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1. Introduction and Preliminaries

Many researchers have been investigated distinct fractional differential equations
and inclusions which have been applied in modeling of different problems in some sci-
ences. There are many papers on the existence of solutions (or positive solution) for
some singular fractional differential equations (see for example, [1]-[3], [10], [12], [14], [17],
[18] and [19]). In 2013, the existence and uniqueness of positive solutions for the frac-
tional differential equation —D%u(t) = f(¢,u(t)) + g(¢,u(t)) with the boundary conditions
u(0) = 4/ (0) = v’ (0) = u’(1) = 0 or u(0) = «'(0) = u”(0) =0, v”(1) = fu”(n) investigated,
where 0 < t < 1, 3 < a < 4 and D* is the Riemann-Liouville fractional derivative ([21]).
By using idea of the work and some another published works such [4], [8], [9] and [16], we
investigate the singular fractional integro-differential equation

Du(t) + f(t, u(t), /o y(t,8)h(t, s, u(s), D u(s), ..., DPru(s))ds,
DHMiy(t), ..., DFNu(t))

+g(t,u(t), /0 ~v(t, 8)h(t, s, u(s), Dﬁlu(s), e, DﬁLu(s))ds,

Diu(t), ..., DY u(t)) = 0 (1.1)
with m-point boundary conditions D*iu(0) = D*Bfu(O) =0forl1<i<Nand1<j<L,
DN FLy(0) = - - = DN F34(0) = 0 and D*VF3yu(1) = Z;’;Q a; DFNT3y(&;), where 0 < t <
IL,n>2n—1<a<<n 0<uyy < --<un,0< B < - <P <pun,4d<a—uy <5,
—2 —pun—4
aj € (0,00), 0 < & < o0 < Epo < 1, 30T <1,y 2 [0,1] x [0,1] —
[0,00), h: [0,1] x [0,1] x REFL — [0,00) and f,g : (0,1] x R¥+2 — [0, 00) are continuous
mappings, D is the Riemann-Liouville fractional derivative, lim; o+ f(¢,.,.,...,.) = +00
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and limy_.g+ g(¢,.,.,...,.) = 400, that is, f, g are singular at ¢t = 0. As you know, the

Riemann-Liouville fractional integral of order o > 0 for a function f : [0,00) — R is defined
t

by I f(t) L / (t—s5)*"1f(s) ds for t > 0 provided the integral exists ([7], [13] and [15]).

~ (o)
Also, the Riemann-Liouville fractional derivative of order o > 0 for a continuous function
t
f:]0,00) — R is defined by D*f(t) = ﬁ% /0 (t — )" "1 f(s)ds for t > 0, where n

is the smallest integer greater than or equal « ([7], [13] and [15]).
Lemma 1.1. ([7], [13]) If u € C(0,1) N L*(0,1) with D*u € C(0,1) N L*(0,1), then
IoD%u(t) = u(t) + crt® ™ 4 ot 2 oo et ",

where c1,...,c, are some real numbers and n is the smallest integer greater than or equal
Q.

Lemma 1.2. ([7], [13]) If u € LY[0,1] and p > o > 0, then I°I°u(t) = I°T7u(t),
DoTIPu(t) = 1P °u(t) and D°I°u(t) = u(t). If p > 0 andv > —1, then DPt" = %t”_p.
Also, I*u € C[0,1] for all @ > 0 and u € C[0,1].

By using Lemma 1.2, one can easily conclude next result.

Lemma 1.3. Let v € C([0,1]) and u(t) = I*~v(t). Then (1.1) reduces to the problem
DeTENy(t) + f(t, I"Vou(t), /Ot y(t, s)h(t, s, "N v(s), I =Piy(s), ... IFN~Pry(s))ds,
IHNTRLy(t), T*NTH2(8), . .., TPV TEN =1y (t), 0(t))
+g(t, I"No(t), /075 v(t, 8)h(t,s, "N (s), "N Pry(s), ..., " ~PLy(s))ds,

[N (), TN () . NN (), u(t)) = 0 (1.2)

with boundary conditions v"'(1) = Z;n:f a;v""(&;) and v(0) = v'(0) = v"(0) = v""(0) = 0,
where 0 < t < 1. Moreover if v € C([0,1]) is a positive solution of the problem (1.2), then
u(t) = I"Nu(t) is a positive solution for the problem (1.1).

Lemma 1.4. Let 4 < a — uny < 5 and Z;":’f ajé;"*’“v% #£ 1. Ify € C(0,1], then the

problem D*HNw(t)+y(t) = 0 with boundary conditions w(0) = w'(0) = w”(0) = w"(0) =0
and w'" (1) = Z;n:_IQ a;w"(&;) has the unique solution

w(t):/o G(t,s)y(s)ds

— — —2
e 3 A

| A& s

+ m—2
(@ —py = D(a—py = 2)(a—py = 3)(1 = 20057 45§
where G(t,s) = F(ai#N)t“_“f\’_l(l — s) N =d  (t — g)emmN L yhenever 0 < s <t < 1,
G(t,s) = F(ailm)ta_“”_l(l — 8)¥ M =4 yhenever 0 < t < s < 1, H(t,s) = a3gt(3t,s) =
(afﬂNfl)(?@"_ﬁf))(afﬂNfg’) (to=HN=4(] — g)a HN =4 _ (t — 5)¥" N —4) yhenever 0 < s <
t<1and H(t,s) = 83?;(;’5) = (a*#zvfl)(?@u_zjt;%)(afuwf?») ta—nn—4(1 — g)a=nN =4 yhepever

0<t<s<1.
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Proof. By using Lemma 1.1, the solution of this problem is
w(t) = f]a*#Ny(t) + Clta*MNfl + CQtOC*HN*Q + Cgta*uN*S + C4ta7,uN74 + C5t04*#1\r*5,

where ¢y, co,c3,cq4,c5 € R are some constants. By using the boundary conditions, we get
o =c3=c4=c5=0and

1
‘1= a—pun—4
F(O‘_NN)(l_Z] 1 a]f )
1 m—2
X [/ (1 —s)amN—dy Z aj/ )Q”N‘Ly(s)ds}
0 =
Thus, the unique solution of this problem is
t (t _ S)a_“N_l toz—,uN—l
wt) = - [y e
o Tla—py) Do —pun)(1 =355 el ™)

X {/01(1 — 5)2 TNy (5)ds — ga / )Q”N4y(s)ds]

t (t _ S)a—uN—l ta—HN—l
= — | ~———ys)ds+ | =——
[ e+ (famm
toe—uN—1 Z 1 a]§(¥ pN—4

1
_ )a—un—4 d
+F(a —pn)(1 = 327 jfff—“N_4)) /o (1=2) y(s)ds
toOTHN— IZ . aJ & -
o P —§)YTHN s)ds
(e — pn)(1 = 757 ageg ™) /0 & =2 y(s)

1

1 1
e ta*“Nfl 1— ) #N =4y (5)ds

g IZ =1 a]
+ m L
D(o— pn)(1 = 302 ay i)

! a—pNn—4 a—pun—4 & . a—puN—4
[ / gomm (L = )am iy () ds — / (& - 3) y(s)ds]

/ G(t,s)y(s)ds
0

+

a—pn—1
13 Zjlaj

(@ —pn = D)(a = py —2)(a— py = 3)(1 = 275 a8 7Y

/Hfj,

This completes the proof. (|

One can check that G is a continuous function on [0,1] x [0,1], G(t,s) > 0 and
H(t,s) >0 for all t,s € [0,1] and G(t,s) > 0 for all £,s € (0,1). Also,

2 _ a—un—4ja—pun—1 <
F(a—/uv)s(s 3s+3)(1—s) t < G(t,s)
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b
~ Tla—pn)

(1 o s)afuNféltafuNfl

1

oy (A0 o = 3)

1
for all t,s € [0,1]. Also, sup0<t<1/ G(t,s)s %ds =
— = Jo

B(l —o,a — pp)) and
/ H(n,s)s %ds =

(OZ_,UIN_l)(Ol_:uN_2)(O‘_.U’N )(na nN—4
I = pn)

for all 0 < o < 1 and 0 < n < 1. This conclude that

geHN Tt Z] 1 @5

= su G(t,s —1
K= sup [ {“ S e i~ Da— i —D(a—w A= 2T P e

=TT A(1 0,0~ pw — 3)

H(gj, s)] s %ds

N [ S M. M
[(e = pn) 172 _1aJ§a v
By using some calculations, one can prove next key result.

Uﬁa—ma—uw—a—ﬁu—ma—um.

Theorem 1.1. Let0 <o <1,4<a—puy <5, 37" 1aj§a N L] and F 2 (0,1] = R

be a continuous function with lim,_,o+ F(t) = oco. Suppose that t”F( ) is a continuous

function on [0,1]. Then the functions defined by L(t / G(t,s)F(s)ds and W(t) =
R YL L s)d ti 0,1

P TP PSP T P (&j,8) s are continuous on [0, 1].

Let (X, ].]|) be a real Banach space which has a partially order by using a cone P C X.
A nonempty closed convex set P C X is a cone whenever x € P and A > 0 implies Az € P
and PN (—P) = {0} ([5] and [20]). A cone P is called solid whenever interior of P is
nonempty. Each cone P defines the order < on X by « <y if and only if y — 2z € P ([5] and
[20]). A cone P is called normal if there exists a constant N > 0 such that § < z <y implies
llz]| < Nyl ([5] and [20]). In this case, least number N is called the normal constant of P
([5] and [20]). Define & ~ y whenever there exist A > 0 and g > 0 such that \x <y < pa.
Then, ~ is an equivalence relation on X ([5] and [20]). For each k > 0 with k # 6, define
P, ={z € X: x~k}. One can check that P, C P for all k € P ([5] and [20]).

Theorem 1.2. ([6]) Let (X,d) be a complete metric space, < an order on X, T : X — X
an increasing map and x,, < x for all n whenever {x,} is an increasing sequence in X with
xn — x. Suppose that there exists a continuous and increasing function 1 : [0,00) — [0, 00)
such that ¥ is positive on (0,00), ¥(0) =0 and d(T(z),T(y)) < d(z,y) — ¥(d(x,y)) for all
x > y. If there exists xg € X with xg < Txq, then T has a fixed point. If for each x,y € X,
there exists z € X which is comparable to x and y, then T has a unique fized point.

Let X be a real Banach space, P a cone in X and 0 < v < 1 a real number. An
operator A : P — P is said to be y-concave whenever A(tz) > t7Ax for all ¢ € (0,1) and
x € P ([20]). Also, A: P — P is called homogeneous whenever A(Az) = AAx for all A > 0
and x € P ([20]). Finally, A: P — P is said to be sub-homogeneous whenever A(tx) > tAx
for all t € (0,1) and = € P ([20]). In 2011, Zhai and Anderson proved next result.

Theorem 1.3. ([20]) Let P be a normal cone in a real Banach space X, A: P — P an
increasing «y-concave map and B : P — P an increasing sub-homogeneous operator. Assume
that there is h > 0 such that Ah € P, and Bh € P,. Also, there exists 69 > 0 such that
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Ax > dgBx for all x € P. Then the operator equation Ax + Bx = x has a unique solution
x* in Py. Moreover, the sequence y, = Ayn—1 + Byn—1 (n > 1) with initial value yo € Py
converges to x*.

Note that last result holds whenever B is a null operator. In this paper, we use the
Banach space X = C([0,1]) with the partial order < y if and only if z(¢) < y(¢) for
all t € [0,1] and z,y € C([0,1]). It has been proved (C([0,1]),<) has this property that
x, < x for all n whenever {z,} is an increasing sequence in C([0,1]) with z,, — « ([11]).
Moreover, max{z,y} € C([0,1]) for all z,y € C(]0,1]), that is, for each x,y € C([0,1])
there exists z € C([0,1]) which is comparable to x and y. We consider the normal cone
P={xeC(0,1]) : z(t) > 0 for all t € [0, 1]} with normal constant 1.

2. Main Results
Now, we are ready to state and prove our main result.

Theorem 2.1. Suppose that f,g : (0,1] x RN*2 — [0,00) are continuous mappings with

F ey ),g(tyeyyy) = +o0 ast — 07, 0 < o <1, the maps t° f(t,x1,%2,...,TN1+2)
and t7g(t,z1, T2, ..., TNy2) are continuous on [0, | xRNT2 o f(t . ... ), t7g(t, ... .).)
and h(t,s,.,...,.) are increasing with respect to their components on [0,00) for each fized t

and s in [0,1] and also t7¢(¢,0,0,...,0) £ 0. Also, assume that
t7g(t, A\xy, Axay ..., AN12) > Mg(t, o1, 22y, EN12),

h(t, s, A\y1, Ay2, .- ., Ayr+1) > Ah(t, 8,y1,Y2, ..., yr+1) and there exists a constant v € [0, 1)
such that t° f(t, A\x1, Az, ..., Axn12) > Nt f(t,x1,22,...,xN12) for all t,s € [0,1], X €
(0,1) and z;,y; € [0,00) (1 <4 < N+2,1<j < L+1). If there exists 69 > 0 such
that t7 f(t, 21, @, ..., xN4+2) = 0ot g(t, 1, T2, ..., TN42), for all t € [0,1] and x; € [0,00)
(1 <i < N+2), then the problem (1.2) has a unique solution u* € Py, where k(t) = t*~#~~1
for all t € [0,1]. Moreover, the sequence

Unia(t) = Alkm@

_|_

(0= = Do = v = 2)a — v =31 - T a6
XH(Sj,S):| X {f(s,un(s))_yg(&un(s)) ds

converges to u* for each initial value ug € Pj.

Proof. Define the operators A, B: P — X by

Au(t) = /01 [G(t, s)+ (

- —2
LTIy 12?:1 a;

a—py =D —py = 2)(a—py = 3)(1 = 75 a;ef )

xH (&, s)} f(s, u(s))ds

— — -2
D S

Bu = G , S —2 a—pun—4
= [o T P TN B P

xH (¢, s)] g(s,u(s))ds

for all ¢t € [0,1]. Tt is easy to check that u is a solution for the problem (1.2) if and only if
u = Au + Bu. From the assumptions and Theorem 1.1, we know that the operators A and
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B maps P into P. We show that A and B are increasing operators. Let v > v. Then, we
have

Au(t) = /0 1 {G(t, )

BN~ 12_1 aj |
+(Q_MN_1)(Q—MN—2)(Q_MN_3)(1_ 7”72 Jg(x UN— 4) (5]7 ):|
x [ (s, u(s))ds
! tO—HN— 12 ) a]
= G , S 7 s
/0 [ ‘ H(a—uw—1)(a—uN—2)(a—uN—3)( —zy;;?ajg;wM)H(f >}
x 57757 f(s,u(s ))ds

- =N — IZ 1 a[] H(g 5)_
J

G ;S 2 a— —4
2/0 i (t )+(a—uN—1)(0—MN—2)(04—,UN—3)( 1= aE8 ™)

xs7%s7 f(s,v(s))ds
Ir {o—HN = 12"' 2, ; .
/

G(t,s H(Ej,s
( )+(a_NN_1)<a_MN_2>(a_MN_3)( —2?2_12%5?_”1\'_) . )-

x f(s,v(s))ds = Av(t)
for all ¢ € [0,1]. Hence, Au > Av. Similarly, we can show that Bu > Bv. Now, we show
that A is y-concave and B is a sub-homogeneous operator. Let A € (0,1) and v € P. Then,

ta—pn—1 Z e a]
iy = Dle— sy = 2)(a =y =31 75 i
H(gj,s)] x f(s, Mu(s))ds

:/1 |:G(t’8)+ e Z = aj m—2 a—pun—4
0 (o= py = Do = py = 2)(a — py = 3)(1 = 3757 a; €57 7)

j=1
H(;, s)] X s~ f(s, Mu(s))ds

a—pn—1
3 Z]laj

1
A7 G(t,s
§ </0 [ ¥ )Jr(Oé*uNfl)(OéfuN72)(a*uN73)(172J Zages T

AQw)(t) = /0 1 {G(t, s) + "

X H (&, S):| x 57757 f(s, u(s))ds)

a—pn—1
t Z]la]

=\ G(t,s
</0 [ § )+(a—MN—l)(Ot—MN—Q)(a—uN—3)(1—2] L ajga N

H(gj,s)] x f(s,u(s))ds> = A7 Au(t)

for all ¢ € [0,1]. Hence, A(Au) > X\'Au for all A € (0,1) and v € P and so the A is
a -concave operator. By using similar calculations, we can show that the operator B is
sub-homogeneous. Now, we show that Ak, Bk € Py. Note that,

a—pun—1
t Z]laj

A = G(t,s 2 “uy—4
R G R e e T X e
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H(@»,s)} < Fls, k(s))ds

:/I{G(t,s)—k D > Ll i
0 (@ —puny —D(a—pun —2)(a—px —3)(1 =37 ajg;V*l»thél)

H(gj,s)} X s“’s"f(s,k‘(s))ds

! 1 a—pn—4d =050 £ s
< F(a—;w)k(t)/o (1-s) f(s,1)d
m—2
+ k(t) Zj 1 4

(a—pn—D(a—pn —2)(a—py —3)(1 =375 ajg]?‘*l—tzvfﬁl)

/ H(;,s) )s775% f(s,1)ds := Lok(t)
and
B 1 ta un—1 Zm 2
ko = [ et + e T

H(gj,s)} x f(s, k(s))ds

1 TN 12—1 aj
= G(t, s -
/o { (t5)+ (a—MN—1)(04—MN—2)(04—MN_3)( _ZJ 1 ajga e )

xH (&, s)} X s*“s"]’”v(s, k(s))ds

1 ! .
> — —  _k(t / s(s?2 =35+ 3)(1 — 5)* " 45795% f(s5,0)ds
gk [ s )1 (5.0)
—2
k(t) Z;nzl aj
(0= pn = 1)@ = py =2 — px = 3)(1 = 275 aie7 )
1
X / H(&;,5)s 787 f(s5,0)ds := l1k(t)
0
for all ¢ € [0,1]. By using the assumptions, we get
5 F(5,1) > 57 F(5,0) > 5 £(5,0,0,....,0) > 55°9(5,0,0,...,0) > 0.
Since s9¢(s,0,0,...,0) # 0,
1 1 1
/ s7f(s,1)ds > / s7f(s,0)ds > 60/ s7¢(s,0,0,...,0)ds >0
0 0 0

and so I3 > 0 and I3 > 0. Thus, l1k(t) < Ak(t) < lok(t) for all t € [0,1] and so Ak € P.
Similarly, we can show that Bk € Pj. Now, let w € P. Then, we have

1 tO—HN = 12 1 CL]
Au(t) = G(t,s _
" /0 [ o (= pn — Do — py = 2)(a — py = 3)(1 = Y75 a8 MY

H(gj,s)] x f(s,u(s))ds

+

[ fown P
0 (a—MN—1)(a—uw—2)(a—uzv—3)( — o Rayee i
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x H (¢, s)] x s775% f(s,u(s))ds

i —2
LN 12;—11 aj

1
0 s
§ 0/0 {G(t, I (0 — py — D — py —2)(a — py = 3)(1— 57 a7 Y

x H (&, s)] x s 757g(s,u(s))ds

— — m—2
teTHN 1Zj:1 a;

=4 G(t,s =
O/0 { ' )+(a—uN—1)(a—MN—2)(Oé—MN—3)(1—Zm Paig T

j=1 J

xH (&, s)} x g(s,u(s))ds = dpBu(t).

Hence, Au > 0gBu for all v € P. Now by using Theorem 1.3, the operator equation
Au + Bu = u has a unique solution u* € P,. Moreover, the sequence u, = At,_1 + Bu,_1
for n > 1 with initial value uy € Py converges to w*. This implies that the problem (1.2)
has the unique positive solution u* € P,. Thus, I*Nu* is a unique positive solution for the
problem (1.1). O

Here, We list another similar result by using different conditions and Theorem 1.2
which we omit its proof.

Theorem 2.2. Suppose that g = 0, o =0, 0 < o < 1, f : (0,1] x RN*2 — [0,00) is
continuous, lim;_,o+ f(t,.,.,...,.) = +00 and the map t° f(t,y1, Y2, ..., Yn+2) s continuous
on [0,1] x RN*2. Assume there exist positive constants V1, ...,91, such that

L
0 S h(t78,x0,$1,.-.,$L) - h(t787y0ay17"'7y[/) S Zﬁj(x] _yj)
7=0

for all t,s € [0,1] and z;,y; € [0,00) with x; > y; (0 < j < L). Then the problem (1.1)
has a unique positive solution if there exist p1,...,pn+2 > 0 such that K (ZZ\Q{Q pi> <1

-1
and there exist 0 < 0y < (fyo ZJL:O %W) ,0< 60 <T(unv+1), 0 < biye <
D(puy—pi+1) for1 <i< N—1and0 < Ony2 <1 such that 0 < t"(f(t,ul,uQ,...,uN+2)—

ft,v1,v9,. ., on42) | < Ziﬁpmﬁ(@i(ui —v;)) for all t € [0,1] and u;,v; € [0,00) with

w; > v (1 <i < N+2), where ¢ : [0,00) — [0,00) is a nondecreasing continuous map
such that v : [0,00) — [0,00) is nondecreasing, 1¥(0) = 0 and v is positive on (0,00). Here,
P(t) =t — ().

Now, we give the following example to illustrate our main result.

Example 2.1. Consider the singular boundary value problem

Lut) = - |juo)t leul®) + w0l \* o Cetan |Drae) |
D¥utt) = ol +p(0) ( EOELILN 4 o) (arctan D))
+(ID¥ ) + DBu®)]) ™ + arctan(fu(t) + Du(®)]) + r(t)% s(t)

|D3u(t) + D5 u(t)]
10

X 1
1+ |Diu(t) + D9 u(t)]

+In (1 + (|D%°u(t)|3 + D?éu(t)|)1l2> +alt) + g +b| (2.1)
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with boundary conditions D5u(0) = D5 u(0) =
D7u(0) = D%u(()) D5u(0) = 0 and DTou(l ):
%Dlou( )+ ot Dlou( ), where b > 0 is a constan

Lt—s)® e sin®s (34 cos(s®)
0 V1+s?

V1t 1+ s2

= D u(0) = DFu(0) = DHu(0) =
%,)+ SDi0u(3)+ 5 DB u() +
TS [0,1] [0,00) are continu-

(6)1
5D u
t, a,p,q,
) o

(IH(HW( )+ u(s)|* DT u(s)]*

ous, (pu)(t) =

1
D u(s) | DEu(s) |5+ (br u(s)P + bal DHu(s)P + by | DEuls) P+ ba | DBru(s)|P)” )] ds, a,

i >0 (1 <i<4), i a<Lp>00a=% N=3m=;3m=7y
3
/JBZS?L—361:%,162:%ﬁ3—1f5a1:§77a2:%7a3:2’a4:13—9}
as = 51, &1 = 13, & = 7 & =498 =% & g Put f(t, 21,72, 23,74, 25) =
1 + 3 1 L
7 [lwll2 +p(t) (F52E221 )7 + g(t) (arctan fog))® + (Jaaf + |os)) ™ +a(t) + 5 + }

|22
1+ |as]

1
g(t, 1, z9, 23, T4,25) = — [arctan(|x1 + x3|) +r(t)

Vit

3+ e
25 + @l +ln(1+(:c4|3+|w5|)12)+b—c]

ty—M—
+S( )1+‘Ig+$4|

. 3 .
and h(t, s,y1,y2,ys, ys) = s 4 s (lnu + Ly)l) + [yal L2l ys] 2 yal** +

(b1|y1|p+b2|y2|p+b3y3|p+b4|y4p);’) for all z;;y; € R (1 < i <5,1<j<4)and

t,s €[0,1]. Let 0 = 3, v = %, rmax = max{r(t) : t € [0,1]}, Smax = max{s( ): te[0,1]}
and 0 < ¢ < g. It is easy to check that the maps t°f(t,.,.,...,.), t°g(t,.,.,...,.) and
h(t,$,.,.,...,.) are increasing with respect to their components on [0,00) for all t,s € [0,1]
and t°¢(t,0,0,...,0) =b—c > 0. Also, we have

AZo " S(t) )\(1'3 + 1'4)
14+ Axo 1+/\($3+$4)

1
+1In (1—1—()\39624—)\305) 12) +b—c

t7g(t, \x1, \re, 13, Ax4, \v5) = arctan(A(x1 + 23)) + r(t)

o T3+ T4 3 L
S 7+1n(1—|— Tyt 12)+b—c>
1+ 29 1+234+ 24 (4 5)

= /\tgg(t7xl?z23x3ax47x5)7

> A < arctan(zq + z3) + r(¢)

)\(IQ + 1‘1)
14 Mao+ 1)

s
+a(t)+ 5 +e

[

1 1 %
t7 f(t, \r1, Awe, Ar3, \xg, \vs) = A2x? + p(t) ( ) + q(t) (arctan(Azx3))

L
2

+ ()\SIi + )\I5) !

[

1+xo+ 21
= )"Ytaf(ta $1,$2,x37$4,1'5) and

> 2 (e} 400 (“x) + (1) (arctan(zs)) :

+(x2+m5)”+a(t)+ﬂ+c)

(15X g g ) = S (3+COS(SS))(1 (1+Ag))
S, ) 9 ) = u
Y1, AY2, Ay, Aya NignT 112 vt
4
PNy yeayany s L\ (byyP 4 bayh + bayh + bay)

(3 + cos(s?))
1+ 82

S

) ( " sin? s
>A —F—
V1+td

)

=

(ln(l + 1) +y Yy Yt 4 (by] + bayh + bsyh + bayy)
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= M(t,s,y1,Y2,Y3,ya) for all t,s € [0,1], X € (0,1) and z;,y; € [0,00) (1 <i<5,1<j5<

4).

> arctan(z; + x3) + In(1 + (27 + m5)%) +

> o ( arctan(zy + xg) + r(t)

If 69 belongs to (0 , then we get

F—m————]
? Pmax+Smax+b—c

1
1 To + 11 3
tU t s = 2 t -
f(,I1,$2,$3,£B4 $5) Zq +p()<1+$2+l‘1)

1 3 T12 ™ s 3 1
+q(t) (arctan(z3))® + (25 + 25) ™ +a(t) + 5 te > 5T (x4 +25)12 ¢
c

Tmax + Smax +b_ c
x T3+
2 +S(t) 3 4

1+ 1+a3+ay

= 6Ot09(t7$17$27$3»$4a$5)~

X (Tmax + Smax + 0 — C)

)+b—c>

sl

—|—ln(1+(xi—|—x5)1

Now by using Theorem 2.1, we get the problem (2.1) has a unique positive solution.
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