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HEAD-ON COLLISIONS OF SOLITARY WAVES

Abstract

The interaction of solitary waves in various physical media is a long time
studied subject in nonlinear wave theory. For overtaking collision between
solitary waves, one can use the inverse scattering transform method to obtain
the overtaking colliding effect of solitary waves. However, for the head-on
collision between solitary waves, one must employ some kind of asymptotic
expansion to solve the original field equations.

This thesis addresses head-on collision problem between two solitary waves.
The head-on collision of solitary waves in shallow water is re-examined upon
discovering the wrongness of the statement about the secular terms in the
pioneering work of Su and Mirie (J. Fluid Mech., 98:509-525, 1980). In the
first part, based on the above argument, the head-on collision of two solitary
waves propagating in shallow water is studied by introducing a set of stretched
coordinates that includes some unknown trajectory functions which are to
be determined so as to remove secularities that might occur in the solution.
Expanding the field variables and trajectory functions into power series, a set of
differential equations governing various terms in the perturbation expansion
is obtained. By solving them under non-secularity condition, the evolution
equations and also the expressions for phase shifts are determined. As opposed
to the result of previous studies our calculation shows that the phase shifts
depend on amplitudes of both colliding waves. In the second part, the head-
on-collision of solitary waves in shallow water theory is examined through
the use of extended Poincaré-Lighthill-Kuo(PLK) method. Following a similar
procedure with the previous part, the speed correction terms and the trajectory
functions are determined. The result obtained here is exactly same with that
found in the first part. In the third part, the head-on collision of the solitary
waves in fluid-filled elastic tubes is studied by employing the extended PLK
method. Pursuing the procedure in the previous part, the speed correction
terms and the trajectory functions are obtained. The results of our calculation
show that both the evolution equations and the phase shifts are quite different
from those of Xue (Phys. Lett. A, 331:409-413, 2004). As opposed to the
result of previous works on the same subject, the phase shifts depend on the
amplitudes of both colliding waves.
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SOLITER DALGALARIN KAFA KAFAYA CARPISMASI

Ozet

Nonlineer dalga teorisinde soliter dalgalarin cesitli fiziksel ortamlardaki etki-
lesimi uzun zamandir tizerinde caligilan bir konudur. Soliter dalgalarin ay-
ni yonde hareket ederken birinin digerini yakalayarak carpigsmasi durumunda,
bu ¢arpigmanin etkilerini ortaya ¢ikarmak igin ters sa¢ihm dontigiimii(inverse
scattering transform) yontemi kullanilabilir. Ancak, z1t yonde hareket eden
soliter dalgalarin kafa kafaya carpigmasi durumunda alan denklemlerini ¢oz-
mek icin bir cesit asimptotik acilim kullanilmalidir.

Bu tezde iki soliter dalganin kafa kafaya carpigmasi problemi incelenecektir.
Su ve Mirie'nin (J. Fluid Mech., 98:509-525, 1980) onciilikk eden caligma-
sindaki sekiiler terimlerle ilgili ifadelerinin yanlighginin tarafimizdan ortaya
gikarilmasi sonucunda, sig sudaki yalniz dalgalarin kafa kafaya carpigmasi prob-
lemi veniden incelenmistir. Ilk kisimda, yukaridaki argiimam temel alarak,
sig suda yayilan iki soliter dalganin kafa kafaya carpigmasi problemi ele alin-
migtir. Bunun igin ¢oziim sirasinda meydana gelebilecek sekiiler terimlerin
ortadan kaldirilmasiyla belirlenebilecek bilinmeyen bazi yoriinge fonksiyon-
lar1 igeren gerilmis koordinatlar kullanilmigtir. Alan degiskenlerini ve yoriinge
fonksiyonlarim1 kuvvet serilerine acgarak, pertiirbasyon agilimindaki cesitli te-
rimleri yoneten diferansiyel denklemler elde edilmistir. Coziimlerin sekiiler te-
rim icermeme kogulu altinda evoliisyon denklemleri ve faz farklarinin ifadeleri
bulunmustur. Hesaplamalar sonucunda, daha onceki galigmalarin aksine faz
farklarmin carpisan her iki dalganm genligine bagh oldugu goriilmiistiir. Ikinci
kisimda, sig su teorisinde soliter dalgalarin kafa kafaya carpigmasi problemi,
genisletilmig Poincaré-Lighthill-Kuo(PLK) yontemi kullanilarak incelenmigtir.
Bir onceki kisimla benzer bir yol takip edilerek hiz diizeltme terimleri ve
yortinge fonksiyonlar1 elde edilmistir. Burada bulunan sonuglarin ilk kisim-
da bulunan sonuclarla tamamen ayn oldugu goriilmiistiir. Ugiincii kisimda
ise genisletilmis PLK yontemi kullanilarak akigkan ile dolu elastik tiiplerde so-
liter dalgalarin kafa kafaya carpismast problemi incelenmistir. Onceki kisimda
uygulanan yontem takip edilerek hiz diizeltme terimleri ve yoriinge fonksiyon-
lar1 elde edilmigtir. Sonug olarak, elde edilen evoliisyon denklemlerinin ve faz
farklarmin Xue'nin (Phys. Lett. A, 331:409-413, 2004) ¢ahsmasimdakilerden
farkli oldugu tespit edilmistir. Ayni konuda daha once yapilan caligmalarin
aksine faz farklarimin carpisan dalgalarin her ikisinin genligine bagh oldugu
gosterilmigtir.
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Chapter 1

Introduction

The interaction of solitary waves in various physical media is a long time stud-
ied subject in nonlinear wave theory. The interaction problem have attracted
considerable amount of interest and curiosity whether the process is elastic or
not since the introduction of the concept of solitary wave. The study of solitary
waves began with the observations by J. Scott Russell [1, 2] over a century ago.
Russell introduced the concept of solitary wave with the following description
[2]: “a large solitary elevation, a rounded, smooth and well defined heap of
water, which continued its course along the channel apparently without change
of form or diminution of speed... Its height gradually diminished, and after a
chase of one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon”. Russell did extensive experiments in a laboratory
scale wave tank in order to study this phenomenon and further investigations
were undertaken by several researchers to understand this phenomenon. In
1895 Korteweg and deVries [3] provided a simple analytic foundation for the
study of solitary waves by developing an equation, now known as KdV equa-
tion, for shallow water waves. Their equation had permanent wave solutions,
including solitary waves.

One of the important behaviors of solitary waves is the interaction of mul-
tiple solitary waves. Interactions of solitary waves can be classified as head-on
collisions (the counterpropagating waves) and overtaking collisions (the co-
propagating waves). The overtaking collision is also called as strong inter-
action which is the consequence of a relatively long interaction time and the

head-on collision of solitary waves is called weak interaction, instead, owing to



its relatively short interaction time. In 1965, Zabusky and Kruskal [4] discov-
ered numerically that the interaction of two solitary waves is elastic in their
study of the continuum approximation to the nonlinear discrete mass string of
Fermi-Pasta-Ulam [5]. Until this time, it was generally supposed that if two
solitary waves collided, the nonlinear interaction upon collision would com-
pletely destroy their integrity and identity. Two solitary waves with different
amplitudes propagating in the same direction can collide, exchange their en-
ergies and position with one another, and, then separate off, regaining their
original forms. Throughout the whole process of the collision, the solitary
waves are remarkably stable entities preserving their identities through the in-
teraction. Each solitary wave reemerges from the collision retaining its original
identity, except for a phase shift, that is, they are shifted in position relative to
where they would have been had no interaction occurred. The taller (faster)
wave is shifted to the right and the shorter (slower) to the left. The features
of the overtaking collision, that were mentioned here, had been revealed by
the foundation of the inverse scattering transform (IST) method which pro-
vides solution to the KdV equation. Since IST gives solutions which are KdV
solitary waves that travel in the same direction under the boundary condi-
tions vanishing at infinity, it can be used to discover the effects of overtaking
collision between solitary waves.

However, for the head-on collision case, some kind of numerical or asymp-
totic method should be employed to study the collision of the solitary waves
propagating in the opposite direction. As is shown in the next chapter, there
are various studies in this regard including Su and Mirie’s fundamental study
[6] in which they employed an asymptotic expansion called the Poincaré-
Lighthill-Kuo (PLK) method. Based on Su and Mirie’s approach, the head-
on collision problems in various physical media had been studied by several
researchers from the time the article [6] was published to present with an in-
creasing amount of interest. This situation motivated us to study the head-on
collision problem and in this manner we examined the Su and Mirie’s approach
to the problem of the head-on collision of two solitary waves propagating in the
shallow water. Su and Mirie [6] introduced a set of stretched coordinates where
some unknown trajectory functions were presented. These unknown functions,
characterizing the phase shifts after collision, are to be determined from the

requirements of non-secular solutions of the field quantities. By expanding the



field variables and the unknown trajectory functions, they obtained a set of
differential equations. They tried to obtain solutions to these evolution equa-
tions under the restrictions of non-secularity of the solution. They made a
statement that “although this term does not cause any secularity at this order
but it will cause the secularity at higher order expansion, therefore, that term
must vanish”. As a consequence of this statement, they were able to evaluate
the unknown trajectory functions, that is, the phase shifts after the collision
had been computed. So this statement is the most interesting part of their
analysis. As a result of our calculations for higher order expansion, we observe
that this is not the case. This observation constitutes the point of origin of
this thesis.

This thesis is organized as follows. In Chapter 2, a review of previous ex-
perimental, theoretical and numerical investigations, the derivation of the field
equations for shallow water waves and fluid-filled elastic tubes and a review of
the reductive perturbation and Poincaré-Lighthill-Kuo methods are summa-
rized. The head-on collision problem between two solitary waves in shallow
water is re-examined in view of the above mentioned observation in Chapter 3,
which includes evaluation of the surface elevation parameter, the axial veloc-
ity parameter and the explicit expressions of phase shifts. Also the differences
between the phase shifts obtained in previous studies and the present work
are discussed. In Chapter 4, head-on collision between two solitary waves in
shallow water is investigated by employing the extended PLK method and
the expressions of phase shifts, surface elevation and axial velocity parameters
are obtained. The variations of the wave profiles for right-going wave before
and after the collision are illustrated. Also, the obtained results are discussed
in comparison with the previous chapter and Su and Mirie [6]. In Chapter
5, head-on collision problem of the solitary waves in fluid-filled elastic tubes
is studied by using the extended PLK method and the differences between
the results of Xue [7], in which the same problem had been studied by using
Su and Mirie’s approach, and the present work are discussed. Finally overall

conclusions are presented in Chapter 6.



Chapter 2

State of the Art and the Summary of Field

Equations

2.1 Solitary Waves

The solitary wave, so-called, occurs as this single entity and is localised, and
was first observed by J. Scott Russell on the Edinburgh Glasgow canal in 1834;
he called it the ‘great wave of translation’. Russell reported his observations
to the British Association in his 1844 ‘Report on Waves’ [2]. Russell also
performed some laboratory experiments, generating solitary waves by dropping
a weight at one end of a water channel. He was able to deduce empirically

that the speed, ¢, of the solitary wave is obtained from
¢ = g(h+a), (2.1)

where a is the amplitude of the wave, h the undisturbed depth of water and g
the acceleration of the gravity. Further investigations were undertaken by Airy
[8], Stokes [9],Boussinesq [10] and Rayleigh [11] in an attempt to understand
this phenomenon. Both Boussinesq and Rayleigh assumed that a solitary
wave has a length scale much greater than the depth of the water. They
deduced, from the equations of motion for an inviscid incompressible fluid,
Russell’s formula for wave speed. In fact they also showed that the wave

profile z = ((z,t) is given by

((z,t) = a sech’{B(z — ct)}, (2.2)



where 372 = 4h*(h + a)/3a for any a > 0, although the sech? profile is only
correct if a < h. These investigations provoked much lively discussion and
controversy as to whether the inviscid equations of water waves would possess
such solitary wave solutions. The issue was finally resolved by Korteweg and
de Vries [3]. They derived a nonlinear evolution equation governing long,
that is, equilibrium level(depth) is small relative to the water wavelength, one
dimensional, small amplitude, surface gravity waves propagating in a shallow

water channel

on 3 jgo (1, 2 1 0%n 1 4
=2 ==+ Zan+ —o—= oc=-h"—Th 2.
or 2\/;85 (277 3773 o0& )’ 3 /(pg): (2:3)

where 7 is the surface elevation of the wave above the equilibrium level h,
a a small arbitrary constant related to the uniform motion of liquid, g the
gravitational constant, 7' the surface tension and p the density (the terms
“long” and “small” are meant in comparison to the depth of the channel).
The controversy was now resolved since the equation (2.3), now known as the
Korteweg-de Vries (KdV) equation, has permanent wave solutions, including
solitary wave solutions. Equation (2.3) may be brought into nondimensional
form as

Uy + 6uty + Ugyy = 0, (2.4)

where subscripts denote partial differentiations. To get the above specific form,
we have rescaled and translated the dependent and independent variables in
various applications to eliminate the physical constants. Any desired coeffi-
cients can be inserted into the equation by such transformations. From the

original form of the KdV equation (2.3), the transformations

1/ 1 1
t= 5 %T, r=—0c V%, U= 577—1— ga

give us (2.4). Note that (2.4) is invariant to arbitrary translations in x and
t since they appear only in the differentiations. Also, because all derivatives
are of odd order, reversing the signs of both x and ¢ does not alter the equa-
tion. Moreover, the KdV equation is Galilean invariant, that is, it remains
unchanged by the transformation

t =t o=z—ca, u,(:v,,t/):u(x,t)——c,
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where ¢ is some constant. This corresponds to a steady moving reference frame
with velocity c.

In spite of this early derivation of the KdV equation, not much progress
is made until a new application of the model equation found in the study
of collision-free hydromagnetic waves by Gardner and Morikawa [12]. Subse-
quently the KdV equation has arisen in a number of other physical contexts,
stratified internal waves, ion-acoustic waves, plasma physics, lattice dynamics,
etc. Kruskal [13] and Zabusky [14-16] showed the KdV equation governs longi-
tudinal waves propagating in a one-dimensional lattice of equal masses coupled
by nonlinear springs, the Fermi-Pasta-Ulam problem [5]. Other applications
to plasma physics were given by Berezin and Karpman [17] and by Washimi
and Taniuti [18] in their study of ion-acoustic waves in a cold plasma. Wijn-
gaarden [19] found it described pressure waves in a liquid-gas bubble mixture.
Shen [20] derived the KdV equation in the study of 3-dimensional water waves.
Su and Gardner [21] and Taniuti and Wei [22] showed it arises from several
general classes of equations. For details and further references see, [23-26].

It has been known for a long time that the KdV equation (2.4) possesses

the solitary wave solution of the form
u(z,t) = 2a*sech’[a(x — 4at — x)], (2.5)

where a and xg are constants and also xg is the location of the center of the
symmetrical wave at time ¢ = 0. Note that the solitary wave moves to the right
at a velocity 4a® which is proportional to its amplitude 2a?, therefore taller
waves travel faster than shorter ones. Zabusky and Kruskal [4] discovered
numerically that these solitary wave solutions have the remarkable property
that the interaction of two solitary wave solutions is elastic in their study of
the continuum approximation to the nonlinear discrete mass string of Fermi-
Pasta-Ulam. The critical observation was that the pulses seemed to retain
their identities after each interaction. Because of their preservation of form
through nonlinear interaction and their resemblance to particles, Zabusky and

Kruskal [4] coined the name soliton for such waves.



2.2 Solitary Wave Interactions

It is well-known that long-time asymptotic behaviour of two dimensional uni-
directional shallow water waves in the case of weak nonlinearity is described
by the Korteweg-de Vries (KdV) equation [3]. Since, the inverse scattering
transform (IST) for exactly solving the KdV equation was found by Gard-
ner, Kruskal and Miura [27], the interesting features of the collision between
solitary waves had been revealed: When two solitary waves approach closely,
they interact, exchange their energies and position with one another, and, then
separate off, regaining their original forms. Throughout the whole process of
the collision, the solitary waves are remarkably stable entities preserving their
identities through the interaction. The unique effect due to the collision is
their phase shifts. It is believed that this striking colliding property of solitary
waves can only be preserved in a conservative system.

The interactions of solitary waves can be classified as head-on collisions
(the counterpropagating waves) and overtaking collisions (the copropagating
waves). According to IST, all the KdV solitary waves travel in the same di-
rection, under the boundary conditions vanishing at infinity [27, 28]; so for
overtaking collision between solitary waves, one can use the IST to obtain the
overtaking colliding effect of solitary waves. However, for the head-on collision
between solitary waves, one must employ some kind of asymptotic expansion
to solve the original field equations. In this regard, it is useful to briefly re-
view the studies on the head-on collision between two solitary waves in the
free surface of an inviscid homogeneous fluid lying over a horizontal bottom.
Byatt-Smith [29] investigated the interaction between two weakly nonlinear
solitary waves travelling in opposite directions and explicitly determined the
maximum amplitude of the collision. When, in the absence of viscosity and
surface tension, two waves of equal amplitude collide, one has the problem of
solitary wave reflection from a vertical wall. For this case the maximum ele-
vation of the wave at the wall, the run-up, exceeds twice the amplitude of the
incident solitary wave. Oikawa and Yajima [30] explicitly computed the spatial
phase shift incurred after collision by adopting a perturbation approach. Max-
worthy [31] performed experiments in a wave tank investigating both endwall

and wave-wave collisions. Results of the experiment show that run-ups are



in qualitative agreement with [29]. However, his measured phase shifts were,
within experimental error, independent of € thus the dependence on € was not
verified with [30]. After that, Su and Mirie [6] carried out a perturbation
analysis of two colliding solitary waves to third order approximation. They
found that, the maximum amplitude during the collision agree very well with
the reflexion experiments of Maxworthy [31]. They are consistently lower than
the wave-wave experiment of Maxworthy. The total phase shifts represent a
retardation of the waves during their collision. However, they do not seem able
to account for the experimental result which measured amplitude-independent
phase shifts. Each solitary wave sheds a secondary wave. These secondary
waves propagate in the opposite direction of their parent waves. Their ampli-
tudes decrease in time owing to dispersion. Maxworthy indicates appearance
of the secondary wave in his reflexion experiment. For a comparison with the
numerical results, we can refer Fenton and Rienecker [32], Cooker et al. [33]
and Craig et al. [34]. As is stated by Cooker et al. [33], the numerical results
on run-up are consistent with the predictions of Su and Mirie [6]. Both Cooker
et al. [33] and Craig et al. [34] have the results correspond to the experimental
observations in Maxworthy [31]. The existence of a residual is qualitatively
consistent with the asymptotic predictions of Su and Mirie [6], however, on a
quantitative level numerical data of Craig et al. [34] are at odds with their

findings.

2.3 Water Waves

In fluid dynamics, the physical quantities, such as mass, velocity, energy, etc.,
are usually regarded as being spread continuously throughout the region of
consideration; this is often termed the continuum assumption and continuum
derivations are based on conservation principles. Now we focus on the results
derived from conservation laws and, in particular, how they relate to water
waves. We will use p = p(a*, t*) to denote the fluid mass density, v = v(x*, t*)
the fluid velocity, P the pressure, F' a given external force, and v the kine-

matic viscosity that is due to frictional forces. In vector notation, the relevant



equations of fluid dynamics we will consider are:

dp B
%—FV'(p’U) = 0,
ov
p(%—F(’U'V)’U) = F—VP+I/AU,

where the former is called conservation of mass and the latter is conservation of
linear momentum. When p = pg is constant, the first equation then describes
an incompressible fluid: V - v = 0, also called the divergence equation. The
divergence and the momentum equations are often called the incompressible
Navier-Stokes equations. We will consider the free surface water wave problem,
which (interior to the fluid) is the inviscid reduction (¥ = 0) of the above
equations; these equations are called the Euler equations.

For our discussion of water waves, we will use the incompressible Navier-
Stokes description with constant density p = pg and we will assume an ideal
fluid: that is, a fluid with zero viscosity. Thus, an ideal, incompressible fluid

is described by the following FEuler equations:

Vv = 0, (2.6)
ov 1
WV = %(F—VP). (2.7)

Suppose now that the external force is conservative, that is, we can write
F = —VU, for some scalar potential U. We can then write the equation (2.7)
as

ov

|

Using the vector identity

U+P)
Po .

(v-V)v:%V(v-v)—vx(va),

gives

1 U+P)‘ 2.8)

%—vx(va):—V<§v-v+ o

Now define the vorticity vector as w = V x v, which is a local measure of
1
the degree to which the fluid is spinning; more precisely, éHV x v|| (note that

|v||* = v-v) is the angular speed of an infinitesimal fluid element. Taking the



curl of the last equation and noting that the curl of a gradient vanishes,

Finally, using the vector identity V x (F x G) = (G- V)F — (F - V)G +
(V-G)F — (V - F)G for vector functions F' and G and recalling that the

divergence of the curl vanishes, we arrive at the so-called vorticity equation:

0

P (w- V) - (v Vw (2.9)

ot
or b

w
=w- 2.1
e =@ Vo, (2.10)
where the notation 5 3
b —ar T V)

have been used to signify the so-called convective or material derivative that
moves with the fluid particle. Hence w = 0 is a solution; moreover, from (2.10),
it can be proven that if the vorticity is initially zero, then (if the solution
exists) it is zero for all times. Such a flow is called irrotational. Physically, in
an ideal fluid there is no mechanism that will produce “local rotation” if the
fluid is initially irrotational. Often it is a good approximation to assume that a
fluid is irrotational, with viscosity effects occurring only in thin regions of the
fluid flow called boundary layers. Since we will consider water waves and will
assume that the flow is irrotational. In such circumstances, it is convenient
to introduce a velocity potential v = V¢*. Notice that the vorticity equation

(2.10) is trivially satisfied since
V x (Vy*) = 0.
The Euler equations inside the fluid region can now also be simplified as
V-v=V- -V =Ay* =0, (2.11)

which is Laplace’s equation; it is to be satisfied internal to the fluid, 0 <
2* < h*(z*,y*,t*), where we denote the height of the fluid free surface to be
h*(z*,y*,t*) and the fluid is supported by a horizontal plane at z* = 0.

10



Next we discuss the boundary conditions that lead to complications; i.e.,
an unknown free surface and nonlinearities. We assume a flat, impenetrable
bottom at z* = 0, so that no fluid can flow through. This results in the
condition o

9 0, z*=0, (2.12)
that is, normal velocity vanishes at the bottom z* = 0. On the free surface

2* = h*(x*,y*,t*) there are two conditions. The first is obtained from (2.8).

0
Using the fact that V and — commute,

ot
or 1. ., U+P\
v (at* +§|va + . ) =0,

which gives
oy 1. ., U+P
R s

— £(t"), (2.13)

where we recall [|v||* = ¢} +}2+1}. Since the physical quantity is v = V¢*,

we can add an arbitrary function of time (independent of space) to ¢,

Y=t 4 | f(T)dT,
/

to get the so-called Bernoulli, dynamic, or pressure equation,

ot 1 U+P
+ 5ol + ==

ot* 2 Lo

0. (2.14)

From now on, we will neglect surface tension and assume that the dominant
force is the buoyancy force, F = —V(pogz*), which implies that U = pygz*,
where ¢ is the gravitational constant of acceleration. Also, we take the pressure

to vanish (i.e., P = 0) on the free surface, yielding:

o~
ot~

1
+ §HV1/J*H2 +gh* =0, =z*=h"(a"y"t"), (2.15)

on the free surface.

We consider the case of a body of water with air above it and let the
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interface be described by
F(z*,y*, 2%, t*) = 0. (2.16)

The second equation governing the free surface is derived from the assumption
that the interface is defined by the property that fluid does not cross it. Hence
the velocity of the fluid normal to the interface must be equal to the velocity

of the interface normal to itself. The normal velocity of a surface defined by

(2.16) is
—Fp

JFE+FL+F

The normal velocity of the fluid is

v-VF
JFE+FL+F

The condition that these be equal is

DF  OF
Dt Ot

+v-VF=0. (2.17)

This shows that if a fluid packet is initially on the free surface, then it will
stay there. It is convenient to describe the surface by z* = h*(z*,y*,t*) and
choose F' = z* — h*(a*,y*,t*) = 0 in (2.17). Then

Dz*  Dh*
Dt*  Dt*
implies
ov*  Oh
- .V h* N O R TR A 2.18
az* at* +v V ) Z ("L‘ 7y ) )7 ( )
Dx* Dy* Dz*
the f f; h h dv = Equati
on the free surface where we have used v ( e D Dt quation

(2.18) is often referred to as the kinematic condition (For a more detailed

discussion, see [35]).
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2.4 Fluid-filled Elastic Tubes

The propagation of linear and nonlinear waves in fluid-filled elastic tubes is a
problem of interest since the time of Thomas Young [36]. The measurement
[37] for the simultaneous changes in amplitudes and form of the flow and
pressure waves at five sites from the ascending aorta to the saphenous artery
in dog shown that the pulsatile character of the blood wave is soliton-like and
it suggests a possible interpretation in terms of solitons. The blood flow in
arteries can be considered as an incompressible fluid flowing in a thin non-
linear elastic tube. Theoretical investigations for the blood waves by weakly
nonlinear theory have been developed by [38—41]. It is shown that the dynamics
of the blood waves are governed by the KdV or modified KdV equations.
The solitary wave model gives a reasonable explanation for the peaking and
steepening of pulsatile waves in arteries. Head-on collision of solitary waves
in fluid-filled elastic tubes (a model for arteries) had been studied by several
researchers [7, 42, 43|, in all of which the method proposed by Su and Mirie
[6] have been employed.

To study the head-on collision of the blood solitary waves, we assume that
the blood waves propagate in a one- dimensional elastic tube, which is deemed
to be a model for large artery, filled with an incompressible inviscid fluid, which
is considered to be a simple model for blood. We also assume that the arteries
are circularly cylindrical homogeneous tube with non-linear elasticity. Then,
the equations governing the conservation of mass and of the balance of linear
momentum in the axial direction may be given as follows, respectively [44],

% + 8?0* (Av*) =0, (2.19)
ov*  ovt 10P*

o o T o =0, (2.20)

where p is the density of fluid, A(x*,t*) denotes the cross-sectional area of the

tube, v* the axial velocity of the fluid and P* the pressure of the fluid.
Equations (2.19) and (2.20) give only two relations to determine the un-

known functions A, v* and P*. In order to have a complete determination of

these field variables, a third equation describing the radial motion of the wall
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Figure 2.1: Small segment of the tube wall and forces acting on this segment.

under the forces exerted by the fluid is necessary (These forces are shown in
Figure 2.1). Thus, by using the assumptions given in [45], this equation can

be given as follows:

S*
B Eh S* (14‘0(@)
2R0 7TR(2J <1+ S* >

27rR(2)

poH 825* *
S
27TRO ot*? ( e)

(2.21)

where py denotes the constant mass density of the wall of the tube, Ry equilib-
rium radius of the tube, H effective inertial thickness, h thickness of the wall
in which the material participates in the elastic deformation, P, the pressure
outside the tube which can be regarded as same as the atmospheric pressure, £
the Young’s modulus, « the nonlinear coefficient of elasticity and S* = A — A,
the change in the cross-sectional area of the tube. Here, it was assumed that
the variable S* ~ 2w Ryu, where u, = R — Ry is the radial displacement. The

incompressibility of the wall and the tissue gives the following equations
RH == R(]Ho, Rh == Roho, (222)

in which Hy and hg denote the equilibrium values of effective inertial thickness

and the thickness of the wall, respectively. Now it is convenient to introduce
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the following non-dimensional quantities
¥ = Xox, t*=Tot, v*=v, P*—P,=pP, S*=nR}S, (223)

where

X — POROHO 1/2 T — PoR%Ho 12 :Eh()
0 20 ) 0 Ehq y Do _QRO‘

Introducing (2.22) and (2.23) into the equations (2.19)-(2.21), the following

non-dimensional equations are obtained

oS ov 0

S+ o+ o (S0) = 0, (2.24)

ov 0P 0 [v?

5T T (3) —0, (2.25)
2 2 25(2

p_ 0°S N S(2+ al) (2.26)

21 Sor | (2+95)

A more detailed discussion can be found in [44-46].

2.5 Perturbation Methods

If one wants to study physical problems then the general equations obtained
from first principles (like the Euler or Navier-Stokes equations governing fluid
motion on a free surface mentioned in the previous section) are too difficult to
handle using linear methods or, in most situations, by direct numerical simu-
lation. Therefore, before we can study the solutions of the governing equations
we must first obtain useful and manageable equations. For that we need to
simplify the general equations, while retaining the essential phenomena we
want to study. For this purpose, we introduce, first, the reductive perturba-
tion method and then Poincaré-Lighthill-Kuo (PLK) method.
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2.5.1 Reductive Perturbation Method

In the study of the asymptotic behaviour of nonlinear dispersive waves, Gard-

ner and Morikawa [12] introduced the scale transformation

5 = eo‘(x—)\t),

r = .

This scale transformation, called the Gardner-Morikawa transformation, may
be derived from the linearized asymptotic behaviour of long waves. Gardner
and Morikawa combined this transformation with a perturbation expansion of
the dependent variable so as to describe the nonlinear asymptotic behaviour
and they arrived the KdV equation as a single tractable equation describing
the asymptotic behaviour of a wave. The reductive perturbation method has
been developed and formulated in a general way by Taniuti and Wei [22],
Taniuti and Washimi [47], Taniuti and Yajima [48] and Taniuti [49].

2.5.2 The long wave approximation

The reductive perturbation method for long waves was established by Taniuti
and Wei [22]. This method is applicable to both dispersive and dissipative

systems governed by the system of equations given as:

ou > 0 0
5 +A + ; 1ja| |1 Haat Kaa W =0, p>2, (2.27)

where U is a column vector with the n components uy, us, ..., u,. Here A, Hg
and K’ are n x n matrices, all of which are functions of U. Introducing the

Gardner-Morikawa transformation

E = e(x—At),
T o= &t
1



we shall assume expansions around a constant solution Uy of the form

= ierj, A= iefAj, HS = Zaﬂﬁj, K’ = iengj. (2.29)
7=t =0 =0 =0

Substituting (2.29) into (2.27) and using (2.28) enables us to rewrite (2.27) in
terms of derivatives with respect to £ and 7. Equating the coefficients of like

powers in € to zero we obtain

oU,

O(eo1y (Ao — M) 5 =0, (2.30)
O(6a+2) : (AO _ )\I) 852—2 aUl + [Ul . (VuA>0] aalgl
s P orU,
+ZH —AH )+ Koo) g =0 (2:31)
=1 a=1

where V,, denotes the gradient operator with respect to U, and U - V,, repre-
sents the operator X7 u;(0/0u;) and Ay is written as U+(V,A)g. Introducing
the right eigenvector R of A corresponding to A, so that

(Ag — MR =0, (2.32)
we can solve (2.30) in the form
U1 = ¢1(§, T)R + Vl(T) (233)

where ¢, is one of the components of U;. Here V'; is an arbitrary vector valued
function of 7 to be determined according to an appropriate boundary condition
for U;. In order that (2.31) is solvable algebraically for OU5/0¢, there must
exist a compatibility condition. To obtain this condition we multiply equation
(2.31) on the left by the left eigenvector L, when we get

(9U1
87’

P
L-[U,-(VyA) 8U1 LZH (~\H’ + K" )a Ui (2.34)

L _
=1 a=1 aép
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When the boundary condition for U} is such that U — Ug as x — 00, so that
U, —» 0asz — oo, (i > 1), we may set V; equal to zero in (2.33). Using
(2.33) with V'; =0 in (2.34), we get

O O PP

E -+ Cl¢1a_£ + Co 851’ =0. (235>

where the constants ¢; and ¢y are given by

¢ = L-[R-(VyAWR)/(L-R).

= L-iﬁ(—/\Hgo+K§0)R/(L-R). (2.36)

f=1 a=1

When p = 3, equation (2.35) is the KdV equation, whereas for p = 2, equation
(2.35) is Burgers’ equation for the one dimensional flow of a compressible

viscous fluid.
2.5.3 Poincaré-Lighthill-Kuo (PLK) Method

This method goes back to the nineteenth century when astronomers, such as
Lindstedt [50], Bohlin [51] and Gyldén [52] devised techniques to avoid the
appearance of secular terms in perturbation solutions of differential equations.
Poincaré [53] devised a method for finding the periodic solution of a system of

first order equations

ax;
dt

Xi(xy, 29, ... s €), (1=1,2,...,n), (2.37)

where t is the time variable and € is a small parameter representing the pertur-
bation influences. The equations with € = 0, corresponding to the unperturbed
system, are particularly simple, and a periodic solution with period Ty can be
easily found. The essence of Poincaré’s method is the expansion of the per-
turbed solution in the parameter €. Not only the variables

T; = :EZ(-O) + ex(l) + egxl(?)

)

+ ...
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are expanded, but also the period T'
T=To+eh+ETh+....

However, for nearly sixty years no extension of the principle of this method was
made, and the full potentiality of Poincaré’s invention remained unexploited.
Lighthill [54] developed a technique for rendering approximate solutions to
physical problems uniformly valid and introduced a very important extension
of Poincaré’s method. Lighthill’s objective was to improve the well-known
method of perturbation for calculating the approximate solution of a physical
problem. The perturbation method is based upon the concept of expanding
the exact solution in a power series of the small parameter ¢, the zeroth order
solution being independent of €, the first order solution proportional to €, etc.
This method, elementary in principle and straightforward in execution, is very
effective and yields useful results for a large class of problems. Nevertheless
there are problems, not at all infrequent, where the zeroth order solution con-
tains a singularity at a point or on a line within the domain of interest. Then
not only will the singularity again appear at the same location in the higher
order solutions, but it will become progressively more severe as the order of
the solution increases. The power series expansion in € breaks down near such
singularities, and the classical perturbation fails to give a usable solution near
the singular points.

Lighthill’s method is designed to eliminate such difficulties and to render
the expansion uniformly valid, or of uniform accuracy, over the whole domain
of interest. The principle is to expand not only the dependent variable u, but

also the independent variables x and y in power series of €. Then

u = u0(£7 77) + €U1(§,7]> + 62“2(57 77) + .. ) (238>
=&+ eri(6,m) + Exa(En) + .., (2.39)
y=n-+en(&n) +Eya(&n) + .., (2.40)

where &, n take the place of the original independent variables x, y. If we
neglect the higher order terms in u of (2.38), then the approximate solution is
simply the zeroth order perturbation solution with the coordinates stretched
or distorted by the transformations (2.39) and (2.40). This fact has led several
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authors to call Lighthill’s method, the method of coordinate perturbation or
method of strained coordinates.

Lighthill applied his method to problems involving partial differential equa-
tions when the zeroth order solution is obtained from a reduced linear equa-
tion of equal order as the exact equation. It soon becomes apparent, however,
that Lighthill’s original purpose of uniform validity throughout the domain of
interest cannot always be realized. In many problems a good zeroth order ap-
proximation can be obtained only if a “boundary layer” solution is used. Kuo
[55] first recognized this necessity in his solution of the problem of the lami-
nar incompressible boundary layer on a flat plate and extended the Poincaré’s
original concept.

To illustrate the principle of the PLK method, let us consider the following

first order ordinary differential equation
du

- =0 241

(x + eu) o +u , (2.41)

which can also be written as

Then by integration, we obtain

2

zu+ e% = Cy. (2.42)

If we impose the boundary condition u(1) = 1, the exact solution of the equa-

tion (2.41) is
x r\2 2
u=-24\/(5) +Z+1 (2.43)
€ € €

Now let us apply the classical perturbation method for the equation (2.41),

i.e., expand u in powers of €
u(x) = uo(x) + eur () + Eug(w) + . ... (2.44)

Substituting (2.44) into (2.41), and then equating the like powers of ¢, we have

du
O(e°) : :Ud_xo + ug =0, (2.45)
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Ofe) : T +up = —Uo (2.46)
du du du
2 22 — g, 270
O(G ) T dr + U9 Ug dr Ul dr . (247)

Then the solution of the O(e") equation with the boundary condition u(1) = 1
yields
1
= —. 2.48
o) = = (2.48)
Substituting (2.48) into (2.46), we obtain the solution of the O(¢) equation as
1 G
W)= sty
L : L 1
But now the boundary condition requires u; (1) = 0 which gives C; = 5 Then
we have

12

w(z) = % (1 _ i) | (2.49)

Similarly, for the solution of the equation (2.47), we obtain

us(z) = % (1 - %) - % (1 - %) | (2.50)

The function ug(x) has a singularity at x = 0, and (2.49) and (2.50) show
that this singularity becomes worse as the order of the perturbation solution
is increased. The solution so obtained is thus worthless near z = 0.

Now let us apply a different procedure, expand both v and x in powers of
e as required by the PLK method:

u=up(&§) +eus (&) + ...,

r=E&+er1(§)+.... (2.51)

The differential equation (2.41) can now be written as

d d
(x + eu)d—u + ud—g =0, (2.52)
where p
i /
d—§:1+ex1(§)+....
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By introducing (2.51) into (2.52) and equating the like powers of ¢, we obtain

O(e°) fE +uo =0, (2.53)
dul dUO dIl
Cotm e B 2.54
O(e) 19 i + Uy (21 + o) dé U dé (2.54)
Now the solution of (2.53) gives
C
uo(§) = ?2

If we impose the condition z1(1) = 0 such that z = 1 for £ = 1, then uo(1) =1
is required by the boundary condition u(1) = 1. Thus

uo(§) = % (2.55)
By introducing (2.55) into (2.54), we obtain
d 1dx, 1 1

Now, if we ignore z1(€), the equation (2.56) yields the same solution as (2.49),
in which the singularity becomes worse than the lower order solution as men-
tioned before. In order to avoid this, we take advantage of the additional

freedom in the choice of z; by setting

1dr, 1 1
it (2.57)

gdg et T g
The solution of (2.57) with the boundary condition z1(1) = 0 is

n(€) =3 (1 - 6_12) . (2.58)

Now with z1(£) so determined, the solution of the equation (2.56) with the
boundary condition u;(1) = 0 yields u; = 0. Then, up to this order of approx-

imation, we have
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1

Now the interesting fact is that by eliminating £ from the pair (2.59), we have
exactly the solution for u as given by (2.43). Therefore in this case the PLK
method not only removes the difficulty of the singularity at = 0, but yields a
solution which is, in fact, the exact solution. More detailed discussions about
the PLK method can be found in Tsien [56] and Nayfeh [57].
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Chapter 3

Re-examining the Head-on Collision Problem

Between Two Solitary Waves in Shallow Water

3.1 Introduction

It is well known that one of the striking properties of solitons is their asymp-
totic preservation of form when they undergo a collision, as first remarked by
Zabusky and Kruskal [4]. The unique effect due to collision is their phase
shift. In a one-dimensional system, there are two distinct soliton interactions.
One is the overtaking collision and the other is the head-on collision. Because
of the multisoliton solutions of the Korteweg-de Vries (KdV) equation, the
overtaking collision of solitary waves can be studied by the inverse scatter-
ing transformation method [27, 28] and Zou and Su [58]. For the numerical
analysis of overtaking collisions of solitary waves it is worth of mentioning the
works by Li and Sattinger [59] and Haragus et al. [60]. However, for the head-
on collision between two solitary waves, one must examine the solitary waves
propagating in opposite directions, and hence we need to employ a suitable
asymptotic expansion to solve the original conducting fluid equations.

There have been several attempts to resolve the head-on collision problems
in various media (see, for instance [29-31, 61, 62]). In this regard a fundamen-
tal approach for the study of head-on collision problems had been laid down
by Su and Mirie [6], in which the Poincaré-Lighthill-Kuo (PLK) method had
been employed for the asymptotic analysis of such collision problems. The

PLK method is just the combination of the classical reductive perturbation
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method [22] with the strained coordinates. Su and Mirie [6] introduced the

following stretched coordinates

e2h(z — Ct) = & — ekd(&,n),
€2z + Cpt) = n — elp(€,m), (3.1)

where € is the smallness parameter, C'r and C', are the speeds of right and left
going waves, k and [ are the wave numbers of the right and left going waves,
respectively, 0(£,n) and ¢(&,n) are the trajectory functions which are to be
determined from the requirements of non-secular solutions of the field variables.
By expanding the field variables and the unknown trajectory functions 6(&, )
and ¢(&,n) into asymptotic series in €, they obtained a set of partial differential
equations. They tried to obtain solutions to these evolution equations under
the restrictions of non-secularity of the solution.

In their derivation Su and Mirie [6] made a statement, which is the most
attractive point of their analysis, that “although this term does not cause any
secularity at this order but it will cause the secularity at higher order expan-
sion, therefore, that term must vanish”. Assuming that this statement is cor-
rect, several researchers (see, for instance [42, 43, 63-70]) studied the head-on
collision problems in various physical media and published them in various
respected journals. But our calculations for higher order expansion showed
that the term mentioned in their work does not cause any secularity in the
solution; it rather occurs in the next order equation. This means the order of
trajectory functions should be €2, not e.

In this chapter, based on the above argument, we have studied the head-on
collision of two solitary waves propagating in the shallow water by introducing
a set of stretched coordinates in which the trajectory functions are of order
of €2. Taking the non-dimensional form of the field equations used by Su and
Mirie [6] and expanding the field variables and trajectory functions into power
series of ¢ we obtained a set of differential equations governing the various
terms in the perturbation expansion. By solving these equations under the
non-secularity conditions we obtained the evolution equations which give the
solitary wave solutions for both right and left going waves. Moreover, by deriv-
ing non-secular solutions for € order equations we obtained some restrictions

which makes it possible to determine the trajectory functions of order 2. Us-
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ing the conventional definition of phase shifts we determined the expressions of
phase shifts of right and left going waves. As opposed to the results of previous
studies our calculation shows that the phase shifts depend on both amplitudes

of colliding waves and they are order of €.
3.2 Basic Equations

We consider a plane irrotational flow of an incompressible fluid. Let ¢*(z*, y*, t*)
be the velocity potential related to the velocity components u* and v* in the

x* and y* directions, respectively, by

.oy . oY
= 5 vt = o (3.2)

u

Then the Laplace equation (2.11) reads

aZw* (921/1*
oz T e 0. (3.3)

A

r/ h*(x*,t*)

ho

*

X

A4 }X*
VANAN AN AVAN AV AV A Ay AN A Ay Ay Ay AN ey Ay eV

Figure 3.1: The geometry of the shallow water wave problem

The boundary conditions (2.12), (2.15) and (2.18) become

v+
oy*
oh* oy ohr 0y
o oo Oy

=0 aty =0,

*

=0 ony*=h"
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+g(h* — hg) =0 ony* = h*, (3.4)

o 1| o\ (oyr?
ot~ +§ [(8x*> +(8y*)

where g is gravity acceleration of the earth. At this stage it is convenient to

introduce the following non-dimensional quantities

B\ /2
= hOxa ?J* = hoyv tr = (_0) t
g

W= ho(1+¢), o = (ghd)"* v, (3.5)

where hy is the still water level from the horizontal bottom. Introducing (3.5)

into (3.3)-(3.4), the following non-dimensional equations are obtained

oY PP

era—yg_o, (3.6)
oy B

8_3/_0 at y =0,

%ﬂLa—w%—a—w:O aty=14¢,

ot  Odxdx 0Oy
o 1| [ov\:  [O0v\?
B3

Here we seek a power series solution for 1 of the form

YC=0 aty=1+C (3.7)

)= Z an(z,t)y*". (3.8)

n=0
Introducing (3.8) into the Laplace equation (3.6) we obtain

1 82a0 1 84a0

ST 2T Mo

(3.9)

Denoting the value of ¢(x,y,t) at y = 0 by ¥(z,t), the solution (3.8) can be

written as follows

W = ; ((_1)7.1 OV on. (3.10)

The solution (3.10) also satisfies the boundary condition at y = 0. Using the
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other boundary conditions we obtain

a 2n+182n
X TR I

ow 0 w? & L1+ 0w
o or {C MR B C il P

n=1
2n
1 2n\ 0w 0% M
— 1™ —_— =0 3.12
+y 0 () o e } | (3.12)
0 2
where w = 8_ and < n> is the binomial coefficient.

ox m

3.3 PLK Method

As stated in the Introduction section, following Su and Mirie [6], we introduce

the following stretched coordinates

e2k(z — Crt) = & — ekB(E, ), (3.13)
e2l(z + Cpt) =1 — eld(&,7), (3.14)

where € is the smallness parameter representing the order of nonlinearity, k
and [ are the dimensionless wave numbers of order unity for the right and left
going waves, respectively, and Cr and (', are the speeds of right and left going
waves, 0(&,n) and ¢(£,n) are two unknown functions to be determined from

the solution. Then, the following differential operators can be introduced:

B o e ) 000 90 0
&—FCR%_B(CR—FCL) [ an—l-dfl (8778& agan)] (3.15)
) o e d o6 0 ¢ O
8t_CL8x_ D(CR+OL) |:k‘a€—|— kl(afan a7785)], (316)
where 20 00 90 96
o o . e _ 2
p(1-a) (1-a2) -
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Introducing (3.15) and (3.16) into (3.11) and (3.12) we obtain

8 0 0

where F is defined by

Fo=% (1= Cru)(w+() + 5 ;I:Cw+2(_1>n<1 +¢)*

(2n)!
0?"w (1+¢) 0*w 1 M
x [8258372”—1 + 2n 4+ 1 Ox2n 5 Z: < ) ox™
aQn—mw
X 8x2n_m] (3.19)

For our future purposes it is convenient to introduce the following change of
dependent variables

w + ( = 2eaq, w— (= —2€f. (3.20)

Then, the equation (3.18) takes the following form

Oa 00 0a 00 0a
92 el il
E(CR+OL) |:la E/{Zl <(977 85 85 an>:|

+{§£ z3+ek1[§(9 ¢>ag aaf( — @)= H =0.  (3.21)

A similar expression is valid for  provided that («, (), (&,7), (k,1), (0,9)
and (Fy, F_) are replaced with each other. We shall assume that the field

quantities may be expanded into asymptotic series in € as follows:

«

)

(& m)
BEmn) =B+ e +eB+ ...,
(&,m) = €0y + €202 + ...,
H(&,n) = €py + Py + ...,
Cr=1+eaR; + a*Ry + ...,

2
=g+ ey +€ag+ ...,

>

Crp=1+¢eL;+ b Lo+ ... (3.22)
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Here it is to be noted that the terms 6y and ¢g in Su and Mirie’s [6] work are
set equal to zero. This means that in the present work the order of trajectory

functions is assumed to be of order €.
3.4 Solution of the field equations

Introducing (3.22) into (3.21) and setting the coefficients of like powers of €

equal to zero the following sets of differential equations are obtained

O (€) equations:

day . 0B .
By =0 e =0 (3.23)

the solution of which yields

Qo = af(f)a BO = bg(n)v (324>
where f(£) and g(n) are two unknown functions to be determined from the

solution, and a and b are some constants characterizing the wave amplitudes.

O (62) equations:

a 1 1" 2 " /
41(%1 + gk?’ao + gl?’ﬁo — lag + Bo) By + (Bkay — ko

— 2akR;)ay = 0. (3.25)

Integrating equation (3.25) with respect to n and setting the secular terms

equal to zero we obtain

Ri==, kK*=3a, f +3ff —-f =0, (3.26)
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and
7 ab b? abk
o= 20" + g = 59+ Fi(&) + - f M(n), (3.27)

where M (n) is defined by

M(n) = /g(n/)dn'. (3.28)

Similar expressions are valid for 5; by making proper changes between oy <+ (31,
f <> g, etc.. The result will be as follows

Ly = % P=3b, g +399 —g =0, (3.29)

and 7 b 2 bl

2 9 a a 2 a ’
_ T ab @ avt .
b=t Lig - Cravan + Deve,  630)
where N (£) is defined by
£

N(E) = / F(€)de (3.31)

Here F1(§) and G1(n) are two unknown functions whose governing equations
are to be obtained from the higher order expansions, R; and L, are the speed
correction terms of order € for the right and left going waves, respectively.

Su and Mirie [6] stated that the terms f'(§)M(n) in equation (3.27) and
g' ()N (&) in equation (3.30) do not cause any secularity at this order but they
will cause secularity in the next order equations. Therefore, these terms should
be eliminated by introducing the functions efy(n) and epy(€) in trajectory
functions (For further details, see Appendix A). But as will be shown in the
solution of the next order differential equations these terms do not cause any

secularity; therefore, efy(n) and epo(£) must vanish.
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@) (63) equations:

From the master equation (3.11), for this order, the following equation is ob-

tained
4l%+ak8—3(a —B)—Sbka—3(a — b)) + ko é(i’)a — /)
n PIE 1 1 oeon 1 1 085 1 1
o3 0 0 oy
- 2bl8_773<a1 — b)) — la_n [Bo(ar + )] — kﬁoﬁ_ﬁ(al +51) — ak8_§
oo ’ aﬁ / 3 v
+ (bl + 3layg) 3—771 + 3kayon — laoa—nl — koyBr — 1—Oa2k:a(() )

9 3 i 3 "
- %b%@gv) + <Za2k + 3akﬁo) ay + (ZbQZ + 6blag + 3blﬁo> 8

! 17 ! ! 1 ae ! !
+ 3akanan + <3bk:a0 + 6wa) By + 4“0_7710‘0 —2a%kReap = 0.  (3.32)

When the equation (3.32) is integrated with respect to 1 there might be two

"
types of secularities. The first type of secularity is of the form / M (n/)dn/ and
"

the second type is proportional to n. Luckily, the coefficient of / M (n,)dn/ in

equation (3.32) vanishes identically. This means, as opposed to the statement
n

by Su and Mirie [6], there is no secularity of the type / M(n)dn' at this
order. Removing the secularity of other type, i.e., the coefficient of n gives the

following evolution equation for F}(§)
111 / / ]_9 ’ 9 / 3 2 /
Fy +3(fF1)—F1:(2R2—%)f + fE (3.33)

In order to obtain the localized progressive wave solution for the equation
(3.33), one can integrate (3.33) with respect to ¢ and use the localization
condition, i.e., f and its various order derivatives vanish as & — +oo. Then

we have " . )
B+ (3f = DF = 2Ry = o) + o + 11 (3.34)

As described by Demiray [71, 72|, F; = f"is one of the solutions of the
homogeneous equation in (3.34). Therefore, the first term on the right-hand

side causes the secularity in the solution of F; and the coefficient of f must
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vanish

19
Ry = 10 (3.35)
We shall seek a solution for F; of the form
_ aS 2 (€
Fy, = a;q sech 5 + ay sech 5 ) (3.36)

where a; and ay are constants to be determined from the solution of (3.34).

Taking the derivative of F} twice, we obtain
1! 3
F| = —5a, sech® (g) + (4ay — §a2) sech* (g) + ag sech? (g) . (3.37)

Inserting (3.36) and (3.37) into (3.34) and setting the coefficients of sech® (g)

and sech? (%) equal to zero, one obtains

1
a; = —g, o = 1. (338)

Then the particular solution of the differential equation (3.34) reads

Fi=f- éf% (3.39)

Similarly, for the left going wave one obtains

19 1
Gi=g—-g* (3.40)

Ly = —
2740 8

Here R, and L, are the speed correction terms of order €% for the right and

left going waves. Introducing (3.39) and (3.40) into the expressions of a; and

B1 we have
2 8< W - af) — S0P - 2a0) + Lo+ GFM, ()
By = §(7a2f2 —0°g%) - é(azf —2%g) + ° fg + Z—ZZQIN (3.42)
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Inserting (3.41) and (3.42) into the equation (3.32) the function ay is found to
be

4
s :%azbfg 9ab2fg—|—2ab2fg + 35 2bf2 7Ob3g—|— ?)—L;)b?’g2
1 3ab2k2 9a62k;2 abk
—b3g8 — 204+ —135 9a — b
TRV T e f9 T g Y +16l[ af = 9a =]
abl 7ab2k: /
M+ —— —9
x f M+ 6k {afg bg + Thgg + fg} 161 f
2 ’ ab2k2 2 / ’ CLbZk // ’ ’
_ M M
X/gd?7+1612 f 2f g d77+16[f g Mdn
— akf 0, + > Fy(€). (3.43)

A similar expression may be given for 3. Recalling the expression of g(7n), i.e.,

g= Sech2 —= and M = / d77 the following relations may be obtained

/ / / 2
/gMdn = —2g, /g Mdn =§M(9—1),

[ = Smig +2) (3.44)

The integration constants were neglected in the above relations. Since, as can
be seen from the equation (3.43), the terms including the integrals given in
(3.44) are all functions of the variable  except the integrals themselves. If
the relations (3.44) are substituted into (3.43) without neglecting the inte-
gration constants, then the products containing integration constants will be
the functions of ¢ only, that is, they can be inserted into the function Fy(§).
Substituting (3.44) into (3.43) and using the relations k* = 3a and [* = 3b we

have

1()39

1 9 1
Qg :ZCLQbfg — gabeg + 2ab*fg* — —a2bf29 10

43 . 5 1 4 3 abk
+ 32b g°+ 321) g 16l [3baf — 9a—|—3b+3bg]f M
abl
—akf 81—1—— afg —2bg + Thgg —I— fg N +a*Fy(€).  (3.45)

16k
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By making a proper substitution a similar expression may be given for f as

1
b =1ab2fg—9a2bfg+2a2bf29 b fg? ol
4 3 3 3 l
3 a’ f? —|— 7+ 6k [35bg — 9b+3a+3af]
bk:
— blg ¢1+% bf'g—2af +Taff + = fg M+ BGo(€).  (3.46)

As can be seen from equations (3.45) and (3.46) the terms f'M(n) and
g'N(€) appearing in the expressions of «; and (31, respectively, do not cause
any secularity in the solution of ay and ;. Therefore the statement by Su
and Mirie [6] is incorrect. However, as was stated before, some of the terms
appearing in the expressions of ay and 5 (The equations (3.45) and (3.46) )
may cause additional secularity in the expressions of as and [s.

There appears to be two types of secularity in the solution of O(e*) equa-
tion. As was seen before, the first type of secularity results from the terms

proportional to & and n which will be studied later. The second type of sec-
U

ularity occurs from the terms proportional / N(€)d¢ and / M(n)dn as
£(n) — +oo. Here we shall first consider only the parts of O(e*) equations
n

leading to / M (77/, T)dn' type of secularity. Similar expressions may be valid

/ N(¢ df type of secularity.

For this purpose we consider the following part of the O(e*) equation (The
complete O(e*) equation is given in Appendix B).

z% T ak 5;< B - %‘z Tk i<ao[3@2 )

+ 3ak:oz0§—;(a1 Bi) — ia kaa—;( — 1) + a k?aa—;(al — B1)
- 3aka8%‘§ ~ 53¢ k%? + kay 65(3041 — B1) — kB g(041 + B1)
+ 3akay By + %a?’k (wid) _ %a%a((;’) - Zanaoaév)
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9 3 " 1" 57 3
— Zan%a ) _ Bakaoao + 4a2k‘040040 20 3ka0 + 3ak <a0>
3 1 /
+ 2(12/{85(@0%) —2R3a’ka, = 0. (3.47)

0
A similar expression can be given for 41 % We split (3.47) into two parts

which contain the variables s and (a1, f1, f2), respectively. Then, we obtain

Aoy day 0 B 35a3bk? 63 3 9
3 2 85051 8 ’ 8041 3 2 83061 19 2 8041
10@]{855 —|—3ak8§ (a08£)+4ak8§3 50 k8§
0 83 0
+ 37€Oé1a&§1 - k8§ (1Br) — 8?32 - ka—g(aoﬁz)
371.2
— “12’; (Zf“ — 213+ 6f2) : (3.49)

where the identity (f)% = f2— % is used. As might be seen from the equations
(3.48) and (3.49), the integration of these equations with respect to n cause
secularity in the expression of az. Similar type of secularity also occurs in the
expression of J3. In order to remove the secularities, the trajectory functions

f, and ¢, should be in the following form

_9abf/ 9ab /f (3.50)

To remove the secularities of the type 1, one can use the equation (3.47) to
obtain the evolution equation for F5(£). In order to remove the secularity, the

following equation must be satisfied

lll

+(3fF) — (R) = 5(f), (3.51)

where S(f) is defined as follows

S(f) = (2Rs — —)f - @ﬂ (% + ;—a) e (i’gé + ;) £ (3.52)
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Integrating (3.51) with respect to £ and using localization condition, we obtain

+B7 - DR =R - f - Tt (T ) £

(?23 ) f2 (3.53)

Since the first term in the right-hand side of (3.53) causes the secularity in the

solution of Fj, the coefficient of f must vanish

25

—. .54
112 (3:54)

3:

We shall propose a solution for Iy of the following form

Fy = by sech® (g) + by sech? (g) + by sech? (g) (3.55)

where b; are constants to be determined from the solution of (3.53). Carrying

out the derivative of F, we obtain

21
Fy=— ?bl sech® <g> + (9b; — 5by) sech® (g)

+ (4by — ;bg) sech’ (g) + bs sech? (g) : (3.56)

Inserting (3.55) and (3.56) into (3.53) and setting the coefficients of sech® (g) ,

sech® <g> and sech? (g) equal to zero, we have

197 217 3 43 1
bl—ﬁ, bg——<ﬁ+@>, b3—4—0—|—%. (357)

Then the particular solution of the differential equation (3.53) can be written

197, (217 2, (43,1
=160/ (160 16a)f (40 s)f' (3:58)

Similarly, for other unknowns we have

55 197 217 3 43 1
L= — = B - ==+ =4 —+—g. .
3 Ge g (160 * 16b) * (40 * 8b> g (3:59)

as
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Here R; and Lj correspond to €@ order speed correction terms of the right and

left going waves. Then, the final solution for as and (3, take the following form

]‘2 9 2 2 2 12 2 133 4332
——a%bfqg — Zab 2ab — —a% —b b
az =7a fyg 3@ fg+2ab°fg T fg+32 g+ 350

7 197 217 , 3 43, 1
g 22 (2 2 2 g2 * 03 Lo
1009 160/ (160a +16“)f +<4oa +8a>

abk ’ abl ’ ’
><f+1—&(—af—9a+3b+3bg)fM+m—k <afg — 2bg

!/ k /
+7bgg + an g> N, (3.60)

1 9 1 1 43
—_ b2 _ Y 2b 2 2b 2. = b2 2 33 Y 32
B2 1% fg 3@ fg+2a"bfg T Ig +32af +32af

1 21 4 1

1600 ' 16 405 8
abl / abk / /
><g—|—16—k(—bg—9b+3a+3af)g]\f—|—1—6l(bfg—?af
;b
+7aff -I—Efg)M. (3.61)

Thus, for this order, the trajectories of the solitary waves become

e2k(z — Crt) = & — kb, + O(),
e2l(x + Cpt) = n — €l + O(e%). (3.62)

3.4.1 Phase Shifts

To obtain the phase shifts after the head-on collision of solitary waves charac-
terized by a and b are asymptotically far from each other at the initial time
(t = —00), the solitary wave a is at £ = 0, n = —o0, and the solitary wave b
is at n = 0, £ = +o0, respectively. After the collision (f = +00), the solitary
wave b is far to the right of solitary wave a, i.e., the solitary wave a is at £ = 0,
n = +o0, and the solitary wave b is at n = 0, { = —oo. Using (3.50) and (3.62)
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one can obtain the corresponding phase shifts A, and A, as follows:

Aa == 61/2]{?(ZE — CRt) ‘5:0’77:00 —61/2]€(ZL’ — CRt) |§:0,77:—oo

/

+o0
_ okab

——e5295(0) [ gty

—00

9]€ab ’ /
__e / o) (3.63)

+

Olab [, .

=2 d¢ . 3.64
o [ 1€ (3.6
Using the explicit expressions of f(§) and g(n) the phase shifts are obtained
as

A, = —¢ . Ay = (3.65)

Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.

3.5 Result and Conclusion

Starting with non-dimensional field equations (3.11) and (3.12), introducing
the stretched coordinates with trajectory functions of order € and expanding
the field variables and trajectory functions into power series in €, we obtained a
set of differential equations governing the various terms in perturbation expan-
sion. By solving these differential equations under the restriction of non-secular
solution we obtained evolution equations governing the colliding solitary waves
and trajectory functions. Remembering the change of variables (3.20), the sur-

face elevation parameter ¢ and the axial velocity parameter w may be given
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as follows

Cze{af—i—bg—i—e F (a2f2—i—b2g2) +%(a2f+b2g) + %abfg

1

abk/ abl/ 101 1
AOF a4 QO 2 | 290 (38 p33) _ L (4342
TR }“ [80 G G

+b°g%) — % (a®f*+b°¢%) + g (a®f +b%g) + % (a*f + b%g)

31 7 bk /
+1—6ab (af?9+bfg%) — gab<a +0)fg+ % (6aff —(11a

! ’ bl ! bl / !
30 f +Abf g+ —fg ) M+ 22 (6bgg — (116 — 3a)g
k 16k
’ a/k ’
+afg + 5] g) N] +} (3.66)
3 abk
_ _ 242 | 12 2 D9 32
w—e{af bg—l—e{(af +bg)—|—2(af bg)+—4lf]\/[

_a_bl/ 2933_33_2_7 302 13 2
4ng]—i—e [5(af bg) 10(af bg)

3 o0 2oy, Log. g Lo,
16(af bg)—|—40(af bg)—|—8(af b’g)

33, o 11 abk ,
—16ab(af g—bfg’) + Sab(a—b)fg+ 16l (—Saff
’ ’ bl ’ abl ’ ’
—(Ta —3b)f +2bfg—Efg M+16_/€ 8bgg + (7b — 3a)g
’ a/kf ’

Using the conventional definition of phase shifts we obtained the explicit ex-
pressions of them. As opposed to the result of previous works on the same
subject in our case the phase shifts are found to be depend on amplitudes of

both waves. We further noticed that the order of phase shift is €* rather than
€.
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Chapter 4

Head-on Collision Between Two Solitary
Waves in Shallow Water: The Use of the
Extended PLK Method

4.1 Introduction

In Chapter 3, we have studied head-on collision problem between two solitary

waves in shallow water through the use of strained coordinates of the form

e%k‘(a: — Crt) =& — ekb(&, ),
ezl(z 4+ Cpt) =1 — eld(£,n),

and ended up with a set of ordinary differential equations as the evolution
equation whose solutions gives approximate progressive wave solutions to the
field equations. In practice, we are concerned with approximate solutions,
not necessarily of progressive type. In this case we need evolution equations
contain both space and time derivatives. For that purpose we shall introduce
a different set of stretched coordinates so called the extended PLK method
which is the combination of the classical reductive perturbation method and

the strained coordinates. We introduce the stretched coordinates as

61/2(1’ — t) :f + GP(T) + €2P(57 m, 7—)7
61/2(£E —+ t) =n+ EQ(T) + €2Q(£7 n, T)a

/%t =T,
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where € is the smallness parameter measuring the weakness of dispersion
and nonlinearity, p(7) and ¢(7) are two unknown functions characterizing the
higher order dispersive effects (Demiray [71, 72]), P(&,n,7) and Q(&,n, 7) are
two unknown functions characterizing the phase shifts after collision. These
unknown functions are to be determined from the higher order perturbation
expansions so as to remove possible secularities that might occur in the solu-
tion.

Expanding the field variables and these unknown functions into power se-
ries of ¢, introducing these expansion into the field equations and setting the
coefficients of various powers of ¢ equal to zero we obtained a set of partial
differential equations. By solving these differential equations and removing
possible secularities that might occur in the solution we obtained various or-
der evolution equations and restrictions that make it possible to determine
the unknown functions. Seeking a progressive wave solution to these evolution
equations we obtained the speed correction terms and the phase shifts. It is
observed that the result found here is exactly the same with one obtained in
the previous chapter. The variations of the wave profiles of right-going waves
before and after the collision are depicted on Figure 4.1. It is seen that the
wave profile before the collision is symmetric, whereas after the collision it is
unsymmetrical and tilts backward with respect to the direction of its propa-

gation.
4.2 Basic Equations

To study the head-on collision problem in shallow water theory, the equations
(3.11) and (3.12) can be rewritten as follows:

aA o R % 1 A\ 2n4-1 92
—C+—{(1+C)w+2(—1)"((;§31>! ax;:} =0, (4.1)

n=1
ow 0 |, @ X, (140 | 9w
o " or {C Tt ;(_1) @n) | ooz
1 m (20 O™ 0P
+5 ) (-1) (m)ax—mW }:o, (4.2)
m=0




2n
where w = e and ( ) is the binomial coefficient. Here, the variables
x m

defined in Chapter 3 are relabelled as ( — f , Y — é and U — &.

4.3 Extended PLK Method

For our future purposes, we introduce the following stretched coordinates

e2(x—t) =E+ep(T) + €P(En, T),
(x4 t) =n+ eq(T) + €Q(E,n, 7),

&2t =, (4.3)

N NI

€

where € is the smallness parameter measuring the weakness of dispersion
and nonlinearity, p(7) and ¢(7) are two unknown functions characterizing the
higher order dispersive effects, P(&,n,7) and Q(&,n, 7) are two unknown func-
tions characterizing the phase shifts after collision. Then, the following differ-

ential relations hold true

o e 0Q oP\1 0 OP  9Q
%:Eﬂ”g(a—n‘—)]aﬁ[“ (a—s‘a—s)] }
9 _61/2{62—1 {1+e (dp+ap+ aQ) L

ot or D an 0 or
A (D000 dgoPY | (0POQ Q0P| 0
dr 877 dr 877 or dn Ot dn )| 0€
1 2(_dg  OP 0Q\  30Q 4 (dpoQ
—i—D{l—l—e( + 5—1— £) EaT—i-E ir ¢
dq OP s (OP0Q 0Q 0P 0
ar ag) te (aT o€ or ag)] an} (4.4)
where D is defined by
(0P ,0Q\  ,0POQ
D (1+ ag) (1+ aﬁ) S (4.5)

We assume that the field quantities @, ¢, p(7), q(1), P(§,n,7) and Q(&,n, T)
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can be expanded into asymptotic series in € as

W =c¢€ [wo + ewy + €wy + Ews + ewy + ] ,
(=€[Co+eq+EG+EG+HEG+ ],
7) = po(T) + ep1(T) + E2pa(7) 4+ Eps(T) + ...,

p(T)

q(7) = qo(7) + €1 (7) + E€q2(7) + Eq3(7) + ...,

P(&n,7) = Po(§n.7) + P& m,7) + o

Q& 7) =Qo(&n,7) + Q& 7) + ... (4.6)

Inserting (4.4) and (4.6) into equations (4.1) and (4.2) and setting the coeffi-

cients of like powers of € equal to zero the following equations are obtained

O (e) equations:

0% 0 Owy  Owy
on 0 on 9

0  0C  Owg  dwg

D T A Wttt g 4.
an T oe + an o€ 0, (4.7)

@) (62) equations:

oG  0¢  Odwr  Odw  9G 0 2
R T e T i

B 1 (8311)0 83’LU0 83w0 63100) -0
6 - %

Cowo)

o8 "Pagan oo T o

% % owq B ow, n Owy
on  0& on o0& or
1 (63w0 N Ay B PPy B 03w0) _0
2\ 08 0&an  oLom:  on? ’

9 , 19 .,
6_n(w°>+§8_§(w0)

1
2

(4.8)

44



@ (63) equations:

8@ (‘9@ 8w2 8w2 8(1 8 8 8
83’11)1 8311)1 8311}1 83w1 qu 8C0
+ gl - (853 *S5ein 3o o) ~ i e
5 5 5 5
_%% L 0wy 6w0+108w0 +1O(’9w0
dr oc 120 \aes " Cactan T ot T oe2an

+3 +3

15 (95w0 8 wo) . @ (83100 83w0 83w0 8311)0)

et o e | “ogan " Coconr T o
OP,  _0Qy 0Py 0Qq aQo

6P0 9 Po 3@0 0P 0Qo

9wy Pwy 0wy 9 0\
‘5( i +8n2)(0_77+_)_0’

oez " “ogan ¢
8@ (9(2 8w2 8w2 8w1 0 0
+ ag + - 85 + or + — a (IUowl) 85 (wowl)

dqo owy dpg Owy 1 PPy N Pun B Py B PPy
dr On dr 0¢ o0& 0&0n 0o On?
B i 05100 13 85w0 19 6511]0 _9 8571}0 _3 85'LU0
S o&ton ~ 0am*  0§20m3 0o

65?1]0 1 8211)0 82 8211)0 awo 8w0
——— | +z o+ +
o ) T2 \aez T “acan an | oc

_wo (83w0 Pwy Pwy 83w0)
2

o5 2oy oo T o

X CO (8311)0 (9311)0 8311)0 8311]0)

068 " ocon oo onp
_ 12 82w0 4 28271}0 4 32w0 8Q0
207 | 022 " “ocon T o | T o o
oP, 9 Oy 9Qu 0Py Qq
0F, 0Qo 0F, 0Qo
y (6 e " "og Yoy oe ) g 0 ~ o)

=-(Co — wo)
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62w0 (92100 6(’0 8§0 .
! ( o8~ o ) (a_n ! a?) - 49

To save the space of the main body of the text, O (64) equations are given in

Appendix C.
4.4 Solution of the field equations

From the solution of the set (4.7) we have

o= f(&7)+9n,7)
Wy = f(£7 T) - g<n77—>7 (41())

where f(&,7) and g(n, 7) are two unknown functions whose governing equations

will be obtained later.
The solution of (4.8) yields

0 of of 10°f  dg 20%
2(Q+wﬁ+2 +&Q% 3 069 %m+3%3

o7
@ of
a dg dg 18%¢ . 0f 20%f
22 (¢ — 099 1 3499 209 9T 20 )
A e +383 o€ 308
of o
-—%—gzﬂ. (4.12)

Integrating (4.11) with respect to n and (4.12) with respect to £ we obtain

fo..0f 1a3f]_g_2 2 9%

(Cl+w1)+77{26—+3f8§ 35_53 §0_772

- fg = M. 5 = 4R (6. 7), (1.13)

dg dg 1% 2 20%f
2(¢ —wn) 5{25 398_77 5%} 5 T3¢

_fg (f T) 77 - 4G1(777 )’ (414)
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where Fi(€,7) and Gy(n, T) are new unknown functions, M (n, ) and N (&, 1)
are defined by

n

3
M(n,7) = / gl . T)dy.  N(€r) = / fETde. (415)

At first glance, it is seen that the terms proportional to & and 7 cause secularity.

In order to remove the secularities we must have

of  3.,0f 10°f

or 279 T 6o
3

99 3,99 107 (4.17)

—0, (4.16)

These are Korteweg-de Vries equations. The solution of equations (4.13) and
(4.14) for ¢; and w, gives

G =Fi(&,) + Galon. ) + T TG + TN (E )
r () g5 (Sa+ 53 ) (@19
wi =Fi(€7) = Gl ) + M. 55— TNE )5
Su and Mirie [6] stated that, although the terms M (7, T)Z—Jg and N (¢, T)g—f]

in (4.18) and (4.19) do not cause any secularity at this order but they will cause
secularity in the next order perturbation expansion. However, in what follows
it will be shown that it is not the case.

In order to obtain the localized progressive wave solution for the KdV
equations (4.16) and (4.17), we shall seek a solution to these equations in the

following form

= f(C+)7 CGr=m (5 - 0427) ) (4-20)
g=9(C), =5+ pT), (4.21)

where a; and (3; are constants to be determined from the solutions. Introducing
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the expression f((;) and ¢g(¢_) into equations (4.16) and (4.17) we obtain

~aaf + S fF + gadf” =0 (+22)
Bag — ggg — —52 " =0, (4.23)

where a prime denotes the differentiation of the corresponding quantity with
respect to its argument. Since we are concerned with the localized pro-
gressive wave solution, i.e., f(g) and its various order derivatives vanish as
(+(¢-) — £oo. Integrating equations (4.22) and (4.23) with respect to (; and

(_, respectively, and using the localization condition we obtain

3 1 "
3 1"
Pag — 192 - —52 = (4.25)

Here it is known that the equations (4.24) and (4.25) admit the progressive

wave solution of the forms

f= A sech? s (4.26)
g = Bsech? (_ (4.27)

where A and B are the amplitudes of the solitary waves and the other quantities

are defined by

34\ /2 A
a1 = (I) , Qg = 57
3B\ /2 B
51 = (T) ) 52 = 5 (428)

Substituting (4.10), (4.18) and (4.19) into the set of equations (4.9), we obtain

0 OF, 0 193F, of 1 ,0%f

Qa—n(C2+w2)+2—+3a—§(fF) 308 8f28§ f8§3
2

JUOTRS  dpod] VP 100G _%1

1206 962 “dr 9¢ 45065 20702 7 oy o€
3 2
9 20°G, _ .09 OF 1% . 19fdg,

S e My o ae ™ T Tagay
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10% 10 ([ 0Og 1.0%g 10f0dg 1, g
S A Pt R et A A B VAR Rl
" (6 ont  40n (gf977> 47 on* 40 3?7) y

1., 12f\dg 11,8 (3.0f 138%f
+<§ 6oez)an "6l ap T \@lae T 2ae
bOf% 3,09 ,OROf 29098 4 0%
12acon 87 ay “agoc T 120n0n2 " 3%
4 9°g
T o
) G, 9 103G, 3,89 1 &y
28_5(@_1”2)—2?—’_38_77(9(;1)4_3 o 39 an 1298773
1109 0%g _dgdg 1 0°¢ 1 &g oF, dg
et A AR, Bt A - _ _ 2
Yoo T ar oy T oy 2000 YoE oy
) 20%F,  Of 9G, 19y 109 Of
_ 2 it e N it S N A
e ) T35 ~ 5 o “ 19N T 1050

+ (lﬁ _ lﬁ (fﬁ) _ ig% _ lg@) M—{—lgfﬁ

60ct  20¢ \' o¢ 4 9¢ o 197 p¢
1, 18%\af 11 &3f 3 0g 130%
+(89 _68772) o T 6% T\ T ap )’
2 2 2 4 3
+i@ﬂ+§f28_f_4%@+_98_fa_f+_ ﬂ
1207062 "8 9 " oc oy 120¢ 062 37 g3
4f
+£a—£5—0.

(4.29)

(4.30)

Integrating (4.29) with respect to n and (4.30) with respect to £ we obtain

OF, 0 10°F, 3,

26+ 0 (S50 + 35U 55 S 1 o
119f 0* dpo 0 10° 10

fOf dpo0f / 567822)_(f+g)gl_gpl

af 1 .0%f

1206 082 “dr 9 ' 45 OEP

n
) . 20%Gy  (3.0f 138%f OF
! [ Gray +225 (—f—f L BBOT —1) M(n,7)

T 3 on? 47 0¢ T 12063 o€

n
103 1,09 1 0f 1 Og 10%f ,
Rt et Bt _ 22 gmd
(6an3 1oy 195 4gan) N&T) = 35 | 9Mdn

n
_1of [ (9 rolpa L 10°f 5 0f0g
40¢ (anM)d"+8fg+8fg 6029 T 120¢ an
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1 11 ,0% 4 8% 13 (9g\° 4 &
bog? ot —fod gy 2 () 2
8 6" 0n* 3701 on 45 ont
- 4P0(;£. - 4F2(€77—)a (431)

0G, 0 183G1 3,09 1 9%

2(Co —ws) +¢§ ( 28_ +38 (9G1) +

3o 87 oy 2%
11090%g _dgudg 1 0% 1 &3y

I 9177 L B P
+120776’772Jr dr oy " 150 +28T@772) (F+9)F - fGh

gi R+ 350+ (3450 B2 00 e
(- 352 e
—ig—f]/@g )d§ + fg + = f29+16122££g+15—2g—£g—f]

- 4Qog—i = 4G (n, 7), (4.32)

where F5(€, 7) and G(n, 7) are two unknown functions whose evolution equa-
tions will be obtained from next order equations. Again the terms proportional
to £ and 7 in these equations cause the secularity in the solution. In order to
remove the secularity, the coefficient of 1 in (4.31) and the coefficient of ¢ in
(4.32) must vanish, that is

OF, 30 1R 3 ,0f 1 ,0°f 110f3%f
o Taae T oae 16 e 21loe  sioeoe
dpo0f 1 8°f 1 &3f
t oo oe T1or0e 4B
0Gy 30 o) 10°Gi_ 3 09 1 0 11090%
or  20n7 Y 6 o 167 an " 229 T 240y o2

dgpdg  10°g 1 9y
dr 8y 900 | 40Ton?

(4.34)
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Noting the identities

O f 9 Of\°

Z L _34f—Z 2 —J — 34 2 3

o'f 135 ., 135 )

654_—f - Af* 94,

6 _

g_;ﬁ”: 8505 4+ 2835Af° — 1701A2f2 27A®, (4.35)

and keeping in mind that the similar identities for the derivatives of the func-
tion g, the equations (4.33) and (4.34) can be written as (Demiray [72])

8F1 30 1PF08:(f)
8G1 30 10°G,  9Ti(f)
= _ = S = 4.
or 2079 " 5ap e (137)
where Si(f) and Ti(f) are defined as follows
(dpy 1942 9 ., 1.
Si1(f) = <dT -0 )f+ A+ (4.38)
 (dg  19B? 9 1,
L(f) = (dT + 10 )g 689 — 39" (4.39)

As is seen from the equations (4.31) and (4.32) the other terms in the expression
of (s and wy do not cause any secularity for this order, but it might be possible
to have secularities in the next order. Seeking a progressive wave solution for
the equations (4.36)-(4.39) of the form Fy = F1((y), G1 = G1(¢_), the following

equations are obtained

A " A / /
SE 4 S(PRY — SF = S\(7), (1.40)
B " B / /

—gG (gG1) + EGI =T1(f) (4.41)

Integrating these equations with respect to (, and (_, respectively, and using

the localization condition, we obtain

gl B =R =4

A 7 1 (dpo 19A2
S — _

9 1
) [+ EAf2 + gf3, (4.42)
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B _, 1 d 1982 9 1
—§G1+§(B—39)Gl—<ﬂ )

— —Bg*— =¢>. 4.4
ar T a0 )9 1679 Y (4.43)

The first terms in the right-hand side cause the secularity (see Demiray [71,
72]); therefore the coefficients of f and g must vanish, which yields

19
po = EA%, Qo = —EBQT. (4.44)

We shall propose a solution for F} and G of the following form

Fy = ay sech® ¢, + assech? (., (4.45)
Gy = by sech® ¢_ + bysech?® C_, (4.46)

where a; and b; are constants to be determined from the solutions of (4.42)

and (4.43), respectively. Carrying out the derivative of F; and G; we have

F| = —20a; sech® (. + (16a;, — 6as) sech* ¢, + 4ay sech?® (., (4.47)
Glll = —20b; sech® ¢_ + (16b; — 6bs) sech? ¢_ + 4by sech? (_. (4.48)

Inserting (4.45) and (4.47) into (4.42) and inserting (4.46) and (4.48) into

4.43) and setting the coefficients of sech® ¢, and sech? ¢, equal to zero, one
g + +

has
A2
Gm=—— a= A2, (4.49)
BZ
by = — 3 by = B2 (4.50)
Then the particular solution of the differential equations (4.42) and (4.43) may
be given by
1 1
Fl = Af — §f2, G1 = Bg — §g2 (451)

By using the above results one can obtain the following identities for the terms

involving the functions g, G; and M

M M
[ai =5 @), [ G = Je2 )

r 2 39 r 2M
/gMdn = —gg, /(3_77M) dn = 3 (9 — B). (4.52)
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Similar expressions are valid for the terms involving f, F; and N. Then the

equations (4.31) and (4.32) may be written in the following form

1, 43, 7., A 9B S
=—¢*+ _-Bg*~ -B = -= Afg* — =
Ctwr=1p9"+ B9 — ¢ g+(2 1) f9t e -

5 0f Og Bog 7 dg 1 .09 10f
24agan+{ 48n+898n+8f8n+86§g}]\7
94 3B\ Of 35.0f 10f af
K g " 8>6§+ 8 ag+16a§g}M+2P°ag
+ 2F2(§7 7_)7 (453)
oL 4By T, (B 94 2, L.o
Ca w2—16f +16Af 5Af+(2 1 fa+4f7g 8fg
5 9f dg Adf T .9f 1 9f 1.9g
248§8n+[ 10 T8 a§+8985+8fan]M
9B 34\ 09 35 dg 1 .0g dg
K g " 8>8n+ 898n+16f877}N+2Q0877
+2Gs(n, 7). (4.54)

In obtaining the equations (4.53) and (4.54) we have utilized the identities
(4.35) and the similar identities that are valid for the function g.

As might be seen from equations (4.53) and (4.54) the terms appearing in
the expressions of (; and w; do not cause any secularity in the solution of (5 and
wy. Therefore the statement by Su and Mirie [6] is incorrect. However as we
stated before, some of the terms appearing in the expressions of ¢, and ws (the
equations (4.53) and (4.54) ) may cause additional secularity in the expressions
of (3 and ws. There appears to be two types of secularity in the solution of
O(e*) equation. As was seen before, the first type of secularity results from

the terms proportional to ¢ and 1 which will be studied later. The second type
¢ n

secularity occurs from the terms proportional / N(&,7)d¢ and / My, 7)dn

as £(n) — +oo. Here we shall first only consider the parts of O(e*) equations

n
leading to / M (77/, T)dn' type of secularity. Similar expressions may be valid

9
for / N(&',7)d€ type of secularity.
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For this purpose we consider the following part of the O(e*) equation

28%((3 + ws3) + a%(@ + wy) + 28% [(Co + wo) (Ca + wa)]

b (Gt~ P2 (G + SR G )

' %a%“‘) >aa2§31 s e et
2 22 (6 (G~ ) - s (G wa) = 0. (4.55)

0
A similar expression may be given for 28_£<C3 — ws) equation. We split (4.55)

into two parts which contain the variables (5 + wy and (i, wy, (o — wa),
respectively. Then, we obtain:

3
0 (Cz + ws) + Zc‘% [(Co + wo) (G2 + w2)] + %5—53((2 + wsy) =
% 189 —Zft —63Af% + 18A%f?| M, (4.56)
1 0%w, O d 10 0?
5%8_5(@ +wp) — %8_5“1 +wy) + 58—5@0 + wo) 8;1

1 0w, 1 0wy
~ 30 855 " 20708 +wla_g“1 w) + G o 5
103

_58_§[<0 (G — 2)]_68_§3(C2_w2) =
116 189 4 —63Af3 + 18A%f } M, (4.57)

where we have used the identities given by (4.35) and (4.52). As is seen
from the equations (4.56) and (4.57), the terms proportional to M (n,7) do
U

not vanish and they cause the secularity of the type / M (n/,T)dn/ in the

£
expression of (3 and ws. Similar expression may be given for / N (§/,T)d€/
type of secularities.
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By direct substitution in the expressions of (5 + w9 and (5 — wy

9 9
PO - _Zf<§7 T)M(’f], T)? QO = —19(777 T)N(£7 7-)7 (458)
these secularities may be removed. These expressions make it possible to

determine phase shift functions.

To obtain the secularities of type n (or &) we use the following part of the
O(e*) equation to obtain the governing equation for F5(&,7)

(C?, + w3) + 2@2 + wy) + Wooz 0 (Co + wq) + Ow (Cz + wo)

& o3
8 1 83w2 dpg 10 a2w0
+0—5(C0w2)+§ 98 dr 8§(C1 wi) + 20¢ |:a—§2<:|
0 10 [OwyOw, 1 85w1 10 0*w,
* g6 3o | 56 o~ g " 2% |9 06
102w, 1 0w 10%w, Jwy  dp 0
“59e0r 3 as 208 T U e T dr ge 0t o)

(@)2 0 10'wgdg  Pwe G 9w 9

9 ) 9 8 ¢t 9 ocor o "V oer oe
8w0 82?1)0 1 65?1)0 0311)0 63w0 1 dpo 83100
96 922 "398 0 aear T W ge 9 T 5y g
i@Zwo 83w0 _ lawo 8411]0 4 1 87’11}0 1 i 6511)0
12 92 063 8 06 9+ ' 840 9ET | 24 0¢40r
1 8511}0
+ 5w 0 o6 = 0. (4.59)

We substitute the field variables into (4.59) then the terms proportional to 7 in

this equation cause the secularity. In order to remove secularity, the coefficient
of 7 in (4.59) must vanish, that is

OF, 30 10°F,
9 +2(9£(f )+68—£3_R(€’7) (4.60)

where R(&, 7) is defined as follows

1R 1R 10 (PR 10 [(8f
RE&T) =15:90 ~ 900 210¢ (f e ) 24 0¢ (¥F>

5 0 (0f 0F, 3 0 3 _0F1 dpyO0F;
o _J - - + _ Fl + -

129¢ \ ¢ a¢ 16 9¢ 2" o T dr ¢

(fF1) —
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1 &f 7. Pf  30f Pf 19ff

180706 16’ 9702 T 80 oroe 1607 08
LW oy T 0 900 nagdy

15120 067 2407 0¢5 480 O€ OE*  320¢2 O¢3

_|_

Ldp 9 BOfOAf AT ,0°f 11 0f 8f
_Zﬁa_gi*_§a_§a_g2 192 63 24”7 o¢ o¢2

91 [of dpi0f 3 ,0f

192 (8g) taroe "1 o (4.61)

Seeking a progressive wave solution for the equation (4.60) of the form F, =
F5((4) and introducing the identities (4.35) into (4.61), the following equation

is obtained 4
§F2' =5'(f), (4.62)

A
8

where S(f) is defined as follows

dp, 55 393 3B\ .
(=2 -2224 24
SU) <dT 112 )f (320+16A> /

s (sz) -

201 3B 5 991 ,
4.
" < 32 16A> AT (4.63)
Integrating this equation with respect to ¢, and using localization condition,
we have
A, 1 dp;1 55 393 3B
“E 4+ -Bf-AF == - A3 —— ) A%f?
sh +30/ - AR (dT 112 )f (320+ 16A> /
201 3B 5 991 ,
4.64
* < 32 16A> AT (4.64)

The first term in the right-hand side of the equation (4.64) causes the secular-

ity; therefore the coefficient of f must vanish, that is,
LI 4.65
piir) = (1.65)
We shall propose a solution for F; of the following form

Fy = ¢y sech® (4 + cpsech® (4 + c3sech? ¢, (4.66)

where ¢; are constants to be determined from the solution of (4.64). Taking
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the derivative of F, we obtain

F, = — 42¢; sech® ¢, + (36¢; — 20¢,) sech® ¢,
+ (16¢5 — 6¢3) sech® ¢ + 4czsech? ;. (4.67)

Inserting (4.66) and (4.67) into (4.64) and setting the coefficients of sech®

sech® ¢, and sech? ¢, equal to zero, we have

197 217 3A2B 13 45 A’B
160" " 7 (160 LTS ) <= 10 8 (4.68)

C1 =

Then the particular solution of the differential equation (4.64) can be written

197 , (217 3B 2, 43 B\
- A 4.
F 160f (160 16A> AfT+ (40 SA) 1, (4.69)

as

Similarly, for other unknowns G5 and ¢, we have

197 , (217 3AN ., (43 A\
- A (4L 2B 24+ 2B
G2 = 1559 (160 - 1GB> g (40 i 8B> a
(1) =——=B"T. (4.70)

Then, the final solution for (s and w, take the following form

G =g (P4 4°) + 5o (16 + F29) — (AT + Bg?)

_%(Bf +Ag)—Z(A+B)fg+ (A°f+ Bg)
5afag 11A+3B of  3,0f
K 16 )8_6 8% 0¢
ig]M+[<3A—1lB)@ 3 dg

it 16 on 8%

16 on  320¢

1 of
+E8_€ g+ 32f3 :| (4.71)

6 33 27
g+ Biger - o) - Zar - )
—~ (Bf ~ AF) + (A~ B)fg+ T - BY)

W
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—7A+3B)af 1.0f 1 .9g

1
*gAMf—”+[< 6 J)oc 2o 160y

_ia_f}M+[<_3A+7B>ag 1 99 10f

32 0¢ 7 16 on 2% T 1607

1 . 0g
+3_2f8_77} N. (4.72)

Thus, for this order the trajectories of the solitary waves become

N

(x—t)=E+epo+ € (p1 + Po) + O(€),
(x+1t) =n+eq+€(q+ Qo) + O(e). (4.73)

€

N

€

4.4.1 Phase Shifts

To obtain the phase shifts after a head-on collision of solitary waves charac-
terized by A and B are asymptotically far from each other at the initial time
(t = —0), the solitary wave A is at £ = 0, n = —o0, and the solitary wave
Bis at n = 0, £ = +o0, respectively. After the collision (t = 4+00), the soli-
tary wave B is far to the right of solitary wave A, i.e., the solitary wave A
is at £ = 0, n = 400, and the solitary wave B is at n = 0, £ = —oo. Using
(4.58) and (4.73) one can obtain the corresponding phase shifts A4 and Ap

as follows:

Ap ="z —1) [eommoe —€*(x = 1) |e=0 o0

—+00

=—e— [ g(n)dn (4.74)
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Apg = 61/2<CL’ + 1) |n:0,§:—oo —61/2@ +1) |n:0,£:<>o

0) 70]'“(5 )d§
293 / f(& (4.75)

Using the explicit expressions of f(£) and g(n) the phase shifts are obtained
as

Ay = —€e23V3ABY?,  Ap = €?3V3AY?B. (4.76)

Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.
4.5 Summary of the results

In the previous section, we have obtained the following results

() =e{ (7 +9) 46 (§<f2 +g) + S(AF + Bo) + g
MO+ N ETE ) (101(f‘°’ )

~ (AP + BE) — (B + Agh) + S(Af + Bg)

FRAB(f +g) 4 S (6 ) — LA+ B)g

Sojoy, [(~uA+3B\of 3 0f 1 0
16 oc 8 o¢ 167 on

3 0f 3A—11B\dg 3 dg 1 0f
It iV LT PNEY 2y 2P
RETRT: } +K 16 )8n+898n+168£g

3 . 0dg
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Similar expression may be given for w(f, g).

A% 4 e 3) T, (4.78)

=<
(—QB2 N 33) 7 (4.79)

P —%f(f,r) / o )i (1.80)
9 ¢
Q= —Jon.7) [ 1€ (1.81)
and
Ae\ 3 Fo
co= (5 (omant s Sebrien [aoiinar | s
3Bc) ® 9 5
= (Te) z+cpt + ZG%Q(U,T) /f(§,,7'>d€/ , (4.83)

where cr and ¢y, are defined by

A ,19 55
=1 A S A 4.84
‘R +(62+€40 Tt ) (4.84)
B ,19 55
=1 — 4+ B+ B 4.
cr +(62+e40 —|-€112 (4.85)

The equations (4.80) and (4.81) serve to define the phase changes. Before the
collision
n— —oo, P —0, §—00, Q@—0 (4.86)

and after the collision

B\ 2
n — 00, P=-9A (3) sech? ¢, (4.87)
3

£E——00, @Q=9B <§> sech? C_. (4.88)

In this section we shall illustrate the profiles of right-going waves before and
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Figure 4.1: Right-going wave profile ¢ for € = 0.4, A = B = 0.5. 1: before
collision; 2: after collision; 3: difference between the wave profiles before and
after the collision.

after the collision. For that purpose we set g(n,7) = 0 in the expression ¢ and

obtain
- 3., A , (101 , A, 3B, 3A
Q_E{f“(zlf +2f)+€ (80f sof "1l T
AB
+?f) + } (4.89)
with )
f = Asech? <3TAE> (x — crt + O) (4.90)
where )
3 B\? 2
O =¢€294 3 sech” (4. (4.91)

The variations of the wave profiles for surface elevation parameter 5 before
the collision (O = 0) and after the collision (O is given as in (4.91)) are depicted
in Figure 4.1, for various values of parameters ¢, A and B. As is seen from
the figure the wave profile before the collision is symmetric, whereas after the
collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.
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4.6 Result and Conclusion

Utilizing the non-dimensionalized equations (4.1) and (4.2) and employing the
extended PLK method, which is the combination of the classical reductive
perturbation method and the strained coordinates, in order to obtain evolu-
tion equations as partial differential equations rather than ordinary differential
equations we have studied the head-on collision of solitary waves in shallow
water theory. Introducing a set of stretched coordinates that include some
unknown functions which are to be determined from the removal of possible
secularities in the solution, expanding these unknown functions and the field
variables into power series of the smallness parameter ¢ and introducing the
resulting expansions into the field equations we obtained the sets of partial
differential equations. By solving these differential equations and imposing
the requirements for the removal of possible secularities we obtained the speed
correction terms and the trajectory functions. Our calculations show that the
present results are exactly the same with those found in the previous chapter,
whereas it is totally different from the results of Su and Mirie [6]. The varia-
tions of the wave profiles for right-going wave (é ) before and after the collision
are illustrated in Figure 4.1. As is seen from the figure the wave profile is
symmetric before the collision whereas it is unsymmetrical after the collision

with tilts backward with respect to the direction of its propagation.
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Chapter 5

Head-on Collision of the Solitary Waves in
Fluid-filled Elastic Tubes

5.1 Introduction

As was stated in Chapter 2, the pulsatile character of the blood wave is soliton-
like and and it can be interpreted in terms of solitons. The solitary wave model
gives a reasonable explanation for the peaking and steepening of pulsatile waves
in arteries. The blood flow in arteries can be considered as an incompressible
fluid flowing in a thin non-linear elastic tube, so head-on collision of solitary
waves in fluid-filled elastic tubes had been studied by several researchers in
this regard. In all of these studies the method proposed by Su and Mirie have
been employed. Since the statement made by Su and Mirie is incorrect, as
shown in Chapters 3 and 4, it is our motivation to study the head-on colli-
sion of solitary waves in arteries by employing the field equations for the fluid
filled elastic tube and the extended PLK method. For that purpose, we in-
troduce a set of stretched coordinates which include some unknown functions
characterizing the higher order dispersive effects and the trajectory functions
to be determined from the removal of possible secularities that might occur
in the solution. Expanding these unknown functions and the field variables
into power series of the smallness parameter € and introducing the resulting
expansions into the field equations we obtained the sets of partial differential
equations governing the coefficients of the series. By solving these differential

equations and imposing the non-secularity conditions in the solution we ob-
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tained various evolution equations. By seeking a progressive wave solution to
these evolution equations we obtained the speed correction terms and the tra-
jectory functions. The results of our calculation show that both the evolution
equations and the phase shifts resulting from the head-on collision of solitary
waves are quite different from those of Xue [7], who employed the incorrect
formulation of Su and Mirie [6]. As opposed to the result of previous works
on the same subject, in the present work the phase shifts depend on the am-
plitudes of both colliding waves. It is further observed that the order of the
trajectory functions is €, rather than e. The variations of the wave profiles of
right-going waves before and after the collision are depicted on Figure 5.1. It is
seen that the wave profile before the collision is symmetric, whereas after the
collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.

5.2 Basic Equations

The equations (2.24)-(2.26) will be used as we study the head-on collision

problem in fluid-filled elastic tubes. We can rewrite these equations as follows:

0S Ou 0
ou Or 0 [u?
-§+55+%<3 —0, (5.2)
2 2 25(2
#S 252+ ) 53

"oy ser T (2492

where x and ¢ are the non-dimensional space and time parameters, S is the
change in the cross-sectional area of the tube, u and 7 are the axial velocity
and the pressure of the fluid body, respectively, and « characterizes the non-

linearity of the tube material.
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5.3 Extended PLK Method

Motivated with the results found in Chapter 4, we introduce the following

stretched coordinates

[N

(z —t) =€ +ep(r) + €P(E,n, 7).
(@ +1) =n+eq(r) + €Q(&, . 7).
2 =1, (5.4)

€

N

€

We assume that the field quantities can be expanded into asymptotic series in

€ as

S =€S) 4+ €25, + €395 + ...,

U= €uj + 62u2 + e3u3 + ...,

p(7) = po(T) + ep1(7) + Epa(7) + E¥p3(7) + ...,

(1) = qo(7) + €qu (1) + € qa(7) + Eg3(7) + ..,

P(&,n,7) = Fo(&n, 7) + ePr(§,n,7) + ...

Q&,n,7) = Qu(&,n,7) +€Qu(&,n,7) + ... . (5.5)

Y

Introducing (4.4) and (5.5) into equations (5.1)-(5.3) and setting the coef-
ficients of like powers of € equal to zero the following sets of equations are

obtained:

O () equations:

- = 0, m™ = Sl, (56)
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@ (62) equations:

882 882 8uz 8uz 851 8 8 .
877 - ag + (97] + ag + 87_ + a—n(Slul) + a—g(Slul) = 0,
Omy  Omy  Ouy Ouy  Ouy 10, 10, ,
on T oc Ty e T or T tage
8251 8251 8251 o — 2 2
s o+ ae () S

>:O7

WQZSQ—Q

(5.7)

@ (63) equations:

a5 a5 0 0 a5 0 0
3 3 % % 2+—(51U2)+8—£(

2(U152)

Sﬂm) + 87]

on 0t Tan "o Tor T o
0 dp()% dQQ% 8P0 0

Tar e aron oot

_a_na_f(U1+Sl)_a_fa_n(UI_Sl)+_77_(UI_S1) =0, (58)

87'('3 871'3 8u3 8u3 8u2 0 0

n + 0¢ + n o€ + p +a—n(ulu2)+a—§(u1u2)
dpo 6u1 qu 8u1 8P0 0 6Po 0

ar 96 dr oy og oyt T T gy gt )
+aa;%)%(u1—m)—%%)%(ul—ﬁ):0= (5.9)

. 3 — 2« 3 8252 6252 6232
T3 —Sg + (CL/ — 2)5152 + (T) Sl — 285877 + (9772 + 852

2 2 2 2 2
_2851+28Sl_151 8Sl+851_2831 .
00T onor 2 0¢? on? 0&0n

(5.10)

O(€*) equations can be found in Appendix D.
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5.4 Solution of the field equations

From the solution of the equation set (5.6) we obtain

ur = f1(§,7) + q1(n, 7),
Sl =T = f1(€ T) 91(7777_)7 (5'11)

where f1(&,7) and ¢1(n, 7) are two unknown functions whose governing equa-
tions will be obtained from the higher order perturbation expansion. Introduc-
ing (5.11) into (5.7) and then adding and subtracting the resulting equations

side by side we obtain

5 5 9
2ot 5+ 20 4 @+ 02+ SR (- 90 5
— (o= )f1 agl — (= 3)%—?571 - %ng; =0, (5.12)
0 8g1 g1 0 g1 afl
28_§(u Sa) — {QE—F(OMLD 15, T (9773} (o —3)fr—== o€
af 9 o f
+(a 3)918—§1 +la-hon 8531 = (5.13)

Integrating the equation (5.12) with respect to n and (5.13) with respect to &

we have

ofr (a )f1%+183f1] _1_18291

or 2 ¢ 2 983 2 On?
+ (a;:ﬂ) {M(n )86]2 + fig1 — 921} +2f5(&,7), (5.14)
_[0n a+1 ogr  103g 10%f,
e = 5 =¢ [E+< 2 ) 8_77_50773] 2 0

+( 3) {12 figr = N(&7) n]+2gz(n, 7),  (5.15)

67



where fo(€,7) and go(n, 7) are new unknown functions, M(n, ) and N(&,7)
are defined by

n

13
M(n,7) = / 6 Dy, NET) = / fi(€ T)dE (5.16)

As is seen from equations (5.14) and (5.15) the terms proportional to £ and 7

cause secularity; therefore, the coefficients of them must vanish, which yields

8f1 a+1 8f1 1 83f1 .
o7 —|—< 5 )f1 D¢ +28§3 =0, (5.17)
g a+1 o091 19g1

Based on the statement by Su and Mirie [6], given in the Section 5.1, Xue [7]
stated that the terms M(n, 7)0f;/0¢ and N(&,7)0g1/0n appearing in equa-
tions (5.14) and (5.15) do not cause any secularity at this order but it will
cause secularity in the next order equations; therefore, there should be some
terms of order € in the trajectory functions to eliminate these terms. As will
be shown in the solution of the next order equations these terms do not cause
any secularity. It is that reason, in the present work we assumed that the order
of the trajectory function is € rather than e.

Then from the solution of equations (5.14) and (5.15) we obtain us and Sy

as

Uz :f2<§’7—) +92(T/77—) + (a — 3) |:M(7]’T)88_j§ - N(§77—>aa_i’l

1 1 (02f, O
-] 3 (G 5F)
— 0 0
S =hlr) — aalnr)+ (277 ) [ran) G + N
1 1 (2, o
+2fi91— 5 (fF +g%)} -3 ( T j) . (5.19)

The evolution equations (5.17) and (5.18) are the conventional Korteweg-de
Vries equations, which are different from those of Xue [7], who employed the

same set of tube-fluid equations. These evolution equations admit the solitary
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wave solution of the form

1/2
fi=Asech®(y, (= {%} (f _le g_ 1)AT) ,

1/2
g1 = —Bsech?(_, (.= [M] (77 + (@ —ﬁi_ 1)BT) , (5.20)

12

where A and B are constant amplitudes of the waves.

For the type of solutions given in (5.20) the functions M (n,7) and N (&, 7)
will be of the form tanh(y. The integral of them leads to secularities as
&(n) — Foo.

Substituting (5.11) and (5.19) into the set of equations (5.8)-(5.10), then
adding and subtracting equations (5.8) and (5.9), we obtain

0 of: Pf + 4) O3f
25 (s +53) + 252+ (1) 5(fu%) 56+ ety 56
(4o 4+ 11)0f, 0*f, 3 201 3 85f1
> e e 5@ T HIige tige

dpo 8f1 (Oé — 3)2 8f1 891 Bfl 8f1
“Yirog T (a7%+&WQM‘“‘@C¥@
09y 0 ) gy (d0® — o+ 15) Of
f1 J2 877< G192) + fo g1> — 87?”2 — ( o’ 4a )(951 2
dfy  (5a® — 10a + 3)
_<<O‘_3)a_5_ I R
(= 3) 0 dg1 ofidgr  *ar
2 (e-og; (05y) - @ -9%E 5 - 5
0? 502 — 10 3) ,0 3o — 03
~(a=3)f 91) vy Lo fer e BaD 2o
(Ta? — 22a + 21) oq , 091 (a —5)0*f, 891
- 3 ( f191 —f1 877) - 4 e 8_77

30f, 0° 509 ([ 0 5a+9) 9 | /09, \?
L) m+“—th?+(a+)%[C£)]

8f1 (Oé — 1) 83f1> o

206 o>  20n on? 8 an

1 a591 0P, 0f
i S/ D e 21
2 OnP on 0 0 (5:21)
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) dyg 9 Pgy  (a+4) Pg
2 g (3 = ) = 23—2 — (et Dy (nm) + 5, sy 87731
(40& -+ 11) 8g1 8291 3 2 891 3 3591
BT T v v Gl s e
dgo 091 (o — ) 0f10g1 = 0Ogi I
+2d7‘(9_17_ 1 (8_58_77_’_8_772 1)N+(a )<—f2
8f2 0 8f1 33f2 (4& — 4o+ 15) (9g1
+g 1a—€—a—§(f1f2)+ 265) - o¢3 - 1 f1
dga  (ba? —10a+3) dg1  (a—1)3g
+(fa-f Do oxd), O (o )fl
(a—3) df1 911 0g 34f1
T (g (15e) - -9 T T
82f1 <50é — 10 + 3) 28f1 <30é - 3) (93f1
a0 o BI040 0 G2
B (7042 — 220+ 21) < 7 8f1 8f1> n (Oé - 5) 8291 %
8 NIge ~ e 4 on? o€
3091 0* f1

50 32f1 (5a + 9) df1
_53_77852_53_§<f1852> 5 oe (as)

10°fi  0Qo0g1
~3a8 Yoo = (5.22)

Integrating (5.21) with respect to  and (5.22) with respect to £ we obtain

3 3
2(“3+53>+n(28—ﬁ+<a+1) Gelhil) + %g;? (“;4)f1%£
(40[+11) aflé) fl 3 afl 38 f1
2 8_5852_§<2_2a+3)f10_§+1355

AR (e =37 (0f [ (00, of; ,
%) (85/( ) o +652/(91M)d”)
8292
on?

n
0 ,
— (o — 3)8_f§1 /926577 —(a=3) (fi92 — q192 + fagn) —

_ (40? =14 +15)0f ng%dn,_(m 3)%_(04—1)3?»}01

4 o€ 73 408

(5a? —10a+ 3) , 0f1 (=3 dg1  Pg

e I L CR T it
31, (9gl> N (5a? —21504 + 3)9?

df1
—<a—3>a—§gl—<
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(Ba—3),0%q (Ta® —22a+ 21)
1 Ji o2 - 3 (f19%_f1291)
_(@=5)&f 30009 5 g (5a+9) (99"
4 o220 oy T2 o 8 an
10%g, df1
T2 4P08_§ = 2f3(§,7), (5.23)

0gs 0 Pgy  (a+4) g

(4o +11) 091 0%g1 3 2001 30°¢

2
_ 22— 9 Zol 2
2 on on*> 8 (o o +3)g on 40

£ €
dqo Og; (a—3)% [ 0gy of . 0g? ,
o)~ (a—n/ (Fe) o<+ 5 [ df)

é 2
o= [ g 4 (a=3) 0o~ fifa+ ) - B2

3
(40? — 14 + 15) Ogy 9 1ot dgs  (a—1)Pg
1 a—n/f1df + ((O‘_3>8_77_ 4 on’
(5a? —10a +3) 0g (a—3) ofr | O’h
0 0 5a2 — 10 3
_(a—3)f18i771—(a—3)8—]291)M+( a 24&+ )

(Ba—3) 92f; (7a? —22a +21)

i

- 4 451 0E? - 3 (f1291 - flg%)
TPy Sn0h 5 (et (0
4 o2’ 20n o 27t ag2 8 aE
10t 0
- 5 ag} - 4@0%771 = 293(”77)a (524)

where f3(£,7) and g3(n, 7) are two unknown functions whose evolution equa-
tions will be obtained from next order equations. In order to remove the
secularity caused by the terms proportional to & and 7, the coefficient of n in
(5.23) and the coefficient of £ in (5.24) must vanish, which yields
0 a+1) 0
o , (0t )

7 5 8_§<f1f2)+

10°f,
S

= Ry(&,7), (5.25)

71



%_ﬁ_(a—l—l)

or 9 — Tl(naT)v (526>

0
8_7](9192) — 5

where Ry (&, 7) and T (n, T) are given as follows

8f1 (40& + 11) %82](1

3
_9 )
o) P SO s
4 oy 8oy T dr o
3 891 (4o + 11) dgy 8 gy
T =— — — — —_—
1(777 T) 16 (Oz 2a + 3) an 4 677 ang
3 5
) P 30 dwog, 528)

4 on>  80n>  dr On

By using the results given in (5.16) and (5.20) the following identities can be
obtained for the terms involving f;, N, g, and M,

82fl_(O“i‘l) 2 df1 2_(a+1) 2 3
o= aan -, (52) = Pag -

a4f1 _ (a+1)2(2A2f1 _ 15Af12+15ff))7

o4 18
86f1 A3 7A2 35A 35
ges = @t 1)’ ( h-—gfi+ _f3 5f14>’

N r_ (6
[oras =T inean. [ = (55)n

o 2N
/ ( % )dé =S-(hi-4), o
8291 B (a + 1) 9 891 2 (Oé + 1) 2 3
= (2Bg1 + 347), (8_77) =g (Barta)
o o+ 1)?
5541 _ ( - ) (2B%g, + 15Bg? + 15¢3),
8691 X B3 7B2 9 358 3 35 4
55 =~ @+ D) (Wl Te ATyt ﬁgl) |

M ' ’

o tonam, o (o

o , 2M
f(2)o -2

72



Then the equations (5.25) and (5.26) can be written as

6f2 (a + 1) 0 183f2 N 0
or 5 8_§(f1f2) + 58_53 = a_g(RQ(fl)), (5.31)
dgs  (a+1) 0 10%g, e
o T2 a9 5 — gy (Ta(a), (5.32)

where Ry(f1) and Ty(g;) are defined as follows

ma() = (%2 - 1) s e (- 9as

n (70‘;4 16) £, (5.33)
Ty(g1) = (% + %B?) g+ oot 10— 3) B

— (%) gs. (5.34)

As is seen from the equations (5.23) and (5.24) the other terms in the expression
of uz and S3 do not cause any secularity of the type / M (n")dn" and / N(&d¢
for this order, but it might have secularities in the next order.

Seeking a progressive wave solution for the equations (5.31) and (5.32) of
the form fo = f2((1), g2 = g2(C-), we have

o Dagy + Oy - g = R, (5.35)
— (oz;l 1)39’2” + (a —2# 1) (g192) + (a+ 1)Bg'2 — Tiq1). (5.36)

Using localization condition and integrating once with respect to (; and (_,

respectively, one obtains

<a2tl 1)Af; + - ?5— 2 (Bf1 — A)f2 = Ra(f1), (5.37)
_ (OKQ‘Z 1)39/2/ + M(th + B)g2 _ T2(91). (5.38)

The first terms in the expression of Ry(f1) and Ty(g1) cause to secularity;
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therefore the coefficients of f; and ¢g; must vanish, which yields

(a+1)?
24

1 2
N ) (5.39)

Do = Y

Here A%(a + 1)?/24 and —B?*(a + 1)?/24 correspond to the speed correction
terms for the right and left going waves, respectively. We shall propose a

solution for fy and gy of the following form

f2 = ay sech® (4 + agsech? (., (5.40)
go = by sech? C_ + by sech? C_, (5.41)

where a; and b; are constants to be determined from the solutions of (5.37)

and (5.38), respectively. Evaluating the derivative of F; and G; we have

17

fy = —20a; sech® ¢, + (16a; — 6ay) sech® ¢, + 4ay sech? (., (5.42)
gy = —20by sech® (_ + (16b; — 6by) sech® (_ + 4by sech? (_. (5.43)

Inserting (5.40) and (5.42) into (5.37) and inserting (5.41) and (5.43) into
(5.38) and setting the coefficients of sech® ¢, and sech? ¢, equal to zero, one
has

1 2411
a; = _(70é + 6) A2, ay = (50( +lla+ 33) A2, (544)
8(ar+1) 12(a+1)
1 2111
bl = —(7@ + 6) BQ; b2 = - (5a il ot 33) B27 (545)
S(at1) 2(a + 1)

Then the particular solution of the differential equations (5.37) and (5.38) may

be given by
fo= 20 T D) (502 + 11a +33)24f1 — (T + 16)3 /7] ,
T ) [(50” + 11a + 33)2Bg) + (Ta + 16)347] . (5.46)
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Then the equations (5.23) and (5.24) can be written in the following form

(Ta +16) 5 (430 + 103a + 276)
o+ 48(cr+ 1)
(7a? + 150 +35) , (120 — 372 + 9a — 50)
B
* 7 gt 24(a+ 1)
(20 — Ta? + 3a — 96)
24(0[ + 1) Bflgl
(4043 — 11052 — 3o — 24) 2 3 8f1 891 8f1
_2on 2p, 1
16(a + 1) N = 19e oy T 05
(140® — 410® 4 3o + 22) ,
- fin
16(a+1)
(4a® = 50> +a—=98) dfi  (o®+a® —9a+63)
24(a+1) o€ 24(a+1)
dfi (4a3+a2—11a—44)f dfi
O¢ 8(a+1) Yoe
(403 — 11a® + 3a + 6) 8f1}M_(oz—3) {(oH—l)

U3+53 - Bg%

x Afigi +

16(a+ 1) s 2 12

) ( ) dg1 dfi 01
BaT]+ <f1 +g9 185 —1—91877 N

+2f3(£,7), (5.47)

(Ta+16) ,
4(a+1) Ji=
N (Ta? + 15a + 35)
72
(20 — 7a* + 3a. — 96)
X Bfigi — 20+ 1)
(4a® — 11a? — 3a — 24) ,
16(a + 1) fign +
(140® — 4102 + 3a +22) ,
- 16(c + 1) 191
 (4o? _5a2+a_98)3%+ (a®+a? — 9a + 63)
24(a+ 1) on 24(a+1)
091 (4a® +a? —1la—44) 0Og
O ]
(4a® — 110 + 3a +6) , dgy (a —-3) [(a+1)
16(a + 1) 1oy ] 2 [ 12

(4302 + 103 + 276)
Afi
48(av+ 1)
(120® — 37a* + 9a — 50)
24(a+ 1)

Af191

33f1 a91
4 85 8

Sy =

A fi —

a91

+2Qo -

x A
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ofiv  (a—3) dg1 df1 dfi
o 1 (fl_“as) fl@é}

+ 293(n, 7). (5.48)

As might be seen from equations (5.47) and (5.48) these terms appearing in
the expressions of 1y and Sy do not cause any secularity in the solution of u3 and
Ss. Therefore the statement by Su and Mirie [6] is incorrect. However as we
stated before, some of the terms appearing in the expressions of u3z and S3 (the
equations (5.47) and (5.48) ) may cause additional secularity in the expressions
of uy and S4;. There appears to be two types of secularity in the solution of

O(€*) equation. As was seen before, the first type of secularity results from

1
secularity occurs from the terms proportional / N(¢',7)d¢ and / M(n',7)dny

the terms proportional to & and 1 which will be studied later. The second type
U

as £(n) — +oo. Here we shall first consider only the parts of O(e*) equations
1

leading to / M(n',7)dn’ type of secularity. Similar expressions may be valid

for / N(¢ d£ type of secularity.

For this purpose we consider the following part of the O(e*) equation

2(%@4 +Sy) + %(u;g +53) + (a0 — 2)885 (5153) + a% (u1.S3)
b gl G+ 501+ T2+ (0= 2055 +ure s + 52
53¢ - % s B i)y
* o (Sfif?) 2 (5763,) —85
‘;p i(u1+51) (5.49)

0
A similar expression may be given for 28—§(u4 — 54) equation. We split (5.49)

into two parts which contain the variables usz + S3 and (us, S, us — Ss),

respectively. Then, we obtain:
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8 1 (9 1 (93
2wt 550+ D Bt )0 + 591+ 5 2

—(40® + a? — 1la — 44 1

u3 + S3)

05, 0 0
(o — 2>528_€2 + U2a—§(u2 + S52) + 52%;

dpo 0 (60[ — 9) 0 2

dr ag (UQ + SQ) 4 ag (5152) 2

10 ( 925, 82515> (30— 9) 9
5 ~ - 7

“20e \Moe T oe 4 0_5(3133)
19

(us — S5) = 930 10, —5)s,)

> 0¢
(¢ —3) 0
1 o [(u1 + S1) (uz — S3)]

7a® — ba — 48 7 7 1
_ (7o 80‘ )(a—i—l) [gff—éAff’JrgAfo M. (5.51)

As is seen the integration of equations (5.50) and (5.51) with respect to 7

leads to secularity. In order to remove secularity, we should set the coefficient
(Ta? — b — 48)

8(a+1)

0
of the term fla—?M in uz + 53 equal to — . Similar expression

£
may be given for / N (£l, T)lej type of secularities. In order to remove these

secularities the trajectory functions should have the following form:

by = (2a _85a+2)f1(§a7—)M(7777-)7
R L) (5:52)

To obtain the secularities of type 1 (or £) we shall use the equation (5.49) to
obtain the governing equation for f3(¢,7). We substitute the field variables
into (5.49) and integrate with respect to 7, then the terms proportional to 1

in the resulting equation cause to secularity. In order to remove secularity, the
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coefficient of 7 must vanish, that is

o o
a—f L . Do g (if) + ; 85‘];3 = Ry(&,7), (5.53)
where R3(&, 7) is defined as follows
& %,
Ru(6) =gt + (0 — 20 +9)2 (71) + T 2R

(20[ - 5) afl 8f2 (Oé - 2) (93f1
H e (e ) T
GRS 1)f Ofr  dp0fy  10°f 1 &h

2 Poc T o 8O 206072

1 (95f1 (Oé — 1) 83f1 (Oé - 2) % (92f1

4089 4 S og2dr 2 O Ofor

_(04—3)%a2f1 1 9"f, ( )f > fi
1 or o2 T16og 16 'os
_dp @ dp0f | (Ta+31) 0/ 0f
dr 08 " dr 9¢ 32 0¢ o0&t
(Ta +33) 02 f, O3 f, Of 2 f

16 0¢ 98 _( =3 Ba_g o€?

(502 —10a+21) (0f1\° (302 — 9o +22) ,Pf
a 64 (a_§> a 32 fi aEs
(11a? — 28a. + 65) , 0f1 0*f1
B 32 I ¢ O€2
3 2
(230 55?9; 33— 15) I (’; ];1 (5.54)

Noting the equations (5.29), (5.39) and (5.46), then the equation (5.53) may
be written as

ofs (a+1)0

10°fs  OR4(f1)
o + 5 8_§(f1f3) +

206 ¢

(5.55)

where Ry(f1) is defined as follows

3
Ruf) = (% - %Ag) 5
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N (23a* — 10003 — 47902 — 1700 — 2073) A2
576(a+ 1)
1 _ 2
CRRIC) AB) £
16
N (1340 + 147102 4 4862 + 5712) 4
576(a + 1)
(0+1)(a=3)° )\
16 B
(—341a% — 1472a — 1536) ,
: 5.56
256(c + 1) h (5:56)

Seeking a progressive wave solution for the equation (5.55) of the form f3 =

f3(¢1), the following equation is obtained

o+ 1 " o+ 1 ’
D gy + D gy - O Vg — Ry e
We integrate (5.57) with respect to (; and use the localization condition to
obtain ( 0 ( )
o+
o ag G h - A s = (). (5.59)

Since the first term in the right—hand side of (5.56) cause to secularity in the

solution of f3, the coefficient of f; must vanish, which yields

pi(7) = %AP’T. (5.59)

We propose a solution for f3 of the following form

fs = ¢y sech® ¢y + 9 sech® ¢4 + cgsech? (4, (5.60)

where ¢; are constants to be determined from the solution of (5.58). Carrying

out the derivative of f3 we obtain

fs = — 42¢ sech® ¢, + (36¢; — 20¢,) sech® ¢,
+ (16¢y — 6¢3) sech” . + 4cs sech?® ;. (5.61)

Introducing (5.60) and (5.61) into (5.58) and setting the coefficients of sech® (.,
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sech® ¢, and sech? ¢, equal to zero, we have

341a? + 1472a + 1536
C1 =

A3
320(a + 1)2 ’

(6700% + 32630° + 66460 + 10128) ;| 3(a —3)’
960(cv + 1)2 16
(230a* + 101003 + 499902 + 2938a + 9654)
1440(cvr 4 1)2

A%B,

Cy — —

AS

C3 =

(a —3)? 2
— TA B. (5.62)

Then we can give the particular solution of the differential equation (5.58) by

(34102 4 1472 + 1536)

_ 3
Ja= 320(a + 1) fi
(67003 + 3263a” + 6646 + 10128)  3(a — 3)* B 9
- + — | AR
960(a + 1)? 16 A
N (230a* + 101002 4 499902 + 2938 + 9654)
1440(a 4 1)
a—3)?%B
—< 3 ) Z] A% . (5.63)
Similar solution for the function g3(¢_) can be given as
(341a* + 14720 + 1536)
g3 = 2 gl
320(a+ 1)
(67003 + 326302 + 6646 + 10128) . 3(a—3)2A B2
960(cr + 1)2 6 B|N
N (230t + 101002 + 499902 + 2938 + 9654 )
1440(a 4 1)
a—3)%A 5(a+1)3
( 3 ) E} B*q,  qu(r) = Set 1) VED) S gor, (5.64)
Then the final solution of w3 and S5 read as
(6212 + 2392a + 2176) 3(a — 3)?

(Agi — Bf?)

— 3 3
Uus 320(0[ + 1)2 (fl +gl) +
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Thus, for this order, the trajectories of the solitary waves become

N|=

e2(x —t) =&+ epo(T) + Epi(T) + Py + O(€%),

(z+1) =1+ eqo(7) + Eq(T) + Qo + O(€%). (5.67)

N[

€

5.4.1 Phase Shifts

To obtain the phase shifts after a head-on collision of solitary waves charac-
terized by A and B are asymptotically far from each other at the initial time
(t = —0), the solitary wave A is at £ = 0, n = —o0, and the solitary wave B
is at n = 0, £ = +o00, respectively. After the collision (¢ = 4+00), the solitary
wave B is far to the right of solitary wave A, i.e., the solitary wave A is at
¢ =0, n = 400, and the solitary wave B is at n = 0, ¢ = —oo. Using the
equations (5.20) and (5.52) one can obtain the corresponding phase shifts A4

and Ap as follows:

A =@ —1) |ecommoo =€ = 1) le—0m——o

“+oo
2052 — 505 + 2 ’ ’
2 20(2 — 50[ + 2 o ’ ’
=7 )A [ aln)dn
20° —ba+2\ ( 12\
=& ( a j(H ) ((H 1) AB2, (5.68)

AB = 61/2(I + t) |77:0,£=—oo _61/2<I + t) |77:0,§:°0
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2 20[2 — 50& + 2 ’ ’
e (=) 00 [ e

+o0o
202 -5 2 I
= (%)B/ﬁ(f)df

202 — 5o + 2 12 \ 2
262(0‘ ar )( ) AV2B. (5.69)

4 a+1
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Here, as opposed to the results of previous works on the same subject the

phase shifts depend on the amplitudes of both waves.
5.5 Summary of the results

In the previous section, we have obtained the following results
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Similar expression may be given for S(fi, g1).
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where cgr and ¢y, are defined by
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The equations (5.73) and (5.74) serve to define the phase changes. Before the

collision
n— —oco, P —0, E—o00, Q—0 (5.79)

and after the collision

2 _ 1
n — o0, P=- (20" = 5a —|1— 2)A (3B)7 sech? ¢y, (5.80)
2(a+1)z
202 — 2 1
£ — —o0, Q= (22 5OH1_ )B (3A)2 sech? (_. (5.81)
2+ 1)z

In this section we shall illustrate the profiles of right-going waves before and
after the collision. For that purpose we set g;(n,7) = 0 in the expression u

and obtain

B (1la +20) ,, = (6a* + 13 + 34)
“_€{f1+6[ Sa+1) ! 12(a + 1)
o [ (62107 4 23920 + 2176) 5
320(c + 1)2 !
(11000® 4 472302 + 104360 + 12888)  3(a — 3)2B\ | .,
—~ + Af
960(cx + 1)2 164
. ((300a* +13000° + 57190 + 37880 + 10004)
1440(cr + 1)?

A fl] (5.82)

- 3)’B
—%) Agfl} +} (5.83)
with )
1)Ae\ 2
f1 = Asech? (%) (x — crt + O) (5.84)
where 00?5 5
O = ¢ (20” = 5a + )A (SB)% sech? (. (5.85)

2a+1)2

The variations of the wave profiles for velocity parameter u before the
collision (© = 0) and after the collision (© is given as in (5.85)) are depicted
in Figure 5.1, for various values of parameters €, a, A and B. As is seen from
the figure the wave profile before the collision is symmetric, whereas after the
collision it is unsymmetrical and tilts backward with respect to the direction

of its propagation.

85



-0.05

Figure 5.1: Right-going wave profile u for ¢ = 04, o = 4, A = B = 0.5.
1:before collision; 2:after collision; 3:difference between the wave profiles before
and after the collision.

5.6 Result and Conclusion

Employing the non-dimensional field equations (5.1)-(5.3) and the extended
PLK method, we have studied the head-on collision of solitary waves in ar-
teries. Introducing a set of stretched coordinates that include some unknown
functions characterizing the higher order dispersive effects and the trajectory
functions, which are to be determined from the removal of possible secularities
that might occur in the solution, expanding these unknown functions and the
field variables into power series of the smallness parameter € and introducing
the resulting expansions into the field equations we obtained the sets of partial
differential equations. By solving these differential equations and imposing
the requirements for the removal of possible secularities we obtained the speed
correction terms and the trajectory functions. The results of our calculation
show that both the evolution equations and the phase shifts resulting from
the head-on collision of solitary waves are quite different from those of Xue
[7], who employed the incorrect formulation of Su and Mirie [6]. As opposed
to the result of previous works on the same subject, in the present work the

phase shifts depend on the amplitudes of both colliding waves.
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Chapter 6

Conclusion

In this study, head-on collision problem between two solitary waves was exam-
ined in two different media which are: the shallow water and the fluid-filled
elastic tube. First, the historical background of solitary waves was presented
and the previous experimental, numerical and theoretical studies about soli-
tary wave interactions were reviewed. The necessity of employing some kind
of numerical or asymptotic method to study the head-on collision problem be-
tween two solitary waves was indicated. The derivation of the field equations
for shallow water waves and fluid-filled elastic tubes was summarized and then
the reductive perturbation method and Poincaré-Lighthill-Kuo (PLK) method
were briefly reviewed. Su and Mirie’s [6] perturbation approach to the head-on
collision problem was mentioned and the observation of the incorrectness of
their statement about the secular terms was declared (The derivation of their
study was also presented in Appendix A).

Based on this observation, the head-on collision problem between two soli-
tary waves in shallow water was re-examined by introducing a set of stretched
coordinates in which the trajectory functions were of order 2. The evolution
equations governing the colliding waves were obtained under the non-secularity
conditions and the progressive wave solutions to these equations were provided.
Also, the trajectory functions were determined by using the restrictions that
had been resulted from the elimination of the secular terms. Explicit expres-
sions of the phase shifts of right and left going waves were obtained and the
following results were concluded:

(1) Phase shifts are found to be depend on amplitudes of both colliding waves

in contrast to the result of previous studies.
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(ii) Order of phase shifts is €* rather than e.

In the next chapter, the head-on collision between two solitary waves was
examined by using the extended PLK method. Since a different set of stretched
coordinates was introduced, the evolution equations for various order of € were
obtained as KdV equation and linearized KdV equation with nonhomogeneous
term rather than ordinary differential equations. By providing progressive
wave solutions to the evolution equations and imposing the requirements for
the removal of secularities, the speed correction terms and the trajectory func-
tions were obtained. It was concluded that the results presented here were
same with the results found in the previous chapter whereas they were totally
different from the results of Su and Mirie [6]. Also, the variations of the wave
profiles for right going wave before and after collision were illustrated. It was
observed that the wave profile was symmetric before the collision whereas it
was unsymmetrical and tilted backwards with respect to the direction of its
propagation after the collision.

In the final part of the study, head-on collision of the solitary waves in fluid-
filled elastic tubes was examined by employing the extended PLK method.
Evolution equations were obtained as KdV equation and linearized KdV equa-
tion with nonhomogeneous term. By seeking a progressive wave solution to
evolution equations, the speed correction terms and the trajectory functions
were obtained. As a consequence of our calculations, the following results were
concluded:

(i) Both the evolution equations and the phase shifts are quite different from
those of Xue [7], who employed the incorrect formulation of Su and Mirie [6].
(ii) As opposed to the results of previous studies on the same subject, the order
of the trajectory functions is €* rather than e and the phase shifts depend on
the amplitude of both colliding waves.

The variations of the wave profiles before and after the collision were depicted
on some figures and it was seen that the wave profile was symmetric before
the collision whereas it was unsymmetrical and tilted backwards with respect

to the direction of its propagation after the collision.
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Appendix A

Derivation of Su and Mirie (1980) Article

In their pioneering work Su and Mirie [6] studied the head-on collision of two

solitary waves in shallow water by introducing a set of stretched coordinates

e2k(z — Cgt) = € — ekb(E,n),
e2l(x + Cpt) =1 — eld(&,7), (A.1)

where € is the smallness parameter measuring the order of nonlinearity, C'r and
(', are the speeds of right and left going waves, k and [ are the wave numbers of
order unity of the corresponding waves, 6(§,n) and ¢(&,n) are some unknown
functions describing the trajectories of the right and left going waves and they
will be used in obtaining phase shifts.

Employing the transformation (A.1) in a shallow water theory with con-
stant depth, Su and Mirie [6] studied the head-on collision of two solitary waves
by reducing the fluid equations and the boundary equations to the following

coupled differential equations,

2¢(Cr+Ch) {la—a + ekl <@a—a — %@ﬂ + {kﬁ + l£+

on on o 9& on o
0 0 0
el { S0 0)ae— 220~ ¢>a—n] } Fy =0, (A.2)
2(Cy, + C) [kg—g +elk (Z—?g—f - g—ig—@] + {53 + k§§+
0 0 0
elk { o=~ 50-0) 05] } Fo—o, (A.3)
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where the expressions of F', F_, o and § were defined as follows:

w2 [e%e) n(1+§)2n
F. :i(l—CR,L)(wiC)+7i<w+Z(_1 “(2n)
Prw | (1+¢) 8w 2 0w

- [at8x2”1 + 2n +1 81'2" 2 Z <m> oz™

82n—m

w} : (A.4)

axQn—m
w+ ( = 2ea, w— (= —2¢f. (A.5)

They expanded the field variables into the following power series of €,

alé,n) = ap +eay + Eag + ...,
6(5777) ﬁ0+€/61+6262+... ’
0(57 77) ‘90(77) + 601 (ga 77) +

¢(€7 77) = ¢0(£) + €¢1 (57 77) +
Cr=1+eaR; + €2a*Ry + €3a®Ry + ... ,
Cp=14¢ebLy + b Ly + b°La + ... . (A.6)

By introducing the expansion (A.6) into the field equations (A.2) and (A.3)
and setting the coefficients of like powers of € equal to zero, they obtained a
set of differential equations governing ag, ay, ao, ..., 0y, 01, 02, ..., (Bo, P1, B2,

sy G0y O1, P2, ...), the first two of them are given as follows:

O (€) equations:

aOéo_ 550_
8_77_0’ € = 0.

The solution of these equations are

ao = af(§), fo=1bg(n) (A7)

where a and b are the amplitudes of the corresponding waves.
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@) (62) equations:

6 i ! !/ I !
41 %—Fak@f —2R1a*kf +3a*kff —b’lgg — ablfg
on on
’ 1 3 " "
—abkfg+§<akf —|—2blg>=0 (A.8)

where a prime denotes the differentiation of the corresponding quantities with
respect to their arguments. A similar expression may be given for 8; provided
that proper substitutions are made in the variables.

Integrating (A.8) with respect to n we obtain

k3 " ! I !
Alay + 1 (%f +3a2kff — 2Ra2kf ) + ak [Al0y — bM(n)] f

2

2 1"
. b?l% — ablfg+ b = 4R (€) (A.9)

where M (n) is defined by

(A.10)

In equation (A.9), as n — 400 the second term causes the secularity and, thus,

the coefficient of n must vanish
ak3 " 2 ’ 2 ’
?f + 3a kff - 2R1a kf =0. (A.ll)

This is the evolution equation for the right going wave and a similar expression
may be given for left going wave. By letting k* = 3a and R; = 1/2, the solution
of the equation (A.11) may be given by

f = sech? (g) : (A.12)
Similarly, for right going wave we have
_ 1 2 _ _ 2 (1
Ly = 5 [“=3b, ¢g=sech <2> (A.13)
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For the solutions of the type (A.12) and (A.13), the functions M (n) and N(§)
will be of the form tanh (g) and tanh (g) , respectively. The integral of them,

£
that is, /M(n/)dnl and /N(fl)dgl approaches to infinity as £(n) — £o00. Su
and Mirie [6] made the statement that “although the third term in equation
(A.9) does not lead to secularity for this order it may cause the secularity in
the higher order terms, therefore the coefficient of f in the third term must
vanish”

n

416y — b / g(n)dn = 0. (A.14)
This equation makes it possible to determine the unknown trajectory function
0. Unfortunately, our calculations for the higher order terms show that the
term M (n) f" does not cause any secularity in the next order. Our result is

also justified by one of the authors of the paper (Dr. Su). To see this is the
n €

case, we keep the terms M(n) = /g(n/)dn, and N (&) = /f({l)dfl in the

expression of a; and [y, respectively. Then we have

;bz 2+ fg—gng@f'M( ) + a®Fi(€),
7, a2 abl )
br=taf+ Lrg - Sr TAN© H PG (A1)

Now if we substitute (A.7) and (A.15) into the next order equation, then we
n

obtain the coefficient of the term / M (n/)dn/ in the expression of ay as follows

a’bk?
1612

U
0y =~ (F 435" + 37 - ) /M(n')dn/ b (A16)
Keeping in mind that k* = 3a and R; = 1/2, the coefficient of the secular
term in (A.16) is nothing but the derivative of the evolution equation (A.11)
with respect to its argument; thus, the coefficient of the secular term vanishes.
Therefore, the statement made by Su and Mirie is not correct and 6, remains
undetermined and it should be set equal to zero. This shows that in the
transformation (A.1) the order of 0(£,7n) and ¢(&, ) must be of order €? rather

than e.
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Appendix B

O(¢*) Equations for Chapter 3

Oas o3 o3 03
4la_77 + aka—g)(ag - /82) - 3bkw(a2 - /82) - 2bl8_773(a2 — ﬁg)

8062 8042 a 8042 a
akﬁa—g + bla_T] + 3]68—5(050042) - kﬁoa_g B la_n(BOQQ)

- k%(%&) - kﬁoz—ﬂg — (oo + 50)88—% - l%—ﬁnoﬁz + 31&0%.:72

3 , O 3, O 3.
— —a*k==(a; — B1) — Z—la2lm(0¢1 — Bi) + §ale(a1
o° 9 5 O

3
” (a1 —Bi) + %5218—775(041 — Bi) + (ZGQk‘

3 3
+3akﬁ0) —(Oél - 51) + <§a2l - zabl - 66Ll060 + 3alﬁ0)

X 8—3(04 —G) + § bk — §62/€ — 12bkagy — 3bkf,
ac2an 1T PV T\ T g @ 0
03 3 03
X W(Oﬂ —B) — (1521 — 6blag — 35150) 8—773(041 — 1)
! 82 / 02 ! li
+ Bakag g (o = B1) = 605 5m (e — ) - (3bka0 + 6blﬁo>
82 1" 1 801 19 8041
X 6—772((1/1 — 51) + (3&]{30[0 + 31)]{350 + 4]{/'[8—17 — %GQI{?) 6_§
" ” 891 19 80&1 ” 851
) blB, — Akl— + —bl | — —
+<3aa0+3 s 8§+20bl> o 60,
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” 861 5 . a 1 a 2 2
+ 6013y —— n 6—5(06151) lan (1) + Qkﬁf(gal Bi)
1 a "

" 9 Vit
518—77(3@1 B7) + 3bl3y (2ay + B1) + 3akay Bi + 230" ka( )

3 3y ain) _ (3 3 3 o (B
+70blﬁo <16 k+4aka0+2akﬁ 16bl

+26210z0 + gb2lﬁo> Bl — Za%a;ag’“ _ Gb%ag + 3b215g)) Bl

+ (%a?’k + Z kg — %abkﬁg — 3ak(al — B3 + gazk(ao + Bo)

1\ w (57 3
—3akl 6‘77) (%b3l+ SB2B) — ablao +6blag + S0

1"

X(Oéo + ﬁo) + 66106050 — 3bkl£(26’1 — (251)) 50

3 o,
o€ (§a ko

3 / / / 820 82¢ "
+§a2150 + 6akay By — 6alag[, — 3al2a—21 — 3a kla&;) o
3 ! 3 ’ ! / ! 826

+ <§b2k5a0 + §b2lﬁo + GkaZ()O_/O + 126[0&050 + Gblﬁoﬁo - 3al2¥;

92

—Sbkl85677

(26, — ¢1>) By + 3ak(ag)? + 3b1(8y)* — 3alBy(ay)?

o o o
— 3bka(By)* + (“kl(%m (0, — ¢) — aﬁwwl — 1) — 2bkl

63
ez’

802 ’ ’
n oy — 2R3a’kay = 0

8
_ (al2 — 1) + 20kl 1 — ¢1) — kl(ao + Bo)

e
9

X6§(91 — qbl)) ﬁo + 4kl—

A similar equation can be given for the variable (.
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Appendix C

O(e*) Equations for Chapter 4

0G3 G 8w3 Ows 8(2 0
n ¢ + + - ¢ + — (C2 wo) + ag(Czwo)
0 0 0 0
+ 8_77(§0w2) + a—g(Cowz) + a—n(ﬁwl) + 8_€(C1w1)
1 83w2+383w2 +383w2+83w2 _dgo9G dpo 9G:
6\ 0& 0&20n o&on?  on? dr On  dr 0§
1 (9511)1 8511)1 8511}1 6511]1 (9511)1
120 ( o5 " Pagian T Vagar T aaap T 0oty

6511)1 CQ 83w1 83w1 831111 83w1 Cl 831110
*’anﬁ) "5'( o6 aezan T acar av%) ( o6

33w0 83w0 83w0 1 8211)1 82101 82’11}1
= 2
+%&m+%w#+6w> <%2+awﬁ+62>
dG . 9 6’271)0 8271)0 3271)0 aQ 7/8}
X( *aJ (%f”%w+a2 oy ¢

8@0 aPO a 8@0

0P, 0Q) 0Qo 0P, 0F, 0Qo
_68_770_5) gy ) - (7877*6@5‘6@77 ag)

0 dq, O dp; O 1 7 7
X—(C1— 1) q1 9Co p1 OCo ( wo_i_7 Wo

ae >t T Y T T dr ae T 5040

o&" 0&50n
87’11)0 37100 8711)0 87w0 8771)0
2 21
s T P actar T oo T Hacar T acon
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Co 65w0
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_0R 9 0Q0 0 0P 3Co <7@ 6%
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0P, 0Qo 68P08Q1> 9 o+ wp) — <5Q1 0P,

—6

on 0€ an 0 0 &
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17/ 93 o3 Owy
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82 (92w0 1 82 82
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Appendix D

O(¢*) Equations for Chapter 5
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