, (3.23)

the solution of which yields

α0 = af(ξ), β0 = bg(η), (3.24)

where f(ξ) and g(η) are two unknown functions to be determined from the

solution, and a and b are some constants characterizing the wave amplitudes.

O
(
ε2
)

equations:

4l
∂α1

∂η
+

1

3
k3α

′′′

0 +
2

3
l3β

′′′

0 − l(α0 + β0)β
′

0 + (3kα0 − kβ0

− 2akR1)α
′

0 = 0. (3.25)

Integrating equation (3.25) with respect to η and setting the secular terms

equal to zero we obtain

R1 =
1

2
, k2 = 3a, f

′′′
+ 3ff

′ − f ′
= 0, (3.26)
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and

α1 =
7

8
b2g2 +

ab

4
fg − b2

2
g + a2F1(ξ) +

abk

4l
f

′
M(η), (3.27)

where M(η) is defined by

M(η) =

η∫
g(η

′
)dη

′
. (3.28)

Similar expressions are valid for β1 by making proper changes between α1 ↔ β1,

f ↔ g, etc.. The result will be as follows

L1 =
1

2
, l2 = 3b, g

′′′
+ 3gg

′ − g′
= 0, (3.29)

and

β1 =
7

8
a2f 2 +

ab

4
fg − a2

2
f + b2G1(η) +

abl

4k
g

′
N(ξ), (3.30)

where N(ξ) is defined by

N(ξ) =

ξ∫
f(ξ

′
)dξ

′
. (3.31)

Here F1(ξ) and G1(η) are two unknown functions whose governing equations

are to be obtained from the higher order expansions, R1 and L1 are the speed

correction terms of order ε for the right and left going waves, respectively.

Su and Mirie [6] stated that the terms f ′(ξ)M(η) in equation (3.27) and

g′(η)N(ξ) in equation (3.30) do not cause any secularity at this order but they

will cause secularity in the next order equations. Therefore, these terms should

be eliminated by introducing the functions εθ0(η) and εφ0(ξ) in trajectory

functions (For further details, see Appendix A). But as will be shown in the

solution of the next order differential equations these terms do not cause any

secularity; therefore, εθ0(η) and εφ0(ξ) must vanish.
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O
(
ε3
)

equations:

From the master equation (3.11), for this order, the following equation is ob-

tained

4l
∂α2

∂η
+ ak

∂3

∂ξ3
(α1 − β1)− 3bk

∂3

∂ξ∂η2
(α1 − β1) + kα0

∂

∂ξ
(3α1 − β1)

− 2bl
∂3

∂η3
(α1 − β1)− l

∂

∂η
[β0(α1 + β1)]− kβ0

∂

∂ξ
(α1 + β1)− ak

∂α1

∂ξ

+ (bl + 3lα0)
∂α1

∂η
+ 3kα

′

0α1 − lα0
∂β1
∂η
− kα′

0β1 −
3

10
a2kα

(v)
0

− 9

20
b2lβ

(v)
0 +

(
3

4
a2k + 3akβ0

)
α

′′′

0 +

(
3

4
b2l + 6blα0 + 3blβ0

)
β

′′′

0

+ 3akα
′

0α
′′

0 +
(

3bkα
′

0 + 6blβ
′

0

)
β

′′

0 + 4kl
∂θ1
∂η

α
′

0 − 2a2kR2α
′

0 = 0. (3.32)

When the equation (3.32) is integrated with respect to η there might be two

types of secularities. The first type of secularity is of the form

η∫
M(η

′
)dη

′
and

the second type is proportional to η. Luckily, the coefficient of

η∫
M(η

′
)dη

′
in

equation (3.32) vanishes identically. This means, as opposed to the statement

by Su and Mirie [6], there is no secularity of the type

η∫
M(η

′
)dη

′
at this

order. Removing the secularity of other type, i.e., the coefficient of η gives the

following evolution equation for F1(ξ)

F
′′′

1 + 3(fF1)
′ − F ′

1 = (2R2 −
19

20
)f

′
+

9

4
ff

′
+

3

4
f 2f

′
. (3.33)

In order to obtain the localized progressive wave solution for the equation

(3.33), one can integrate (3.33) with respect to ξ and use the localization

condition, i.e., f and its various order derivatives vanish as ξ → ±∞. Then

we have

F
′′

1 + (3f − 1)F1 = (2R2 −
19

20
)f +

9

8
f 2 +

1

4
f 3. (3.34)

As described by Demiray [71, 72], F1 = f
′

is one of the solutions of the

homogeneous equation in (3.34). Therefore, the first term on the right-hand

side causes the secularity in the solution of F1 and the coefficient of f must
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vanish

R2 =
19

40
. (3.35)

We shall seek a solution for F1 of the form

F1 = a1 sech4

(
ξ

2

)
+ a2 sech2

(
ξ

2

)
, (3.36)

where a1 and a2 are constants to be determined from the solution of (3.34).

Taking the derivative of F1 twice, we obtain

F
′′

1 = −5a1 sech6

(
ξ

2

)
+ (4a1 −

3

2
a2) sech4

(
ξ

2

)
+ a2 sech2

(
ξ

2

)
. (3.37)

Inserting (3.36) and (3.37) into (3.34) and setting the coefficients of sech6

(
ξ

2

)
and sech4

(
ξ

2

)
equal to zero, one obtains

a1 = −1

8
, a2 = 1. (3.38)

Then the particular solution of the differential equation (3.34) reads

F1 = f − 1

8
f 2. (3.39)

Similarly, for the left going wave one obtains

L2 =
19

40
, G1 = g − 1

8
g2. (3.40)

Here R2 and L2 are the speed correction terms of order ε2 for the right and

left going waves. Introducing (3.39) and (3.40) into the expressions of α1 and

β1 we have

α1 =
1

8
(7b2g2 − a2f 2)− 1

2
(b2g − 2a2f) +

ab

4
fg +

abk

4l
f

′
M, (3.41)

β1 =
1

8
(7a2f 2 − b2g2)− 1

2
(a2f − 2b2g) +

ab

4
fg +

abl

4k
g

′
N. (3.42)
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Inserting (3.41) and (3.42) into the equation (3.32) the function α2 is found to

be

α2 =
3

16
a2bfg − 9

8
ab2fg + 2ab2fg2 +

1

32
a2bf 2g − 7

10
b3g +

43

32
b3g2

+
1

32
b3g3 +

3ab2k2

16l2
fg − 9ab2k2

32l2
f 2g +

abk

16l
[35af − 9a− b]

× f ′
M +

abl

16k

[
afg

′ − 2bg
′
+ 7bgg

′
+
ak

l
f

′
g

]
N +

7ab2k

16l
f

′

×
∫
g2dη

′
+
ab2k2

16l2

[
f − 3

2
f 2

] ∫
gMdη

′
+
ab2k

16l
f

′
∫
g

′
Mdη

′

− akf ′
θ1 + a3F2(ξ). (3.43)

A similar expression may be given for β2. Recalling the expression of g(η), i.e.,

g = sech2
(η

2

)
and M =

η∫
g(η

′
)dη

′
, the following relations may be obtained

∫
gMdη

′
= −2g,

∫
g

′
Mdη

′
=

2

3
M(g − 1),∫

g2dη
′
=

2

3
M(g + 2). (3.44)

The integration constants were neglected in the above relations. Since, as can

be seen from the equation (3.43), the terms including the integrals given in

(3.44) are all functions of the variable ξ except the integrals themselves. If

the relations (3.44) are substituted into (3.43) without neglecting the inte-

gration constants, then the products containing integration constants will be

the functions of ξ only, that is, they can be inserted into the function F2(ξ).

Substituting (3.44) into (3.43) and using the relations k2 = 3a and l2 = 3b we

have

α2 =
1

4
a2bfg − 9

8
ab2fg + 2ab2fg2 − 1

16
a2bf 2g − 7

10
b3g

+
43

32
b3g2 +

1

32
b3g3 +

abk

16l
[35af − 9a+ 3b+ 3bg] f

′
M

− akf ′
θ1 +

abl

16k

[
afg

′ − 2bg
′
+ 7bgg

′
+
ak

l
f

′
g

]
N + a3F2(ξ). (3.45)
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By making a proper substitution a similar expression may be given for β2 as

β2 =
1

4
ab2fg − 9

8
a2bfg + 2a2bf 2g − 1

16
ab2fg2 − 7

10
a3f

+
43

32
a3f 2 +

1

32
a3f 3 +

abl

16k
[35bg − 9b+ 3a+ 3af ] g

′
N

− blg′
φ1 +

abk

16l

[
bf

′
g − 2af

′
+ 7aff

′
+
bl

k
fg

′
]
M + b3G2(ξ). (3.46)

As can be seen from equations (3.45) and (3.46) the terms f ′M(η) and

g′N(ξ) appearing in the expressions of α1 and β1, respectively, do not cause

any secularity in the solution of α2 and β2. Therefore the statement by Su

and Mirie [6] is incorrect. However, as was stated before, some of the terms

appearing in the expressions of α2 and β2 (The equations (3.45) and (3.46) )

may cause additional secularity in the expressions of α3 and β3.

There appears to be two types of secularity in the solution of O(ε4) equa-

tion. As was seen before, the first type of secularity results from the terms

proportional to ξ and η which will be studied later. The second type of sec-

ularity occurs from the terms proportional

ξ∫
N(ξ

′
)dξ

′
and

η∫
M(η

′
)dη

′
as

ξ(η) → ±∞. Here we shall first consider only the parts of O(ε4) equations

leading to

η∫
M(η

′
, τ)dη

′
type of secularity. Similar expressions may be valid

for

ξ∫
N(ξ

′
, τ)dξ

′
type of secularity.

For this purpose we consider the following part of the O(ε4) equation (The

complete O(ε4) equation is given in Appendix B).

4l
∂α3

∂η
+ ak

∂3

∂ξ3
(α2 − β2)− ak

∂α2

∂ξ
+ k

∂

∂ξ
(α0[3α2 − β2])

+ 3akα
′

0

∂2

∂ξ2
(α1 − β1)−

3

10
a2k

∂5

∂ξ5
(α1 − β1) +

3

4
a2k

∂3

∂ξ3
(α1 − β1)

+ 3akα
′′

0

∂α1

∂ξ
− 19

20
a2k

∂α1

∂ξ
+ kα1

∂

∂ξ
(3α1 − β1)− kβ1

∂

∂ξ
(α1 + β1)

+ 3akα
′′′

0 β1 +
9

280
a3kα

(vii)
0 − 3

16
a3kα

(v)
0 −

3

4
a2kα0α

(v)
0
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− 9

4
a2kα

′

0α
(iv)
0 − 3akα2

0α
′′′

0 +
3

4
a2kα

′′

0α
′′′

0 +
57

80
a3kα

′′′

0 + 3ak
(
α

′

0

)3
+

3

2
a2k

∂

∂ξ
(α0α

′′

0)− 2R3a
3kα

′

0 = 0. (3.47)

A similar expression can be given for 4l
∂β3
∂ξ

. We split (3.47) into two parts

which contain the variables α2 and (α1, β1, β2), respectively. Then, we obtain

ak
∂3α2

∂ξ3
− ak∂α2

∂ξ
+ 3k

∂

∂ξ
(α0α2) =

35a3bk2

16l

(
63

4
f 4 − 21f 3 + 6f 2

)
, (3.48)

− 3

10
a2k

∂5α1

∂ξ5
+ 3ak

∂

∂ξ

(
α

′

0

∂α1

∂ξ

)
+

3

4
a2k

∂3α1

∂ξ3
− 19

20
a2k

∂α1

∂ξ

+ 3kα1
∂α1

∂ξ
− k ∂

∂ξ
(α1β1)− ak

∂3β2
∂ξ3

− k ∂
∂ξ

(α0β2)

=
a3bk2

16l

(
63

4
f 4 − 21f 3 + 6f 2

)
, (3.49)

where the identity (f
′
)2 = f 2−f 3 is used. As might be seen from the equations

(3.48) and (3.49), the integration of these equations with respect to η cause

secularity in the expression of α3. Similar type of secularity also occurs in the

expression of β3. In order to remove the secularities, the trajectory functions

θ1 and φ1 should be in the following form

θ1 =
9ab

4l
f

η∫
−∞

g(η
′
)dη

′
, φ1 =

9ab

4k
g

ξ∫
+∞

f(ξ
′
)dξ

′
. (3.50)

To remove the secularities of the type η, one can use the equation (3.47) to

obtain the evolution equation for F2(ξ). In order to remove the secularity, the

following equation must be satisfied

F
′′′

2 + (3fF2)
′ − (F2)

′
= S

′
(f), (3.51)

where S(f) is defined as follows

S(f) = (2R3 −
55

56
)f − 591

64
f 4 +

(
201

16
+

3

8a

)
f 3 −

(
393

160
+

3

8a

)
f 2. (3.52)
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Integrating (3.51) with respect to ξ and using localization condition, we obtain

F
′′

2 + (3f − 1)F2 =(2R3 −
55

56
)f − 591

64
f 4 +

(
201

16
+

3

8a

)
f 3

−
(

393

160
+

3

8a

)
f 2. (3.53)

Since the first term in the right-hand side of (3.53) causes the secularity in the

solution of F2, the coefficient of f must vanish

R3 =
55

112
. (3.54)

We shall propose a solution for F2 of the following form

F2 = b1 sech6

(
ξ

2

)
+ b2 sech4

(
ξ

2

)
+ b3 sech2

(
ξ

2

)
(3.55)

where bi are constants to be determined from the solution of (3.53). Carrying

out the derivative of F2 we obtain

F2 =− 21

2
b1 sech8

(
ξ

2

)
+ (9b1 − 5b2) sech6

(
ξ

2

)
+ (4b2 −

3

2
b3) sech4

(
ξ

2

)
+ b3 sech2

(
ξ

2

)
. (3.56)

Inserting (3.55) and (3.56) into (3.53) and setting the coefficients of sech8

(
ξ

2

)
,

sech6

(
ξ

2

)
and sech4

(
ξ

2

)
equal to zero, we have

b1 =
197

160
, b2 = −

(
217

160
+

3

16a

)
, b3 =

43

40
+

1

8a
. (3.57)

Then the particular solution of the differential equation (3.53) can be written

as

F2 =
197

160
f 3 −

(
217

160
+

3

16a

)
f 2 +

(
43

40
+

1

8a

)
f. (3.58)

Similarly, for other unknowns we have

L3 =
55

112
, G2 =

197

160
g3 −

(
217

160
+

3

16b

)
g2 +

(
43

40
+

1

8b

)
g. (3.59)
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Here R3 and L3 correspond to ε3 order speed correction terms of the right and

left going waves. Then, the final solution for α2 and β2 take the following form

α2 =
1

4
a2bfg − 9

8
ab2fg + 2ab2fg2 − 1

16
a2bf 2g +

1

32
b3g3 +

43

32
b3g2

− 7

10
b3g +

197

160
a3f 3 −

(
217

160
a3 +

3

16
a2
)
f 2 +

(
43

40
a3 +

1

8
a2
)

× f +
abk

16l
(−af − 9a+ 3b+ 3bg) f

′
M +

abl

16k

(
afg

′ − 2bg
′

+7bgg
′
+
ak

l
f

′
g

)
N, (3.60)

β2 =
1

4
ab2fg − 9

8
a2bfg + 2a2bf 2g − 1

16
ab2fg2 +

1

32
a3f 3 +

43

32
a3f 2

− 7

10
a3f +

197

160
b3g3 −

(
217

160
b3 +

3

16
b2
)
g2 +

(
43

40
b3 +

1

8
b2
)

× g +
abl

16k
(−bg − 9b+ 3a+ 3af) g

′
N +

abk

16l

(
bf

′
g − 2af

′

+7aff
′
+
bl

k
fg

′
)
M. (3.61)

Thus, for this order, the trajectories of the solitary waves become

ε
1
2k(x− CRt) = ξ − ε2kθ1 +O(ε3),

ε
1
2 l(x+ CLt) = η − ε2lφ1 +O(ε3). (3.62)

3.4.1 Phase Shifts

To obtain the phase shifts after the head-on collision of solitary waves charac-

terized by a and b are asymptotically far from each other at the initial time

(t = −∞), the solitary wave a is at ξ = 0, η = −∞, and the solitary wave b

is at η = 0, ξ = +∞, respectively. After the collision (t = +∞), the solitary

wave b is far to the right of solitary wave a, i.e., the solitary wave a is at ξ = 0,

η = +∞, and the solitary wave b is at η = 0, ξ = −∞. Using (3.50) and (3.62)
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one can obtain the corresponding phase shifts ∆a and ∆b as follows:

∆a = ε1/2k(x− CRt) |ξ=0,η=∞ −ε1/2k(x− CRt) |ξ=0,η=−∞

= −ε2kab
4l

9f(0)

+∞∫
−∞

g(η
′
)dη

′

= −ε29kab

4l

+∞∫
−∞

g(η
′
)dη

′
, (3.63)

∆b = ε1/2k(x+ CLt) |η=0,ξ=−∞ −ε1/2k(x+ CLt) |η=0,ξ=∞

= ε2
lab

4k
9g(0)

+∞∫
−∞

f(ξ
′
)dξ

′

= ε2
9lab

4k

+∞∫
−∞

f(ξ
′
)dξ

′
. (3.64)

Using the explicit expressions of f(ξ) and g(η) the phase shifts are obtained

as

∆a = −ε29kab

l
, ∆b = ε2

9lab

k
. (3.65)

Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.

3.5 Result and Conclusion

Starting with non-dimensional field equations (3.11) and (3.12), introducing

the stretched coordinates with trajectory functions of order ε2 and expanding

the field variables and trajectory functions into power series in ε, we obtained a

set of differential equations governing the various terms in perturbation expan-

sion. By solving these differential equations under the restriction of non-secular

solution we obtained evolution equations governing the colliding solitary waves

and trajectory functions. Remembering the change of variables (3.20), the sur-

face elevation parameter ζ and the axial velocity parameter w may be given
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as follows

ζ =ε

{
af + bg + ε

[
3

4

(
a2f 2 + b2g2

)
+

1

2

(
a2f + b2g

)
+

1

2
abfg

+
abk

4l
f

′
M +

abl

4k
g

′
N

]
+ ε2

[
101

80

(
a3f 3 + b3g3

)
− 1

80

(
a3f 2

+b3g2
)
− 3

16

(
a2f 2 + b2g2

)
+

3

8

(
a3f + b3g

)
+

1

8

(
a2f + b2g

)
+

31

16
ab
(
af 2g + bfg2

)
− 7

8
ab(a+ b)fg +

abk

16l

(
6aff

′ − (11a

−3b)f
′
+ 4bf

′
g +

bl

k
fg

′
)
M +

abl

16k

(
6bgg

′ − (11b− 3a)g
′

+4afg
′
+
ak

l
f

′
g

)
N

]
+ . . .

}
, (3.66)

w =ε

{
af − bg + ε

[ (
−a2f 2 + b2g2

)
+

3

2

(
a2f − b2g

)
+
abk

4l
f

′
M

−abl
4k
g

′
N

]
+ ε2

[
6

5

(
a3f 3 − b3g3

)
− 27

10

(
a3f 2 − b3g2

)
− 3

16

(
a2f 2 − b2g2

)
+

71

40

(
a3f − b3g

)
+

1

8

(
a2f − b2g

)
−33

16
ab
(
af 2g − bfg2

)
+

11

8
ab(a− b)fg +

abk

16l

(
− 8aff

′

−(7a− 3b)f
′
+ 2bf

′
g − bl

k
fg

′
)
M +

abl

16k

(
8bgg

′
+ (7b− 3a)g

′

−2afg
′
+
ak

l
f

′
g

)
N

]
+ . . .

}
. (3.67)

Using the conventional definition of phase shifts we obtained the explicit ex-

pressions of them. As opposed to the result of previous works on the same

subject in our case the phase shifts are found to be depend on amplitudes of

both waves. We further noticed that the order of phase shift is ε2 rather than

ε.
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Chapter 4

Head-on Collision Between Two Solitary

Waves in Shallow Water: The Use of the

Extended PLK Method

4.1 Introduction

In Chapter 3, we have studied head-on collision problem between two solitary

waves in shallow water through the use of strained coordinates of the form

ε
1
2k(x− CRt) = ξ − εkθ(ξ, η),

ε
1
2 l(x+ CLt) = η − εlφ(ξ, η),

and ended up with a set of ordinary differential equations as the evolution

equation whose solutions gives approximate progressive wave solutions to the

field equations. In practice, we are concerned with approximate solutions,

not necessarily of progressive type. In this case we need evolution equations

contain both space and time derivatives. For that purpose we shall introduce

a different set of stretched coordinates so called the extended PLK method

which is the combination of the classical reductive perturbation method and

the strained coordinates. We introduce the stretched coordinates as

ε1/2(x− t) =ξ + εp(τ) + ε2P (ξ, η, τ),

ε1/2(x+ t) =η + εq(τ) + ε2Q(ξ, η, τ),

ε3/2t =τ,
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where ε is the smallness parameter measuring the weakness of dispersion

and nonlinearity, p(τ) and q(τ) are two unknown functions characterizing the

higher order dispersive effects (Demiray [71, 72]), P (ξ, η, τ) and Q(ξ, η, τ) are

two unknown functions characterizing the phase shifts after collision. These

unknown functions are to be determined from the higher order perturbation

expansions so as to remove possible secularities that might occur in the solu-

tion.

Expanding the field variables and these unknown functions into power se-

ries of ε, introducing these expansion into the field equations and setting the

coefficients of various powers of ε equal to zero we obtained a set of partial

differential equations. By solving these differential equations and removing

possible secularities that might occur in the solution we obtained various or-

der evolution equations and restrictions that make it possible to determine

the unknown functions. Seeking a progressive wave solution to these evolution

equations we obtained the speed correction terms and the phase shifts. It is

observed that the result found here is exactly the same with one obtained in

the previous chapter. The variations of the wave profiles of right-going waves

before and after the collision are depicted on Figure 4.1. It is seen that the

wave profile before the collision is symmetric, whereas after the collision it is

unsymmetrical and tilts backward with respect to the direction of its propa-

gation.

4.2 Basic Equations

To study the head-on collision problem in shallow water theory, the equations

(3.11) and (3.12) can be rewritten as follows:

∂ζ̂

∂t
+

∂

∂x

{
(1 + ζ̂)ŵ +

∞∑
n=1

(−1)n
(1 + ζ̂)2n+1

(2n+ 1)!

∂2nŵ

∂x2n

}
= 0, (4.1)

∂ŵ

∂t
+

∂

∂x

{
ζ̂ +

ŵ2

2
+
∞∑
n=1

(−1)n
(1 + ζ̂)2n

(2n)!

[
∂2nŵ

∂t∂x2n−1

+
1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mŵ

∂xm
∂2n−mŵ

∂x2n−m

]}
= 0, (4.2)
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where ŵ =
∂Φ̂

∂x
and

(
2n

m

)
is the binomial coefficient. Here, the variables

defined in Chapter 3 are relabelled as ζ → ζ̂, ψ → φ̂ and Ψ→ Φ̂.

4.3 Extended PLK Method

For our future purposes, we introduce the following stretched coordinates

ε
1
2 (x− t) =ξ + εp(τ) + ε2P (ξ, η, τ),

ε
1
2 (x+ t) =η + εq(τ) + ε2Q(ξ, η, τ),

ε3
/2t =τ, (4.3)

where ε is the smallness parameter measuring the weakness of dispersion

and nonlinearity, p(τ) and q(τ) are two unknown functions characterizing the

higher order dispersive effects, P (ξ, η, τ) and Q(ξ, η, τ) are two unknown func-

tions characterizing the phase shifts after collision. Then, the following differ-

ential relations hold true

∂

∂x
=
ε
1
2

D

{[
1 + ε2

(
∂Q

∂η
− ∂P

∂η

)]
∂

∂ξ
+

[
1 + ε2

(
∂P

∂ξ
− ∂Q

∂ξ

)]
∂

∂η

}
,

∂

∂t
=ε1/2

{
ε
∂

∂τ
− 1

D

[
1 + ε2

(
dp

dτ
+
∂P

∂η
+
∂Q

∂η

)
+ ε3

∂P

∂τ
+

ε4
(
dp

dτ

∂Q

∂η
− dq

dτ

∂P

∂η

)
+ ε5

(
∂P

∂τ

∂Q

∂η
− ∂Q

∂τ

∂P

∂η

)]
∂

∂ξ

+
1

D

[
1 + ε2

(
−dq
dτ

+
∂P

∂ξ
+
∂Q

∂ξ

)
− ε3∂Q

∂τ
+ ε4

(
dp

dτ

∂Q

∂ξ

−dq
dτ

∂P

∂ξ

)
+ ε5

(
∂P

∂τ

∂Q

∂ξ
− ∂Q

∂τ

∂P

∂ξ

)]
∂

∂η

}
(4.4)

where D is defined by

D =

(
1 + ε2

∂P

∂ξ

)(
1 + ε2

∂Q

∂η

)
− ε4∂P

∂η

∂Q

∂ξ
. (4.5)

We assume that the field quantities ŵ, ζ̂, p(τ), q(τ), P (ξ, η, τ) and Q(ξ, η, τ)
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can be expanded into asymptotic series in ε as

ŵ = ε
[
w0 + εw1 + ε2w2 + ε3w3 + ε4w4 + ...

]
,

ζ̂ = ε
[
ζ0 + εζ1 + ε2ζ2 + ε3ζ3 + ε4ζ4 + ...

]
,

p(τ) = p0(τ) + εp1(τ) + ε2p2(τ) + ε3p3(τ) + ... ,

q(τ) = q0(τ) + εq1(τ) + ε2q2(τ) + ε3q3(τ) + ... ,

P (ξ, η, τ) = P0(ξ, η, τ) + εP1(ξ, η, τ) + ... ,

Q(ξ, η, τ) = Q0(ξ, η, τ) + εQ1(ξ, η, τ) + ... . (4.6)

Inserting (4.4) and (4.6) into equations (4.1) and (4.2) and setting the coeffi-

cients of like powers of ε equal to zero the following equations are obtained

O (ε) equations:

∂ζ0
∂η
− ∂ζ0

∂ξ
+
∂w0

∂η
+
∂w0

∂ξ
= 0,

∂ζ0
∂η

+
∂ζ0
∂ξ

+
∂w0

∂η
− ∂w0

∂ξ
= 0, (4.7)

O
(
ε2
)

equations:

∂ζ1
∂η
− ∂ζ1

∂ξ
+
∂w1

∂η
+
∂w1

∂ξ
+
∂ζ0
∂τ

+
∂

∂η
(ζ0w0) +

∂

∂ξ
(ζ0w0)

− 1

6

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
= 0,

∂ζ1
∂η

+
∂ζ1
∂ξ

+
∂w1

∂η
− ∂w1

∂ξ
+
∂w0

∂τ
+

1

2

∂

∂η
(w2

0) +
1

2

∂

∂ξ
(w2

0)

+
1

2

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2
− ∂3w0

∂η3

)
= 0, (4.8)
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O
(
ε3
)

equations:

∂ζ2
∂η
− ∂ζ2

∂ξ
+
∂w2

∂η
+
∂w2

∂ξ
+
∂ζ1
∂τ

+
∂

∂η
(ζ1w0) +

∂

∂ξ
(ζ1w0) +

∂

∂η
(ζ0w1)

+
∂

∂ξ
(ζ0w1)−

1

6

(
∂3w1

∂ξ3
+ 3

∂3w1

∂ξ2∂η
+ 3

∂3w1

∂ξ∂η2
+
∂3w1

∂η3

)
− dq0
dτ

∂ζ0
∂η

− dp0
dτ

∂ζ0
∂ξ

+
1

120

(
∂5w0

∂ξ5
+ 5

∂5w0

∂ξ4∂η
+ 10

∂5w0

∂ξ3∂η2
+ 10

∂5w0

∂ξ2∂η3

+5
∂5w0

∂ξ∂η4
+
∂5w0

∂η5

)
− ζ0

2

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
−
(

6
∂P0

∂ξ
+ 7

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(ζ0 − w0) +

∂Q0

∂ξ

∂

∂η
(ζ0 − w0)

− ∂P0

∂η

∂

∂ξ
(ζ0 + w0) +

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ0 + w0)

− 1

2

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
= 0,

∂ζ2
∂η

+
∂ζ2
∂ξ

+
∂w2

∂η
− ∂w2

∂ξ
+
∂w1

∂τ
+

∂

∂η
(w0w1) +

∂

∂ξ
(w0w1)

− dq0
dτ

∂w0

∂η
− dp0

dτ

∂w0

∂ξ
+

1

2

(
∂3w1

∂ξ3
+

∂3w1

∂ξ2∂η
− ∂3w1

∂ξ∂η2
− ∂3w1

∂η3

)
− 1

24

(
∂5w0

∂ξ5
+ 3

∂5w0

∂ξ4∂η
+ 2

∂5w0

∂ξ3∂η2
− 2

∂5w0

∂ξ2∂η3
− 3

∂5w0

∂ξ∂η4

−∂
5w0

∂η5

)
+

1

2

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂w0

∂η
+
∂w0

∂ξ

)
− w0

2

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
+ ζ0

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2
− ∂3w0

∂η3

)
− 1

2

∂

∂τ

[
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

]
− ∂Q0

∂ξ

∂

∂η
(ζ0 − w0)

− ∂P0

∂η

∂

∂ξ
(ζ0 + w0) +

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ0 + w0)

+

(
6
∂P0

∂ξ
+ 7

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(ζ0 − w0)

45



+

(
∂2w0

∂ξ2
− ∂2w0

∂η2

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
= 0. (4.9)

To save the space of the main body of the text, O
(
ε4
)

equations are given in

Appendix C.

4.4 Solution of the field equations

From the solution of the set (4.7) we have

ζ0 = f(ξ, τ) + g(η, τ),

w0 = f(ξ, τ)− g(η, τ), (4.10)

where f(ξ, τ) and g(η, τ) are two unknown functions whose governing equations

will be obtained later.

The solution of (4.8) yields

2
∂

∂η
(ζ1 + w1) + 2

∂f

∂τ
+ 3f

∂f

∂ξ
+

1

3

∂3f

∂ξ3
− g∂g

∂η
+

2

3

∂3g

∂η3

− f ∂g
∂η
− ∂f

∂ξ
g = 0, (4.11)

2
∂

∂ξ
(ζ1 − w1)− 2

∂g

∂τ
+ 3g

∂g

∂η
+

1

3

∂3g

∂η3
− f ∂f

∂ξ
+

2

3

∂3f

∂ξ3

− g∂f
∂ξ
− ∂g

∂η
f = 0. (4.12)

Integrating (4.11) with respect to η and (4.12) with respect to ξ we obtain

2(ζ1 + w1) + η

[
2
∂f

∂τ
+ 3f

∂f

∂ξ
+

1

3

∂3f

∂ξ3

]
− g2

2
+

2

3

∂2g

∂η2

− fg −M(η, τ)
∂f

∂ξ
= 4F1(ξ, τ), (4.13)

2(ζ1 − w1)− ξ
[
2
∂g

∂τ
− 3g

∂g

∂η
− 1

3

∂3g

∂η3

]
− f 2

2
+

2

3

∂2f

∂ξ2

− fg −N(ξ, τ)
∂g

∂η
= 4G1(η, τ), (4.14)
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where F1(ξ, τ) and G1(η, τ) are new unknown functions, M(η, τ) and N(ξ, τ)

are defined by

M(η, τ) =

η∫
g(η

′
, τ)dη

′
, N(ξ, τ) =

ξ∫
f(ξ

′
, τ)dξ

′
. (4.15)

At first glance, it is seen that the terms proportional to ξ and η cause secularity.

In order to remove the secularities we must have

∂f

∂τ
+

3

2
f
∂f

∂ξ
+

1

6

∂3f

∂ξ3
= 0, (4.16)

∂g

∂τ
− 3

2
g
∂g

∂η
− 1

6

∂3g

∂η3
= 0. (4.17)

These are Korteweg-de Vries equations. The solution of equations (4.13) and

(4.14) for ζ1 and w1 gives

ζ1 =F1(ξ, τ) +G1(η, τ) +
1

4
M(η, τ)

∂f

∂ξ
+

1

4
N(ξ, τ)

∂g

∂η

+
1

8

(
f 2 + g2

)
+

1

2
fg − 1

6

(
∂2f

∂ξ2
+
∂2g

∂η2

)
, (4.18)

w1 =F1(ξ, τ)−G1(η, τ) +
1

4
M(η, τ)

∂f

∂ξ
− 1

4
N(ξ, τ)

∂g

∂η

− 1

8

(
f 2 − g2

)
+

1

6

(
∂2f

∂ξ2
− ∂2g

∂η2

)
. (4.19)

Su and Mirie [6] stated that, although the terms M(η, τ)
∂f

∂ξ
and N(ξ, τ)

∂g

∂η
in (4.18) and (4.19) do not cause any secularity at this order but they will cause

secularity in the next order perturbation expansion. However, in what follows

it will be shown that it is not the case.

In order to obtain the localized progressive wave solution for the KdV

equations (4.16) and (4.17), we shall seek a solution to these equations in the

following form

f = f(ζ+), ζ+ = α1 (ξ − α2τ) , (4.20)

g = g(ζ−) , ζ− = β1 (η + β2τ) , (4.21)

where αi and βi are constants to be determined from the solutions. Introducing
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the expression f(ζ+) and g(ζ−) into equations (4.16) and (4.17) we obtain

−α2f
′
+

3

2
ff

′
+

1

6
α2
1f

′′′
=0, (4.22)

β2g
′ − 3

2
gg

′ − 1

6
β2
1g

′′′
=0, (4.23)

where a prime denotes the differentiation of the corresponding quantity with

respect to its argument. Since we are concerned with the localized pro-

gressive wave solution, i.e., f(g) and its various order derivatives vanish as

ζ+(ζ−)→ ±∞. Integrating equations (4.22) and (4.23) with respect to ζ+ and

ζ−, respectively, and using the localization condition we obtain

−α2f +
3

4
f 2 +

1

6
α2
1f

′′
= 0, (4.24)

β2g −
3

4
g2 − 1

6
β2
1g

′′
= 0. (4.25)

Here it is known that the equations (4.24) and (4.25) admit the progressive

wave solution of the forms

f = A sech2 ζ+ , (4.26)

g = B sech2 ζ− , (4.27)

where A andB are the amplitudes of the solitary waves and the other quantities

are defined by

α1 =

(
3A

4

)1/2

, α2 =
A

2
,

β1 =

(
3B

4

)1/2

, β2 =
B

2
. (4.28)

Substituting (4.10), (4.18) and (4.19) into the set of equations (4.9), we obtain

2
∂

∂η
(ζ2 + w2) + 2

∂F1

∂τ
+ 3

∂

∂ξ
(fF1) +

1

3

∂3F1

∂ξ3
− 3

8
f 2∂f

∂ξ
+

1

12
f
∂3f

∂ξ3

+
11

12

∂f

∂ξ

∂2f

∂ξ2
− 2

dp0
dτ

∂f

∂ξ
+

1

45

∂5f

∂ξ5
− 1

2

∂3f

∂τ∂ξ2
− f ∂G1

∂η
− ∂f

∂ξ
G1

− ∂

∂η
(gG1) +

2

3

∂3G1

∂η3
− F1

∂g

∂η
− g∂F1

∂ξ
− 1

4

∂2f

∂ξ2
gM − 1

4

∂f

∂ξ

∂g

∂η
M
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+

(
1

6

∂4g

∂η4
− 1

4

∂

∂η

(
g
∂g

∂η

)
− 1

4
f
∂2g

∂η2
− 1

4

∂f

∂ξ

∂g

∂η

)
N +

1

4
fg
∂g

∂η

+

(
1

8
f 2 − 1

6

∂2f

∂ξ2

)
∂g

∂η
+

11

6
f
∂3g

∂η3
+

(
3

4
f
∂f

∂ξ
+

13

12

∂3f

∂ξ3

)
g

+
5

12

∂f

∂ξ

∂2g

∂η2
+

3

8
g2
∂g

∂η
− 4

∂P0

∂η

∂f

∂ξ
+

29

12

∂g

∂η

∂2g

∂η2
+

4

3
g
∂3g

∂η3

+
4

45

∂5g

∂η5
= 0, (4.29)

2
∂

∂ξ
(ζ2 − w2)− 2

∂G1

∂τ
+ 3

∂

∂η
(gG1) +

1

3

∂3G1

∂η3
− 3

8
g2
∂g

∂η
+

1

12
g
∂3g

∂η3

+
11

12

∂g

∂η

∂2g

∂η2
+ 2

dq0
dτ

∂g

∂η
+

1

45

∂5g

∂η5
+

1

2

∂3g

∂τ∂η2
− g∂F1

∂ξ
− F1

∂g

∂η

− ∂

∂ξ
(fF1) +

2

3

∂3F1

∂ξ3
− ∂f

∂ξ
G1 − f

∂G1

∂η
− 1

4

∂g

∂η
fN − 1

4

∂g

∂η

∂f

∂ξ
N

+

(
1

6

∂4f

∂ξ4
− 1

4

∂

∂ξ

(
f
∂f

∂ξ

)
− 1

4
g
∂2f

∂ξ2
− 1

4

∂f

∂ξ

∂g

∂η

)
M +

1

4
gf
∂f

∂ξ

+

(
1

8
g2 − 1

6

∂2g

∂η2

)
∂f

∂ξ
+

11

6
g
∂3f

∂ξ3
+

(
3

4
g
∂g

∂η
+

13

12

∂3g

∂η3

)
f

+
5

12

∂g

∂η

∂2f

∂ξ2
+

3

8
f 2∂f

∂ξ
− 4

∂Q0

∂ξ

∂g

∂η
+

29

12

∂f

∂ξ

∂2f

∂ξ2
+

4

3
f
∂3f

∂ξ3

+
4

45

∂5f

∂ξ5
= 0. (4.30)

Integrating (4.29) with respect to η and (4.30) with respect to ξ we obtain

2(ζ2 + w2) + η

(
2
∂F1

∂τ
+ 3

∂

∂ξ
(fF1) +

1

3

∂3F1

∂ξ3
− 3

8
f 2∂f

∂ξ
+

1

12
f
∂3f

∂ξ3

+
11

12

∂f

∂ξ

∂2f

∂ξ2
− 2

dp0
dτ

∂f

∂ξ
+

1

45

∂5f

∂ξ5
− 1

2

∂3f

∂τ∂ξ2

)
− (f + g)G1 − gF1

− ∂f

∂ξ

η∫
G1dη

′
+

2

3

∂2G1

∂η2
+

(
3

4
f
∂f

∂ξ
+

13

12

∂3f

∂ξ3
− ∂F1

∂ξ

)
M(η, τ)

+

(
1

6

∂3g

∂η3
− 1

4
f
∂g

∂η
− 1

4
g
∂f

∂ξ
− 1

4
g
∂g

∂η

)
N(ξ, τ)− 1

4

∂2f

∂ξ2

η∫
gMdη

′

− 1

4

∂f

∂ξ

η∫ (
∂g

∂η
M

)
dη

′
+

1

8
fg2 +

1

8
f 2g − 1

6

∂2f

∂ξ2
g +

5

12

∂f

∂ξ

∂g

∂η
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+
1

8
g3 +

11

6
f
∂2g

∂η2
+

4

3
g
∂2g

∂η2
+

13

24

(
∂g

∂η

)2

+
4

45

∂4g

∂η4

− 4P0
∂f

∂ξ
= 4F2(ξ, τ), (4.31)

2(ζ2 − w2) + ξ

(
−2

∂G1

∂τ
+ 3

∂

∂η
(gG1) +

1

3

∂3G1

∂η3
− 3

8
g2
∂g

∂η
+

1

12
g
∂3g

∂η3

+
11

12

∂g

∂η

∂2g

∂η2
+ 2

dq0
dτ

∂g

∂η
+

1

45

∂5g

∂η5
+

1

2

∂3g

∂τ∂η2

)
− (f + g)F1 − fG1

− ∂g

∂η

ξ∫
F1dξ

′
+

2

3

∂2F1

∂ξ2
+

(
3

4
g
∂g

∂η
+

13

12

∂3g

∂η3
− ∂G1

∂η

)
N(ξ, τ)

+

(
1

6

∂3f

∂ξ3
− 1

4
g
∂f

∂ξ
− 1

4
f
∂g

∂η
− 1

4
f
∂f

∂ξ

)
M(η, τ)− 1

4

∂2g

∂η2

ξ∫
fNdξ

′

− 1

4

∂g

∂η

ξ∫ (
∂f

∂ξ
N

)
dξ

′
+

1

8
fg2 +

1

8
f 2g +

11

6

∂2f

∂ξ2
g +

5

12

∂f

∂ξ

∂g

∂η

+
1

8
f 3 − 1

6
f
∂2g

∂η2
+

4

3
f
∂2f

∂ξ2
+

13

24

(
∂f

∂ξ

)2

+
4

45

∂4f

∂ξ4

− 4Q0
∂g

∂η
= 4G2(η, τ), (4.32)

where F2(ξ, τ) and G2(η, τ) are two unknown functions whose evolution equa-

tions will be obtained from next order equations. Again the terms proportional

to ξ and η in these equations cause the secularity in the solution. In order to

remove the secularity, the coefficient of η in (4.31) and the coefficient of ξ in

(4.32) must vanish, that is

∂F1

∂τ
+

3

2

∂

∂ξ
(fF1) +

1

6

∂3F1

∂ξ3
=

3

16
f 2∂f

∂ξ
− 1

24
f
∂3f

∂ξ3
− 11

24

∂f

∂ξ

∂2f

∂ξ2

+
dp0
dτ

∂f

∂ξ
− 1

90

∂5f

∂ξ5
+

1

4

∂3f

∂τ∂ξ2
, (4.33)

∂G1

∂τ
− 3

2

∂

∂η
(gG1)−

1

6

∂3G1

∂η3
=− 3

16
g2
∂g

∂η
+

1

24
g
∂3g

∂η3
+

11

24

∂g

∂η

∂2g

∂η2

+
dq0
dτ

∂g

∂η
+

1

90

∂5g

∂η5
+

1

4

∂3g

∂τ∂η2
. (4.34)
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Noting the identities

∂2f

∂ξ2
= 3Af − 9

2
f 2,

(
∂f

∂ξ

)2

= 3Af 2 − 3f 3,

∂4f

∂ξ4
=

135

2
f 3 − 135

2
Af 2 + 9A2f,

∂6f

∂ξ6
=
−8505

4
f 4 + 2835Af 3 − 1701

2
A2f 2 + 27A3f, (4.35)

and keeping in mind that the similar identities for the derivatives of the func-

tion g, the equations (4.33) and (4.34) can be written as (Demiray [72])

∂F1

∂τ
+

3

2

∂

∂ξ
(fF1) +

1

6

∂3F1

∂ξ3
=
∂S1(f)

∂ξ
, (4.36)

∂G1

∂τ
− 3

2

∂

∂η
(gG1)−

1

6

∂3G1

∂η3
=
∂T1(f)

∂ξ
, (4.37)

where S1(f) and T1(f) are defined as follows

S1(f) =

(
dp0
dτ
− 19A2

40

)
f +

9

16
Af 2 +

1

8
f 3, (4.38)

T1(f) =

(
dq0
dτ

+
19B2

40

)
g − 9

16
Bg2 − 1

8
g3. (4.39)

As is seen from the equations (4.31) and (4.32) the other terms in the expression

of ζ2 and w2 do not cause any secularity for this order, but it might be possible

to have secularities in the next order. Seeking a progressive wave solution for

the equations (4.36)-(4.39) of the form F1 = F1(ζ+), G1 = G1(ζ−), the following

equations are obtained

A

8
F

′′′

1 +
3

2
(fF1)

′ − A

2
F

′

1 = S
′

1(f), (4.40)

−B
8
G

′′′

1 −
3

2
(gG1)

′
+
B

2
G

′

1 = T
′

1(f). (4.41)

Integrating these equations with respect to ζ+ and ζ−, respectively, and using

the localization condition, we obtain

A

8
F

′′

1 +
1

2
(3f − A)F1 =

(
dp0
dτ
− 19A2

40

)
f +

9

16
Af 2 +

1

8
f 3, (4.42)
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−B
8
G

′′

1 +
1

2
(B − 3g)G1 =

(
dq0
dτ

+
19B2

40

)
g − 9

16
Bg2 − 1

8
g3. (4.43)

The first terms in the right-hand side cause the secularity (see Demiray [71,

72]); therefore the coefficients of f and g must vanish, which yields

p0 =
19

40
A2τ, q0 = −19

40
B2τ. (4.44)

We shall propose a solution for F1 and G1 of the following form

F1 = a1 sech4 ζ+ + a2 sech2 ζ+, (4.45)

G1 = b1 sech4 ζ− + b2 sech2 ζ−, (4.46)

where ai and bi are constants to be determined from the solutions of (4.42)

and (4.43), respectively. Carrying out the derivative of F1 and G1 we have

F
′′

1 = −20a1 sech6 ζ+ + (16a1 − 6a2) sech4 ζ+ + 4a2 sech2 ζ+, (4.47)

G
′′

1 = −20b1 sech6 ζ− + (16b1 − 6b2) sech4 ζ− + 4b2 sech2 ζ−. (4.48)

Inserting (4.45) and (4.47) into (4.42) and inserting (4.46) and (4.48) into

(4.43) and setting the coefficients of sech6 ζ+ and sech4 ζ+ equal to zero, one

has

a1 = −A
2

8
, a2 = A2, (4.49)

b1 = −B
2

8
, b2 = B2. (4.50)

Then the particular solution of the differential equations (4.42) and (4.43) may

be given by

F1 = Af − 1

8
f 2, G1 = Bg − 1

8
g2. (4.51)

By using the above results one can obtain the following identities for the terms

involving the functions g, G1 and M∫
g2dη

′
=
M

3
(g + 2B) ,

∫
G1dη

′
=
M

24
(22B − g),

∫
gMdη

′
= −2

3
g,

∫ (
∂g

∂η
M

)
dη

′
=

2M

3
(g −B). (4.52)
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Similar expressions are valid for the terms involving f , F1 and N . Then the

equations (4.31) and (4.32) may be written in the following form

ζ2 + w2 =
1

16
g3 +

43

16
Bg2 − 7

5
B2g +

(
A

2
− 9B

4

)
fg + 4fg2 − 1

8
f 2g

− 5

24

∂f

∂ξ

∂g

∂η
+

[
−B

4

∂g

∂η
+

7

8
g
∂g

∂η
+

1

8
f
∂g

∂η
+

1

8

∂f

∂ξ
g

]
N[(

−9A

8
+

3B

8

)
∂f

∂ξ
+

35

8
f
∂f

∂ξ
+

1

16

∂f

∂ξ
g

]
M + 2P0

∂f

∂ξ

+ 2F2(ξ, τ), (4.53)

ζ2 − w2 =
1

16
f 3 +

43

16
Af 2 − 7

5
A2f +

(
B

2
− 9A

4

)
fg + 4f 2g − 1

8
fg2

− 5

24

∂f

∂ξ

∂g

∂η
+

[
−A

4

∂f

∂ξ
+

7

8
f
∂f

∂ξ
+

1

8
g
∂f

∂ξ
+

1

8
f
∂g

∂η

]
M[(

−9B

8
+

3A

8

)
∂g

∂η
+

35

8
g
∂g

∂η
+

1

16
f
∂g

∂η

]
N + 2Q0

∂g

∂η

+ 2G2(η, τ). (4.54)

In obtaining the equations (4.53) and (4.54) we have utilized the identities

(4.35) and the similar identities that are valid for the function g.

As might be seen from equations (4.53) and (4.54) the terms appearing in

the expressions of ζ1 and w1 do not cause any secularity in the solution of ζ2 and

w2. Therefore the statement by Su and Mirie [6] is incorrect. However as we

stated before, some of the terms appearing in the expressions of ζ2 and w2 (the

equations (4.53) and (4.54) ) may cause additional secularity in the expressions

of ζ3 and w3. There appears to be two types of secularity in the solution of

O(ε4) equation. As was seen before, the first type of secularity results from

the terms proportional to ξ and η which will be studied later. The second type

secularity occurs from the terms proportional

ξ∫
N(ξ

′
, τ)dξ

′
and

η∫
M(η

′
, τ)dη

′

as ξ(η)→ ±∞. Here we shall first only consider the parts of O(ε4) equations

leading to

η∫
M(η

′
, τ)dη

′
type of secularity. Similar expressions may be valid

for

ξ∫
N(ξ

′
, τ)dξ

′
type of secularity.
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For this purpose we consider the following part of the O(ε4) equation

2
∂

∂η
(ζ3 + w3) +

∂

∂τ
(ζ2 + w2) +

3

4

∂

∂ξ
[(ζ0 + w0) (ζ2 + w2)]

+
1

6

∂3

∂ξ3
(ζ2 + w2)−

dp0
dτ

∂

∂ξ
(ζ1 + w1) +

1

2

∂2w0

∂ξ2
∂

∂ξ
(ζ1 + w1)

+
1

2

∂

∂ξ
(ζ0 + w0)

∂2w1

∂ξ2
− 1

30

∂5w1

∂ξ5
− 1

2

∂3w1

∂τ∂ξ2
+ w1

∂

∂ξ
(ζ1 + w1)

+ ζ1
∂w1

∂ξ
− 1

2

∂

∂ξ
[ζ0 (ζ2 − w2)]−

1

6

∂3

∂ξ3
(ζ2 − w2) = 0. (4.55)

A similar expression may be given for 2
∂

∂ξ
(ζ3 − w3) equation. We split (4.55)

into two parts which contain the variables ζ2 + w2 and (ζ1, w1, ζ2 − w2),

respectively. Then, we obtain:

∂

∂τ
(ζ2 + w2) +

3

4

∂

∂ξ
[(ζ0 + w0) (ζ2 + w2)] +

1

6

∂3

∂ξ3
(ζ2 + w2) =

35

16

[
189

4
f 4 − 63Af 3 + 18A2f 2

]
M, (4.56)

1

2

∂2w0

∂ξ2
∂

∂ξ
(ζ1 + w1)−

dp0
dτ

∂

∂ξ
(ζ1 + w1) +

1

2

∂

∂ξ
(ζ0 + w0)

∂2w1

∂ξ2

− 1

30

∂5w1

∂ξ5
− 1

2

∂3w1

∂τ∂ξ2
+ w1

∂

∂ξ
(ζ1 + w1) + ζ1

∂w1

∂ξ

− 1

2

∂

∂ξ
[ζ0 (ζ2 − w2)]−

1

6

∂3

∂ξ3
(ζ2 − w2) =

1

16

[
189

4
f 4 − 63Af 3 + 18A2f 2

]
M, (4.57)

where we have used the identities given by (4.35) and (4.52). As is seen

from the equations (4.56) and (4.57), the terms proportional to M(η, τ) do

not vanish and they cause the secularity of the type

η∫
M(η

′
, τ)dη

′
in the

expression of ζ3 and w3. Similar expression may be given for

ξ∫
N(ξ

′
, τ)dξ

′

type of secularities.
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By direct substitution in the expressions of ζ2 + w2 and ζ2 − w2

P0 = −9

4
f(ξ, τ)M(η, τ), Q0 = −9

4
g(η, τ)N(ξ, τ), (4.58)

these secularities may be removed. These expressions make it possible to

determine phase shift functions.

To obtain the secularities of type η (or ξ) we use the following part of the

O(ε4) equation to obtain the governing equation for F2(ξ, τ)

2
∂

∂η
(ζ3 + w3) +

∂

∂τ
(ζ2 + w2) + w0

∂

∂ξ
(ζ2 + w2) +

∂w0

∂ξ
(ζ2 + w2)

+
∂

∂ξ
(ζ0w2) +

1

3

∂3w2

∂ξ3
− dp0

dτ

∂

∂ξ
(ζ1 + w1) +

1

2

∂

∂ξ

[
∂2w0

∂ξ2
ζ1

]
+

∂

∂ξ
(ζ1w1) +

1

2

∂

∂ξ

[
∂w0

∂ξ

∂w1

∂ξ

]
− 1

30

∂5w1

∂ξ5
+

1

2

∂

∂ξ

[
ζ0
∂2w1

∂ξ2

]
− 1

2

∂3w1

∂ξ2∂τ
− 1

2
w0
∂3w1

∂ξ3
− 1

2

∂3w0

∂ξ3
w1 + w1

∂w1

∂ξ
− dp1

dτ

∂

∂ξ
(ζ0 + w0)

+

(
∂w0

∂ξ

)2
∂ζ0
∂ξ
− 1

8

∂4w0

∂ξ4
∂ζ0
∂ξ
− ∂2w0

∂ξ∂τ

∂ζ0
∂ξ
− w0

∂2w0

∂ξ2
∂ζ0
∂ξ

+
∂w0

∂ξ

∂2w0

∂ξ2
ζ0 −

1

8

∂5w0

∂ξ5
ζ0 −

∂3w0

∂ξ2∂τ
ζ0 − w0

∂3w0

∂ξ3
ζ0 +

1

2

dp0
dτ

∂3w0

∂ξ3

+
1

12

∂2w0

∂ξ2
∂3w0

∂ξ3
− 1

8

∂w0

∂ξ

∂4w0

∂ξ4
+

1

840

∂7w0

∂ξ7
+

1

24

∂5w0

∂ξ4∂τ

+
1

24
w0
∂5w0

∂ξ5
= 0. (4.59)

We substitute the field variables into (4.59) then the terms proportional to η in

this equation cause the secularity. In order to remove secularity, the coefficient

of η in (4.59) must vanish, that is

∂F2

∂τ
+

3

2

∂

∂ξ
(fF2) +

1

6

∂3F2

∂ξ3
= R(ξ, τ) (4.60)

where R(ξ, τ) is defined as follows

R(ξ, τ) =
1

4

∂3F1

∂τ∂ξ2
− 1

90

∂5F1

∂ξ5
− 1

24

∂

∂ξ

(
f
∂2F1

∂ξ2

)
− 1

24

∂

∂ξ

(
∂2f

∂ξ2
F1

)
− 5

12

∂

∂ξ

(
∂f

∂ξ

∂F1

∂ξ

)
+

3

16

∂

∂ξ
(fF1)−

3

2
F1
∂F1

∂ξ
+
dp0
dτ

∂F1

∂ξ
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+
1

48

∂5f

∂τ∂ξ4
+

7

16
f
∂3f

∂τ∂ξ2
+

3

8

∂f

∂ξ

∂2f

∂τ∂ξ
− 1

16

∂f

∂τ

∂2f

∂ξ2

− 23

15120

∂7f

∂ξ7
− 7

240
f
∂5f

∂ξ5
− 97

480

∂f

∂ξ

∂4f

∂ξ4
− 11

32

∂2f

∂ξ2
∂3f

∂ξ3

− 1

4

dp0
dτ

∂3f

∂ξ3
− B

8

∂f

∂ξ

∂2f

∂ξ2
+

47

192
f 2∂

3f

∂ξ3
− 11

24
f
∂f

∂ξ

∂2f

∂ξ2

− 91

192

(
∂f

∂ξ

)3

+
dp1
dτ

∂f

∂ξ
− 3

4
f 3∂f

∂ξ
. (4.61)

Seeking a progressive wave solution for the equation (4.60) of the form F2 =

F2(ζ+) and introducing the identities (4.35) into (4.61), the following equation

is obtained
A

8
F

′′′

2 +
3

2
(fF2)

′ − A

2
F

′

2 = S
′
(f), (4.62)

where S(f) is defined as follows

S(f) =

(
dp1
dτ
− 55

112
A3

)
f −

(
393

320
+

3B

16A

)
A2f 2

+

(
201

32
+

3B

16A

)
Af 3 − 591

128
f 4. (4.63)

Integrating this equation with respect to ζ+ and using localization condition,

we have

A

8
F

′′

2 +
1

2
(3f − A)F2 =

(
dp1
dτ
− 55

112
A3

)
f −

(
393

320
+

3B

16A

)
A2f 2

+

(
201

32
+

3B

16A

)
Af 3 − 591

128
f 4. (4.64)

The first term in the right-hand side of the equation (4.64) causes the secular-

ity; therefore the coefficient of f must vanish, that is,

p1(τ) =
55

112
A3τ. (4.65)

We shall propose a solution for F2 of the following form

F2 = c1 sech6 ζ+ + c2 sech4 ζ+ + c3 sech2 ζ+ (4.66)

where ci are constants to be determined from the solution of (4.64). Taking
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the derivative of F2 we obtain

F
′′

2 =− 42c1 sech8 ζ+ + (36c1 − 20c2) sech6 ζ+

+ (16c2 − 6c3) sech4 ζ+ + 4c3 sech2 ζ+. (4.67)

Inserting (4.66) and (4.67) into (4.64) and setting the coefficients of sech8 ζ+,

sech6 ζ+ and sech4 ζ+ equal to zero, we have

c1 =
197

160
A3, c2 = −

(
217

160
A3 +

3A2B

16

)
, c3 =

43

40
A3 +

A2B

8
. (4.68)

Then the particular solution of the differential equation (4.64) can be written

as

F2 =
197

160
f 3 −

(
217

160
+

3B

16A

)
Af 2 +

(
43

40
+

B

8A

)
A2f, (4.69)

Similarly, for other unknowns G2 and q1 we have

G2 =
197

160
g3 −

(
217

160
+

3A

16B

)
Bg2 +

(
43

40
+

A

8B

)
B2g,

q1(τ) = − 55

112
B3τ. (4.70)

Then, the final solution for ζ2 and w2 take the following form

ζ2 =
101

80
(f 3 + g3) +

31

16
(fg2 + f 2g)− 1

80
(Af 2 +Bg2)

− 3

16
(Bf 2 + Ag2)− 7

8
(A+B)fg +

3

8
(A2f +B2g)

+
1

8
AB(f + g)− 5

24

∂f

∂ξ

∂g

∂η
+

[(
−11A+ 3B

16

)
∂f

∂ξ
+

3

8
f
∂f

∂ξ

+
1

16
f
∂g

∂η
+

3

32

∂f

∂ξ
g

]
M +

[(
3A− 11B

16

)
∂g

∂η
+

3

8
g
∂g

∂η

+
1

16

∂f

∂ξ
g +

3

32
f
∂g

∂η

]
N, (4.71)

w2 =
6

5
(f 3 − g3) +

33

16
(fg2 − f 2g)− 27

10
(Af 2 −Bg2)

− 3

16
(Bf 2 − Ag2) +

11

8
(A−B)fg +

71

40
(A2f −B2g)
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+
1

8
AB(f − g) +

[(
−7A+ 3B

16

)
∂f

∂ξ
− 1

2
f
∂f

∂ξ
− 1

16
f
∂g

∂η

− 1

32

∂f

∂ξ
g

]
M +

[(
−3A+ 7B

16

)
∂g

∂η
+

1

2
g
∂g

∂η
+

1

16

∂f

∂ξ
g

+
1

32
f
∂g

∂η

]
N. (4.72)

Thus, for this order the trajectories of the solitary waves become

ε
1
2 (x− t) = ξ + εp0 + ε2(p1 + P0) +O(ε3),

ε
1
2 (x+ t) = η + εq0 + ε2(q1 +Q0) +O(ε3). (4.73)

4.4.1 Phase Shifts

To obtain the phase shifts after a head-on collision of solitary waves charac-

terized by A and B are asymptotically far from each other at the initial time

(t = −∞), the solitary wave A is at ξ = 0, η = −∞, and the solitary wave

B is at η = 0, ξ = +∞, respectively. After the collision (t = +∞), the soli-

tary wave B is far to the right of solitary wave A, i.e., the solitary wave A

is at ξ = 0, η = +∞, and the solitary wave B is at η = 0, ξ = −∞. Using

(4.58) and (4.73) one can obtain the corresponding phase shifts ∆A and ∆B

as follows:

∆A = ε1/2(x− t) |ξ=0,η=∞ −ε1/2(x− t) |ξ=0,η=−∞

= −ε29

4
f(0)

+∞∫
−∞

g(η
′
)dη

′

= −ε29A

4

+∞∫
−∞

g(η
′
)dη

′
, (4.74)
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∆B = ε1/2(x+ t) |η=0,ξ=−∞ −ε1/2(x+ t) |η=0,ξ=∞

= ε2
9

4
g(0)

+∞∫
−∞

f(ξ
′
)dξ

′

= ε2
9B

4

+∞∫
−∞

f(ξ
′
)dξ

′
. (4.75)

Using the explicit expressions of f(ξ) and g(η) the phase shifts are obtained

as

∆A = −ε23
√

3AB1/2, ∆B = ε23
√

3A1/2B. (4.76)

Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.

4.5 Summary of the results

In the previous section, we have obtained the following results

ζ̂(f, g) =ε

{
(f + g) + ε

(
3

4
(f 2 + g2) +

1

2
(Af +Bg) +

1

2
fg

+
1

4
M(η, τ)

∂f

∂ξ
+

1

4
N(ξ, τ)

∂g

∂η

)
+ ε2

(
101

80
(f 3 + g3)

− 1

80
(Af 2 +Bg2)− 3

16
(Bf 2 + Ag2) +

3

8
(A2f +B2g)

+
1

8
AB(f + g) +

31

16
(fg2 + f 2g)− 7

8
(A+B)fg

− 5

24

∂f

∂ξ

∂g

∂η
+

[(
−11A+ 3B

16

)
∂f

∂ξ
+

3

8
f
∂f

∂ξ
+

1

16
f
∂g

∂η

+
3

32

∂f

∂ξ
g

]
M +

[(
3A− 11B

16

)
∂g

∂η
+

3

8
g
∂g

∂η
+

1

16

∂f

∂ξ
g

+
3

32
f
∂g

∂η

]
N

)
+ ...

}
. (4.77)
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Similar expression may be given for ŵ(f, g).

p(τ) = ε

(
19

40
A2 + ε

55

112
A3

)
τ, (4.78)

q(τ) = ε

(
−19

40
B2 − ε 55

112
B3

)
τ, (4.79)

P = −9

4
f(ξ, τ)

η∫
−∞

g(η
′
, τ)dη

′
, (4.80)

Q = −9

4
g(η, τ)

ξ∫
∞

f(ξ
′
, τ)dξ

′
, (4.81)

and

ζ+ =

(
3Aε

4

) 1
2

x− cRt+
9

4
ε
3
2f(ξ, τ)

η∫
−∞

g(η
′
, τ)dη

′

 , (4.82)

ζ− =

(
3Bε

4

) 1
2

x+ cLt+
9

4
ε
3
2 g(η, τ)

ξ∫
∞

f(ξ
′
, τ)dξ

′

 , (4.83)

where cR and cL are defined by

cR = 1 +

(
ε
A

2
+ ε2

19

40
A2 + ε3

55

112
A3

)
, (4.84)

cL = 1 +

(
ε
B

2
+ ε2

19

40
B2 + ε3

55

112
B3

)
. (4.85)

The equations (4.80) and (4.81) serve to define the phase changes. Before the

collision

η → −∞, P → 0, ξ →∞, Q→ 0 (4.86)

and after the collision

η →∞, P = −9A

(
B

3

) 1
2

sech2 ζ+, (4.87)

ξ → −∞, Q = 9B

(
A

3

) 1
2

sech2 ζ−. (4.88)

In this section we shall illustrate the profiles of right-going waves before and
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Figure 4.1: Right-going wave profile ζ̂ for ε = 0.4, A = B = 0.5. 1: before
collision; 2: after collision; 3: difference between the wave profiles before and
after the collision.

after the collision. For that purpose we set g(η, τ) = 0 in the expression ζ̂ and

obtain

ζ̂ =ε

{
f + ε

(
3

4
f 2 +

A

2
f

)
+ ε2

(
101

80
f 3 − A

80
f 2 − 3B

16
f 2 +

3A2

8
f

+
AB

8
f

)
+ ...

}
(4.89)

with

f = A sech2

[(
3Aε

4

) 1
2

(x− cRt+ Θ)

]
(4.90)

where

Θ = ε
3
2 9A

(
B

3

) 1
2

sech2 ζ+. (4.91)

The variations of the wave profiles for surface elevation parameter ζ̂ before

the collision (Θ = 0) and after the collision (Θ is given as in (4.91)) are depicted

in Figure 4.1, for various values of parameters ε, A and B. As is seen from

the figure the wave profile before the collision is symmetric, whereas after the

collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.
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4.6 Result and Conclusion

Utilizing the non-dimensionalized equations (4.1) and (4.2) and employing the

extended PLK method, which is the combination of the classical reductive

perturbation method and the strained coordinates, in order to obtain evolu-

tion equations as partial differential equations rather than ordinary differential

equations we have studied the head-on collision of solitary waves in shallow

water theory. Introducing a set of stretched coordinates that include some

unknown functions which are to be determined from the removal of possible

secularities in the solution, expanding these unknown functions and the field

variables into power series of the smallness parameter ε and introducing the

resulting expansions into the field equations we obtained the sets of partial

differential equations. By solving these differential equations and imposing

the requirements for the removal of possible secularities we obtained the speed

correction terms and the trajectory functions. Our calculations show that the

present results are exactly the same with those found in the previous chapter,

whereas it is totally different from the results of Su and Mirie [6]. The varia-

tions of the wave profiles for right-going wave (ζ̂) before and after the collision

are illustrated in Figure 4.1. As is seen from the figure the wave profile is

symmetric before the collision whereas it is unsymmetrical after the collision

with tilts backward with respect to the direction of its propagation.
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Chapter 5

Head-on Collision of the Solitary Waves in

Fluid-filled Elastic Tubes

5.1 Introduction

As was stated in Chapter 2, the pulsatile character of the blood wave is soliton-

like and and it can be interpreted in terms of solitons. The solitary wave model

gives a reasonable explanation for the peaking and steepening of pulsatile waves

in arteries. The blood flow in arteries can be considered as an incompressible

fluid flowing in a thin non-linear elastic tube, so head-on collision of solitary

waves in fluid-filled elastic tubes had been studied by several researchers in

this regard. In all of these studies the method proposed by Su and Mirie have

been employed. Since the statement made by Su and Mirie is incorrect, as

shown in Chapters 3 and 4, it is our motivation to study the head-on colli-

sion of solitary waves in arteries by employing the field equations for the fluid

filled elastic tube and the extended PLK method. For that purpose, we in-

troduce a set of stretched coordinates which include some unknown functions

characterizing the higher order dispersive effects and the trajectory functions

to be determined from the removal of possible secularities that might occur

in the solution. Expanding these unknown functions and the field variables

into power series of the smallness parameter ε and introducing the resulting

expansions into the field equations we obtained the sets of partial differential

equations governing the coefficients of the series. By solving these differential

equations and imposing the non-secularity conditions in the solution we ob-
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tained various evolution equations. By seeking a progressive wave solution to

these evolution equations we obtained the speed correction terms and the tra-

jectory functions. The results of our calculation show that both the evolution

equations and the phase shifts resulting from the head-on collision of solitary

waves are quite different from those of Xue [7], who employed the incorrect

formulation of Su and Mirie [6]. As opposed to the result of previous works

on the same subject, in the present work the phase shifts depend on the am-

plitudes of both colliding waves. It is further observed that the order of the

trajectory functions is ε2, rather than ε. The variations of the wave profiles of

right-going waves before and after the collision are depicted on Figure 5.1. It is

seen that the wave profile before the collision is symmetric, whereas after the

collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.

5.2 Basic Equations

The equations (2.24)-(2.26) will be used as we study the head-on collision

problem in fluid-filled elastic tubes. We can rewrite these equations as follows:

∂S

∂t
+
∂u

∂x
+

∂

∂x
(Su) = 0, (5.1)

∂u

∂t
+
∂π

∂x
+

∂

∂x

(
u2

2

)
= 0, (5.2)

π =
2

2 + S

∂2S

∂t2
+

2S(2 + αS)

(2 + S)2
, (5.3)

where x and t are the non-dimensional space and time parameters, S is the

change in the cross-sectional area of the tube, u and π are the axial velocity

and the pressure of the fluid body, respectively, and α characterizes the non-

linearity of the tube material.
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5.3 Extended PLK Method

Motivated with the results found in Chapter 4, we introduce the following

stretched coordinates

ε
1
2 (x− t) =ξ + εp(τ) + ε2P (ξ, η, τ),

ε
1
2 (x+ t) =η + εq(τ) + ε2Q(ξ, η, τ),

ε3
/2t =τ, (5.4)

We assume that the field quantities can be expanded into asymptotic series in

ε as

S = εS1 + ε2S2 + ε3S3 + ...,

u = εu1 + ε2u2 + ε3u3 + ...,

p(τ) = p0(τ) + εp1(τ) + ε2p2(τ) + ε3p3(τ) + ... ,

q(τ) = q0(τ) + εq1(τ) + ε2q2(τ) + ε3q3(τ) + ... ,

P (ξ, η, τ) = P0(ξ, η, τ) + εP1(ξ, η, τ) + ... ,

Q(ξ, η, τ) = Q0(ξ, η, τ) + εQ1(ξ, η, τ) + ... . (5.5)

Introducing (4.4) and (5.5) into equations (5.1)-(5.3) and setting the coef-

ficients of like powers of ε equal to zero the following sets of equations are

obtained:

O (ε) equations:

∂S1

∂η
− ∂S1

∂ξ
+
∂u1
∂η

+
∂u1
∂ξ

= 0,

∂π1
∂η

+
∂π1
∂ξ

+
∂u1
∂η
− ∂u1

∂ξ
= 0, π1 = S1, (5.6)
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O
(
ε2
)

equations:

∂S2

∂η
− ∂S2

∂ξ
+
∂u2
∂η

+
∂u2
∂ξ

+
∂S1

∂τ
+

∂

∂η
(S1u1) +

∂

∂ξ
(S1u1) = 0,

∂π2
∂η

+
∂π2
∂ξ

+
∂u2
∂η
− ∂u2

∂ξ
+
∂u1
∂τ

+
1

2

∂

∂η
(u21) +

1

2

∂

∂ξ
(u21) = 0,

π2 = S2 − 2
∂2S1

∂ξ∂η
+
∂2S1

∂η2
+
∂2S1

∂ξ2
+

(
α− 2

2

)
S2
1 , (5.7)

O
(
ε3
)

equations:

∂S3

∂η
− ∂S3

∂ξ
+
∂u3
∂η

+
∂u3
∂ξ

+
∂S2

∂τ
+

∂

∂η
(S1u2) +

∂

∂ξ
(S1u2) +

∂

∂η
(u1S2)

+
∂

∂ξ
(u1S2)−

dp0
dτ

∂S1

∂ξ
− dq0
dτ

∂S1

∂η
+
∂P0

∂ξ

∂

∂η
(u1 + S1)

− ∂P0

∂η

∂

∂ξ
(u1 + S1)−

∂Q0

∂ξ

∂

∂η
(u1 − S1) +

∂Q0

∂η

∂

∂ξ
(u1 − S1) = 0, (5.8)

∂π3
∂η

+
∂π3
∂ξ

+
∂u3
∂η
− ∂u3

∂ξ
+
∂u2
∂τ

+
∂

∂η
(u1u2) +

∂

∂ξ
(u1u2)

− dp0
dτ

∂u1
∂ξ
− dq0
dτ

∂u1
∂η

+
∂P0

∂ξ

∂

∂η
(u1 + π1)−

∂P0

∂η

∂

∂ξ
(u1 + π1)

+
∂Q0

∂ξ

∂

∂η
(u1 − π1)−

∂Q0

∂η

∂

∂ξ
(u1 − π1) = 0, (5.9)

π3 =S3 + (α− 2)S1S2 +

(
3− 2α

4

)
S3
1 − 2

∂2S2

∂ξ∂η
+
∂2S2

∂η2
+
∂2S2

∂ξ2

− 2
∂2S1

∂ξ∂τ
+ 2

∂2S1

∂η∂τ
− 1

2
S1

(
∂2S1

∂ξ2
+
∂2S1

∂η2
− 2

∂2S1

∂ξ∂η

)
. (5.10)

O(ε4) equations can be found in Appendix D.
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5.4 Solution of the field equations

From the solution of the equation set (5.6) we obtain

u1 = f1(ξ, τ) + g1(η, τ),

S1 = π1 = f1(ξ, τ)− g1(η, τ), (5.11)

where f1(ξ, τ) and g1(η, τ) are two unknown functions whose governing equa-

tions will be obtained from the higher order perturbation expansion. Introduc-

ing (5.11) into (5.7) and then adding and subtracting the resulting equations

side by side we obtain

2
∂

∂η
(u2 + S2) +

[
2
∂f1
∂τ

+ (α + 1)f1
∂f1
∂ξ

+
∂3f1
∂ξ3

]
+ (α− 3)g1

∂g1
∂η

− (α− 3)f1
∂g1
∂η
− (α− 3)

∂f1
∂ξ

g1 −
∂3g1
∂η3

= 0, (5.12)

2
∂

∂ξ
(u2 − S2)−

[
2
∂g1
∂τ

+ (α + 1)g1
∂g1
∂η
− ∂3g1
∂η3

]
− (α− 3)f1

∂f1
∂ξ

+ (α− 3)g1
∂f1
∂ξ

+ (α− 3)f1
∂g1
∂η
− ∂3f1

∂ξ3
= 0. (5.13)

Integrating the equation (5.12) with respect to η and (5.13) with respect to ξ

we have

(u2 + S2) =− η
[
∂f1
∂τ

+

(
α + 1

2

)
f1
∂f1
∂ξ

+
1

2

∂3f1
∂ξ3

]
+

1

2

∂2g1
∂η2

+

(
α− 3

2

)[
M(η, τ)

∂f1
∂ξ

+ f1g1 −
g21
2

]
+ 2f2(ξ, τ), (5.14)

(u2 − S2) =ξ

[
∂g1
∂τ

+

(
α + 1

2

)
g1
∂g1
∂η
− 1

2

∂3g1
∂η3

]
+

1

2

∂2f1
∂ξ2

+

(
α− 3

2

)[
f 2
1

2
− f1g1 −N(ξ, τ)

∂g1
∂η

]
+ 2g2(η, τ), (5.15)
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where f2(ξ, τ) and g2(η, τ) are new unknown functions, M(η, τ) and N(ξ, τ)

are defined by

M(η, τ) =

η∫
g1(η

′
, τ)dη

′
, N(ξ, τ) =

ξ∫
f1(ξ

′
, τ)dξ

′
. (5.16)

As is seen from equations (5.14) and (5.15) the terms proportional to ξ and η

cause secularity; therefore, the coefficients of them must vanish, which yields

∂f1
∂τ

+

(
α + 1

2

)
f1
∂f1
∂ξ

+
1

2

∂3f1
∂ξ3

= 0, (5.17)

∂g1
∂τ

+

(
α + 1

2

)
g1
∂g1
∂η
− 1

2

∂3g1
∂η3

= 0. (5.18)

Based on the statement by Su and Mirie [6], given in the Section 5.1, Xue [7]

stated that the terms M(η, τ)∂f1/∂ξ and N(ξ, τ)∂g1/∂η appearing in equa-

tions (5.14) and (5.15) do not cause any secularity at this order but it will

cause secularity in the next order equations; therefore, there should be some

terms of order ε in the trajectory functions to eliminate these terms. As will

be shown in the solution of the next order equations these terms do not cause

any secularity. It is that reason, in the present work we assumed that the order

of the trajectory function is ε2 rather than ε.

Then from the solution of equations (5.14) and (5.15) we obtain u2 and S2

as

u2 =f2(ξ, τ) + g2(η, τ) +

(
α− 3

4

)[
M(η, τ)

∂f1
∂ξ
−N(ξ, τ)

∂g1
∂η

+
1

2

(
f 2
1 − g21

)]
+

1

4

(
∂2f1
∂ξ2

+
∂2g1
∂η2

)
,

S2 =f2(ξ, τ)− g2(η, τ) +

(
α− 3

4

)[
M(η, τ)

∂f1
∂ξ

+N(ξ, τ)
∂g1
∂η

+2f1g1 −
1

2

(
f 2
1 + g21

)]
− 1

4

(
∂2f1
∂ξ2
− ∂2g1
∂η2

)
. (5.19)

The evolution equations (5.17) and (5.18) are the conventional Korteweg-de

Vries equations, which are different from those of Xue [7], who employed the

same set of tube-fluid equations. These evolution equations admit the solitary
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wave solution of the form

f1 = A sech2 ζ+, ζ+ =

[
(α + 1)A

12

]1/2(
ξ − (α + 1)

6
Aτ

)
,

g1 = −B sech2 ζ−, ζ− =

[
(α + 1)B

12

]1/2(
η +

(α + 1)

6
Bτ

)
, (5.20)

where A and B are constant amplitudes of the waves.

For the type of solutions given in (5.20) the functions M(η, τ) and N(ξ, τ)

will be of the form tanh ζ±. The integral of them leads to secularities as

ξ(η)→ ±∞.

Substituting (5.11) and (5.19) into the set of equations (5.8)-(5.10), then

adding and subtracting equations (5.8) and (5.9), we obtain

2
∂

∂η
(u3 + S3) + 2

∂f2
∂τ

+ (α + 1)
∂

∂ξ
(f1f2) +

∂3f2
∂ξ3

+
(α + 4)

2
f1
∂3f1
∂ξ3

+
(4α + 11)

2

∂f1
∂ξ

∂2f1
∂ξ2
− 3

8
(α2 − 2α + 3)f 2

1

∂f1
∂ξ

+
3

4

∂5f1
∂ξ5

− 2
dp0
dτ

∂f1
∂ξ
− (α− 3)2

4

(
∂f1
∂ξ

∂g1
∂η

+
∂f 2

1

∂ξ2
g1

)
M − (α− 3)

(
∂f1
∂ξ

g2

+f1
∂g2
∂η
− ∂

∂η
(g1g2) + f2

∂g1
∂η

)
− ∂3g2
∂η3
− (4α2 − 14α + 15)

4

∂f1
∂ξ

g21

−
(

(α− 3)
∂f2
∂ξ
− (5α2 − 10α + 3)

4
f1
∂f1
∂ξ
− (α− 1)

4

∂3f1
∂ξ3

)
g1

− (α− 3)

4

(
(α− 3)

∂

∂η

(
g1
∂g1
∂η

)
− (α− 3)

∂f1
∂ξ

∂g1
∂η
− ∂4g1
∂η4

−(α− 3)f1
∂2g1
∂η2

)
N +

(5α2 − 10α + 3)

8
g21
∂g1
∂η

+
(3α− 3)

4
f1
∂3g1
∂η3

− (7α2 − 22α + 21)

8

(
2f1g1

∂g1
∂η
− f 2

1

∂g1
∂η

)
− (α− 5)

4

∂2f1
∂ξ2

∂g1
∂η

+
3

2

∂f1
∂ξ

∂2g1
∂η2

+
5

2

∂

∂η

(
g1
∂2g1
∂η2

)
+

(5α + 9)

8

∂

∂η

[(
∂g1
∂η

)2
]

− 1

2

∂5g1
∂η5
− 4

∂P0

∂η

∂f1
∂ξ

= 0, (5.21)
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2
∂

∂ξ
(u3 − S3)− 2

∂g2
∂τ
− (α + 1)

∂

∂η
(g1g2) +

∂3g2
∂η3
− (α + 4)

2
g1
∂3g1
∂η3

− (4α + 11)

2

∂g1
∂η

∂2g1
∂η2
− 3

8
(α2 − 2α + 3)g21

∂g1
∂η

+
3

4

∂5g1
∂η5

+ 2
dq0
dτ

∂g1
∂η
− (α− 3)2

4

(
∂f1
∂ξ

∂g1
∂η

+
∂g21
∂η2

f1

)
N + (α− 3)

(
∂g1
∂η

f2

+g1
∂f2
∂ξ
− ∂

∂ξ
(f1f2) + g2

∂f1
∂ξ

)
− ∂3f2

∂ξ3
− (4α2 − 14α + 15)

4

∂g1
∂η

f 2
1

+

(
(α− 3)

∂g2
∂η

+
(5α2 − 10α + 3)

4
g1
∂g1
∂η
− (α− 1)

4

∂3g1
∂η3

)
f1

− (α− 3)

4

(
(α− 3)

∂

∂ξ

(
f1
∂f1
∂ξ

)
− (α− 3)

∂f1
∂ξ

∂g1
∂η

+
∂4f1
∂ξ4

−(α− 3)g1
∂2f1
∂ξ2

)
M +

(5α2 − 10α + 3)

8
f 2
1

∂f1
∂ξ
− (3α− 3)

4
g1
∂3f1
∂ξ3

− (7α2 − 22α + 21)

8

(
2g1f1

∂f1
∂ξ
− g21

∂f1
∂ξ

)
+

(α− 5)

4

∂2g1
∂η2

∂f1
∂ξ

− 3

2

∂g1
∂η

∂2f1
∂ξ2
− 5

2

∂

∂ξ

(
f1
∂2f1
∂ξ2

)
− (5α + 9)

8

∂

∂ξ

[(
∂f1
∂ξ

)2
]

− 1

2

∂5f1
∂ξ5
− 4

∂Q0

∂ξ

∂g1
∂η

= 0. (5.22)

Integrating (5.21) with respect to η and (5.22) with respect to ξ we obtain

2(u3 + S3) + η

(
2
∂f2
∂τ

+ (α + 1)
∂

∂ξ
(f1f2) +

∂3f2
∂ξ3

+
(α + 4)

2
f1
∂3f1
∂ξ3

+
(4α + 11)

2

∂f1
∂ξ

∂2f1
∂ξ2
− 3

8
(α2 − 2α + 3)f 2

1

∂f1
∂ξ

+
3

4

∂5f1
∂ξ5

−2
dp0
dτ

∂f1
∂ξ

)
− (α− 3)2

4

∂f1
∂ξ

η∫ (
∂g1
∂η

M

)
dη

′
+
∂f 2

1

∂ξ2

η∫
(g1M)dη

′


− (α− 3)

∂f1
∂ξ

η∫
g2dη

′ − (α− 3) (f1g2 − g1g2 + f2g1)−
∂2g2
∂η2

− (4α2 − 14α + 15)

4

∂f1
∂ξ

η∫
g21dη

′ −
(

(α− 3)
∂f2
∂ξ
− (α− 1)

4

∂3f1
∂ξ3

−(5α2 − 10α + 3)

4
f1
∂f1
∂ξ

)
M − (α− 3)

4

(
(α− 3)g1

∂g1
∂η
− ∂3g1
∂η3

−(α− 3)
∂f1
∂ξ

g1 − (α− 3)f1
∂g1
∂η

)
N +

(5α2 − 10α + 3)

24
g31
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+
(3α− 3)

4
f1
∂2g1
∂η2
− (7α2 − 22α + 21)

8

(
f1g

2
1 − f 2

1 g1
)

− (α− 5)

4

∂2f1
∂ξ2

g1 +
3

2

∂f1
∂ξ

∂g1
∂η

+
5

2
g1
∂2g1
∂η2

+
(5α + 9)

8

(
∂g1
∂η

)2

− 1

2

∂4g1
∂η5
− 4P0

∂f1
∂ξ

= 2f3(ξ, τ), (5.23)

2(u3 − S3) + ξ

(
−2

∂g2
∂τ
− (α + 1)

∂

∂η
(g1g2) +

∂3g2
∂η3
− (α + 4)

2
g1
∂3g1
∂η3

−(4α + 11)

2

∂g1
∂η

∂2g1
∂η2
− 3

8
(α2 − 2α + 3)g21

∂g1
∂η

+
3

4

∂5g1
∂η5

+2
dq0
dτ

∂g1
∂η

)
− (α− 3)2

4

∂g1
∂η

ξ∫ (
∂f1
∂ξ

N

)
dξ

′
+
∂g21
∂η2

ξ∫
(f1N) dξ

′


+ (α− 3)

∂g1
∂η

ξ∫
f2dξ

′
+ (α− 3) (g1f2 − f1f2 + g2f1)−

∂2f2
∂ξ2

− (4α2 − 14α + 15)

4

∂g1
∂η

ξ∫
f 2
1dξ

′
+

(
(α− 3)

∂g2
∂η
− (α− 1)

4

∂3g1
∂η3

+
(5α2 − 10α + 3)

4
g1
∂g1
∂η

)
N − (α− 3)

4

(
(α− 3)f1

∂f1
∂ξ

+
∂3f1
∂ξ3

−(α− 3)f1
∂g1
∂η
− (α− 3)

∂f1
∂ξ

g1

)
M +

(5α2 − 10α + 3)

24
f 3
1

− (3α− 3)

4
g1
∂2f1
∂ξ2
− (7α2 − 22α + 21)

8

(
f 2
1 g1 − f1g21

)
+

(α− 5)

4

∂2g1
∂η2

f1 −
3

2

∂g1
∂η

∂f1
∂ξ
− 5

2
f1
∂2f1
∂ξ2
− (5α + 9)

8

(
∂f1
∂ξ

)2

− 1

2

∂4f1
∂ξ4
− 4Q0

∂g1
∂η

= 2g3(η, τ), (5.24)

where f3(ξ, τ) and g3(η, τ) are two unknown functions whose evolution equa-

tions will be obtained from next order equations. In order to remove the

secularity caused by the terms proportional to ξ and η, the coefficient of η in

(5.23) and the coefficient of ξ in (5.24) must vanish, which yields

∂f2
∂τ

+
(α + 1)

2

∂

∂ξ
(f1f2) +

1

2

∂3f2
∂ξ3

= R1(ξ, τ), (5.25)
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∂g2
∂τ

+
(α + 1)

2

∂

∂η
(g1g2)−

1

2

∂3g2
∂η3

= T1(η, τ), (5.26)

where R1(ξ, τ) and T1(η, τ) are given as follows

R1(ξ, τ) =
3

16
(α2 − 2α + 3)f 2

1

∂f1
∂ξ
− (4α + 11)

4

∂f1
∂ξ

∂2f1
∂ξ2

(5.27)

− (α + 4)

4
f1
∂3f1
∂ξ3
− 3

8

∂5f1
∂ξ5

+
dp0
dτ

∂f1
∂ξ

,

T1(η, τ) =− 3

16
(α2 − 2α + 3)g21

∂g1
∂η
− (4α + 11)

4

∂g1
∂η

∂2g1
∂η2

− (α + 4)

4
g1
∂3g1
∂η3

+
3

8

∂5g1
∂η5

+
dq0
dτ

∂g1
∂η

. (5.28)

By using the results given in (5.16) and (5.20) the following identities can be

obtained for the terms involving f1, N , g1 and M ,

∂2f1
∂ξ2

=
(α + 1)

6
(2Af1 − 3f 2

1 ),

(
∂f1
∂ξ

)2

=
(α + 1)

3
(Af 2

1 − f 3
1 ),

∂4f1
∂ξ4

=
(α + 1)2

18
(2A2f1 − 15Af 2

1 + 15f 3
1 ),

∂6f1
∂ξ6

= (α + 1)3
(
A3

27
f1 −

7A2

6
f 2
1 +

35A

9
f 3
1 −

35

12
f 4
1

)
,∫

f 2
1dξ

′
=
N

3
(f1 + 2A) ,

∫
f1Ndξ

′
= −

(
6

α + 1

)
f1,∫ (

∂f1
∂ξ

N

)
dξ

′
=

2N

3
(f1 − A), (5.29)

∂2g1
∂η2

=
(α + 1)

6
(2Bg1 + 3g21),

(
∂g1
∂η

)2

=
(α + 1)

3
(Bg21 + g31),

∂4g1
∂η4

=
(α + 1)2

18
(2B2g1 + 15Bg21 + 15g31),

∂6g1
∂η6

= (α + 1)3
(
B3

27
g1 +

7B2

6
g21 +

35B

9
g31 +

35

12
g41

)
,∫

g21dη
′
=
M

3
(g1 − 2B) ,

∫
g1Mdη

′
=

(
6

α + 1

)
g1,∫ (

∂g1
∂η

M

)
dη

′
=

2M

3
(g1 +B). (5.30)
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Then the equations (5.25) and (5.26) can be written as

∂f2
∂τ

+
(α + 1)

2

∂

∂ξ
(f1f2) +

1

2

∂3f2
∂ξ3

=
∂

∂ξ
(R2(f1)), (5.31)

∂g2
∂τ

+
(α + 1)

2

∂

∂η
(g1g2)−

1

2

∂3g2
∂η3

=
∂

∂η
(T2(g1)), (5.32)

where R2(f1) and T2(g1) are defined as follows

R2(f1) =

(
dp0
dτ
− (α + 1)2

24
A2

)
f1 +

5

48
(α + 1)(α− 3)Af 2

1

+

(
7α + 16

24

)
f 3
1 , (5.33)

T2(g1) =

(
dq0
dτ

+
(α + 1)2

24
B2

)
g1 +

5

48
(α + 1)(α− 3)Bg21

−
(

7α + 16

24

)
g31. (5.34)

As is seen from the equations (5.23) and (5.24) the other terms in the expression

of u3 and S3 do not cause any secularity of the type

∫
M(η′)dη′ and

∫
N(ξ′)dξ′

for this order, but it might have secularities in the next order.

Seeking a progressive wave solution for the equations (5.31) and (5.32) of

the form f2 = f2(ζ+), g2 = g2(ζ−), we have

(α + 1)

24
Af

′′′

2 +
(α + 1)

2
(f1f2)

′ − (α + 1)

6
Af

′

2 = R
′

2(f1), (5.35)

− (α + 1)

24
Bg

′′′

2 +
(α + 1)

2
(g1g2)

′
+

(α + 1)

6
Bg

′

2 = T
′

2(g1). (5.36)

Using localization condition and integrating once with respect to ζ+ and ζ−,

respectively, one obtains

(α + 1)

24
Af

′′

2 +
(α + 1)

6
(3f1 − A)f2 = R2(f1), (5.37)

− (α + 1)

24
Bg

′′

2 +
(α + 1)

6
(3g1 +B)g2 = T2(g1). (5.38)

The first terms in the expression of R2(f1) and T2(g1) cause to secularity;
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therefore the coefficients of f1 and g1 must vanish, which yields

p0 =
(α + 1)2

24
A2τ, q0 = −(α + 1)2

24
B2τ. (5.39)

Here A2(α + 1)2/24 and −B2(α + 1)2/24 correspond to the speed correction

terms for the right and left going waves, respectively. We shall propose a

solution for f2 and g2 of the following form

f2 = a1 sech4 ζ+ + a2 sech2 ζ+, (5.40)

g2 = b1 sech4 ζ− + b2 sech2 ζ−, (5.41)

where ai and bi are constants to be determined from the solutions of (5.37)

and (5.38), respectively. Evaluating the derivative of F1 and G1 we have

f
′′

2 = −20a1 sech6 ζ+ + (16a1 − 6a2) sech4 ζ+ + 4a2 sech2 ζ+, (5.42)

g
′′

2 = −20b1 sech6 ζ− + (16b1 − 6b2) sech4 ζ− + 4b2 sech2 ζ−. (5.43)

Inserting (5.40) and (5.42) into (5.37) and inserting (5.41) and (5.43) into

(5.38) and setting the coefficients of sech6 ζ+ and sech4 ζ+ equal to zero, one

has

a1 = −(7α + 16)

8(α + 1)
A2, a2 =

(5α2 + 11α + 33)

12(α + 1)
A2, (5.44)

b1 =
(7α + 16)

8(α + 1)
B2, b2 = −(5α2 + 11α + 33)

12(α + 1)
B2, (5.45)

Then the particular solution of the differential equations (5.37) and (5.38) may

be given by

f2 =
1

24(α + 1)

[
(5α2 + 11α + 33)2Af1 − (7α + 16)3f 2

1

]
,

g2 =
1

24(α + 1)

[
(5α2 + 11α + 33)2Bg1 + (7α + 16)3g21

]
. (5.46)
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Then the equations (5.23) and (5.24) can be written in the following form

u3 + S3 =
(7α + 16)

4(α + 1)
g31 +

(43α2 + 103α + 276)

48(α + 1)
Bg21

+
(7α2 + 15α + 35)

72
B2g1 +

(12α3 − 37α2 + 9α− 50)

24(α + 1)

× Af1g1 +
(2α3 − 7α2 + 3α− 96)

24(α + 1)
Bf1g1

+
(4α3 − 11α2 − 3α− 24)

16(α + 1)
f1g

2
1 −

3

4

∂f1
∂ξ

∂g1
∂η

+ 2P0
∂f1
∂ξ

− (14α3 − 41α2 + 3α + 22)

16(α + 1)
f 2
1 g1

+

[
(4α3 − 5α2 + α− 98)

24(α + 1)
A
∂f1
∂ξ
− (α3 + α2 − 9α + 63)

24(α + 1)

×B∂f1
∂ξ
− (4α3 + α2 − 11α− 44)

8(α + 1)
f1
∂f1
∂ξ

+
(4α3 − 11α2 + 3α + 6)

16(α + 1)
g1
∂f1
∂ξ

]
M − (α− 3)

2

[
(α + 1)

12

×B∂g1
∂η

+
(α− 3)

4

(
f1
∂g1
∂η

+ g1
∂f1
∂ξ

)
+ g1

∂g1
∂η

]
N

+ 2f3(ξ, τ), (5.47)

u3 − S3 =
(7α + 16)

4(α + 1)
f 3
1 −

(43α2 + 103α + 276)

48(α + 1)
Af 2

1

+
(7α2 + 15α + 35)

72
A2f1 −

(12α3 − 37α2 + 9α− 50)

24(α + 1)

×Bf1g1 −
(2α3 − 7α2 + 3α− 96)

24(α + 1)
Af1g1

+
(4α3 − 11α2 − 3α− 24)

16(α + 1)
f 2
1 g1 +

3

4

∂f1
∂ξ

∂g1
∂η

+ 2Q0
∂g1
∂η

− (14α3 − 41α2 + 3α + 22)

16(α + 1)
f1g

2
1

+

[
−(4α3 − 5α2 + α− 98)

24(α + 1)
B
∂g1
∂η

+
(α3 + α2 − 9α + 63)

24(α + 1)

×A∂g1
∂η
− (4α3 + α2 − 11α− 44)

8(α + 1)
g1
∂g1
∂η

+
(4α3 − 11α2 + 3α + 6)

16(α + 1)
f1
∂g1
∂η

]
N +

(α− 3)

2

[
(α + 1)

12
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×A∂f1
∂ξ
− (α− 3)

4

(
f1
∂g1
∂η

+ g1
∂f1
∂ξ

)
− f1

∂f1
∂ξ

]
M

+ 2g3(η, τ). (5.48)

As might be seen from equations (5.47) and (5.48) these terms appearing in

the expressions of u2 and S2 do not cause any secularity in the solution of u3 and

S3. Therefore the statement by Su and Mirie [6] is incorrect. However as we

stated before, some of the terms appearing in the expressions of u3 and S3 (the

equations (5.47) and (5.48) ) may cause additional secularity in the expressions

of u4 and S4. There appears to be two types of secularity in the solution of

O(ε4) equation. As was seen before, the first type of secularity results from

the terms proportional to ξ and η which will be studied later. The second type

secularity occurs from the terms proportional

ξ∫
N(ξ

′
, τ)dξ

′
and

η∫
M(η

′
, τ)dη

′

as ξ(η)→ ±∞. Here we shall first consider only the parts of O(ε4) equations

leading to

η∫
M(η

′
, τ)dη

′
type of secularity. Similar expressions may be valid

for

ξ∫
N(ξ

′
, τ)dξ

′
type of secularity.

For this purpose we consider the following part of the O(ε4) equation

2
∂

∂η
(u4 + S4) +

∂

∂τ
(u3 + S3) + (α− 2)

∂

∂ξ
(S1S3) +

∂

∂ξ
(u1S3)

+
∂

∂ξ
[u3 (u1 + S1)] +

∂3S3

∂ξ3
+ (α− 2)S2

∂S2

∂ξ
+ u2

∂

∂ξ
(u2 + S2)

+ S2
∂u2
∂ξ
− dp0

dτ

∂

∂ξ
(u2 + S2)−

(6α− 9)

4

∂

∂ξ

(
S2
1S2

)
− 2

∂3S2

∂ξ2∂τ

− 1

2

∂

∂ξ

(
S1
∂2S2

∂ξ2
+
∂2S1

∂ξ2
S2

)
+

(3α− 4)

2
S3
1

∂S1

∂ξ
+

∂3S1

∂ξ∂τ 2

+
1

4

∂

∂ξ

(
S2
1

∂2S1

∂ξ2

)
+

∂

∂ξ

(
S1
∂2S1

∂ξ∂τ

)
+ 2

dp0
dτ

∂3S1

∂ξ3

− dp1
dτ

∂

∂ξ
(u1 + S1) = 0. (5.49)

A similar expression may be given for 2
∂

∂ξ
(u4 − S4) equation. We split (5.49)

into two parts which contain the variables u3 + S3 and (u2, S2, u3 − S3),

respectively. Then, we obtain:
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∂

∂τ
(u3 + S3) +

(α + 1)

4

∂

∂ξ
[(u1 + S1)(u3 + S3)] +

1

2

∂3

∂ξ3
(u3 + S3)

=
−(4α3 + α2 − 11α− 44)

8
(α + 1)

[
7

8
f 4
1 −

7

6
Af 3

1 +
1

3
A2f 2

1

]
M, (5.50)

(α− 2)S2
∂S2

∂ξ
+ u2

∂

∂ξ
(u2 + S2) + S2

∂u2
∂ξ

− dp0
dτ

∂

∂ξ
(u2 + S2)−

(6α− 9)

4

∂

∂ξ

(
S2
1S2

)
− 2

∂3S2

∂ξ2∂τ

− 1

2

∂

∂ξ

(
S1
∂2S2

∂ξ2
+
∂2S1

∂ξ2
S2

)
+

(3α− 9)

4

∂

∂ξ
(S1S3)

− 1

2

∂3

∂ξ3
(u3 − S3)−

(α− 3)

2

∂

∂ξ
[(u1 − S1)S3]

− (α− 3)

4

∂

∂ξ
[(u1 + S1) (u3 − S3)]

=
(7α2 − 5α− 48)

8
(α + 1)

[
7

8
f 4
1 −

7

6
Af 3

1 +
1

3
A2f 2

1

]
M. (5.51)

As is seen the integration of equations (5.50) and (5.51) with respect to η

leads to secularity. In order to remove secularity, we should set the coefficient

of the term f1
∂f1
∂ξ

M in u3 +S3 equal to −(7α2 − 5α− 48)

8(α + 1)
. Similar expression

may be given for

ξ∫
N(ξ

′
, τ)dξ

′
type of secularities. In order to remove these

secularities the trajectory functions should have the following form:

P0 =
(2α2 − 5α + 2)

8
f1(ξ, τ)M(η, τ),

Q0 =
(2α2 − 5α + 2)

8
g1(η, τ)N(ξ, τ). (5.52)

To obtain the secularities of type η (or ξ) we shall use the equation (5.49) to

obtain the governing equation for f3(ξ, τ). We substitute the field variables

into (5.49) and integrate with respect to η, then the terms proportional to η

in the resulting equation cause to secularity. In order to remove secularity, the
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coefficient of η must vanish, that is

∂f3
∂τ

+
(α + 1)

2

∂

∂ξ
(f1f3) +

1

2

∂3f3
∂ξ3

= R3(ξ, τ), (5.53)

where R3(ξ, τ) is defined as follows

R3(ξ, τ) =
∂3f2
∂ξ2∂τ

+
3

16
(α2 − 2α + 3)

∂

∂ξ

(
f 2
1 f2
)

+
(α− 2)

4
f1
∂3f2
∂ξ3

+
(2α− 5)

4

∂

∂ξ

(
∂f1
∂ξ

∂f2
∂ξ

)
+

(α− 2)

4

∂3f1
∂ξ3

f2

− (α + 1)

2
f2
∂f2
∂ξ

+
dp0
dτ

∂f2
∂ξ

+
1

8

∂5f2
∂ξ5
− 1

2

∂3f1
∂ξ∂τ 2

− 1

4

∂5f1
∂ξ4∂τ

− (α− 1)

4
f1

∂3f1
∂ξ2∂τ

− (α− 2)

2

∂f1
∂ξ

∂2f1
∂ξ∂τ

− (α− 3)

4

∂f1
∂τ

∂2f1
∂ξ2

+
1

16

∂7f1
∂ξ7

+
(α + 1)

16
f1
∂5f1
∂ξ5

− dp0
dτ

∂3f1
∂ξ3

+
dp1
dτ

∂f1
∂ξ

+
(7α + 31)

32

∂f1
∂ξ

∂4f1
∂ξ4

+
(7α + 33)

16

∂2f1
∂ξ2

∂3f1
∂ξ3

+
3

8
(α− 3)3B

∂f1
∂ξ

∂2f1
∂ξ2

− (5α2 − 10α + 21)

64

(
∂f1
∂ξ

)3

− (3α2 − 9α + 22)

32
f 2
1

∂3f1
∂ξ3

− (11α2 − 28α + 65)

32
f1
∂f1
∂ξ

∂2f1
∂ξ2

− (23α3 − 55α2 + 33α− 15)

192
f 3
1

∂f1
∂ξ

. (5.54)

Noting the equations (5.29), (5.39) and (5.46), then the equation (5.53) may

be written as

∂f3
∂τ

+
(α + 1)

2

∂

∂ξ
(f1f3) +

1

2

∂3f3
∂ξ3

=
∂R4(f1)

∂ξ
(5.55)

where R4(f1) is defined as follows

R4(f1) =

(
dp1
dτ
− 5(α + 1)3

432
A3

)
f1
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+

(
(23α4 − 100α3 − 479α2 − 1700α− 2073)

576(α + 1)
A2

+
(α + 1)(α− 3)2

16
AB

)
f 2
1

+

(
(134α3 + 1471α2 + 4862α + 5712)

576(α + 1)
A

−(α + 1)(α− 3)2

16
B

)
f 3
1

+
(−341α2 − 1472α− 1536)

256(α + 1)
f 4
1 . (5.56)

Seeking a progressive wave solution for the equation (5.55) of the form f3 =

f3(ζ+), the following equation is obtained

(α + 1)

24
Af

′′′

3 +
(α + 1)

2
(f1f3)

′ − (α + 1)

6
Af

′

3 = R
′

4(f1). (5.57)

We integrate (5.57) with respect to ζ+ and use the localization condition to

obtain
(α + 1)

24
Af

′′

3 +
(α + 1)

6
(3f1 − A)f3 = R4(f1). (5.58)

Since the first term in the right-hand side of (5.56) cause to secularity in the

solution of f3, the coefficient of f1 must vanish, which yields

p1(τ) =
5(α + 1)3

432
A3τ. (5.59)

We propose a solution for f3 of the following form

f3 = c1 sech6 ζ+ + c2 sech4 ζ+ + c3 sech2 ζ+, (5.60)

where ci are constants to be determined from the solution of (5.58). Carrying

out the derivative of f3 we obtain

f
′′

3 =− 42c1 sech8 ζ+ + (36c1 − 20c2) sech6 ζ+

+ (16c2 − 6c3) sech4 ζ+ + 4c3 sech2 ζ+. (5.61)

Introducing (5.60) and (5.61) into (5.58) and setting the coefficients of sech8 ζ+,
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sech6 ζ+ and sech4 ζ+ equal to zero, we have

c1 =
341α2 + 1472α + 1536

320(α + 1)2
A3,

c2 =− (670α3 + 3263α2 + 6646α + 10128)

960(α + 1)2
A3 +

3(α− 3)2

16
A2B,

c3 =
(230α4 + 1010α3 + 4999α2 + 2938α + 9654)

1440(α + 1)2
A3

− (α− 3)2

8
A2B. (5.62)

Then we can give the particular solution of the differential equation (5.58) by

f3 =
(341α2 + 1472α + 1536)

320(α + 1)2
f 3
1

−
[

(670α3 + 3263α2 + 6646α + 10128)

960(α + 1)2
+

3(α− 3)2

16

B

A

]
Af 2

1

+

[
(230α4 + 1010α3 + 4999α2 + 2938α + 9654)

1440(α + 1)2

−(α− 3)2

8

B

A

]
A2f1. (5.63)

Similar solution for the function g3(ζ−) can be given as

g3 =
(341α2 + 1472α + 1536)

320(α + 1)2
g31

+

[
(670α3 + 3263α2 + 6646α + 10128)

960(α + 1)2
+

3(α− 3)2

16

A

B

]
Bg21

+

[
(230α4 + 1010α3 + 4999α2 + 2938α + 9654)

1440(α + 1)2

+
(α− 3)2

8

A

B

]
B2g1, q1(τ) = −5(α + 1)3

432
B3τ. (5.64)

Then the final solution of u3 and S3 read as

u3 =
(621α2 + 2392α + 2176)

320(α + 1)2
(f 3

1 + g31) +
3(α− 3)2

16
(Ag21 −Bf 2

1 )

+
(α− 3)2

8
AB(g1 − f1) + P0

∂f1
∂ξ

+Q0
∂g1
∂η

− (1100α3 + 4723α2 + 10436α + 12888)

960(α + 1)2
(Af 2

1 −Bg21)
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+
(300α4 + 1300α3 + 5719α2 + 3788α + 10004)

1440(α + 1)2
(A2f1 +B2g1)

+
(10α3 − 30α2 + 6α + 46)

16(α + 1)

[
(A−B)

3
f1g1 −

(f1g
2
1 + f 2

1 g1)

2

]
+

[
(5α3 − 6α2 − 4α− 101)

48(α + 1)
A
∂f1
∂ξ
− (α3 + α2 − 9α + 63)

48(α + 1)
B
∂f1
∂ξ

−(4α3 + 5α2 − 19α− 56)

16(α + 1)
f1
∂f1
∂ξ

+
(2α3 − α2 − 3α− 12)

32(α + 1)
g1
∂f1
∂ξ

−(α− 3)2

16
f1
∂g1
∂η

]
M +

[
(α3 + α2 − 9α + 63)

48(α + 1)
A
∂g1
∂η

−(5α3 − 6α2 − 4α− 101)

48(α + 1)
B
∂g1
∂η
− (4α3 + 5α2 − 19α− 56)

16(α + 1)

×g1
∂g1
∂η

+
(2α3 − α2 − 3α− 12)

32(α + 1)
f1
∂g1
∂η
− (α− 3)2

16
g1
∂f1
∂ξ

]
N, (5.65)

S3 =
(61α2 + 552α + 896)

320(α + 1)2
(f 3

1 − g31)− 3(α− 3)2

16
(Ag21 +Bf 2

1 )

− (α− 3)2

8
AB(f1 + g1) + P0

∂f1
∂ξ
−Q0

∂g1
∂η

− (80α3 + 601α2 + 952α + 2456)

320(α + 1)2
(Af 2

1 +Bg21)

+
(160α4 + 720α3 + 4279α2 + 2088α + 9304)

1440(α + 1)2
(A2f1 −B2g1)

+
(9α3 − 26α2 − 1)

16(α + 1)
(f1g

2
1 − f 2

1 g1)

+
(7α3 − 22α2 + 6α− 73)

24(α + 1)
(A+B)f1g1

+

[
(3α3 − 4α2 + 6α− 95)

48(α + 1)
A
∂f1
∂ξ
− (α3 + α2 − 9α + 63)

48(α + 1)
B
∂f1
∂ξ

−(4α3 − 3α2 − 3α− 32)

16(α + 1)
f1
∂f1
∂ξ

+
(6α3 − 21α2 + 9α + 24)

32(α + 1)

×g1
∂f1
∂ξ

+
(α− 3)2

16
f1
∂g1
∂η

]
M +

[
−(α3 + α2 − 9α + 63)

48(α + 1)
A
∂g1
∂η

+
(3α3 − 4α2 + 6α− 95)

48(α + 1)
B
∂g1
∂η

+
(4α3 − 3α2 − 3α− 32)

16(α + 1)

×g1
∂g1
∂η
− (6α3 − 21α2 + 9α + 24)

32(α + 1)
f1
∂g1
∂η
− (α− 3)2

16
g1
∂f1
∂ξ

]
N. (5.66)
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Thus, for this order, the trajectories of the solitary waves become

ε
1
2 (x− t) = ξ + εp0(τ) + ε2p1(τ) + ε2P0 +O(ε3),

ε
1
2 (x+ t) = η + εq0(τ) + ε2q1(τ) + ε2Q0 +O(ε3). (5.67)

5.4.1 Phase Shifts

To obtain the phase shifts after a head-on collision of solitary waves charac-

terized by A and B are asymptotically far from each other at the initial time

(t = −∞), the solitary wave A is at ξ = 0, η = −∞, and the solitary wave B

is at η = 0, ξ = +∞, respectively. After the collision (t = +∞), the solitary

wave B is far to the right of solitary wave A, i.e., the solitary wave A is at

ξ = 0, η = +∞, and the solitary wave B is at η = 0, ξ = −∞. Using the

equations (5.20) and (5.52) one can obtain the corresponding phase shifts ∆A

and ∆B as follows:

∆A = ε1/2(x− t) |ξ=0,η=∞ −ε1/2(x− t) |ξ=0,η=−∞

= ε2
(

2α2 − 5α + 2

8

)
f1(0)

+∞∫
−∞

g1(η
′
)dη

′

= ε2
(

2α2 − 5α + 2

8

)
A

+∞∫
−∞

g1(η
′
)dη

′

= −ε2
(

2α2 − 5α + 2

4

)(
12

α + 1

)1/2

AB1/2, (5.68)

∆B = ε1/2(x+ t) |η=0,ξ=−∞ −ε1/2(x+ t) |η=0,ξ=∞

= −ε2
(

2α2 − 5α + 2

8

)
g1(0)

+∞∫
−∞

f1(ξ
′
)dξ

′

= ε2
(

2α2 − 5α + 2

8

)
B

+∞∫
−∞

f1(ξ
′
)dξ

′

= ε2
(

2α2 − 5α + 2

4

)(
12

α + 1

)1/2

A1/2B. (5.69)
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Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.

5.5 Summary of the results

In the previous section, we have obtained the following results

u(f1, g1) =ε

{
(f1 + g1) + ε

[
−(11α + 20)

8(α + 1)
(f 2

1 − g21)

+
(6α2 + 13α + 34)

12(α + 1)
(Af1 +Bg1) +

(α− 3)

4

(
M(η, τ)

∂f

∂ξ

−N(ξ, τ)
∂g

∂η

)]
+ ε2

[
(621α2 + 2392α + 2176)

320(α + 1)2
(f 3

1 + g31)

+
3(α− 3)2

16
(Ag21 −Bf 2

1 ) +
(α− 3)2

8
AB(g1 − f1) + P0

×∂f1
∂ξ

+Q0
∂g1
∂η
− (1100α3 + 4723α2 + 10436α + 12888)

960(α + 1)2

×(Af 2
1 −Bg21)

+
(300α4 + 1300α3 + 5719α2 + 3788α + 10004)

1440(α + 1)2
(A2f1

+B2g1) +
(10α3 − 30α2 + 6α + 46)

16(α + 1)

(
(A−B)

3
f1g1

−(f1g
2
1 + f 2

1 g1)

2

)
+

(
(5α3 − 6α2 − 4α− 101)

48(α + 1)
A
∂f1
∂ξ

−(α3 + α2 − 9α + 63)

48(α + 1)
B
∂f1
∂ξ
− (4α3 + 5α2 − 19α− 56)

16(α + 1)

×f1
∂f1
∂ξ

+
(2α3 − α2 − 3α− 12)

32(α + 1)
g1
∂f1
∂ξ

−(α− 3)2

16
f1
∂g1
∂η

)
M +

(
(α3 + α2 − 9α + 63)

48(α + 1)
A
∂g1
∂η

−(5α3 − 6α2 − 4α− 101)

48(α + 1)
B
∂g1
∂η

−(4α3 + 5α2 − 19α− 56)

16(α + 1)
g1
∂g1
∂η
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+
(2α3 − α2 − 3α− 12)

32(α + 1)
f1
∂g1
∂η
− (α− 3)2

16
g1
∂f1
∂ξ

)
N

]
+ . . .

}
(5.70)

Similar expression may be given for S(f1, g1).

p(τ) = ε

(
(α + 1)2

24
A2 + ε

5(α + 1)3

432
A3

)
τ, (5.71)

q(τ) = ε

(
−(α + 1)2

24
B2 − ε5(α + 1)3

432
B3

)
τ, (5.72)

P =
(2α2 − 5α + 2)

8
f1(ξ, τ)

η∫
−∞

g1(η
′
, τ)dη

′
, (5.73)

Q =
(2α2 − 5α + 2)

8
g1(η, τ)

ξ∫
∞

f1(ξ
′
, τ)dξ

′
, (5.74)

and

ζ+ =

[
(α + 1)Aε

12

] 1
2

x− cRt− ε 3
2

(2α2 − 5α + 2)

8
f1(ξ, τ)

×
η∫

−∞

g1(η
′
, τ)dη

′

 , (5.75)

ζ− =

[
(α + 1)Bε

12

] 1
2

x+ cLt− ε
3
2

(2α2 − 5α + 2)

8
g1(η, τ)

×
ξ∫
∞

f1(ξ
′
, τ)dξ

′

 , (5.76)

where cR and cL are defined by

cR = 1 +

(
ε
(α + 1)

6
A+ ε2

(α + 1)2

24
A2 + ε3

5(α + 1)3

432
A3

)
, (5.77)

cL = 1 +

(
ε
(α + 1)

6
B + ε2

(α + 1)2

24
B2 + ε3

5(α + 1)3

432
B3

)
. (5.78)
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The equations (5.73) and (5.74) serve to define the phase changes. Before the

collision

η → −∞, P → 0, ξ →∞, Q→ 0 (5.79)

and after the collision

η →∞, P = −(2α2 − 5α + 2)

2(α + 1)
1
2

A (3B)
1
2 sech2 ζ+, (5.80)

ξ → −∞, Q =
(2α2 − 5α + 2)

2(α + 1)
1
2

B (3A)
1
2 sech2 ζ−. (5.81)

In this section we shall illustrate the profiles of right-going waves before and

after the collision. For that purpose we set g1(η, τ) = 0 in the expression u

and obtain

u =ε

{
f1 + ε

[
−(11α + 20)

8(α + 1)
f 2
1 +

(6α2 + 13α + 34)

12(α + 1)
Af1

]
(5.82)

+ε2
[

(621α2 + 2392α + 2176)

320(α + 1)2
f 3
1

−
(

(1100α3 + 4723α2 + 10436α + 12888)

960(α + 1)2
+

3(α− 3)2B

16A

)
Af 2

1

+

(
(300α4 + 1300α3 + 5719α2 + 3788α + 10004)

1440(α + 1)2

−(α− 3)2B

8A

)
A2f1

]
+ . . .

}
(5.83)

with

f1 = A sech2

[(
(α + 1)Aε

12

) 1
2

(x− cRt+ Θ)

]
(5.84)

where

Θ = ε
3
2

(2α2 − 5α + 2)

2(α + 1)
1
2

A (3B)
1
2 sech2 ζ+. (5.85)

The variations of the wave profiles for velocity parameter u before the

collision (Θ = 0) and after the collision (Θ is given as in (5.85)) are depicted

in Figure 5.1, for various values of parameters ε, α, A and B. As is seen from

the figure the wave profile before the collision is symmetric, whereas after the

collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.
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Figure 5.1: Right-going wave profile u for ε = 0.4, α = 4, A = B = 0.5.
1:before collision; 2:after collision; 3:difference between the wave profiles before
and after the collision.

5.6 Result and Conclusion

Employing the non-dimensional field equations (5.1)-(5.3) and the extended

PLK method, we have studied the head-on collision of solitary waves in ar-

teries. Introducing a set of stretched coordinates that include some unknown

functions characterizing the higher order dispersive effects and the trajectory

functions, which are to be determined from the removal of possible secularities

that might occur in the solution, expanding these unknown functions and the

field variables into power series of the smallness parameter ε and introducing

the resulting expansions into the field equations we obtained the sets of partial

differential equations. By solving these differential equations and imposing

the requirements for the removal of possible secularities we obtained the speed

correction terms and the trajectory functions. The results of our calculation

show that both the evolution equations and the phase shifts resulting from

the head-on collision of solitary waves are quite different from those of Xue

[7], who employed the incorrect formulation of Su and Mirie [6]. As opposed

to the result of previous works on the same subject, in the present work the

phase shifts depend on the amplitudes of both colliding waves.
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Chapter 6

Conclusion

In this study, head-on collision problem between two solitary waves was exam-

ined in two different media which are: the shallow water and the fluid-filled

elastic tube. First, the historical background of solitary waves was presented

and the previous experimental, numerical and theoretical studies about soli-

tary wave interactions were reviewed. The necessity of employing some kind

of numerical or asymptotic method to study the head-on collision problem be-

tween two solitary waves was indicated. The derivation of the field equations

for shallow water waves and fluid-filled elastic tubes was summarized and then

the reductive perturbation method and Poincaré-Lighthill-Kuo (PLK) method

were briefly reviewed. Su and Mirie’s [6] perturbation approach to the head-on

collision problem was mentioned and the observation of the incorrectness of

their statement about the secular terms was declared (The derivation of their

study was also presented in Appendix A).

Based on this observation, the head-on collision problem between two soli-

tary waves in shallow water was re-examined by introducing a set of stretched

coordinates in which the trajectory functions were of order ε2. The evolution

equations governing the colliding waves were obtained under the non-secularity

conditions and the progressive wave solutions to these equations were provided.

Also, the trajectory functions were determined by using the restrictions that

had been resulted from the elimination of the secular terms. Explicit expres-

sions of the phase shifts of right and left going waves were obtained and the

following results were concluded:

(i) Phase shifts are found to be depend on amplitudes of both colliding waves

in contrast to the result of previous studies.
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(ii) Order of phase shifts is ε2 rather than ε.

In the next chapter, the head-on collision between two solitary waves was

examined by using the extended PLK method. Since a different set of stretched

coordinates was introduced, the evolution equations for various order of ε were

obtained as KdV equation and linearized KdV equation with nonhomogeneous

term rather than ordinary differential equations. By providing progressive

wave solutions to the evolution equations and imposing the requirements for

the removal of secularities, the speed correction terms and the trajectory func-

tions were obtained. It was concluded that the results presented here were

same with the results found in the previous chapter whereas they were totally

different from the results of Su and Mirie [6]. Also, the variations of the wave

profiles for right going wave before and after collision were illustrated. It was

observed that the wave profile was symmetric before the collision whereas it

was unsymmetrical and tilted backwards with respect to the direction of its

propagation after the collision.

In the final part of the study, head-on collision of the solitary waves in fluid-

filled elastic tubes was examined by employing the extended PLK method.

Evolution equations were obtained as KdV equation and linearized KdV equa-

tion with nonhomogeneous term. By seeking a progressive wave solution to

evolution equations, the speed correction terms and the trajectory functions

were obtained. As a consequence of our calculations, the following results were

concluded:

(i) Both the evolution equations and the phase shifts are quite different from

those of Xue [7], who employed the incorrect formulation of Su and Mirie [6].

(ii) As opposed to the results of previous studies on the same subject, the order

of the trajectory functions is ε2 rather than ε and the phase shifts depend on

the amplitude of both colliding waves.

The variations of the wave profiles before and after the collision were depicted

on some figures and it was seen that the wave profile was symmetric before

the collision whereas it was unsymmetrical and tilted backwards with respect

to the direction of its propagation after the collision.
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Appendix A

Derivation of Su and Mirie (1980) Article

In their pioneering work Su and Mirie [6] studied the head-on collision of two

solitary waves in shallow water by introducing a set of stretched coordinates

ε
1
2k(x− CRt) = ξ − εkθ(ξ, η),

ε
1
2 l(x+ CLt) = η − εlφ(ξ, η), (A.1)

where ε is the smallness parameter measuring the order of nonlinearity, CR and

CL are the speeds of right and left going waves, k and l are the wave numbers of

order unity of the corresponding waves, θ(ξ, η) and φ(ξ, η) are some unknown

functions describing the trajectories of the right and left going waves and they

will be used in obtaining phase shifts.

Employing the transformation (A.1) in a shallow water theory with con-

stant depth, Su and Mirie [6] studied the head-on collision of two solitary waves

by reducing the fluid equations and the boundary equations to the following

coupled differential equations,

2ε(CR + CL)

[
l
∂α

∂η
+ εkl

(
∂θ

∂η

∂α

∂ξ
− ∂θ

∂ξ

∂α

∂η

)]
+

{
k
∂

∂ξ
+ l

∂

∂η
+

εkl

[
∂

∂η
(θ − φ)

∂

∂ξ
− ∂

∂ξ
(θ − φ)

∂

∂η

]}
F+ = 0, (A.2)

2ε(CL + CR)

[
k
∂β

∂ξ
+ εlk

(
∂φ

∂ξ

∂β

∂η
− ∂φ

∂η

∂β

∂ξ

)]
+

{
l
∂

∂η
+ k

∂

∂ξ
+

εlk

[
∂

∂ξ
(φ− η)

∂

∂η
− ∂

∂η
(φ− θ) ∂

∂ξ

]}
F− = 0, (A.3)
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where the expressions of F+, F−, α and β were defined as follows:

F± =± (1− CR,L)(w ± ζ) +
w2

2
± ζw +

∞∑
n=1

(−1)n
(1 + ζ)2n

(2n)!

×

[
∂2nw

∂t∂x2n−1
± (1 + ζ)

2n+ 1

∂2nw

∂x2n
+

1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mw

∂xm

×∂
2n−mw

∂x2n−m

]
, (A.4)

w + ζ = 2εα, w − ζ = −2εβ. (A.5)

They expanded the field variables into the following power series of ε,

α(ξ, η) = α0 + εα1 + ε2α2 + ... ,

β(ξ, η) = β0 + εβ1 + ε2β2 + ... ,

θ(ξ, η) = θ0(η) + εθ1(ξ, η) + ... ,

φ(ξ, η) = φ0(ξ) + εφ1(ξ, η) + ... ,

CR = 1 + εaR1 + ε2a2R2 + ε3a3R3 + ... ,

CL = 1 + εbL1 + ε2b2L2 + ε3b3L3 + ... . (A.6)

By introducing the expansion (A.6) into the field equations (A.2) and (A.3)

and setting the coefficients of like powers of ε equal to zero, they obtained a

set of differential equations governing α0, α1, α2, ..., θ0, θ1, θ2, ..., (β0, β1, β2,

..., φ0, φ1, φ2, ...), the first two of them are given as follows:

O (ε) equations:

∂α0

∂η
= 0,

∂β0
∂ξ

= 0.

The solution of these equations are

α0 = af(ξ), β0 = bg(η) (A.7)

where a and b are the amplitudes of the corresponding waves.
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O
(
ε2
)

equations:

4l

(
∂α1

∂η
+ ak

∂θ0
∂η

f
′
)
− 2R1a

2kf
′
+ 3a2kff

′ − b2lgg′ − ablfg′

− abkf ′
g +

1

3

(
ak3f

′′′
+ 2bl3g

′′′
)

= 0 (A.8)

where a prime denotes the differentiation of the corresponding quantities with

respect to their arguments. A similar expression may be given for β1 provided

that proper substitutions are made in the variables.

Integrating (A.8) with respect to η we obtain

4lα1 + η

(
ak3

3
f

′′′
+ 3a2kff

′ − 2R1a
2kf

′
)

+ ak [4lθ0 − bM(η)] f
′

− b2l g
2

2
− ablfg +

2

3
bl3g

′′
= 4lF1(ξ) (A.9)

where M(η) is defined by

M(η) =

η∫
g(η

′
)dη

′
. (A.10)

In equation (A.9), as η → ±∞ the second term causes the secularity and, thus,

the coefficient of η must vanish

ak3

3
f

′′′
+ 3a2kff

′ − 2R1a
2kf

′
= 0. (A.11)

This is the evolution equation for the right going wave and a similar expression

may be given for left going wave. By letting k2 = 3a and R1 = 1/2, the solution

of the equation (A.11) may be given by

f = sech2

(
ξ

2

)
. (A.12)

Similarly, for right going wave we have

L1 =
1

2
, l2 = 3b, g = sech2

(η
2

)
. (A.13)
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For the solutions of the type (A.12) and (A.13), the functions M(η) and N(ξ)

will be of the form tanh
(η

2

)
and tanh

(
ξ

2

)
, respectively. The integral of them,

that is,

η∫
M(η

′
)dη

′
and

ξ∫
N(ξ

′
)dξ

′
approaches to infinity as ξ(η)→ ±∞. Su

and Mirie [6] made the statement that “although the third term in equation

(A.9) does not lead to secularity for this order it may cause the secularity in

the higher order terms, therefore the coefficient of f
′

in the third term must

vanish”

4lθ0 − b
η∫

−∞

g(η
′
)dη

′
= 0. (A.14)

This equation makes it possible to determine the unknown trajectory function

θ0. Unfortunately, our calculations for the higher order terms show that the

term M(η)f
′

does not cause any secularity in the next order. Our result is

also justified by one of the authors of the paper (Dr. Su). To see this is the

case, we keep the terms M(η) =

η∫
g(η

′
)dη

′
and N(ξ) =

ξ∫
f(ξ

′
)dξ

′
in the

expression of α1 and β1, respectively. Then we have

α1 =
7

8
b2g2 +

ab

4
fg − b2

2
g +

abk

4l
f

′
M(η) + a2F1(ξ),

β1 =
7

8
a2f 2 +

ab

4
fg − a2

2
f +

abl

4k
g

′
N(ξ) + b2G1(η). (A.15)

Now if we substitute (A.7) and (A.15) into the next order equation, then we

obtain the coefficient of the term

η∫
M(η

′
)dη

′
in the expression of α2 as follows

α2 = −a
2bk2

16l2

(
f (iv) + 3ff

′′
+ 3(f

′
)2 − f ′′

) η∫
M(η

′
)dη

′
+ . . . . (A.16)

Keeping in mind that k2 = 3a and R1 = 1/2, the coefficient of the secular

term in (A.16) is nothing but the derivative of the evolution equation (A.11)

with respect to its argument; thus, the coefficient of the secular term vanishes.

Therefore, the statement made by Su and Mirie is not correct and θ0 remains

undetermined and it should be set equal to zero. This shows that in the

transformation (A.1) the order of θ(ξ, η) and φ(ξ, η) must be of order ε2 rather

than ε.
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Appendix B

O(ε4) Equations for Chapter 3

4l
∂α3

∂η
+ ak

∂3

∂ξ3
(α2 − β2)− 3bk

∂3

∂ξ∂η2
(α2 − β2)− 2bl

∂3

∂η3
(α2 − β2)

− ak∂α2

∂ξ
+ bl

∂α2

∂η
+ 3k

∂

∂ξ
(α0α2)− kβ0

∂α2

∂ξ
− l ∂

∂η
(β0α2)

− k ∂
∂ξ

(α0β2)− kβ0
∂β2
∂ξ
− l(α0 + β0)

∂β2
∂η
− l ∂β0

∂η
β2 + 3lα0

∂α2

∂η

− 3

10
a2k

∂5

∂ξ5
(α1 − β1)−

3

4
a2l

∂5

∂ξ4∂η
(α1 − β1) +

3

2
abl

∂5

∂ξ2∂η3
(α1

− β1) +
3

2
b2k

∂5

∂ξ∂η4
(α1 − β1) +

9

20
b2l

∂5

∂η5
(α1 − β1) +

(
3

4
a2k

+3akβ0

)
∂3

∂ξ3
(α1 − β1) +

(
3

2
a2l − 3

4
abl − 6alα0 + 3alβ0

)
× ∂3

∂ξ2∂η
(α1 − β1) +

(
3

4
abk − 3

2
b2k − 12bkα0 − 3bkβ0

)
× ∂3

∂ξ∂η2
(α1 − β1)−

(
3

4
b2l − 6blα0 − 3blβ0

)
∂3

∂η3
(α1 − β1)

+ 3akα
′

0

∂2

∂ξ2
(α1 − β1)− 6bkβ

′

0

∂2

∂ξ∂η
(α1 − β1)−

(
3bkα

′

0 + 6blβ
′

0

)
× ∂2

∂η2
(α1 − β1) +

(
3akα

′′

0 + 3bkβ
′′

0 + 4kl
∂θ1
∂η
− 19

20
a2k

)
∂α1

∂ξ

+

(
3alα

′′

0 + 3blβ
′′

0 − 4kl
∂θ1
∂ξ

+
19

20
b2l

)
∂α1

∂η
+ 6bkβ

′′

0

∂β1
∂ξ
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+ 6blβ
′′

0

∂β1
∂η
− k ∂

∂ξ
(α1β1)− l

∂

∂η
(α1β1) +

1

2
k
∂

∂ξ
(3α2

1 − β2
1)

+
1

2
l
∂

∂η
(3α2

1 − β2
1) + 3blβ

′′′

0 (2α1 + β1) + 3akα
′′′

0 β1 +
9

280
a3kα

(vii)
0

+
3

70
b3lβ

(vii)
0 −

(
3

16
a3k +

3

4
a2kα0 +

3

2
a2kβ0

)
α
(v)
0 −

(
3

16
b3l

+
9

4
b2lα0 +

3

2
b2lβ0

)
β
(v)
0 −

9

4
a2kα

′

0α
(iv)
0 −

(
3

4
b2kα

′

0 + 3b2lβ
′

0

)
β
(iv)
0

+

(
57

80
a3k +

3

4
a2kα

′′

0 −
3

4
abkβ

′′

0 − 3ak(α2
0 − β2

0) +
3

2
a2k(α0 + β0)

−3akl
∂φ1

∂η

)
α

′′′

0 +

(
57

80
b3l +

3

4
b2lβ

′′

0 −
3

4
ablα

′′

0 + 6blα2
0 +

3

2
b2l

×(α0 + β0) + 6blα0β0 − 3bkl
∂

∂ξ
(2θ1 − φ1)

)
β

′′′

0 +

(
3

2
a2kα

′

0

+
3

2
a2lβ

′

0 + 6akα
′

0β0 − 6alα0β
′

0 − 3al2
∂2θ1
∂η2
− 3akl

∂2φ1

∂ξ∂η

)
α

′′

0

+

(
3

2
b2kα

′

0 +
3

2
b2lβ

′

0 + 6bkα0α
′

0 + 12blα0β
′

0 + 6blβ0β
′

0 − 3al2
∂2θ1
∂ξ2

−3bkl
∂2

∂ξ∂η
(2θ1 − φ1)

)
β

′′

0 + 3ak(α
′

0)
3 + 3bl(β

′

0)
3 − 3alβ

′

0(α
′

0)
2

− 3bkα
′

0(β
′

0)
2 +

(
akl

∂3

∂ξ2∂η
(θ1 − φ1)− al2

∂3

∂ξ∂η2
(θ1 − φ1)− 2bkl

× ∂3

∂η3
(θ1 − φ1) + kl(3α0 − β0)

∂

∂η
(θ1 − φ1) + bkl

∂θ1
∂η

+ akl
∂φ1

∂η

)
α

′

0

−
(
al2

∂3

∂ξ2∂η
(θ1 − φ1) + 2bkl

∂3

∂ξ∂η2
(θ1 − φ1)− kl(α0 + β0)

× ∂

∂ξ
(θ1 − φ1)

)
β

′

0 + 4kl
∂θ2
∂η

α
′

0 − 2R3a
3kα

′

0 = 0 (B.1)

A similar equation can be given for the variable β3.
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Appendix C

O(ε4) Equations for Chapter 4

∂ζ3
∂η
− ∂ζ3

∂ξ
+
∂w3

∂η
+
∂w3

∂ξ
+
∂ζ2
∂τ

+
∂

∂η
(ζ2w0) +

∂

∂ξ
(ζ2w0)

+
∂

∂η
(ζ0w2) +

∂

∂ξ
(ζ0w2) +

∂

∂η
(ζ1w1) +

∂

∂ξ
(ζ1w1)

− 1

6

(
∂3w2

∂ξ3
+ 3

∂3w2

∂ξ2∂η
+ 3

∂3w2

∂ξ∂η2
+
∂3w2

∂η3

)
− dq0
dτ

∂ζ1
∂η
− dp0

dτ

∂ζ1
∂ξ

+
1

120

(
∂5w1

∂ξ5
+ 5

∂5w1

∂ξ4∂η
+ 10

∂5w1

∂ξ3∂η2
+ 10

∂5w1

∂ξ2∂η3
+ 5

∂5w1

∂ξ∂η4

+
∂5w1

∂η5

)
− ζ0

2

(
∂3w1

∂ξ3
+ 3

∂3w1

∂ξ2∂η
+ 3

∂3w1

∂ξ∂η2
+
∂3w1

∂η3

)
− ζ1

2

(
∂3w0

∂ξ3

+3
∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
− 1

2

(
∂2w1

∂ξ2
+ 2

∂2w1

∂ξ∂η
+
∂2w1

∂η2

)
×
(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
− 1

2

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂ζ1
∂η

+
∂ζ1
∂ξ

)
+
∂Q0

∂ξ

∂

∂η
(ζ1 − w1)−

∂P0

∂η

∂

∂ξ
(ζ1 + w1) +

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η

−6
∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ1 + w1)−

(
7
∂Q0

∂η
+ 6

∂P0

∂ξ
− 6

∂P0

∂η

∂Q0

∂ξ

)
× ∂

∂ξ
(ζ1 − w1)−

dq1
dτ

∂ζ0
∂η
− dp1

dτ

∂ζ0
∂ξ
− 1

5040

(
∂7w0

∂ξ7
+ 7

∂7w0

∂ξ6∂η

+21
∂7w0

∂ξ5∂η2
+ 35

∂7w0

∂ξ4∂η3
+ 35

∂7w0

∂ξ3∂η4
+ 21

∂7w0

∂ξ2∂η5
+ 7

∂7w0

∂ξ∂η6
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+
∂7w0

∂η7

)
+
ζ0
24

(
∂5w0

∂ξ5
+ 5

∂5w0

∂ξ4∂η
+ 10

∂5w0

∂ξ3∂η2
+ 10

∂5w0

∂ξ2∂η3

+5
∂5w0

∂ξ∂η4
+
∂5w0

∂η5

)
− ζ20

2

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
+

1

24

(
∂4w0

∂ξ4
+ 4

∂4w0

∂ξ3∂η
+ 6

∂4w0

∂ξ2∂η2
+ 4

∂4w0

∂ξ∂η3
+
∂4w0

∂η4

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
− 1

22

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂

∂η
(ζ20 ) +

∂

∂ξ
(ζ20 )

)
+
∂Q1

∂ξ

∂

∂η
(ζ0 − w0)−

∂P1

∂η

∂

∂ξ
(ζ0 + w0)−

∂Q0

∂ξ

∂

∂η
(ζ0w0)

− ∂P0

∂η

∂

∂ξ
(ζ0w0)−

∂Q0

∂τ

∂ζ0
∂η
− ∂P0

∂τ

∂ζ0
∂ξ

+

(
7
∂P1

∂ξ
+ 6

∂Q1

∂η

−6
∂P1

∂η

∂Q0

∂ξ
− 6

∂P0

∂η

∂Q1

∂ξ

)
∂

∂η
(ζ0 + w0)−

(
7
∂Q1

∂η
+ 6

∂P1

∂ξ

−6
∂P1

∂η

∂Q0

∂ξ
− 6

∂P0

∂η

∂Q1

∂ξ

)
∂

∂ξ
(ζ0 − w0) +

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η

−6
∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ0w0) +

(
7
∂Q0

∂η
+ 6

∂P0

∂ξ
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(ζ0w0)

+
1

6

(
∂3

∂ξ3
(Q0 − P0) + 2

∂3

∂ξ2∂η
(Q0 − P0) +

∂3

∂ξ∂η2
(Q0 − P0)

)
∂w0

∂η

− 1

6

(
∂3

∂η3
(Q0 − P0) + 2

∂3

∂ξ∂η2
(Q0 − P0) +

∂3

∂ξ2∂η
(Q0 − P0)

)
∂w0

∂ξ

+
1

2

(
∂2

∂ξ2
(Q0 − P0) +

∂2

∂ξ∂η
(Q0 − P0)

)
∂2w0

∂η2
− 1

2

(
∂2

∂η2
(Q0 − P0)

+
∂2

∂ξ∂η
(Q0 − P0)

)
∂2w0

∂ξ2
+

1

2

(
∂2

∂ξ2
(Q0 − P0)−

∂2

∂η2
(Q0 − P0)

)
× ∂2w0

∂ξ∂η
−
(

7

6

∂P0

∂ξ
+

2

3

∂Q0

∂η
− 1

2

∂Q0

∂ξ
− 2

3

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂η3

−
(

7

6

∂Q0

∂η
+

2

3

∂P0

∂ξ
− 1

2

∂P0

∂η
− 2

3

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ3

+

(
∂P0

∂η
− 3

∂Q0

∂η
− 5

2

∂P0

∂ξ
+

1

2

∂Q0

∂ξ
+ 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ2∂η

102



+

(
∂Q0

∂ξ
− 3

∂P0

∂ξ
− 5

2

∂Q0

∂η
+

1

2

∂P0

∂η
+ 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ∂η2

+ 7

(
∂P0

∂ξ
+
∂Q0

∂η
− ∂P0

∂η

∂Q0

∂ξ

)
∂ζ0
∂τ

= 0, (C.1)

∂ζ3
∂η

+
∂ζ3
∂ξ

+
∂w3

∂η
− ∂w3

∂ξ
+
∂w2

∂τ
+

∂

∂η
(w0w2) +

∂

∂ξ
(w0w2)

+
1

2

(
∂3w2

∂ξ3
+

∂3w2

∂ξ2∂η
− ∂3w2

∂ξ∂η2
− ∂3w2

∂η3

)
− dq0
dτ

∂w1

∂η
− dp0

dτ

∂w1

∂ξ

+
1

2

∂

∂η
(w2

1) +
1

2

∂

∂ξ
(w2

1)−
1

24

(
∂5w1

∂ξ5
+ 3

∂5w1

∂ξ4∂η
+ 2

∂5w1

∂ξ3∂η2

−2
∂5w1

∂ξ2∂η3
− 3

∂5w1

∂ξ∂η4
− ∂5w1

∂η5

)
− 1

2

∂

∂τ

(
∂2w1

∂ξ2
+ 2

∂2w1

∂ξ∂η
+
∂2w1

∂η2

)
− w0

2

(
∂3w1

∂ξ3
+ 3

∂3w1

∂ξ2∂η
+ 3

∂3w1

∂ξ∂η2
+
∂3w1

∂η3

)
+ ζ0

(
∂3w1

∂ξ3
+

∂3w1

∂ξ2∂η

− ∂3w1

∂ξ∂η2
− ∂3w1

∂η3

)
+

1

2

(
∂2w1

∂ξ2
+ 2

∂2w1

∂ξ∂η
+
∂2w1

∂η2

)(
∂w0

∂η
+
∂w0

∂ξ

)
+

(
∂2w1

∂ξ2
− ∂2w1

∂η2

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
+

1

2

(
∂w1

∂η
+
∂w1

∂ξ

)(
∂2w0

∂ξ2

+2
∂2w0

∂ξ∂η
+
∂2w0

∂η2

)
+

(
∂ζ1
∂η

+
∂ζ1
∂ξ

)(
∂2w0

∂ξ2
− ∂2w0

∂η2

)
− w1

2

(
∂3w0

∂ξ3

+3
∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
+ ζ1

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2

−∂
3w0

∂η3

)
− ∂Q0

∂ξ

∂

∂η
(ζ1 − w1)−

∂P0

∂η

∂

∂ξ
(ζ1 + w1) +

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η

−6
∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ1 + w1) +

(
7
∂Q0

∂η
+ 6

∂P0

∂ξ
− 6

∂P0

∂η

∂Q0

∂ξ

)
× ∂

∂ξ
(ζ1 − w1)−

dq1
dτ

∂w0

∂η
− dp1

dτ

∂w0

∂ξ
+

1

720

(
∂7w0

∂ξ7
+ 5

∂7w0

∂ξ6∂η

+9
∂7w0

∂ξ5∂η2
+ 5

∂7w0

∂ξ4∂η3
− 5

∂7w0

∂ξ3∂η4
− 9

∂7w0

∂ξ2∂η5
− 5

∂7w0

∂ξ∂η6
− ∂7w0

∂η7

)
+

1

24

∂

∂τ

(
∂4w0

∂ξ4
+ 4

∂4w0

∂ξ3∂η
+ 6

∂4w0

∂ξ2∂η2
+ 4

∂4w0

∂ξ∂η3
+
∂4w0

∂η4

)
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+
w0

24

(
∂5w0

∂ξ5
+ 5

∂5w0

∂ξ4∂η
+ 10

∂5w0

∂ξ3∂η2
+ 10

∂5w0

∂ξ2∂η3
+ 5

∂5w0

∂ξ∂η4

+
∂5w0

∂η5

)
− ζ0

6

(
∂5w0

∂ξ5
+ 3

∂5w0

∂ξ4∂η
+ 2

∂5w0

∂ξ3∂η2
− 2

∂5w0

∂ξ2∂η3
− 3

∂5w0

∂ξ∂η4

−∂
5w0

∂η5

)
− 1

8

(
∂4w0

∂ξ4
+ 4

∂4w0

∂ξ3∂η
+ 6

∂4w0

∂ξ2∂η2
+ 4

∂4w0

∂ξ∂η3
+
∂4w0

∂η4

)
×
(
∂w0

∂η
+
∂w0

∂ξ

)
− 1

6

(
∂4w0

∂ξ4
+ 2

∂4w0

∂ξ3∂η
− 2

∂4w0

∂ξ∂η3
− ∂4w0

∂η4

)
×
(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
+
ζ20
2

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2
− ∂3w0

∂η3

)
+

1

2

dq0
dτ

(
∂3w0

∂ξ2∂η
+ 2

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
+

1

2

dp0
dτ

(
∂3w0

∂ξ3
+ 2

∂3w0

∂ξ2∂η

+
∂3w0

∂ξ∂η2

)
− ζ0

∂

∂τ

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)
− ζ0w0

(
∂3w0

∂ξ3

+3
∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
+

1

12

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2

+
∂3w0

∂η3

)(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)
+

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)
×
(
ζ0

(
∂w0

∂ξ
+
∂w0

∂η

)
− w0

(
∂ζ0
∂ξ

+
∂ζ0
∂η

))
+

1

2

(
∂2w0

∂ξ2
− ∂2w0

∂η2

)
×
(
∂

∂ξ
(ζ20 ) +

∂

∂η
(ζ20 )

)
−
(
∂2w0

∂ξ∂τ
− ∂2w0

∂η∂τ

)(
∂ζ0
∂ξ

+
∂ζ0
∂η

)

+

((
∂w0

∂ξ

)2

+ 2
∂w0

∂ξ

∂w0

∂η
+

(
∂w0

∂η

)2
)(

∂ζ0
∂ξ

+
∂ζ0
∂η

)

− ∂Q1

∂ξ

∂

∂η
(ζ0 − w0)−

∂P1

∂η

∂

∂ξ
(ζ0 + w0)−

1

2

∂Q0

∂ξ

∂

∂η
(w2

0)

− 1

2

∂P0

∂η

∂

∂ξ
(w2

0)−
∂Q0

∂τ

∂w0

∂η
− ∂P0

∂τ

∂w0

∂ξ
+

(
7
∂P1

∂ξ
+ 6

∂Q1

∂η

−6
∂P1

∂η

∂Q0

∂ξ
− 6

∂P0

∂η

∂Q1

∂ξ

)
∂

∂η
(ζ0 + w0) +

(
7
∂Q1

∂η
+ 6

∂P1

∂ξ

−6
∂P1

∂η

∂Q0

∂ξ
− 6

∂P0

∂η

∂Q1

∂ξ

)
∂

∂ξ
(ζ0 − w0) +

1

2

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η
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−6
∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(w2

0) +
1

2

(
7
∂Q0

∂η
+ 6

∂P0

∂ξ
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(w2

0)

− 1

2

(
∂3

∂ξ3
(Q0 − P0)−

∂3

∂ξ∂η2
(Q0 − P0)

)
∂w0

∂η
− 1

2

(
∂3

∂η3
(Q0 − P0)

− ∂3

∂ξ2∂η
(Q0 − P0)

)
∂w0

∂ξ
− 1

2

(
∂2

∂ξ2
(Q0 + P0) +

∂2

∂ξ∂η
(3P0 −Q0)

)
× ∂2w0

∂η2
+

1

2

(
∂2

∂η2
(Q0 + P0) +

∂2

∂ξ∂η
(3Q0 − P0)

)
∂2w0

∂ξ2

+
1

2

(
∂2

∂ξ2
(P0 − 3Q0)−

∂2

∂η2
(Q0 − 3P0)

)
∂2w0

∂ξ∂η

−
(

7

2

∂P0

∂ξ
+ 2

∂Q0

∂η
− 1

2

∂Q0

∂ξ
− 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂η3

+

(
7

2

∂Q0

∂η
+ 2

∂P0

∂ξ
− 1

2

∂P0

∂η
− 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ3

+

(
∂P0

∂η
+ 3

∂Q0

∂η
+

5

2

∂P0

∂ξ
− 3

2

∂Q0

∂ξ
− 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ2∂η

−
(
∂Q0

∂ξ
+ 3

∂P0

∂ξ
+

5

2

∂Q0

∂η
− 3

2

∂P0

∂η
− 2

∂P0

∂η

∂Q0

∂ξ

)
∂3w0

∂ξ∂η2

+ 7

(
∂P0

∂ξ
+
∂Q0

∂η
− ∂P0

∂η

∂Q0

∂ξ

)
∂w0

∂τ
= 0, (C.2)
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Appendix D

O(ε4) Equations for Chapter 5

∂S4

∂η
− ∂S4

∂ξ
+
∂u4
∂η

+
∂u4
∂ξ

+
∂S3

∂τ
+

∂

∂η
(S1u3) +

∂

∂ξ
(S1u3)

+
∂

∂η
(u1S3) +

∂

∂ξ
(u1S3)−

dp0
dτ

∂S2

∂ξ
− dq0
dτ

∂S2

∂η
+
∂P0

∂ξ

∂

∂η
(u2 + S2)

− ∂P0

∂η

∂

∂ξ
(u2 + S2)−

∂Q0

∂ξ

∂

∂η
(u2 − S2) +

∂Q0

∂η

∂

∂ξ
(u2 − S2)

+
∂

∂η
(S2u2) +

∂

∂ξ
(S2u2) +

∂P1

∂ξ

∂

∂η
(u1 + S1)−

dp1
dτ

∂S1

∂ξ
− dq1
dτ

∂S1

∂η

− ∂P1

∂η

∂

∂ξ
(u1 + S1)−

∂Q1

∂ξ

∂

∂η
(u1 − S1) +

∂Q1

∂η

∂

∂ξ
(u1 − S1)

+

(
∂P0

∂ξ
− ∂Q0

∂ξ

)
∂

∂η
(u1S1)−

(
∂P0

∂η
− ∂Q0

∂η

)
∂

∂ξ
(u1S1)−

∂P0

∂τ

∂S1

∂ξ

− ∂Q0

∂τ

∂S1

∂η
+

(
∂P0

∂ξ
+
∂Q0

∂η
− ∂P0

∂η

∂Q0

∂ξ

)
∂S1

∂τ
= 0, (D.1)

∂π4
∂η

+
∂π4
∂ξ

+
∂u4
∂η
− ∂u4

∂ξ
+
∂u3
∂τ

+
∂

∂η
(u1u3) +

∂

∂ξ
(u1u3)

+
1

2

∂

∂η
(u22) +

1

2

∂

∂ξ
(u22)−

dp0
dτ

∂u2
∂ξ
− dq0
dτ

∂u2
∂η

+
∂P0

∂ξ

∂

∂η
(u2 + π2)

− ∂P0

∂η

∂

∂ξ
(u2 + π2) +

∂Q0

∂ξ

∂

∂η
(u2 − π2)−

∂Q0

∂η

∂

∂ξ
(u2 − π2)
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− dp1
dτ

∂u1
∂ξ
− dq1
dτ

∂u1
∂η

+
∂P1

∂ξ

∂

∂η
(u1 + π1)−

∂P1

∂η

∂

∂ξ
(u1 + π1)

+
∂Q1

∂ξ

∂

∂η
(u1 − π1)−

∂Q1

∂η

∂

∂ξ
(u1 − π1) +

1

2

(
∂P0

∂ξ
− ∂Q0

∂ξ

)
∂

∂η
(u21)

− 1

2

(
∂P0

∂η
− ∂Q0

∂η

)
∂

∂ξ
(u21)−

∂P0

∂τ

∂u1
∂ξ
− ∂Q0

∂τ

∂u1
∂η

+

(
∂P0

∂ξ
+
∂Q0

∂η
− ∂P0

∂η

∂Q0

∂ξ

)
∂u1
∂τ

= 0, (D.2)

π4 =S4 + αS1S3 − π1S3 − S1π3 +
∂2S3

∂η2
+
∂2S3

∂ξ2
− 2

∂2S3

∂ξ∂η
− π2S2

+
1

2
αS2

2 −
1

2
π1S1S2 −

1

4
S2
1π2 +

S1

2

(
∂2S2

∂η2
+
∂2S2

∂ξ2
− 2

∂2S2

∂ξ∂η

)
+
S2

2

(
∂2S1

∂η2
+
∂2S1

∂ξ2
− 2

∂2S1

∂ξ∂η

)
+ 2

∂

∂τ

(
∂S2

∂η
− ∂S2

∂ξ

)
− 2

(
∂P0

∂ξ
+
∂Q0

∂η
− ∂P0

∂η

∂Q0

∂ξ

)
(π2 − S2 + π1S1) +

∂2S1

∂τ 2

+
∂

∂τ

(
∂S1

∂η
− ∂S1

∂ξ

)
S1 + 2

dp0
dτ

∂2S1

∂ξ2
− 2

dq0
dτ

∂2S1

∂η2
+ 2

(
dq0
dτ

−dp0
dτ

)
∂2S1

∂ξ∂η
+ 2

(
∂P1

∂ξ
+
∂Q1

∂η
− ∂P1

∂η

∂Q0

∂ξ
− ∂P0

∂η

∂Q1

∂ξ

)
(S1

− π1) + 2
∂

∂ξ
(P0 +Q0)

∂2S1

∂η2
+ 2

∂

∂η
(P0 +Q0)

∂2S1

∂ξ2

− 2

(
∂

∂ξ
(P0 +Q0) +

∂

∂η
(P0 +Q0)

)
∂2S1

∂ξ∂η
− ∂2

∂ξ2
(P0 +Q0)

∂S1

∂η

− ∂2

∂η2
(P0 +Q0)

∂S1

∂ξ
+

(
∂2P0

∂ξ∂η
+
∂2Q0

∂ξ∂η

)(
∂S1

∂η
+
∂S1

∂ξ

)
. (D.3)
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