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IMPROVED MICROPHONE ARRAY DESIGN WITH 
STATISTICAL SPEAKER IDENTIFICATION 

METHODS 

Abstract 

Conventional microphone array implementations aim to lock onto a source with 
given location and if required, tracking it. This implementation is straightforward 
when the location or the path of the source and interference are provided. It 
becomes a challenge to detect the intended source when multiple unknown sources 
exist in the same environment. 

Performance of speaker identification degrades drastically when the speech signal 
is severely distorted by additive noise and reverberation. In such environments, 
microphone arrays are often utilized as a means of improving the quality of cap­ 
tured speech signals. 

Both microphone array and speaker identification are mature fields. The advances 
of these two distinct fields can be combined into one system that maximizes gain 
on the intended speaker, which is the topic of this thesis. We utilize microphone 
array methods to improve the accuracy of speaker identification in a cocktail 
party environment. When the source and interferences are localized microphone 
array can be tuned to further reduce noise and increase the gain. 

In this thesis we developed a robust simulation environment to demonstrate the 
proposed improved microphone array design with statistical speaker identifica­ 
tion. This is an open source implementation in which users can assign speakers 
anywhere in the room. We proposed two features; fusion based, and computa­ 
tionally efficient N-Gram for speaker identification. We demonstrated that the 
proposed features and the algorithm that leverages the synergy of microphone 
array processing and speaker identification methods outperforms conventional al­ 
gorithms. 
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. . . 
ISTATIKSEL SES TANIMA METODLARI ILE . . . . . . 

GELISMIS MIKROFON DIZISI TASARIMI 

Ozet 

Mikrofon dizilerinin kazanc dizinin boyutlarm b~y~t~rek artlabilir fakat kazanc 
art1rmak i~in sens~r eklemek qok maliyetlidir. Bu nedenle eger ortamda yeter­ 
ince alan olsa bile algoritma kars1khg artrarak kazanc1 artrma tercih edilir. 
Spektral dizi isleme methodlarmda, odaklamlmak istenen kisinin ve g~r~lt~n~n 
bulundugu posizyonlarm bilinmesi b~y~k avantaj saglar. Geleneksel metodlar 
bu problemi istatiksel olmayan y~ntemlerle ~~zmeye qahs1r. Ayrca ses tan1a 
metodlarm performanslar1 g~r~lt~ oran y~ksek oldugu ortamlarda azalr. Bu 
gibi ortamlarda, mikrofon dizilerinin kullamlmas1 ses sinyalinin kalitesini artmr. 
Bu nedenlerde dolay1, mikrofon dizileri ve ses tan1a metodlar1 birbirlerine katk 
saglarlar. 

Bu qalsmamzda, mikrofon dizisi sistemi ve ses tana sistemi tok bir sistemin 
par~alar olarak tasarlanm1stIr. Mikrofon dizisi kullanarak ses tan1a sistem­ 
inin dogrulugu art1lrken ses tama sisteminin sonuqlar kullamlarakta mikro­ 
fon dizisinin kazanc artlmstI. Ses tan1a sistemi uygulumasmda Fusion 

ve N-Gram temel frekans y~ntemleri ~nerilmistir Gelismis mikrofon tasarm11 
g~sterebilmek iin simulasyon ortam konusmaclarm odan herhangi bir yer­ 
ine eklenebilicegi bir simulasyon ortam gelistirilmistir. Simulasyon ortammda 
deneyler sonuu ~nerilen metodlarm geleneksel metodlar ~st~n oldugu g~zlemlenmistir. 
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Chapter 1 

Introduction 

Microphone arrays arc composed of multiple sensors. Each sensor in a micro­ 

phone array functions as a single directional input device. Sound sources can be 

spatially filtered or distinguished from each other using the principles of sound 

propagation. By combining individual sensors, signals can be distinguished based 

on their spatial locations. In other words aperture signals are combined in a 

phased array in such a way that signals at particular spatial position experience 

constructive interference while others experience destructive interference allow­ 

ing spatial filtering of a signal. This procedure is known as "beamforming" or 

"spatial filtering" [1]. 

U 

Figure 1. 1: A microphone array 

Microphone array processing is a mature field with many uses. In corporate con­ 

ferencing systems microphone arrays are widely used. An array on a conference 

room table or mounted on ceiling along with state of the art steering algorithms, 
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Figure 1.2: Flow Diagram of this thesis 

digital signal processing, and echo cancellation, can zoom in acoustically on in­ 

dividual conference participants and deliver sound quality that is superior to 

traditional conference room sound­gathering methodologies. 

Distance Speech Recognition (DSR) systems use microphone arrays and have 

useful applications in intelligent home and office environments. For instance by 

recognizing a speaker's voice even from long distance with the help of microphone 

arrays, an application can turn on a particular source of light in a room. The 

application makes it possible to have the light turned on just by saying: "Turn 

on the light." . 

Microphone array processing also has medical applications such as hearing aids. 

The array provides significant improvement in speech perception over existing 

hearing aid designs, particularly in the presence of background noise, reverbera­ 

tion, and feedback [2]. 

Last but not least forensics is an important field of microphone array processing. 

With spatial filtering properties of microphone array a person can be overheard 

from a long distance without being observed. The results of overhearing conver­ 

sations by using microphone array processing can be used as evidence in court 

according to law to prove whether a defendant is guilty or not. 

Having voice samples of a person to be overheard and a microphone array we 

can locate the target through spatial localization and speaker identification tech­ 

niques. If the speaker claims to be of a certain identity and the voice is used to 

verify this claim, this is called speaker verification. Combining microphone array 

with speaker verification promises strong contributions on forensics. 
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In this thesis we worked on two well known fields: microphone array processing 

and speaker identification. By using state of art methods these two disciplines will 

be combined into one system. The idea behind combining these two fields is to 

provide better speaker identification results using Microphone Array Processing 

techniques. Moreover, speaker identification distinguishes between the speaker 

and noise, which in turn will be used to tune microphone array gain. Thus the 

goal of this thesis is to increase the Microphone Array performance by using 

speaker identification techniques. 

In this thesis a combination of two mostly used separate features, MFCC and 

Formants will be examined. A faster model for processing features "FON-Grams" 

model will be proposed and compared with conventional GMM models. As will be 

shown in chapter I I microphone array gain increases in high frequencies. We will 

take advantage of that microphone array feature and focus on speaker recognition 

with using features on high frequencies. 

Organization of this thesis is summarized in 1.2. In chapter I I the first step of 

this chain process; spatial filtering with conventional beamforming methods will 

be examined. In chapter I I I state of art methods on speaker identification will be 

examined. First of all the applications of speaker identification will be introduced. 

Then the features used in identification and models used for processing these 

feature vectors will be introduced. In chapter IV post filtering microphone array 

processes will be introduced. Chapter V will introduce our speaker identification 

results. Chapter VI will be devoted to our approach for speaker localization with 

identification and post microphone array filtering processes. And Chapter VI I 

will conclude this thesis. 
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Chapter 2 

Conventional Microphone Array Processing 

2.1 Introduction 

Speech signals captured by a single microphone can be corrupted by undesired 

noise. As first step in this thesis we will examine conventional microphone array 

methods to overcome noise in this chapter. The position of the conventional 

beamforming processes can be seen in the picture 2.1. 

Conventional 
Beamforming 

Speaker 
Recognition Post Filtering 

Figure 2.1: Position of the conventional beamforming in project flow 

Let's suppose the goal is to record one specific person in a crowded room and our 

target is located perpendicular to the recording device. If we use a microphone 

with an omnidirectional direction sensitivity our record will include other people's 

voices. But if we use several microphones instead of one and sum their outputs, 

total response of the system will be sensitive to direction. Summing process 

illustrated in Figure 2.2 for a microphone array with three elements. 

1 



array 

mixer 

array 
output 

wavefront wavefront 

array 
output 

mixer 

array 

minimum 
correlation 

maximum 
correlation 

minimum 
correlation 

Figure 2.2: Linear microphone array setup 

Because the array's output is created by summmg all microphone signals, the 

maximum output amplitude is achieved when the signal originates from a source 

located perpendicular to the array; the signals arrive at the same time, they are 

highly correlated in time and reinforce each other. Alternatively, if the source 

originates from a non-perpendicular direction, the signals arrive at different time, 

they are less correlated and produce a lower output amplitude. 

Even if signal processing techniques are not used, the amount of signal seen by 

microphone array varies with direction of microphone array. As illustrated in 

Figure 2.3 response of a microphone array is inherently directional. Response of 

microphone array as a function of frequency and direction of arrival (DOA) is 

known as directivity pattern. 
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Figure 2.3: Directivity of a linear array 

In this chapter mathematical model will be introduced for directivity pattern. 

This model will allow us to derive the parameters that affect the directivity pat- 

tern. 

2.2 Description Of Problem 

2.2.1 Mathematical Description Of Problem 

In sensor arrays, due to the arrangement of the microphone array each element 

introduces some delay. The impulse response of each aperture is given by [3]; 

(2.1) 

Where (t) is the dirac delta function. Additionally each element in a micro- 

phone array may introduce amplitude and time shift which is described by w(t) 
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in equation 4.2 ; 

h,(t,r) = w(t,r)(t + 7,,T) (2.2) 

A signal can be reconstructed spatially by sampling the signal at a given instant 

of time. Frequency response can be derived by applying the Fourier transform 

[3]; 
(2.3) 

The a, term in equation 2.3 is coming from k term of the sound wave equation. 

Wavenumber k is equal to 2m/\ and r is the spatial position of the aperture. 

Given that microphone array has N elements, the output of array will be the 

superposition of all elements given by [3] ; 

N/2 

Dtt. -) w.nets 
n=N/2 

(2.4) 

In this chapter we will consider elements equally spaced. And elements themselves 

does not introduce any amplitude gains or phase shifts. So element weight W(f,r) 

will be taken as 1. Directivity pattern will be equal to 2.5 ; 

N/2 

Du.o- tao 
n=N/2 

(2.5) 

The Equation 2.5 is well known Fourier transformation of a rectangular window. 

And result of such transformation is given [3]; 

D(f, 0) = L sin(x) 
X 

(2.6) 

According to Eq. 2.5 similarities between Time - Frequency domains and Sensi- 

tivity - Directivity domains can be derived. As we can see directivity response 

of microphone array is like a Finite Impulse Response(FIR) filter. Each element 

in array corresponds to one weight of FIR filter window. And element count 

corresponds to window size. [4]. 
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From equation 2.5 it can be seen that performance of a microphone array depends 

on frequency, number of elements and distance between microphones. Each of 

these parameters will be tested in our simulation environment. 

2.3 Spatial Aliasing 

In temporal sampling, nyquist frequency states the minimum rate at which a 

signal can be sampled without introducing errors, is twice the highest frequency 

present. In spatial filters spatial aliasing can occur as well.Aliasing can happen 

in space, as well as in time. In order to reconstruct a spatial sinusoid from a set 

of discrete samples, spatial sampling must occur at a rate greater than a half of 

the wavelength of the sinusoid. The relation between distance between elements 

and frequency is given by; [5) 

(2.7) 

2 .4 Near Field Behaviour 

Until this point we considered plane waves but by its nature sound waves are 

spherical. As illustrated in Figure 2.4 the further the waves from the microphone 

array more straight they appear. The region where waves appear as a plane wave 

is called far-field. 
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■ microphone 
array 

Figure 2.4: Further the source from the microphone array, waves become more 
planar 

For a linear array, a wave source may be considered to come from the far-field of 

the microphone array if 

2.5 Delay-sum Beamformer 

2£7f 
(d,> 

c 
(2.8) 

So far, directivity pattern has been fixed perpendicular to the array. With beam- 

forming capabilities of microphone array, beam pattern can be steered without 

moving array. And also microphone array can focus to different depths. 

As illustrated in Figure 2.5 sound arrives first at the centre of the array and a 

few microseconds later at the outer edges. By delaying the sound at the centre 

until it is in phase with that coming from the outer edges, a more tightly focused 

beam can be generated. [6] 
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Figure 2.5: Focusing in depth with microphone array 

Steering can be simply achieved by adding a delay stage to each of the array 

elements as illustrated in Figure 2.6[7] 

summing 
stage 

delay 
lines --- .Z::7., 

point 
source 

wavefronts microphone 
after beam steering array 

and focusing 

Figure 2.6: Steering microphone array 

Delay-sum microphone array's response to a pulse at 0, 337 is simulated and can 

be observed in Figure 2. 7 
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Figure 2.7: 2 dimentional spatial response of steered microphone array 

2.6 Conventional Microphone Array Summary 

We observed that delay-sum microphone array's behaviour is similar to a moving 

average FIR filter. It is important to note that conventional microphone array 

methods do not need any speaker or location data. These deterministic methods 

will help us to locate the target speaker and interference. After interference is 

filtered spatially we will see that speaker identification methods will provide better 

results. 
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Chapter 3 

Speaker Identification 

3.1 Introduction 

The task of speaker identification, also referred as detection, is to determine 

speaker by a segment of speech. Generally segment of speech contains only one 

speaker and task is better termed single-speaker identification [8]. If speech seg- 

ment contains more than one person than task becomes multispeaker detection. 

We will focus on single-speaker detection task on this chapter. But in this thesis 

we will also focus on multispeaker detection. 

Larynx sizes, vocal tract shapes and other parts of voice production organs of 

individuals are different. Also each speaker has different manner of speaking, 

accent, rhythm, pronunciation pattern. In this chapter we will give an overview 

of features produced by these differences. Then we will give an overview to 

classical methods which use these features. [9]. 

Speaker identification is a part of this thesis and stand-alone modular entity. 

Identification process will start after conventional beamforming processing. The 

position of the identification process in project flow is illustrated in Figure 3.1. 

Since identification is a stand alone modular entity its applications and results 

will be over-viewed separately. 
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Beamforming Speaker Verification Post Filtering 

Figure 3.1: Position of the speaker recognition in project flow 

One important field of speaker identification is telephone-base services. An ex- 

ample is automatic password reset over the telephone. Demand to such services 

are high and assigning human-operators for those kind of tasks are expensive. 

Also voice identification is the most preferred form of biometric identification 

among consumers. With all types of biometric applications on the rise, voice- 

based authentication is one approach that seems to engender less resistance among 

users than other biometric forms of security.[10] 

In this thesis we will use speaker identification for spatially locating the target 

speaker. It is particularly important to locate speaker location because given 

location information we can apply post filtering microphone array processing 

methods. The process of locating the spatial position of the speaker is illustrated 

in Figure 3.2. By using delay-sum beamformer's steering and focusing capabilities 

spatial filtering will be applied to each point of the room. And spatially filtered 

data will be passed to identification system. Since spatial filtering increases the 

gain of the focused point and eliminate the noises from other points when focused 

point is closer to speaker position our identification system will score better. 

The spatial position where identification system provides the highest score will 

considered as position of the speaker. 

10 
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Figure 3.2: Spatially locating the speaker by combining delay-sum beamformer 
and speaker identification methods 

Speaker identification systems can be divided into text-dependent and text-independent 

ones. In case of text-dependent systems, phrases known beforehand. Smaller the 

dictionary more accurate identification process will be. Text-independent systems 

are more challenging because there are no limitation on the words that the speak- 

ers are allowed to use. When training utterances and test utterances are different 

accuracy of speaker identification system might decrease. This is called phonetic 

variability and one of the biggest challenges of text-independent systems. 

There are other factors which effect the performance of identification system. 

Changes in recording devices and the sample rate are a few examples. Another 

challenging problem in speaker identification is "Session variability" which is any 

variation between two recordings of same speaker. There might be many reasons 

of "Session Variability" such as aging, environment, health and mood [11]. 

11 



In this chapter we will give an overview of features used in identification and 

models which uses these features. 

3.2 Speaker Identification Fundamentals 

A speaker identification system includes two primary components: a front-end 

and a back-end. Front-end component extracts features. Digital signal processing 

techniques like filter banks, fast fourier transform used in front-end. And also 

every speaker identification system has back-end component where speakers are 

modelled (enrolled) and identification trials are scored. Mostly machine learning 

and statistical tecniques are used in back-end.[12]. 

Background Modelling 

Modelling/Enrollment 

Utterance 

Training 

Feature Extraction 

Target Speaker Modelling 

Trained Model will be used in estimation 

Estimating 
Estimating Scoring 

Figure 3.3: Stages of a typical automatic speaker identification system. 

Figure 3.3 shows two stages of an automatic speaker identification system. The 

upper is the training process , while the lower panel illustrates the prediction pro- 

cess. The feature extraction module first transforms the raw signal into feature 

vectors in which speaker specific properties are emphasized and statistical redun- 

dancies suppressed. In the training mode; a speaker model is trained using the 

12 



feature vectors of the given speaker. While training some systems also use "anti­ 

speaker" techniques, such as cohort models, or well designed world models which 

contains balance of voices that would be representative of the voices of potential 

impostors [13]. In the recognition mode, the feature vectors will be extracted 

from unknown utterances. And those feature vectors will be compared against 

trained model. Thus a similarity score will be get from models. Finally decision 

module will use this similarity score to make the final decision. In the recognition 

phase, background speakers are used in the normalization of the speaker match 

score. This simple approach can be seen in equation 3.1. 

. claimed identity 
normalized score= ·Id del wor mo e 

(3.1) 

In upcoming sections we will give a introduction to features and modeling respec­ 

tively. Than we will explain the methods used in this thesis in details. 

3.2.1 Front-End Overview 

In speech signal there are many features and some are not useful for speaker 

identification. The characteristics of and ideal feature would; [9] 

• be independent recording environment, 

• has as small session variability as possible, 

• be robust against noise and distortion 

• occur frequently and naturally in speech 

• to be calculated fast enough from speech signal 

• be difficult to impersonate/mimic 

According to application importance of properties may change. For example in a 

real time application speed might be more important. But for a application which 

13 



is designed for noisy environments, small session variability will be preferred. We 

should not that feature selection not only effects feature extraction speed but also 

effects modeling process which uses this feature. Traditional statistical models 

such as the Gaussian mixture model cannot handle high-dimensional data fast 

enough. The number of required training samples for reliable density estimation 

grows exponentially with the number of features. This problem is known as the 

curse of dimensionality.[14] 

Features can be divided into spectral features, temporal features, prosodic fea- 

tures and high-level features. The spectral features, which are obtained by con- 

verting the time based signal into the frequency domain using the Fourier Trans- 

form. Some examples of spectral features are fundamental frequency, frequency 

components, spectral centroid, spectral flux, spectral density, spectral roll-of are 

examples of spectral features. These features can be used to identify the notes, 

pitch, rhythm, and melody. 

The temporal features are obtained in time domain. They are simple to extract 

and have easy physical interpretation. Energy of signal, zero crossing rate, max- 

imum amplitude, minimum energy are examples of temporal features. 

When sound put together in connected speech prosodic features can be observed 

such as intonation, stress and rhythm. Prosodic features span over tens or hun- 

dreds of milliseconds. [15] 

For high-level feature extraction, input speech is converted into a series of to- 

kens. The tokens are time-ordered discrete symbols and represent linguistically 

significant interpretations of the input signal. Examples of token types are words, 

phones, and pitch gestures. [16] 

In next section features that will be used in this thesis will be explained in detail. 

14 



3.2.2 Spectral Features 

To have stationary signal utterance must be broken down in short frames of 

about 20-30 milliseconds because speech signal continuously changes. Spectral 

envelope which is a curve in the frequency-amplitude plane, derived from a Fourier 

magmtude spectrum 3.4, contains information about the resonance properties of 

the vocal tract. 

Frequency Analysis 

0Hz 1000Hz 2000Hz 300OHz 4000Hz 5000Hz 6000Hz 7000H 

Figure 3 4: Typical magnitude spectrum of a human voice 

Features can be extracted directly from spectral spectrum but usually using other 

transformations dimensionality is further reduced. Filter banks which are an array 

of band-pass filters that separates the input signal into multiple components, 

each one carrying a single frequency sub-band of the original signal are used for 

reducing dimensionality, Different types of filter banks have been proposed to 

embed the observations of psychoacoustic experiments about in the frequency 

analysis. 
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Mel-frequency cepstral coefficients (MFCCs) are popular features. MFCCs were 

introduced in early 1980s for speech verification. Mel filter banks applied to spec- 

tral spectrum for computing MFCC coefficient, followed by logarithmic compres- 

sion and discrete cosine transform (DCT). Denoting the outputs of an M-channel 

filterbank as Y~.(m= 1,2, ..., M), the MFCC's are given [17] 

M n 1 
2sYt)cl;( 5 

m=1 

(3.2) 

Here n is the index of the cepstral coefficient. M generally chosen between 20 and 

40. In order to reduce dimensionality, final MFCC vector is obtained by retaining 

about 12-15 lowest DCT coefficients. 

Gammatone coefficients and linear predictive cepstral coefficients(LPCC) are 

other important features calculated by filter banks. 

3.2.3 Prosodic Features 

Prosody refers to non-segmental aspects of speech, including for instance sylla- 

ble stress, intonation patterns, speaking rate and rhythm. The most important 

prosodic parameter is the fundamental frequency ( or FO ). F0 can be observed 

at the time domain representation of a human speech which illustrated in Figure 

3.5. Each of the identifiable repeating patterns is called a cycle. The duration 

of each cycle is called the glottal pulse or pitch period length. The fundamental 

frequency of a periodic signal is the inverse of the pitch period length. The voiced 

speech of a typical adult male will have a fundamental frequency from 85 to 180 

Hz, and that of a typical adult female from 165 to 255 Hz.[18] 
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Figure 3.5: Fundemental frequency cycles in human speech 

Reliable FO determination itself is a challenging task because of problems illus­ 

trated in Figure 3.6. In 3.6.a simply selecting the highest peak will be enough but 

in case of 3.6.b FO's magnitude is less than its harmonics. In this case selecting 

the lowest frequency seems to work. When we check 3.6.c and 3.6.d we see that 

some peaks are missing. It is a challenge to accurately estimate FO due to these 

issues.[19] 

0. ­ • 
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Figure 3.6: Fundemental frequency cycles in human speech 

Formants are also considered as good parameters; a formant is a concentration 

of acoustic energy around a particular frequency in the speech wave. There are 
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several formants, each at a different frequency, roughly one in each l000Hz band. 

Each formant corresponds to a resonance in the vocal tract. In Figure 3.7 first 

formant (Fl) and second formant (F2) is shown by bold lines. [20]. 

l 
g.[ 

cot caught 

Figure 3.7: Formants can be seen very clearly in a wideband spectrogram,they 
are displayed as dark bands. 

3.2.4 Speaker Modelling 

After feature vectors are extracted, speaker model(s) are trained with extracted 

feature vectors. Classical speaker models can be divided into template models 

and stochastic models. In template models, training and test feature vectors are 

directly compared with each other and correlation between feature vectors repre­ 

sents their degree of similarity. Vector quantization (VQ) [21] is a representative 

example of template models. 

In stochastic models, a probability density function assigned to each speaker. In 

training phase probability density function will be estimated. Estimation will 

be done by finding the probability of utterance in trained model. The Gaussian 

mixture model (GMM)[22] and the hidden Markov model (HMM) [23] are the 

most popular models for identification. We will examine the methods used in 

this thesis further. 
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3.2.5 Gaussian Mixture Model 

Gaussian mixture model ( G MM) is a stochastic model which is widely used in 

speaker identification. A feature vector belongs all class but with a certain ratio. 

In identification the speaker class which has the maximum likely-hood will be 

chosen. 

For a D-dimensional feature vector x, the mixture density used for the likelihood 

function is given [8] 
M 

»l»=t 
i=1 

(3.3) 

The density is a weighted linear combination of Muni modal Gaussian densities, 

Pi ( x), each parametrized by a mean D x 1 vector, ;, and a D x D covariance 

matrix, 

G MM is a method to represent high dimensional feature vector with a smooth 

surface of membership probability. This capability of GMM makes it superior to 

the Naive Bayes approach although it is computationally more costly. 

3.2.6 N-Gram Model 

In the fields of computational linguistics and probability, an n-gram is a contigu- 

ous sequence of n items from a given sequence of text or speech. Items in our 

applications will be formants. In a speech signal formants change very frequently. 

And goal of our N-Gram tokenizer is create a model by observing this changes to 

detect speaker. 

In training phase we extract FO from different utterances of same speaker. We 

count occurrences of each frequency bin of FO. In GMM model each speaker have 
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her/his own probability density function, in N-Gram model each speaker will have 

a total number of occurrences for specific frequency bin. While estimating we 

extract FO from test utterance. If C',, is the number of occurrences that extracted 

FO bin occurs in trained model of speaker n, and T is total number of occurrences 

in all training models then for a 1-gram model probability of utterance belongs 

to speaker n is C,,/T. Each speaker's n-gram model will be tested. And model 

which gives the highest probability will be detected as speaker. 

Using counts directly is not a good approach for speaker identification a single FO 

frequency bin is not unique enough to distinguish people from each other. Instead 

of counting a single bin we offer a hash function in FO normalization stage. This 

hash function creates a unique number out of N-bins. Than we count result of 

our hash function which composed of N frequency bins. 
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Chapter 4 

Microphone Array Post Filtering 

4.1 Introduction 

In Chapter 2 it was told that microphone array element's may introduce amplitude 

and time shift which was described by w(t) in Equation 4.2. Up to this point of 

discussion, we neglected amplitude gain and time shift introduced by microphone 

array elements and assumed equally weighted sensors calculating the directivity 

pattern, given 
1 

(f)= (4.1) 

In this chapter we will investigate effects of non uniform weight vector w. Firstly 

we will introduce narrow band and broad band beamformers and illustrate how 

they operate. As illustrated in Figure 4.1 we can reconstruct the signal over all 

space and time by either temporally sampling the signal at a given location in 

space, or spatially sampling the signal at a given instant of time[4]. To provide 

insight to different aspects of spatial filtering with a beamformer, FIR filtering 

methods will be used. 
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Discrete space 

Sampling in 
time domain 

Sampling in spatial 
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Figure 4.1: Reconstructing a signal with sampling by time and space 

4.2 Narrow Band and Broad Band Beamformers 

Two beamformers are illustrated in Figure 4.2. Beamformer depicted in Figure 

4.2a is typically used for narrow band signals. The combination of sensor data is 

given by Equation 4.2. 

xi(t) 
w, 

,(0) 
w, 

n -2 

x,(t) 

(A) A common narrow band beamformer 

·= 
• n-2 

(B) A common broad band beamformer 

Figure 4.2: Illustration of narrow band and broad band beamformers, each sensor 
output is multiplied by a complex weight and then summed 
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The second beamformer which illustrated in Figure 4.2b samples both space and 

time and often used while filtering broadband signals. In this case output is given 

N/2 K 

a » Svc • 
n=N/2 k=0 

(4.2) 

where N is number of elements in aperture and K is the number of delays in each 

element[24]. 

4.3 Similarities With FIR Filtering 

Methods and techniques used in FIR filtering and spatial filtering are familiar 

because both use reconstructing signal as base. Although there are many sim­ 

ilarities in someways beamforming differs from FIR filtering. For example, in 

beamforming source of energy has several parameters like range, elevation angle, 

polarization and temporal frequency. [24]. 

As illustrated in Fig 4.3 the correspondence between FIR filtering and beam­ 

forming is closest when the array geometry is linear and equi­spaced and the 

beamformer operates at a single temporal frequency o. 
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(A) Equi-spaced omni directional narrow- 
band line array 

(B) A single channel FIR Filter 

Figure 4.3: Comparision between FIR filter and Equi-Spaced omni directional 
narrow-band array 

In FIR filtering, a band-pass filter is a device that passes frequencies within 

a certain range and rejects frequencies outside that range. Likewise in spatial 

filtering we may wish to receive any signal arriving from a range of directions, 

in which case the desired response is unity over the entire range. As another 

example, in FIR filtering, band-stop filter is a filter that passes most frequencies 

unaltered, but attenuates those in a specific range to very low levels. Likewise 

in spatial filtering and we may know that there is strong source of interference 

arriving from a curtain range of directions, in which case the desired response is 

zero in this range. In spatial filtering instead of band-pass and band-stop terms, 

such filters are called beam former[24]. 
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4.4 Pattern Shaping 

As described in 2 directivity of a microphone array is given by 4.3 ; 

N/2 

Du.a.= wu.res 
n=N/2 

Considering only the horizontal directivity pattern, we have 

N/2 

DU.o)- wa,re'o«oa 
n=N/2 

(4.3) 

(4.4) 

As described in previous chapters with speaker identification method we will 

locate the desired speaker and also the interference location. Given we know 

beam pattern we can figure out the weight vector of the aperture. 

N/2 

Wt.)- Dtt.oe rt 
n=N/2 

To obtain weight vector, firstly beam pattern is obtained from equation, 

D(f,0) = L sin(x) 
X 

(4.5) 

(4.6) 

Secondly nulls are placed in interference direction with a window function. And 

finally IDFT is applied to the windowed beam pattern to obtain weight vector. 
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Chapter 5 

Speaker Identification Experiments And Results 

5.1 Feature Selection And Modelling 

In this study we used spectral features such as MFCC, formants and also prosodic 

features which are obtained from fundamental frequencies as illustrated in Figure 

5.1. 

In calculation of MFCC, the number of filter banks and selection of cepstrum 

coefficients are important. We used 40 filter banks and 39 cepstrum coefficients. 

The more cepstrum coefficients the better identification accuracy will be at the ex­ 

pense of computational cost in feature extraction and G MM modelling processes. 

To extract formants from speech signal we first calculated fundemental frequency 

by using Yin's FFT method [25]. As it was told in previous chapter there are 

several formants, each at a different frequency, roughly one in each lO00Hz band. 

Since formants are resonances in the vocal tract, formant frequency has a large 

amplitude. In each lO00Hz band we compared the frequencies which are multiples 

of F0 and selected the frequency with the largest amplitude. We used 5 formants 

as features. Both formants and MFCC were modeled using GMM with 5 clusters. 

The prosodic characteristics of speech were modeled using F0 N­Gram model 

where N is 5. We also used F0 feature in a N­Gram model that N is selected as 

3. We chose the highest frequency that avoids aliasing between 1000­2000Hz as 

was discussed in Chapter 2. 
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Figure 5.1: Illustration of methods used and scoring 

5.2 Exprimental Results 

For our purposes, detecting a speaker with the shortest possible sample is critical. 

We made experiments with varying duration of test utterances. Moreover since we 

are targeting real time, the speed of our algorithms is also a concern. In training 

and estimation stages we used EUSTACE [26] database which is composed of 

utterances collected from 10 people. In all of our experiments test and training 

data are mutually exclusive. 

Accuracy of MFCC, formant and N-Gram FO models with varying training data 

can be seen in the Table 5.1. Each feature models different aspects of speech. 

For example formants model subject's vocal tract shapes and N-Gram FO targets 
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Train Data Length MFCC FORMANT N-Gram F0 Fusion 
30 Seconds 52.3492 45.2553 43.7391 65.0479 
50 Seconds 77.5403 71.6232 55.609 87.8661 
100 Seconds 79.8842 71.2382 56.1335 87.0293 
125 Seconds 87.2329 73.5190 59.8617 99.4390 
150 Seconds 91.2655 80.0374 60.2278 99.4048 

Table 5.1: Percentage of correct identification with MFCC, Formant, NGram-F0 
and Fusion Models where test data length is 500 milliseconds. 

to model intonation, stress and rhythm. We also offer a combined model which 

is a fusion of features. Our motivation is to support our decision system when 

there are similarities between the sound, intonation, stress or rhythm between 

samples. For example vocal tract shapes of two individuals might be similar 

and formant modeling may fail to distinguish these two individuals. But if their 

intonations are different when we combine formant modeling and N-Gram F0 

modeling, identification accuracy is expected to increase. The results of combined 

model can be seen in the fourth column of Table 5.1. In this expriment test data 

length was chosen as 500 milliseconds. 

The accuracy of model with varying duration of test utterances can be seen in 

Table 5.2. In this experiment the training data was fixed at 50 seconds for each 

individual. 

Test Data Length MFCC FORMANT N-Gram F0 Fusion 

200 mSeconds 69.7811 59.7131 48.4566 86.2620 

500 mSeconds 77.5403 71.6232 55.6090 87.8661 

800 mSeconds 81.4202 78.6349 58.8514 89.7959 

1000 mSeconds 82.1940 81.2907 59.9640 92.0635 

1500 mSeconds 83.9669 85.6510 62.5000 96.6667 

Table 5.2: The effects of test utterance length in MFCC, Formant, NGram-F0 
and Fusion Models where training data length is 50 seconds. 

Algorithm speed comparison for training the models are shown in Table 5.3 with 

varying amount of training data. 
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Train Data Length MFCC Formants FON-gram 

10 Second 11.8000 3.0300 0.2600 

100 Seconds 67.4080 19.2780 0.2800 

250 Seconds 104.9080 30.3500 0.2900 

500 Seconds 170.1780 66.1230 0.3150 

Table 5.3: The comparison of training speed between 3 models. Result are written 
in seconds. 

The proposed features and the results which are obtained in speaker identification 

experiments will be revisited in the conclusion chapter. 
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Chapter 6 

Microphone Array Experiments and Results 

6.1 Parameters of Directivity Pattern 

6.1.1 Simulation Environment 

We created a simulation environment of 20m2 to test the effects of frequency, 

number or sources,number of sensors and the distance between them. For sim­ 

plicity the room is represented in two dimensions. A microphone array will be 

placed on the wall of the room. Sources are simple .wav files which can be placed 

anywhere in the simulation room. The number of microphones and distance be­ 

tween microphones are adjustable. Our simulation environment can be seen in 

Figure 6.1 below. In this example a microphone array with 41 elements and two 

sources are placed in the simulation room. 
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Figure 6.1: Simulation enviroment with two sources 

To test the directivity of the microphone array, we use a narrow band pulse. We 

placed the pulse in the middle of the room and calculated the magnitude of signal 

for each point in the room. Points with higher magnitude are colored lighter as 

illustrated in Figure 6.2. In Figure 6.2a wave is omnidirectional because only one 

sensor exists. In Figure 6.2b the response of an array of 41 elements is depicted. 

Here we see a sine pattern in 0 domain. This phenomenon was discussed in 

equation 4.6. 

Lobe containing the maximum power is called main lobe [27]. In figure 6.2b main 

lobe is lightest area with red point in the middle. The other lobes are called side 

lobes. 
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(A) Directivity of one microphone (B) Directivity of a microphone array 

Figure 6.2: Directivity responses for a single sensor and 41 sensor microphone 
array 

When element spacing is greater than a half wavelength, the spatial aliasing effect 

causes side lobes to become substantially larger in amplitude, and approaching 

the level of the main lobe; these are called grating lobes, and they are identical, 

or nearly identical copies of the main beams. 

6.1.2 Effect Of Frequency On Directivity Pattern 

Directivity response of microphone array to various frequencies is illustrated in 

Figure 6.3. There are 41 elements placed on microphone array and distance 

between elements are set to 10 cm. Red point in the simulation is spatial position 

of the pulse. 

As can be seen frequency increase of the pulse increases the directivity gain of 

the array. On the other hand, we observe in Figure 6.3d that higher frequencies 

cause spatial aliasing. Three grating lobes can be identified in Figure 6.3d. The 

mathematical description of such behavior can be derived from Equation 2. 7. 

Given distance between elements is 10 cm, maximum frequency of pulse that we 

can use without spatial aliasing effect is manually found as 1716Hz. 
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(A) Frequency set to 500Hz 

( c) Frequency set to 1500Hz 

(B) Frequency set to lO00Hz 

(D) Frequency set to 5000Hz, spatial alias­ 
ing occurred 

6.1.3 

Figure 6.3: Directivity responses different frequencies 

Effect Of Distance Between Microphones 

It can be deduced from Equation 4.6 that the size of the microphone array will 

increase the directivity response. We can add new elements to array and increase 

its size. This will be the subject of the coming section. We can also increase the 

size of the array with increasing the distance between microphones. 

To show the effect of distance between microphones we ran simulations with 

different element distance values. It can be seen in Figure 6.4 that increasing 

the aperture distance will increase directivity until spatial aliasing occurs (Figure 

6.4d). 
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(A) d = 2cm 

(c) d = 15cm 

(B) d= 5cm 

(D) d = 25cm 

Figure 6.4: Directivity responses to various distances between microphones 

6.1.4 Effects of Aperture Count 

Increasing window size of the filter kernel will increase the performance of the 

FIR filter. The same effect will be observed in microphone array element count. 

We saw that spatial aliasing imposes a limit on the frequency and distance be­ 

tween microphones. We don't have such limitation for element count. Increasing 

element count will always increase the microphone array performance. In this 

case the trade off will be the cost of the system and system complexity. 

Directivity of several different microphone array configurations can be seen in 

Figure 6.5. It can be seen that the directivity gain increases with the element 

count. 
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(A) Array of 11 Apartures 

(c) Array of 41 Apartures 

(B) Array of 21 Apartures 

(D) Array of 61 Apartures 

Figure 6.5: Directivity responses with different aparture counts 

6.2 Microphone Array Experiments and Results 

SNR is calculated and illustrated in Figure 6.6 with different configurations. 

While performing these tests target speaker is placed perpendicular to aperture 

and 10 meter away. An array with 41 elements used and distance between el­ 

ements is selected as 10cm. In first configuration illustrated in Figure 6.6a in­ 

terference speaker is assigned 10 meter away as well but with varying direction 

of arrival (DOA). It can be observed when interference is closer to the target 

speaker spatially, SNR values are dropping. Aperture performances are also com­ 

pared with varying number of elements in 6.6b. While testing varying number 

of microphone array elements, target speaker is placed perpendicular to aperture 
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and 10 meter far-off. Interference speaker is placed on 0.277 direction and 10 

meter far-off as well. 

DB ratio of SNR when there are two people in the room 

(A) SNR results while interference speaker 
is moving in DOA 

g' 
g 

2 

-2 

-4�-��-������ 
0 5 10 15 20 25 30 35 40 45 

Number of Microphones 

(B) SNR results while increasing the re- 
ciever count 

10 

Figure 6.6: Delay-sum beamformer gain perfomances 

6.3 Localization Experiments and Results 

Until this point microphone array and speaker identification modules were con- 

sidered as standalone applications. In this section both speaker identification and 

microphone array will be combined to improve the localization of the identified 

speaker. 

Target speaker is assigned to a random location in our simulation room and 

an interference speaker assigned a random location within six meters radius of 

speaker's location. By using speaker identification and microphone array pro- 

cessing speaker's location is estimated. Finally euclidean distance in cm scale 

between real location and estimated location calculated. This process is repeated 

and results are illustrated in Figure 6. 7 . 

While estimating the location of the speaker several methods are used. Firstly we 

used signal power to estimate the location , than classical MFCC-G MM method 

and finally our offered method N-gram Formant methods are used. While esti- 

mating the location with signal power spatial filtering applied each point in the 

simulation environment and the point which has the maximum signal power is 

selected. For statistical methods each point is focused with spatial filtering again 
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but this time a score is obtained. An extra step applied in N-gram models. The 

probability of a point is multiplied with the magnitude of the speaker's formant 

frequency in that point to take advantage of spatial filtering more effectively. Be- 

cause performance of the microphone array increases with increasing frequency 

formants between 1000 -2000 , 2000 -3000 and 3000 --4000 are experimented 

separately. In Figure 6. 7b the mean distances of estimated locations from real 

locations of the speaker is shown. 

While obtaining these results a microphone array with 51 elements is used and 

distance between array elements configured as 10cm. Since not only DOA but 

also the radius of target speaker desired to be located; to increase near-field radius 

such large microphone array is chosen. 
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(A) Offered NGram Localization method's(B) Comparing various method's mean dis- 
localization performance in cm tances from real position in cm 

Figure 6.7: Localization experiments with varying identification methods 

6.4 Pattern Shaping Results 

Process of pattern shaping(pattern nulling)[28] is illustrated in 6.8. Firstly as 

shown in 6.8a angular response of aperture is obtained. A window function cre- 

ated with nulls are assigned in interference DOA. Delay-sum microphone array's 

angular response is multiplied by window function. Result of second step is il- 

lustrated in Figure 6.8b. And finally IDFT operation applied to obtain aperture 

weight vector. 
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(c) Weight vector gathered from IDFT operation 

Figure 6.8: Gathering weight vector from beam pattern 

Weight vector which shown in 6.8 is applied when target speaker located perpen- 

dicular and interference's DOA is adjusted as 0.34m . SNR results are compared 

in Figure 6.9. 
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Figure 6.9: SNR result of pattern nulling beamformer and delay-sum beamformer. 
Pattern nulling beamformer is depicted as blue while delay-sum beamformer de- 
picted as red. SNR values when there is no beamformer is depicted yellow in the 
buttom of the graphic. 
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Chapter 7 

Conclusion 

In this thesis we have sought to improve microphone array performance by using 

speaker identification methods. To apply advance microphone array methods, the 

desired angular response should be known, thus main problem of non adaptive 

microphone array methods is locating the target and interference locations. We 

have also focused to increase speaker identification performance with microphone 

array processing. Main problem of identification systems are decreasing accu­ 

racy with increasing noise. This makes reducing noise extremely important in 

identification systems. 

Conventional microphone array processing algorithms calculates cross correlation 

between array elements to find the direction relative to the array. One location 

estimation problem is the cocktail party problem, where a number of people are 

talking simultaneously in a room. When only one specific person would like to 

be overheard in a cocktail party cross correlation methods will not be selective. 

Cocktail party problem is also a challenge for speaker identification systems. Blind 

source separation methods which uses only one receiver for speech separation can 

be used instead beamforming methods. While useful solutions can be derived, 

blind source separation problem is in general highly underdetermined. 

The work presented in this thesis takes a different approach by considering the 

microphone array processor and the speech identification system as components 

of a single system. In this approach instead of looking cross correlation between 
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array receivers, speaker identification methods were used to estimate location 

of the target speaker. Iteratively to increase identification performance spatial 

filtering methods with microphone array were applied. 

The contributions and findings of this thesis are summarized in the remainder of 

this chapter. Some remaining open questions about the work described in this 

thesis, and suggest some directions for further research are also explained. 

7.0.1 Findings and Contributions 

In our work we propose a identification method; N -gqramformant, which uses 

features in high frequencies. The steps we have applied as follows: 

• As conventional identification algorithms, Mel-frequency cepstral coefficients 

features were used in a Gaussian mixture model(GMM) 

• To be able to calculate prosodic features fundamental frequency obtained 

by using Yins-FFT method. 

• Since there is a formant roughly in each lO00Hz band, by using a simple 

approach; in each lO00Hz band, frequencies which are multiples of funda- 

mental frequency were compared and the frequency which has the largest 

amplitude was selected. 

• Formant vectors were used in a GMM to model target speaker's vocal tract 

shape. 

• A scoring system were build with combination of speaker's probability and 

magnitude of the speaker's formant. 

It was observed that using N-Gram and Formant models significantly increases 

the identification performance when used with MFCC feature. Also it was ob- 

served that given enough training data N-Gram model's accuracy increases up to 
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%80. Also the algorithm speeds of these models were compared with each other. 

Because of its simplicity N-Gram model were around 200 times faster than others. 

At the same time we build a open source microphone array simulation environ- 

ment [29]. In this simulation audio files can be assigned anywhere in the a 20m? 

room. Firstly A delay-sum beamformer was build with in our simulation. After 

testing our identification system and microphone array simulation environment 

as standalone applications, they were combined to locate desired speaker with in 

a room. The steps we have applied as follows: 

• An audio file which belongs to the target speaker was assigned to a location 

in the simulation environment. 

• Noises were also inserted in the random locations. 

• By using microphone array as a delay-sum beamformer, each location with 

in our simulation room was focused. Data gathered from each position is 

passed to identification system 

• Data chunks were examined and scored by identification system where each 

chunk belongs to a spatial position. Chunk which target speaker located 

expected to give the best score. 

• Chunk that has largest score was selected as speaker location. 

• After speaker was located, interference was being searched around 10 meter 

radius of speaker's location. And location where had the largest energy 

level is selected as interference location 

Location estimation by using classical MFCC-GMM and our offered identification 

method N-gram were compared. When N-gram method was used increase in lo- 

cation estimation accuracy was observed. Especially when the formant is selected 

in higher frequencies location estimation accuracy increased more. After speaker 

and interference locations were obtained, location information were used in IDFT 
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weight vector determination algorithm to increase microphone array performance. 

The steps we have applied as follows: 

• A rectangular window function created. And nulls were assigned in inter­ 

ference DOA. 

• Delay­Sum microphone array's angular response was multiplied by window 

function. 

• IDFT applied on windowed angular response to obtain microphone array 

weight vector. 

• Weighting applied in each element of microphone array. 

Non­uniformly weighted and uniformly weighted beamformers performances were 

compared and it was observed that IDFT weight vector determination algorithm 

increases SNR. 

7.0.2 Some Remaining Questions And Directions For Further Re­ 

search 

IDFT weight vector determination algorithm was applied while assigning micro­ 

phone array element weights but methods which are often used like MVDR and 

LCMV beamformer have not been tried. Simulation environment can be extended 

that users can select which beamforming algorithm they want to use. 

Beamforming was performed in time domain. This has been sufficient for narrow­ 

band beamforming. But for implementing a broad­band beamformer a weight 

vector should be obtained for each frequency and applied in frequency domain. 

Even threads were used some performance problems observed since identification 

is applied each data chunk from each spatial location. Using modern hardware 

like GPU can be a solution to performance problems. 
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Finally one of the biggest challenges in microphone array processing; reflection, 

is not simulated in our environment. For more realistic output reflection should 

be added to simulation. 
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