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Compression of the Mammography Images using

Quadtree Based Energy and Pattern Blocks

Abstract

Medical images, like any other digital data, require compression in order to reduce

disk space needed for storage and time needed for transmission. This thesis

offers , a novel image compression method based on generation of the so-called

classified energy and pattern blocks (CEPB) is introduced and evaluation results

are presented. The CEPB is constructed using the training images and then

located at both the transmitter and receiver sides of the communication system.

Then the energy and pattern blocks of input images to be reconstructed are

determined by the same way in the construction of the CEPB. This process is

also associated with a matching procedure to determine the index numbers of the

classified energy and pattern blocks in the CEPB which best represents (matches)

the energy and pattern blocks of the input images. Encoding parameters are block

scaling coefficient and index numbers of energy and pattern blocks determined for

each block of the input images. These parameters are sent from the transmitter

part to the receiver part and the classified energy and pattern blocks associated

with the index numbers are pulled from the CEPB. Moreover, in the second part

of our method we used Quadtree too. By this way, all CEPB from quadtree results

determined for each block of the input images too. input image is reconstructed

block by block in the receiver part using a mathematical model that is proposed

by 2 different method:

• Reconstruct Based on one block size

• Reconstruct Based on Quadtree

Evaluation results show that the method provides considerable image compression

ratios and image quality even at low bit rates. Test result have shown that

Compression ratio and PSNR results is acceptable, moreover, Quadtree method

gives better results that fix based block size.
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Quadtree Tabanlı Enerji ve Desen Bloklarını Kullanarak

Mamografi Görüntülerinin Sıkıştırılması

Özet

Tıp görüntüleri, diğer dijital veriler gibi, depolama için gerekli disk alanını ve ile-

tim için gerekli zamanı azaltmak için sıkıştırma gerektirir. Bu tez, sınıflandırılmış en-

erji ve desen blokları (CEPB) olarak adlandırılan yeni bir görüntü sıkıştırma yöntemi

Tanıtılır ve değerlendirme sonuçları sunar. CEPB, eğitim görüntülerini kullanarak inşa

edilmiş ve daha sonra ıletişim sisteminin verici ve alıcı taraflarnda kullanilir. Daha

sonra giriş görü ntülerinin enerji ve desen blokları yeniden yapılanmasinda, CEPB’nin

yapımı gibi aynı şekilde belirlenir.Bu işlem aynı zamanda girdi görüntülerinin enerji ve

desen bloklarını da buluyor. Kodlama parametreleri giriş görüntülerinin her bloğu için,

blok ölçeklendirme katsayısı, enerji endeksi sayıları, ve kalıp bloklarıdır. Bu parame-

treler, verici bölümünden alıcının parçası ve endeks numaraları ile ilişkili sınıflandırılmış

enerji ve desen blokları CEPB’den çekilir. Dahası, yöntemimizin ikinci bölümünde

Quadtree’yi de kullandık. Bu yöntem ile, Quadtree metodina bağlı, girdi görüntülerinin

her bloğu için CEPB’leri de belirlendi. Giriş görüntüsü, 2 farkl yöntem tarafından

önerilen matematiksel bir model kullanarak alıcı parça içerisinde blok blok olarak

yeniden oluşturulmuştur:

• Sabit blok boyuna göre,

• Quadtree metoduna göre.

Değerlendirme sonuçları yöntemin düşük bit hızlarında bile önemli görüntü sıkıştırma

oranları ve görüntü kalitesi sağladığını göstermektedir. Test sonucu, sıkıştırma oranı ve

PSNR sonuçlarının kabul edilebilir olduğunu, ayrıca Quadtree yönteminin, blok boyu-

tunu sabitleyen daha iyi sonuçlar verdiğini göstermiştir.
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Chapter 1

Introduction

1.1 Background

More and more fields of humans life are becoming computerized nowadays. This

determines generation of huge, and further increasing, amount information stored

in digital form.

All this is possible thanks to technological progress in registration of different

kinds of data. This progress is also being observed in wide field of digital images,

which covers scanned documents, drawings, images from digital or video cameras,

satellite images, medical images, works of computer graphics and many more.

Many disciplines, like medicine, e-commerce, e-learning or multimedia, are

bounded with ceaseless interchange of digital images. A live on-line transmis-

sion of a sport event, or a surgery with a remote participation of one or more

specialist, teleconference in a world wide company constitute great examples.

Such utilization of technology related to digital images becomes nowadays very

popular. Long-lasting storage of any data often can be very profitable.

In medicine, Hospital Information Systems contain a large number of medical

examination results. Thanks to them doctors can familiarize themselves with the

case history and make a diagnosis based on many different examination results.

Such systems are also very useful for the patients because they gain access to their
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medical data. A very good example is IZIP Czech system, which gives Internet

access to patients health records. Unfortunately, these hospital databases are

growing rapidly each day tens or hundreds of images are produced and most of

them, or even all, are archived for some period.

Both mentioned aspects of digital data sharing and storage, are linked with

problems that restrain the progress in new technologies and growth of their appli-

cation prevalence. During exchanging image data, one wishes to keep the quality

on a high level and the time needed for transmission and the disk space needed for

storage as low as it can be. The increase of throughput in used communication

connections unfortunately is insufficient and some additional solution must be

introduced to satisfy ascending expectations and needs. Collecting any kind of

data results in demand for increase of storage devices capacity. Since the capacity

growth of such devices is quite fast, almost any demand can be technically satis-

fied. However with extending of the capacity expenses, which cannot be passed

over, are related.

Above-mentioned problems resulted in research and development of data

compression techniques for Mammography images. With time many different

compression methods, algorithms and file formats were developed. In still images

compression there are many different approaches and each one of them produces

many compression methods. However all techniques prove to be useful only in a

limited usage area. Of course, image compression methods are also much desired

or even necessary in medicine. However, medical images require special treatment

because correctness of diagnosis depends on it specially in Mammography images

that details are very small and important in order to define the problem.

Low quality medical image, distortions in the image or untrue details may

be harmful for human health. Thus any processing of such images, including

compression, should not interfere in the information carried by the images.
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1.2 Research Aim and Objectives

Raw or uncompressed multimedia data such as graphics, still images, audio, and

video requires huge storage capacity and transmission bandwidth. It would be

needed to find efficient ways to encode the audio signals and images. Moreover,

high compression ratio and fast communication technology required. There are

uniform or plain areas in image that contain adjacent picture elements (pixels)

that have the same numeric values .By this way it would be large number of spatial

redundancy (or correlation between pixel values that are numerically close to each

other.

To remove this redundancy in order to get more efficient ways to represent

the still images the compression is needed. The performance of the compression

algorithm is measured by the compression ratio (CR) and it is defined as a ratio

between the original image data size and compressed image data size.

In general, the compression algorithms can be grouped as lossy and lossless

compression algorithms.

In the lossy compression method, the image compression algorithm should

achieve a trade off between the image quality and the compression ratio. It should

be noted that, higher compression ratios produce lower image quality. Moreover,

the image quality can be effected by the other characteristics, some details or

content of the input image.

The compression performance of these methods is affected by several factors

such as block size, entropy, quantization error, truncation error and coding gain.

Based on the results of experiment have been done by transforming two-

dimensional images from the spatial domain to the frequency domain, It has

been proved that, the human visual system (HVS) is more sensitive to energy

with low spatial frequency than with high spatial frequency. While the low spatial

frequency components correspond to important image features, the high frequency
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ones correspond to image details. Therefore,in order to compression it would be

needed to quantization and transmission the most important or low-frequency

coefficients while the remaining coefficients are discarded.

In order to achieve this goal in compression, The uniformly sized image blocks

used to reach the compression. In this method, it does not take into account the

irregular regions within the real images. The fundamental limitation of the DCT-

based compression is the block-based segmentation or framing. In these methods,

depend on the block size of the images, the degradation which is also known as

the blocking effect occurs. A larger block leads to more efficient coding or com-

pression but requires more computational power. Although image degradation is

noticeable especially when large DCT blocks are used, the compression ratio is

higher. Therefore, most existing systems use image blocks of 8×8 or 16×16 pixels

as a compromise between coding or compression efficiency and image quality. In

this paper, a new block-based image compression scheme is proposed based on

generation of fixed block sets called Classified Energy Blocks (CEBs) and Classi-

fied Pattern Blocks (CPBs). All these unique block sets are associated under the

framework called Classified Energy and Pattern Blocks (CEPBs). Basically, the

method contains three main stages:

1. Generation of the CEPB,

2. Encoding process which contains construction of the energy and pattern

building blocks of the image to be reconstructed and obtaining the encoding

parameters.In this step 2 different method has been done:

• Find encoding parameter based on fixed block size,

• Find encoding parameter based on Quadtree.

3. Decoding (reconstruction) process of the input image using the encoding

parameters from the already located CEPB in the receiver part (decoding).

In this thesis, the size of the image block vectors (LIBV)is set to LIBV = i×j, i =

j = 2, 4, 8 to construct the CEPB. It is observed that, when the compression ratio
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reaches the higher levels, degradation in the image caused by the blocking effect

is getting visible.

The speed of the algorithm and the compression ratio are also increased by

adjusting the size of the CEPB with an efficient clustering algorithm in both

group of experiments. Moreover, as In medical images as Mammography image

there are very similarity in details, it was prefered to use Quadtree method too.
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1.3 Research Questions

The thesis addresses the following research questions:

• Research Question 1 : Is it possible, and how to minimize the drawbacks

of Classified Energy and Pattern Building Block (CEPB) method on Mam-

mography images compression?

• Research Question 2: How can Quadtree method affect the (CEPB) method

results on Mammagraphy images in comparison by (CEPB) method based

on fixed block size?

• Research Question 3: Does the (CEPB) method preserve image quality and

how affects the image quality ?
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1.4 Thesis Outline

• Chapter 1 consists of introduction part,

• Chapter 2 explains basic concepts of digital imaging and discusses charac-

teristics of imaging.

• Chapter 3 explains details of Medical images and history of it specially

about Mammography images that has been used in thesis.

• Chapter 4 provides basic information about image compression and fractal

image compression, what is preceded with general description of image com-

pression, the different method of compression and fractional compression.

• Chapter 5 goes into details about clustering and K-means clustering that

have been used in thesis method.

• Chapter 6 gives a look inside the implemented algorithm.

• Chapter 7 presents and discusses the results of experiments that were per-

formed on the implementation of the proposed fractal compression method.

• Conclusion presents the discussion of the results and recommendations.The

answers to the research questions can be found here.
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Chapter 2

Digital Imaging

Before medical imaging and Mammography Images will be discussed, it is neces-

sary to provide some basic information about digital imaging. The digital images

are described in the first section and the next section concentrates on a specific

class of digital image characteristic.

2.1 Analog and Digital Images

Two classes of images can be distinguished, analog and digital images. Both types

fall into non temporal multimedia type.

Analog images are painted or created through photographic process. Dur-

ing this process, the image is captured by a camera on a film that becomes a

negative. We have a positive when the film is developed no processing is possible

from this moment. When the photography is made on a transparent medium then

we are dealing with a diapositive (a positive photographic slide or transparency).

Analog images are characterized by continuous, smooth transition of tones. This

means that between each two different points at the picture there is an infinite

number of tonal values. It is possible to transform an analog image into digital.

The digitization process is usually caused by a need of digital processing. The

output of digitalization is a digital approximation of the input analog image the

analog image is replaced by a set of pixels (points organized in rows and columns)
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and every pixel has a fixed, discrete tone value. Therefore, the image is not a

continuous tone of colors. The precision and accuracy of this transformation de-

pends on the size of a pixel the larger area of an analog image transformed into

one pixel the less precise approximation [1].

Digital image can be captured with a digital camera, scanner or created

with a graphic program. Transition from digital to analog image also takes place

by such devices as computer monitor, projector or printing device. One can

distinguish many different types of digital images. First of all the digital images

are divided into recorded and synthesized images. To the first group, for example,

belong analog images scanned by digital scanner. To the second group are classed

all images created with graphical computer programs they come into being already

as digital images.

The second possible classification of digital images divides them into vector

images and raster images. Both of the groups can contain recorded as well as

synthesized images. Vector images mostly are created with graphic software.

Analog images can be recorded only to a raster image, but then they can be

converted to vector image. The opposite conversion (rasterisation) is also possible.

Vector images are treated as a set of mathematically described shapes and most

often are used in creating drawings like logos, cartoons or technical drawings.

This work concerns only raster graphics, where an image (bitmap) is defined as

set of pixels (picture elements) filled with color identified by a single discrete

value. This kind of images is usually used for photographical images [2].

2.2 Digital Image Characteristics

Digital images are characterized by multiple parameters. The first feature of a

digital image is its color mode. A digital image can have one of three modes:

• Binary,
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• Gray scale,

• Color.

A binary (Bi-level) image is an image in which only two possible values for each

pixel. A grayscale image means that its each pixel can contain only a tint of gray

color. As it was already mentioned, a digital image is a set of pixels. Each pixel

has a value that defines color of the pixel. All the pixels are composed into one

array.

The resolution of a digital image is the number of pixel within a unit of

measure [3]. Typically,the resolution is measured in pixels per inch (PPI). The

higher image resolution the better is its quality. The image resolution can also

be understood as dimension of the pixel array specified with two integers [2]:

number of pixel columns× number of pixel rows (2.1)

Bit depth, called also color depth or pixel depth, stands for how many bits

are destined for description of color for each pixel. Higher color depth means that

more colors are available in the image, but at the same time, it means that more

disk space is needed for storage of the image. Monochrome images use only one

bit per pixel, and gray scale images engage usually 8 bits, which gives 256 gray

levels. Color images can have pixel depth equal 4, 8 or 16 bits; full color can be

achieved with 24 or 32 bits. Colors can be described in various ways. Next digital

images feature color model not only specifies how colors are represented, but also

determines the spectrum of possible colors of pixels. The gamut of colors that

can be displayed or printed depends on color model that is employed. This is

why a digital image in a particular color model can use only a portion of visible

spectrum this portion is characteristic for the model.

There are many different color models and most popular are: RGB, CMY,

CMYK, HSB (HSV), HLS, YUV, and YIQ. These color models are divided into
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two classes: subtractive and additive. CMY (Cyan, Magenta, and Yellow) and

CMYK (Cyan, Magenta, Yellow, and Black) are subtractive models. One should

make use of one of model from this class when printing inks (with presence of

external light that is being reflected by printed image) must be employed to

display color. RGB (Red, Green, Blue), one of additive models, is used when

displaying color with emission of light e.g. image is displayed by computer display

monitor. The main difference between these two kinds of color models is that in

subtractive models black is achieved by combining colors and in additive models

in this way is produced white. In subtractive models, colors are displayed thanks

to the light absorbed (subtracted) by inks. While in additive models, colors are

displayed thanks to the transmitted (added) light. HSB (Hue, Saturation, and

Brightness), also called HSV (Hue, Saturation, and Value), is more intuitive color

of a pixel is specified by three values:

• Hue: the wavelength of light,

• Saturation: the amount of white in the color,

• Brightness: the intensity of color.

Similar to HSB and also very intuitive is HLS (Hue, Lightness, and Satura-

tion). The YUV color model is a part of PAL system in television and contains

three components one for luminance and two for chrominance. YIQ also has one

component for luminance and two components for chrominance and it is used in

NTSC television.

Channels are closely related with color models. A channel is a grayscale

image that reflects one of color model component (base of color in used color

mode). Channels have same size as the original image. Thus:

• an image in RGB will have 3 channels: Red color, Green color, Blue color.

• in CMYK four channels: Cyan color, Magenta color, Yellow color, Black

color.
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• HSV will have three channels: Hue value, Saturation value, Brightness

value.

• a grayscale image will have only one channel.

There can be additional channels called Alpha Channels. An Alpha channel stores

information about transparency of pixels. Therefore, the number of channels,

although it partially depends on the color model, is also a feature of a digital

image. Colors indexing is next image feature related to color model. Indexed

color model is only an option and means that number of colors that can be used

is limited to a fixed number (e.g. in GIF to 256).

In order to reduce the bit depth and size of whole file. Most often index-

ing is done automatically in accordance to standard palettes or system palettes.

Palettes in different operating systems are not the same they only partially over-

lap. From 216 colors that are common for operating systems a standard palette

was created for purpose of World Wide Web.

There are also other standard palettes a palette with 16 colors is commonly

used for simple images. Besides indexing to standard/system palettes, there ex-

ists also adaptive indexing. In this indexing, the color space is reduced to a fixed

number of colors that most accurately represent the image. Not necessarily all

colors needed by the image must be indexed, but they can be. The difference be-

tween indexing to standard/system palette and adaptive indexing is that adaptive

indexing requires definitions of colors from the palette at the beginning of the file

and standard palettes do not have to be attached [3].

File format is next characteristic of a digital image. A digital image can

be stored in one of many file formats. Some formats are bounded with one

specific program, but there are also common formats that are being understood

by different graphic programs.

There is a very close relation between file formats and compression. Images

stored in a particular format are usually compressed in order to reduce the size
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of the file. Each format supports one or few compression methods; there are also

formats that store uncompressed data [2].

The last characteristic of a digital image is compression method used to

reduce size of file containing the image.

As a conclusion, there is more than one method to reduce amount of disk

space needed to store a digital image. The most obvious one is compression, but

there are also other, simpler like reduction of image resolution. There can be also

decreased number of colors or introduced index to used color palette.
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Chapter 3

Medical Images

Medical Imaging came into being in 1895 when W. K. Roentgen discovered X-

rays. This invention was a great step forward for non-invasive diagnostics and

rewarded with Nobel Prize in 1901. With time, other discoveries in the field

of medical imaging were made that, like X-rays, support medicine and make

possible more accurate and effective diagnosis. It is not feasible to list all of

discoveries and inventions. Similar situation is with describing all types of medical

images. Thus, only the most important discoveries will be mentioned with a

characterization of images, which are products of these technologies. Although

X-rays were discovered over a century ago, they are still in common use. During

examination, the patient is being placed between an X-ray source and a detector.

Different tissues absorb x-rays with different force thus the X-rays that went

through the patient have different energy depending on what tissues they ran

into. Dense tissues, e.g. bones, block and soft tissues give no resistance to the

X-rays. Parts of the detector that are behind tissue that absorbs X-rays in 100%

produce white areas on the image. The softer a tissue is the darker becomes the

image in parts that represent this tissue.

Many different X-ray detectors can be used during medical examination.

They can be divided into two classes. One class contains detectors, like photo-

graphic plate, that give analog images. These images can be transformed into

digital image by process of digitalization.
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The second class of detectors consists of devices that directly produce digital

images. The most familiar detectors that fall into the second class are Photo-

stimulable Phosphors (PSPs), Direct Semiconductor Detectors and combination

of Scintillator with semiconductor detectors. In 1971 G. Hounsfield build first

Computerized Tomograph (Computerized Axial Tomograph) an X-ray machine

that produces a set of two-dimensional images (slices), which represent and three-

dimensional object. For his invention, G. Hounsfield was awarded with Nobel

price in 1979. Pictures created during tomography are called tomograms and

they create a specific class of X-ray images.

There are also other classes, for example mammography images that has

been used in this thesis. Apart from X-rays, also other technologies are used in

medical imaging such as Gamma-ray imaging, radio waves (Magnetic resonance

imaging (MRI) Images) etc. that were not described here.

Gamma-ray imaging is used in a field of nuclear medicine. In contrast to

X-rays, here is no external source of gamma rays. A radioactive isotope, which

emits gamma rays during decay, is administered to patient. Then the gamma

radiation is measured with a gamma camera (gamma-ray detectors). Most pop-

ular applications of gamma rays in medical diagnosis are bone scan and positron

emission tomography (PET). Bone scan with gamma rays can detect and locate

pathologies like cancer or infections. PET generates a sequence of images that,

like in X-ray tomography, represent a 3-D object.

Medical imaging employs also radio waves. Magnetic resonance imaging

(MRI) is a technique in which short pulses of radio waves penetrate through a

patient. Each such pulse entails response pulse of radio waves generated by all

tissues. Different tissues emit a pulse with different strength. The strength and

source of the each response pulse is calculated and a 2-D image is created from

all of gathered information.

Ultrasound imaging in medical diagnostic composes ultrasonography. An

ultrasound system consists of a source, a receiver of ultrasound, a display and
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Figure 3.1: Examples of gamma-ray images [1]

Figure 3.2: Examples of magnetic resonance images, (from normartmark,
21.09.2007).

a computer. High-frequency sound, from 1 to 5 MHz, is sent into the patient.

Boundaries between tissues partially reflect the signal and partially allow it to
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pass. This means that the waves can be reflected on various depths. The ul-

trasound receiver detects each reflected signal and the computer calculates the

distance between the receiver and the tissue, which boundary reflected the waves.

Determined distances to tissues and strengths of reflected waves are presented on

the display, i.e. they constitute a two-dimensional image. Such image typically

contains information about millions of ultrasound signals and it is updated each

second.

Figure 3.3: Examples of breast ultrasound images(from ultrasoundpaedia)

The review of medical imaging techniques unveil large diversity of medical

images classes and technology used in medical diagnosis. Nevertheless, all these

images have some common characteristics. All above-mentioned classes of med-

ical images are characterized with very restricted size. Although there are color

medical images, the most of them are monochromatic. Images from different

classes have different sizes. Largest are the X-ray images, which can have size

up to 2048 pixels vertically and horizontally. Other medical images are much

smaller, for example Computerized Tomography are smaller than 512× 512 pix-

els, Magnetic Resonance images up to 256 × 256 pixels and ultrasound images

700× 500 or less [4].
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3.1 Mammography Images

The important issue in order to decrease the breast cancer damages is the early

detection before its symptoms.

Mammography remains the most valuable and successful technique for the

early detection of breast cancer in breast imaging; a mammogram is a low dose an

x-ray (radiography) picture or mammography exam of the breast. X-ray mam-

mography is the only proven method detects non palpable cancers (Breast Cancer

Detection, Lawrence).

In the 1960s, the first randomized controlled trial of screening with mammog-

raphy was initiated in a health insurance program in New York, to test whether

screening asymptomatic women for breast cancer could lower the death rate. The

trial involved 62,000 women between 40 and 64 years of age. By comparing the

subsequent number of deaths among the screened women with those in the con-

trol group, the investigators demonstrated that early detection could decrease

the mortality from breast cancer. Now, most western countries have national

programs to offer annual or bi-annual screenings to women above a certain age

[5].

Studies have shown that the mammography exam is easier to women with

fatty breasts than those with dense breasts (Breast Cancer). There are two types

of mammograms:

• Screening mammogram, used to early detect breast cancer before its

symptoms

• Diagnostic mammogram, used to evaluate patients with abnormal clin-

ical findings and under treatments of breast cancer.

The quality of a mammogram image related on various items:

• the nature and accessories of the mammography unit,
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• the use photographic film for image acquisition,

• the storage and display,

• film resolutions, which the high resolution in film decrease signal contrast,

This limits the exposure dynamic range of mammography screen film systems

to a factor of 2550, which means that the image contrast in the fully glandular

or fully adipose parts of the breast can be much lower than in the other areas.

On the other hand, digital detectors have the significant advantage of a linear

response over a wide of exposure conditions, giving constant contrast and a large

dynamic range. A mammography unit is in a shape of a box that have a tube

that lodges x-rays used exclusively for breast x-ray exam.

Figure 3.4: Mammography unit.
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Figure 3.5: Mammography Screening [6].

There are lots of parameter that can affect mammography procedure quality

as, the nature of the film, technology and skills used as well as the mammography

knowledge, the accommodation of all patients ages, breast shapes and sizes.

A screen film mammography uses a low dose radiography (x-ray) film to

acquire, store and display images. The transmitted x-rays are recorded in a film

cassette; different parts of the body absorb and attenuate x-rays in varying degrees

regarding the type of tissue. Fat organs pass x-rays whereas dense tissues absorb

them due to their physical properties (Coiera). With the modern technology,

the digital technology is taking over the analog technology. Analog refers to the

assumption of an arbitrary value, but digital (or discrete) systems assume only

few values. For the breast imaging, the transition to digital improves the quality

of a mammography image; hence, the advancement of the early detection of breast

cancer.

FFDM which is a new version of mammography unit is defined as a mam-

mography system in which the x-ray film is replaced by solid-state detectors that

20



convert x-rays into electrical signals. These detectors are similar to digital cam-

eras’ detectors. The electrical signals are used to produce images of the breast

that can be seen on a computer screen or printed on special film similar to con-

ventional mammograms (Bassett and Gold). Digital mammography improves the

signal to noise ratio and the image contrast to enable the better detection of breast

cancer (Daffner). 4 In order to gain best quality of images in dedicated mammog-

Figure 3.6: Mammography Image (from images used in thesis).

raphy unit, it is important to visualize different parts of the breast with sufficient

details to deeply detect tissues from which cancer can develop. The equipment

should be designed in a way that they can provide clinically useful information

about images stored on the x-ray film and acquire all the necessary special ac-

cessories to improve the exposition of the breast tissues to x-rays; those factors

include but not limited to: the choice of the film, processing technique, perfor-

mance, electrical requirements, density selection, source-image detector distance,

voltage, current and time selections to name few.

For mammography exam, a qualified radiology technologist positions the

breast on a platform that is gradually compressed by a paddle to adjust a breast

so that images can be taken at various angles; to avoid blurred images and change

positions slightly between images, a patient might be asked to keep from breathing
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for few seconds. Once the part to be examined is carefully aimed, the x-ray

machine passes a small burst of radiation through the body; therefore, images are

recorded on a special cassette film for film screening mammography or directly

digitally to a computer for digital mammography.

Once the exam is completed which takes about half an hour approximately

(Lower time in new machines), a patient will be required to wait for more minutes

for a technologist to check if images are of high quality for a doctor to read and

interpret. The patient will be notified for the results after the doctor reads and

interprets the obtained images.

3.1.1 Important Findings in Mammography

• Masses,

• Calcification,

• Architectural Distortion,

• Asymmetries (asymmetry, global asymmetry, focal asymmetry, developing

asymmetry),

• Intramammary lymph nodes (IMLN),

• Skin lesion,

• Solitary dilated duct.

Among these abnormalities, Intramammary lymph nodes (IMLN), skin lesion and

solitary dilated duct are rarely significant [7]

Mammography density is one of the most important issue in mammography

imaging that refers to the prevalence (and to some degree the distribution) of fi-

broglandular tissue in the breast as it appears on a mammogram. The fibrous and

glandular tissues cannot be distinguished in mammography due to a combination
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of physiological intertwining and similar x-ray attenuation coefficients. These

tissues can, however, be distinguished from fatty tissue, which attenuates x-rays

to a lower degree. This causes the fibroglandular tissue to stand out as bright

areas on a dark background and therefore the term density is used to describe its

appearance.

The first to correlate mammography density with risk of breast cancer was

J N Wolfe [8], and his research in the mid 1970s lead to an early, four category,

classification scheme now referred to as Wolfe patterns. This method is based on

qualitative, visual assessment and contains the following four classes correspond-

ing to ascending magnitude of risk.

In digital mammography, digital format let the easy application of digital

image processing. In breast imaging where images are enhanced to detect and

diagnose breast cancer lesions, the image enhancement bases upon the contrast

enhancement to improve the image display; we can mentioned peripheral equal-

ization in which the areas under the pectoral muscle and near the periphery of

the breast are made brighter or darker to match the appearance of the tissue in

the center of the breast.

This method lets the radiologists to review the whole breast without the man-

ual adjustment to the viewing window or level. Another method is the image edge

enhancement which consists of smoothing edges to making small objects more vis-

ible, such as calcification or speculated mass. In order to help radiologist to have

better and easier detections the computer-aided diagnosis systems used, in

which the image processing techniques are combined with artificial intelligence

algorithms along with radiological image processing. Radiologists use CAD to

read and interpret radiography images; the CAD system examines digitized film

mammograms for evidence of suspicious masses or calcification. Radiologists can

display the findings and match with the results by scanning images.
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Chapter 4

Image Compression

This chapter written about image compression and medical image compression.

The first two sections consist of general explanation medical compression and why

we choose fractal compression for our thesis. The second section is explanation

of fractal compression and details of different method that can used by fractal

compression. In our method we choose Quadtree method that all details about

is explained.

4.1 Fundamental of Image Compression

A compression method consists of processes: compression and decompres-

sion. In order to analyse Compression method we should discuss about two

definition: compression, decompression,

Compression is used in order to represent original data by smaller number

of bits.

Decompression is opposite process of compression that is used to recon-

struct original data.

There is two types of compression method that will be distinguished in this

part: Lossy Compression, and lossless Compression,
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Lossless compression methods, reconstruction of data set during the decom-

pression is similar as the original data set.

Lossy methods, reconstruction of data set is only approximate of the original

data. so, the compression is immutable.

In order to have better efficiency of compression the similarity between orig-

inal data and reconstructed data gets lower. To analyse visual difference between

original and decompression images status of observation is highly effected. More-

over, image processes as image analysis show, if compression actually was not

lossless, noise elimination will be defined. ”Visually lossless” compression is

lossy compression method when loss of information A lossy compression method

is called visually lossless when the loss of information caused by compression-

decompression is invisible for an observer. However, it related to the observer

and conditions.

There are many factors to survey the efficiency of the compression, we will

speak about.

• Compression ratio CR: the ability of the compression method to reduce

the amount of disk space needed to store the data. CR is the most used

parameter to evaluate efficiency of the compression.

CR is defined as number of bits of the original image Borg per one bit of

the compressed image Bcomp:

CR =
(Borg)

Bcomp

The compression percentage CP serves the same purpose:

CP = (1− 1

CR
).100%

• Bit rate BR: The average number of bits in compressed representation of

the data per element (symbol) in the original set of data represents Bit rate
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BR . High effectiveness of a compression method manifests itself in high

and CP , but in low BR.

• time needed for compression: to evaluate it different factors as product of

time and bit rate should be used.

Here only the most commonly used factors were mentioned, but there are many

more factors and methods to evaluate the efficiency of data compression.

4.1.1 Lossless Compression

Lossless image compression methods used mostly in compression methods. what

lossless compression do is converting an input sequence of symbols into an output

sequence of codewords.

One codeword usually corresponds to one element (symbol) in the original

data; if we use stream coders, it will correspond to a sequence of symbols. The

length of codewords can be fixed or variable.

In order to decompression, what we should follow is decoding of the code

sequence.as we said before, The output of the decoding in Lossless compression

is the same as the input of it . To use stream we should encoded it into parts by

explicit bounded codeword.

Lossless compression method contains two phases: modeling and coding.

The modeling phase used to build a model for the data to be encoded, that

describes data information.

In order to choose true model method of the modeling for a specific compres-

sion technique should pay attention to a large extent on the type of compressed

data, but it always focus on assessment of the input sequence, its regularities and

similarities [9] .
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Briefly, the model is a different, more ordinary representation of the original

data that eliminates the redundancy [10]. The coding phase is based on a statis-

tical analysis and strives after the shortest binary code for a sequence of symbols

obtained from the modeling phase [10]. In this phase the analytical tools from

information theory are commonly used.

Three groups are distinguished in lossless compression methods:

• entropy-coding,

• dictionary-based,

• prediction methods.

there are lots of compression techniques as various compression techniques can be

found in a great number, Shannon-Fao coding, Huffman coding, Golomb coding,

Unary coding, Truncated binary coding, Elias coding.

Within entropy coding methods also arithmetic methods can be found, e.g.

In the first group entropy coding methods. Methods as Lempel-Ziv-Welch (LZW)

coding, LZ77 and LZ78, Lempel-Ziv-Oberhumer algorithm, Lempel-Ziv-Markov

algorithm can be mentioned for dictionary-based methods.About prediction meth-

ods we can mentioned JPEG-LS and lossless JPEG2000 algorithms that get pop-

ular now a days. With lossless compression is bounded a limitation that is shown

by information and coding theory. The average length of codeword cannot be

smaller than the entropy (expressed in bits) of the information source.

So the closer a compression technique comes to this limit the better compres-

sion ratio can be achieved, and no lossless compression method can come beyond

this limit. The basic concepts of information theory are explained below.

Information is a term that actually has no precise mathematical definition

in information theory. It should be understand in colloquial way and treated as

indefinable. Information should not be confused with data (data build informa-

tion) or message (transmitted information). Although there is no definition, it is
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possible to measure information. The amount of information is calculated thanks

to following equation:

I(ui) = log
1

Pi

where pi is the probability that the symbol ui will occur in the source of

information. This equation measures the information related with occurrence

of a single symbol in a probabilistic source of information. The unit of this

information measure depends on the basics of the logarithm. When bs = 2 then

the unit is bit, when bs = 3 then the unit is bit, when bs = e (natural logarithm)

then the unit is nat, and the last unit Hartley is used when bs = 10.

Entropy is a different measure of information it describes the amount of

information specified by a stream of symbols. According to Shannon definition,

the entropy is the average amount of information Iui for all symbols ui that build

the stream. So when data U = u1, u2, ..., uŪ constitute the information then the

entropy can be calculated from:

H(U) =
Ū∑
i=1

p(ui).logbs
1

p(ui)
= −

Ū∑
i=1

p(ui).logbsp(ui)

Above-mentioned formulas are correct only when emission of a symbol by

the source is independent from past symbols i.e. when the source is memory less

source. Other types of sources, e.g. source with memory or finite-state machine

sources, like Markov source, require consideration of changes in these formulas.

4.1.2 Lossy Compression

Low compression ratios in lossless compression limit efficiency of this technique

for compression that demand different approach to compression to make it better.

In order to have better efficiency, it needs to disposing of the reversible

character of the encoding process.
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In lossy compression methods it needs to reduce the information of the image

to be encoded up to some level that is acceptable by a particular application

field. So, in lossy methods there is a characteristic that evaluate the efficiency of

compression distortion rate. distortion rate defines the distance between original

image and the image reconstructed in decoding process. All other characteristics

as compression ratio and time needed for encoding and decoding, etc. in lossless

method are important and used too.

Figure 4.1: General scheme for lossy compression.

In lossy compression algorithms, it can be distinguished two obligatory phases.

This means that the key issue for lossy methods is the quantization. Decomposi-

tion can be used too. it is optional, but very frequently used as it allows to have

more efficiency.

Basic way to achieve this goal is to decrease the length of the representation

comparing to the original data. Decomposition should decrease the redundancy

and correlation of symbols (pixel values) in the stream encoded, Before the quan-

tization proceed. A syntax of decomposition with simple quantization results in

very good efficient with much lower complexity and encoding/decoding time.
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There are many different ways to perform the decomposition, the most pop-

ular are:

• Frequency transforms,

• Wavelet transforms,

• Fractal transforms.

The quantization reduces the number of symbols of the alphabet, which will be

used by the intermediary representation of the encoded stream. So the informa-

tion carried by the image is partially lost in this phase.

Adjustment of information loss level done when Compression methods often

allow adjusting the level of information loss when the entropy is lower than en-

coded stream length. As decomposition determines the compression ratio,quality

of the recovered image and size of information loss during encoding, it’s the most

important phase in all practical realizations of lossy compression.

there are two types of quantization in lossy compression methods: Scalar

Quantization and Vector Quantization. the elementary unit of symbols for

processing is the difference between both. In scalar quantization, this unit is

equivalent of single symbol. While in vector quantization, it consists of some

number of successive symbols a vector of symbols.

Both of these methods can employ regular or irregular length of intervals.

The adaptation manner of compression can go forward or backward. In

forward adaptation, the input stream is divided into pieces, which have similar

statistical characteristics, e.g. variance. It results better quantization of the entire

input stream with cost of greater computing complexity and enlargement of the

size of description of the quantization attached to the encoded stream.

In backward method of adaptive quantization builds the quantization based

on data that processed during the quantization.In this method it would not needed
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Figure 4.2: Regular scalar quantization [11]

to any additional information about the quantization to be attached to the en-

coded stream.

The last phase of lossy compression methods completes lossless compression

method to which the output of quantization is passed as the input stream to be

encoded. Most of the lossless methods are used in different lossy compression

methods. Any type of lossless method can be used here, but it must be chosen

with respect to the decomposition and quantization techniques.

Any phase of that we described in above scheme can be static or adaptive.

Adaptive version usually increased effectiveness with the higher cost.

Compression ratio in lossy techniques is not limited by the entropy of the orig-

inal stream. By higher compression ratio entropy of the encoded stream can be

reduced.

Rate distortion theory which answers that what is the minimal entropy within

the enough encoded stream to reconstruct the original image without exceeding

a given distortion level. Notation, which will be used to explain the rate dis-

tortion theory, is explained on figure, In the figure bit rate is marked with R.

This theory shows what the boundaries of compression ratio in lossy compression
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Figure 4.3: Compression system model in rate-distortion theory

methods. According to rate distortion theory the bit rate BR (average bit length

per symbol) is related with distortion by following dependency:

BR(Dmax) = min
d(X,X̃)

I(X, X̃) (4.1)

The Im in above equation means ”mutual information”, it is the average infor-

mation that random variables here (X, X̃) convey about each other:

Im(X, X̃) = H(X)−H(X|X̃) = H(X̃)−H(X̃|X) =

X∑
xi

X̃∑
x̃i

fX,X̃(xi, x̃i).log
fX,X̃(xi, x̃i)

fX(xi).fX̃(x̃i)
=

∑
xi

∑
x̃i

fX(xi).fX̃|X(x̃i, xi).log
fX̃|X(x̃i, xi)

fX̃(x̃i)

The random variable X describes the original data set and X̃ represents the

reconstructed dataset. the fX(xi) represents the occurrence probability of deter-

mined symbol. The fX̃|X(x̃i, xi) is the conditional probability given symbol will

occur in source X̃ under condition that some symbol will occur in source X. Val-

ues fX(xi) are defined by the statistics of the information source but the values

fX̃|X(x̃i, xi) characterize the compression method. The mutual information has

following properties:

0 ≤ I(X; X̃)− Im(X̃;X)
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Im(X̃;X) ≤ H(X)

Im(X̃;X) ≤ H(X̃)

The distortion per symbol can be measured with Hamming distance or other

measure:

d(xi, x̃i) = (xi − x̃i)2

or

d(xi, x̃i) = |xi − x̃i|

Independently from the measure that will be chosen the distortion d has fallowing

properties:

d(xi, x̃i) ≥ 0

d(xi, x̃i) = 0whenxi = x̃i

The value D expresses the average distortion for an image and it is expressed

with the equation:

D(X, x̃) = Ed(X, x̃) =
∑
xi

∑
x̃i

X,X̃(xi, x̃i).d(xi, x̃i)

The formulas presented above state that, under the criterion that the average

distortion will be not greater than the given value Dmax, the minimal bit rate

is equal to the greatest lower bound of the average mutual information. To find

such compression method, characterized by the fX̃|X(x̃i, xi) , one has to minimize

the amount of information about random variable X carried by random variable

X̃ for given distortion level D not greater than Dmax.

The relationship between bit rate and distortion level is visualized :
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Figure 4.4: The relationship between bit rate and distortion in lossy compression
[4].

4.2 Compression in Medical and Mammography Images

Medical images have also limited bit depth (how many bits are destined for de-

scription of single pixel color). X-ray images have bit depth equal 12 bit and

ultrasound images only 8 bits. The matter is not so clear with Magnetic Reso-

nance images. Image format used here can store 216 (bit depth equal 16) tones

of gray but, in fact, there are much fewer tones about 29 (bit depth equal 9)[4].

There are also more important issues, which distinguish medical images from

other. Medical images create a particular class of digital images, where the in-

formation carried by them is extremely important. High fidelity of compression

and any other processing is required or the diagnosis could be erroneous. The

loss of information may mislead not only when a physician personally examines

the image but also when software is used for analyzing the image.

The receiver operating characteristic (ROC) analysis is an evaluation method

used to measure the quality and diagnostic accuracy of medical images. It is

performed by trained observers who rate the perceptible loss of information. The
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analysis gives for different medical image types the maximal compression ratios

at which the fidelity of the images meets the expectations of the observers. For

sample image types, the ratios are [12, 13]:

• Ultrasonography: 9 : 1

• Chest radiography: 40 : 1, 50 : 1 80 : 1 (JPEG2000)

• Computered Tomography: 9 : 1 (chest), 10 : 1 20 : 1(head)

• Angiography: 6 : 1

• Mammography: 25 : 1 (JPEG2000)

• Brain MRI: 20 : 1

The information loss should be avoided during processing but also very important

is the quality of presentation of the image, especially the most important details.

One should care about the faithfulness of image not only when it is presented in

scale 1:1.

Due to small resolutions of medical images, their psychical size on a display

device also will be rather small. Because of this, it is difficult to perform mea-

surements by hand during diagnosing or even to read the image by a physician.

Thus, magnification of the image is often very desirable and this means that also

a zoomed-in image should be maximally true, legible and clear.

If it would be sure that images will not be magnified, probably the best

choice for a compression method would be one of lossless methods. This group of

compression techniques assures that no information will be lost during encoding

and decoding processes; this means that the recovered image from a compressed

file will be exactly the same as the original image.
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The fractal compression has one large advantage over lossless methods it

enables fractal magnification that gives much better effects that traditional mag-

nification algorithms, e.g. nearest neighbor, bi-linear interpolation or even bi-

cubic interpolation. Fractal magnification is actually the same process as fractal

compression the image encoded with fractal method can be decompressed to

arbitrary given size. An image compressed with one of lossless methods must be

undergone to an interpolation algorithm if it has to be magnified. This means

that although the compression algorithm did not cause any distortion to the im-

age the interpolation algorithm will cause some faults. For example,block effect

appearance, image pixelisation or image blurring. Fractal compression makes

possible to keep the distortion rate on much lower level and the image remains

sharp regardless of the size to which it is magnified.

Fractal magnification is not the only quality of fractal compression. As op-

posed to most of other compression methods, the fractal coding is asymmetric.

From one hand, it is a drawback because encoding lasts much longer that in other

methods. But at the same time it is an advantage because the decoding process is

very fast it takes usually less time to decode an image with fractal method than

to read the same image, but uncompressed, from the hard drive. This feature is

useful when the image must be sent through the Internet the transmission time

will be shorter because the image representation is shorter when is encoded with

fractal method (lossy algorithm) than any lossless method, and there will be no

significant additional time costs caused by decoding.

Another feature of fractal compression that attracts ones attention is the

greatness of compression ratios that can be achieved with this method. Since it

is a lossy method, it gives much smaller compressed file than any lossless com-

pression algorithm. However, the medical images cannot be compressed with too

high compression ratio because the loss of information can turn out to bee too

high.
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4.3 Fractal Compression Methods

Fractal compression methods, which belong to lossy methods, distinguish them-

selves from other techniques by a very innovative theory. To some extend, fractal

compression diverges from the described above basic scheme of lossy compression

methods.

Figure 4.5: Self similarity in real images [14].

The most important part of this theory is that parts of an image are approxi-

mated by different parts of this image (the image is self-similar). This assumption

makes possible to treat the image as a fractal.

According to B. Mandelbrot [14],the father of fractals, a fractal is A rough

or fragmented geometric shape that can be subdivided in parts, each of which is

(at least approximately) a reduced/size copy of the whole.

Fractal is a geometric figure with infinite resolution and some characteristic

features. First of them is already mentioned self-similarity. Another one is fact

that fractals are described with a simple recursive definition and, at the same time,

it is not possible to describe them with traditional Euclidean geometry language

they are too complex. As a consequence of the self-similarity of fractals, the
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fractals are scale independent change of size causes generation of new details.

The fractals have plenty of other very interesting. Nevertheless, they are not

necessary to understand fractal compression theory and they will not be explained

here.

The essence of fractal compression is to find a recursive description of a

fractal that is very similar to the image to be compressed. The distance between

the image generated from this description and the original image shows how large

information loss is. Although fractal compression is based on an assumption

that the image can be treated a fractal, there are some divergence from above-

presented fragments of fractal theory. In fractal compression self-similarity of the

image is loosen it is assumed that parts of the image are similar to other parts

and not to whole image.

All other properties of fractals remain valid for an image encoded with a

fractal compression method. The image can be generated in any size, smaller or

larger than the original. Quality of reconstructed image will be the same in all

sizes, and edges always will have same sharpness. The number of details can be

adjusted by changing the number of iterations for the recursive description of the

image.

The fractal theory says that the recursive description of complex shape shall

be simple. Any photographic-like image is very complex and if this image can

be described as a fractal then a great compression ratio shall be achieved. The

fractal description of an image consists of a system of affine transformations. This

system is called fractal operator and has to be convergent.

In this section as there are lots of similarities between methods that briefly

described in the last chapter, differences between the compression methods will

be discussed. One has to keep in mind that many different fractal methods, elabo-

rated by different authors, may implement some element in the same manner. The

elements of the fractal compression algorithm that vary among different methods
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are grouped into several categories. Each section in this chapter corresponds to

one such category.
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4.3.1 Partitioning Method

Partitioning method will influence the parameters that evaluate the accuracy and

quality of constructed image. For example, there is no need to attach any infor-

mation about partitioning of fractional code in uniform partitioning. In the other

hand, some methods need more than 44% of the fractal code to describe the parti-

tion [15], and some methods as Quadtree are between these two types. Quadtree

partitioning takes about 3.5% of the total code size to define the partition [15].

Rate distortion performance cannot be affected by what we spoke from the three

method that we mentioned negatively. largest space to specify the partition gives

the best results. By this way, uniform partitioning plan impact on the number of

transformations,it is the weakest one. the partitioning scheme has also impact on

the number the partitioning scheme has also impact on the number of transforma-

tions. The Hartensteins method produces only few but large range regions,that

two other method cannot achieved. Three partitioning methods, we mentioned

above, are described in following subsections.

4.3.1.1 Uniform Partitioning

The most basic partitioning method option in fractional compression is uniform

partitioning. uniform method is image independent as the ranges and domains

have fixed size as 8 × 8 or 16 × 16. This partitioning method has some serious

drawbacks. Firstly, it would be some details that size are smaller than the range.

Moreover,as it is hard to find the domain with exactly same details, during the

encoding, sort of details will be lost. The distance between 2 squares can be

very small. f the ranges’ size adjusted to minimize the first problem, this small

ranges results more ranges that would effect the compression ratio efficiency in

bad manner. Moreover, for some part of image we can have larger ranges by

acceptable level of information that can result fewer transformation, So we will

have better compression ratio.
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4.3.1.2 Overlapped Range Blocks

Overlapped range blocks method is based on adjusting partitioning into squares

that created Polidori and Dugelay [16]. As all ranges have same size b × b and

domains 2b × 2b , it is very near to uniform partitioning. The difference is that

the ranges are not disjunctive but mutually overlapping with half of their size.

This means that all pixels belong to more than one range pixels close to the

edge of the image belong to two ranges and the rest of the pixels are within

four ranges. Partitions are encoded independently and decoding gives up to four

different values for each pixel. From these four approximations, the final pixel

value is calculated.

This method gives much better results than pure squares, e.g. effectively

reduces the block effect and consume much more time. the image is four times

encoded and four times decoded during each process. the fractal code representing

the image is almost four times longer. The risk of losing small details is remained.

4.3.1.3 Hierarchical Approaches

Hierarchical approaches to image partitioning establish the first class of image-

adaptive techniques. In decomposition of the image, compressed details are di-

vided into smaller ranges and flat regions into large ones that depends on the

content. This feature makes possible to overcome the limitations of fixed size

(uniform) partitions scheme. There are two types of hierarchical approaches:

top-down and bottom-up.

In top-down approaches in the beginning of encoding, whole image kept

in single range or dividing into large uniform partitions. Depends on the method

that used the range split, if it is not possible to find a domain that is close enough

(error criterion) to a range then the range is being split into several ranges. In

bottom-up approaches in order to have low level of information loss, it begins

with dividing into small ranges. At this method, the neighbor ranges that are
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close enough to each other are being merged during later phase of partitioning,

so the final ranges can have different size.

4.3.1.4 Quadtree Partitioning

The Quadtree partitioning presented by Yuval Fisher [17]was the first hierarchical

approach to partitioning. All ranges have here the shape of a square. In this

method, the set D of domains contains all square ranges with sides size 2, 4, 8,

12, 16, 24, 32, 48 and 64. in order to improve the quality of the encoded image,

it can be admitted domains situated slantwise . In the top-down algorithm, the

whole image is divided into fixed size (3232pixels) ranges at the beginning.

In the next step, algorithm should find a domain (larger than the range) that

gives the collage error smaller than some primary set threshold. If this attempt

ends with failure for some ranges then each such range is divided into four.This

procedure repeated for all newly created ranges, i.e. fitting domains are being

searched for ranges and, if necessary, the non-covered ranges are being broken

down. The encoding continues till there are no ranges that remain uncovered or

the size of the ranges reaches a given threshold.

In the second case, the smallest ranges are paired with domains that do not

meet the collage error requirement but are closest to corresponding ranges. If

unions of quadrants created during division of a range introduce, it can increase

adaptivity of the division that can improve results.

Figure 4.6: Quadtree partitioning of a range. Four iterations [17].
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As disadvantage of Quadtree partitioning method we can note that, all ranges

are divided in the same way, independently from the content of the ranges. The

size of ranges and the structure of partitioning are adaptive to the whole image

but as four quadrants of the input range the act of braking down a single range

produces always the same output.

If partitioning process was adaptive also at the stage of drawing the borders

of future regions during range block division, it would be better fitted to the

content of the image. This improvement would result in larger range blocks, i.e.

in less number of transformations.
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4.3.1.5 Horizontal-Vertical Partitioning

In the horizontal-vertical (HV) partitioning method [17], the shape of a range

can be not only a square but also any other rectangular because a range (when

there is no domain close enough to it) is divided into two rectangles instead

into four squares. The frontier between the two rectangles is established in the

most significant horizontal or vertical edge. Thus, this method is an answer to

disadvantages of Quadtree partitioning it tries to find best division of a range

into two new ranges by horizontal or vertical cut.

The image is partitioned in this manner from the beginning, i.e. there is

no initial phase in which the image is divided into uniform partitions (like in

Quadtree partitioning). The algorithm includes also mechanisms preventing from

degeneration of rectangles.

The algorithm uses two formulas (vnandhm) that allow determining the di-

rection and the position of the cut:

vm =
min(m,width(Ri)− 1−m)

width(Ri)
.(

height(Ri)−1∑
n=0

rm,n −
height(Ri)−1∑

n=0

rm+1,n) (4.2)

hn =
min(n, height(Ri)− 1− n)

height(Ri)
.(

width(Ri)−1∑
m=0

rm,n −
width(Ri)−1∑

m=0

rm,n+1) (4.3)

where width(Ri) × height(Ri) is the dimension of range block Ri and 1 ≤ m <

width(Ri), 1 ≤ n < height(Ri). The second factor pf these formulas, (
∑

n rm,n −∑
n rm+1,n) and (

∑
m rm,n −

∑
m rm,n+1), give the difference of pixel intensity

between adjacent columns (vm, vm+1) and rows (hn, hn+1). Maximal values of

these differences point out the most distinctive horizontal and vertical lines.

the first factor min(m,width(Ri)−1−m)
width(Ri)

and min(n,height(Ri)−1−n)
height(Ri)

ensure that the

rectangles created by splitting the range block will not be too narrow the closer

a possible cutting line location is to the middle of the range block, the more

privileged it is.
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At this point, we have two alternative lines along which the split can be done

one vertical and one horizontal. The HV partitioning allows cutting along only

one of them:

• if max(h0, h1, ..., hheight(Ri)−1) > max(v0, v1, ..., vwidth(Ri)−1) then the range

block is partitioned horizontally.

• otherwise, the range block is partitioned vertically

In other words, the more distinctive cutting line is chosen from the two alter-

natives. The increased adaptivity is paid dearly with increased time complexity

(due to the variety of range shapes and additional computations) and longer

description of the partitions. However, these additional costs pay off the rate

distortion is significantly improved comparing to Quadtree partitioning method.

This superiority is caused by better adaptivity and larger range block sizes (i.e.

lower number of range blocks).

Figure 4.7: Horizontal-vertical partitioning of a range. Four iterations[17].

4.3.1.6 Triangular Partitioning

Next partitioning method [18] is based on triangles. In the first step, the rectan-

gular image is divided into two triangles along one of diagonals. At this point,

the recursive algorithm begins. Each triangle, for which no suitable domain can

be found, is divided into four triangular ranges. The borders between these tri-

angles are drawn between three points that lie on three diverse sides of the range
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to be divided. The points that define the borders can be freely chosen in or-

der to optimize the division and minimize the depth of the tree representing the

partitioning, i.e. the number of transformations.

There was also elaborated a second triangular partitioning scheme, in which

the triangular range is divided along a line from a vertex of this triangle to a

point on the opposite side [19].

The triangular partitioning has several advantages over HV partitioning.

First of them is the fact that distortions caused by not ideal matching of the

ranges and domain are less noticeable. The second very significant advantage

is possibility of occurrence of rotation angles within the transformations other

than multiple of right-angle. This is because the triangular ranges can have any

orientation and rectangular ranges (HV, Quadtree, fixed size partitioning) can lie

only horizontally or vertically. The largest advantage of triangular partitioning

is reduction of the block effect, which can be observed in uniform partitioning.

Nevertheless, this partitioning scheme has also some heavy drawbacks. The

comparison of a domain block with a range block is hampered because of the

difficulties with interpolation of the domain block when the pixels from these two

blocks cannot be mapped one-to-one. This problem occurs in all partitioning

schemes that are not based on right-angled blocks and is the reason why the

right-angled methods are superior [20].

4.3.1.7 Polygonal Partitioning

The polygonal partitioning is very similar to horizontal-vertical but is more adap-

tive to the image. It was invented by Xiaolin Wu and Chengfu Yao [21] but

Reusens was the one who applied it to fractal image compression [22]. In this

method, a range can be divided horizontally, vertically (like in HV) or along a

line inclined by 45 or 135 degrees.

46



Other method to get polygonal blocks is the modified Delaunay triangulation

method in the merging phase of this method, not only triangles can be created

but also quadrilaterals [23]. However, this method belongs to the second group

of partitioning schemes the split-and-merge approaches.

4.3.2 Split-and-Merge Approaches

The hierarchical approaches perform the partitioning while the pairs of ranges and

domains are being found. The split-and-merge approaches divide the image into

partitions before the searching for transformations is started. The partitioning

process consists here of two phases. The first phase the splitting yields a fine

uniform partitioning or a partitioning with various density of ranges for different

parts of the image. The second phase the merging combines neighboring ranges

with similar mean gray levels.

4.3.3 Delaunay Triangulation

Delaunay triangulation was adapted to fractal coding by Davoine and Chassery

[24, 25]. In this method, the partitioning results in a set of non-overlapping

triangles that cover whole image. The splitting phase starts by dividing the image

into regular, fixed size triangles. This triangulation is represented by regularly

distributed points, which are equal to triangles vertex. Then the triangles are

investigated and if any triangle is not homogeneous in sense of variance or gradient

criteria then a point is added in the barycenter of the triangle. The splitting is

recursively repeated until all triangles are homogeneous or the non-homogeneous

triangles are smaller than a given threshold. Before each iteration, the triangles

must be recalculated based on the set of points.

The merging removes certain vertex and by this action, the triangles are

combined. A vertex is removed if all triangles to which it belongs have similar
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mean gray levels. Each single change of the set of vertex entails the necessity of

recomputing the triangulation before following actions are performed.

The Delaunay triangulation has the same main advantages as the triangu-

lar hierarchical partitioning related with unconstrained orientation of triangles.

However, the number of transformations determined with Delaunay triangulation

is lower than in hierarchical approaches.

The triangles can be merged not only to larger triangles but also to quadri-

laterals [23]. This increases the compression ratio because the number of trans-

formations is smaller in such case. When the basic Delaunay partitioning and

the enhanced scheme result in similar compression ratio then the quality of the

reconstructed image is better in the quadrilateral approach.

4.3.4 Irregular Regions

The methods that produce irregular shaped range regions realize the splitting

simply by utilizing the existing simple partitioning methods. The uniform par-

titions were employed in first algorithm based on irregular regions created by

Thomas and Deravi [26] but also in the work of other researchers [27, 28, 29].

The Quadtree partitioning was introduced to irregular partitioning by Chang

[30, 31]; Ochotta and Saupe also used this schema [32].

The small squares from first phase are merged to form larger squares or

irregular range blocks. This partitioning scheme adapts very well to the content

of the image, which is being encoded.

However, there are problems with concise description of the regions bound-

aries. There are two main approaches to this issue: chain codes and region edge

maps. The chain coding describes the path that agrees with the boundaries. To

specify this path a starting point and a sequence of symbols representing steps

(simple actions: go straight, turn left, and turn right) must be stored in the frac-

tal code. The length of the step is equal to the length of the side of region block
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Figure 4.8: Region edge maps and context modeling [11]

in uniform partitioning, and it is equal to the length of the side of the smallest re-

gion block in the Quadtree. The most basic version of chain coding encodes each

closed region boundary into one path with specified starting position. The perfor-

mance of such approach leaves much to be desired because redundant information

is present since almost all of the boundaries are sheared by two regions.

The region edge map [33] utilizes a grid of squares. If uniform partitioning

was used in splitting phase then the grid is equal to these partitions. If Quadtree

partitioning was used then the cells in the grid have the same size as the smallest

ranges any range (of Quadtree partitioning) can be either a union of cells or

a single cell. Each single cell is provided with one of four symbols that indicate

whether (and where) there is a range boundary at the edge of the cell; the symbol

is stored in two bits. There are only four instances considered:

• no range boundary

• boundary on the North edge

• boundary on the West edge

• boundary on the North and on the West edges

The region edge maps can be efficiently encoded with an adaptive arithmetic

coding and context modeling. The context is build of four cells processed (encoded
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or decoded) before the current cell these are the neighbors in the West, North

West, North and North East directions. There can be 256 different combinations

of symbols in the context; some of these combinations indicate which symbols

cannot occur in the currently processed cell. For example, when the symbol 1 or

2 is attached to the cell to the North and the symbol in the cell to the West is 1

or 3, then the current symbol cannot be 2 or 3 either. This fact allows shortening

the fractal code.

Figure 4.9: Performance of compression methods with irregular partitions[27, 15,
32]

The irregular partitions guarantee good results of the encoding. Such par-

titioning schemes are ultra adaptive to the image content and since they are

right-angled they are devoid of the drawbacks of triangular partitioning. The

experiments (see figure 3.4) show that they outperform any other partitioning

method. However, there is still disagreement which method is superior, what will

be explained in the last section of this chapter.

4.3.5 Domain Pools and Virtual Codebook

The two terms the domain pool and the codebook are very close connected with

each other. In the literature, they are often used interchangeably, but here by a

domain pool, in the context of fractal coding, the author means a set of domains

(a subset of all possible domains in the image) that is being used during searching

for a matching domain for a range. The codebook blocks correspond to domain
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blocks but their size is the same as the size of the range. The set of all codebook

blocks is called virtual codebook. The codebook in fractal compression is virtual

because it is not needed at the decoding (it is not stored in the fractal code) it is

used only during the encoding phase. Summarizing, the codebook denotes a set

of codebook blocks, which are contracted (downfiltered) domain blocks from the

domain search pool.

The length and contents of the domain pool (codebook) is crucial for the

efficiency of the encoding process. If the domain pool is larger then more bits are

required for the representation of selected domain in the code. At the same time,

larger domain pool entails longer time for searching a domain for a range; this

results in much extended encoding time. However, larger domain pool also has a

positive effect it helps to achieve higher fidelity.

There are two main approaches to domain search that can be observed in

different encoding methods. The first one, called global codebook search, provides

the same domain pool (codebook) for all ranges of the image but there may be

various the domain pools and codebooks for different classes of ranges. Local

domain pool search, the second approach, makes the codebook dependent on the

position of the range.

4.3.5.1 Global Codebooks

This solution to domain search is based on an assumption that a range and a

domain can be paired into a transformation even if they lie in completely different

parts of the image. This assumption is confirmed by [34, 35, 36] where authors

state that there cannot be determined a neighboring area of a range within which

the best domain for the range lies.

An example of a global codebook can be seen before. In the example frac-

tal encoding algorithm, each domain block of the image is considered during

the searching of matching domains and ranges. Because the algorithm employs
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uniform partitions, the domain pool consists of blocks of same size. The interval

between corresponding borders of neighboring domain blocks is equal to one pixel

vertically or horizontally. This solution is very complex computationally due to

large number of blocks within the codebook. The time cost is here very high

but this procedure gives optimal loss of information because the best matching

between a range and a domain will be always found.

In order to reduce the time cost larger intervals between blocks, which are

appended to the domain pool, are introduced. The literature gives two typical

interval values: equal to the domain-block width or to half of the domain-block

width. This simple move significantly decreases the number of domains in the

pool and, thanks to that, speeds up the searching for a domain. The main rule is

that the larger the domain pool is the better fidelity is achieved but with higher

time cost. So reducing the size of domain pools gives shorter searching time (and

shorter encoding time), but more information is lost (the errors between paired

ranges and domains might be larger). Higher intervals between the domains in the

pool result also in better convergence at the decoder (less iterations are required

to decode the image).

The global codebook constructed like above can be used when the image

is segmented into uniform range blocks or with Quadtree partitioning. It can

be also used with HV partitioning, but a domain pool containing ranges (larger

than currently processed range) or blocks created by the partitioning mechanism

(used also for determining range-blocks) are more often used. These two last

methods of constructing global domain pools can be also used with other adaptive

partitioning schemes. In the Quadtree scheme there is not one global domain pool

but several for each class of ranges (all ranges within one class have same size)

is provided a separate domain pool (and codebook) that contains domains twice

as large as ranges within the class.
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4.3.6 Local Codebooks

A number of researches [37, 38, 39] have proven that the probability density of

the spatial distances between ranges and matching domains has a distinct peak

at zero. This means that it is much more likely to pair a range with a domain

that is close to the range than with a distant one.

Figure 4.10: Probability density function of block offset.[39, 38]

4.3.6.1 Restricted Search Area

In fact, the probability that a distant domain will be judged as a matching one

is so small that the searching can be restricted to only spatially close domain

blocks. The remaining part of search algorithm remains unaffected.[37]

4.3.6.2 Spiral Search

In the approach the search order is modified - the codebook blocks that are more

likely to provide a good match for currently processed range block are tested

first. Therefor, the search is performed along to spiral-shaped path, which has

a beginning in the codebook block directly above the range block and gradually

recedes from the range. The search area can be here restricted by defining maxi-

mal number of range blocks that shall be tested for each range block the length

of the path.[40]
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Figure 4.11: Spiral search [40]

The literature gives several ways in which the advantage of this fact can be

taken.

It can be noticed that the density of the domain blocks tested during the

spiral search is higher at the beginning of the path (close to the range block).

4.3.6.3 Mask

Another way to determine a not numerous domain pool is to put a mask on the

image and center it at the currently processed range block. The mask indicates the

locations of domain blocks that should be included into the domain pool. These

locations are denser near to the center of the mask and condensation decreases

with the increase of the distance to the center.[39]

4.3.6.4 Solutions without Domain Search

There are several ways to eliminate the time-consuming domain search. The first

of them pairs a range and a domain when the position of the domain block fulfills

some conditions. For example, P. Wakefield [41] proposes to pair domains with
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ranges in such manner, that the range block lies within the domain block and

the dominant edge should be in the same relative position in both blocks. Other

solutions force the matching domain to be in a fixed relative position to the range

[42] or restrict the domain pool to a very small set of domains neighboring to the

range [43].

Because this class of fractal methods eliminates one of the most time-consuming

phases, the encoding is very significantly accelerated. At the same time, the

search-free methods give best rate-distortion results [38] . However, in medical

imaging the information carried by the image is much more important than the

achieved compression ratio and the search-free methods loose details by impre-

cise matching of domains and ranges. But without any doubt, it can be said that

local codebooks outperform global ones what have been proved in [39] where the

signal-to-noise-ratio were only 0.3 dB lower for the search with a mask than for a

full search; at the same time the domain pool contained only 12% of the domains

from the global pool.

4.3.7 Classes of Transformations

As it was already said, the transformations determined during encoding have to

be affine and contractive. However, this restriction is very weak and further limi-

tations have to be introduced in order to provide full automation of the encoding

process. Thus searching for the transformations that will constitute the fractal

code is performed only within a limited class of affine transformations. The choice

of this class influences the effectiveness, fidelity of the algorithm and convergence

properties of the fractal operator. Thus, the importance of selecting the right

class of transformations cannot be overrated since it is crucial for both process of

compression encoding end decoding.

A transformation usually can be decomposed into three separate transfor-

mations that are carried out one after another. Therefore, a single elemental

block transformation τi (from the domain block Di to the range block Ri ) is a
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composition of three transformations:

τi = τ Ii ◦ τSe ◦ τC (4.4)

After the transformation τi is placed on the domain block Di , the resulting pixels

may be copied into the range block Ri . Thus, transformation τi

is the key part of the affine transformation wi , which maps domain block Di

on to range block Ri. In order to transform a domain block into an appropriate

range block firstly the domain block is spatially contracted (transformation τC),

the product of this phase is a codebook block. The order of pixels within one

codebook block is deterministically changed by τSe i.e. it is undergone one of

symmetry operations like rotation or reflection. The used symmetry operation

is taken from a fixed pool;e denotes here the index of the used operation. The

last component transformation τ Ii is an intensity transform, which adjusts the

brightness of the codebook block.

The contraction transformation usually is the same for all domains. However,

the symmetry operation is known not before the searching for matching pairs

of domains and ranges. Same situation is with intensity transformation, when

a domain and a range are compared (during the searching), this transform is

defined in such way that the error between them is minimized.

All domains Dk (0 ≤ k < D, where D length of the domain pool) from the

pool are transformed by τC what gives the codebook of blocks Ck . The codebook

can be expanded thanks to symmetry operations every block of the codebook is

transformed by all symmetry operations and the products of these operations are

included in the codebook. Theoretically, this step should allow better matching

between the codebook block and the range block (during searching a domain

block fitting to a range block). One has to keep in mind that the codebook is

virtual, i. e. the codebook blocks are not stored in four copies that differ from

each other only with the rotation angle there is a single copy of a codebook block

that is rotated during the search.
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Then the real search is being performed. For a range block Ri every codebook

block Ck s checked the coefficients of the intensity transformation (that minimize

the distance between the codebook block and the range block) are calculated, i.e.

the transformation τik is being determined. From all of the τik (and, at the same

time, from all of the codebook blocks) the one is picked that gives the minimal

error between the range block and the product of the transformation the chosen

transformation becomes τi.

The description of the contraction transformation τC an be sawed into the

program the transformation is the same for all domains/ranges and the same

for the encoder and the decoder. But information about the τSe and τ Ii has to

be attached to the fractal code. In particular, the symmetry operation musts be

pointed out and the coefficients of the intensity transformations must be stored

for every range block.

4.3.8 Spatial Contraction

The spatial contraction of domain is not necessary for the process of fractal com-

pression. The transformation must be counteractive but the metrics that are

used to assure the contraction usually is not influenced by the spatial dimen-

sion [25, 34]. A sufficient constraint is that a domain block and a range block

paired into one transformation cannot be equal. However, the spatial contraction

is commonly used in almost fractal compression methods. It was introduced by

Jacquin [44] and it is moved out directly from the first fractal compression algo-

rithm where the spatial size of square domain blocks was twice as large as the

size of range blocks.

Also using the same contraction ratio as Jacquin became a custom the spatial

contraction usually reduces the dimensions of a domain block by two. However,

it is possible to adjust this number in order to achieve desired behavior of the

encoder or decoder. A contraction ratio higher than 2 : 1 decreases the number

of iterations needed to reconstruct the image from fractal code (fractal operator)

57



[45]. It is possible to adjust the contractivity in such way that the decoding will

be made by a single iteration [35]. A contraction ratio smaller than 2 : 1 entails

higher error propagation during decoding. But it also has positive effects it

allows better approximations of range blocks with codebook blocks [40]. In the

original work of Jacquin [44], the domain block was contracted by averaging of

four neighboring pixel values into one. So according to this, when the width and

the height of the codebook block are equal to h and the contraction is made by

factor of 2 then a value of a pixel of a codebook block Ci can be calculated from

the following formula:

Ci(m,n) =
Di(2m, 2n) +Di(2m+ 1, 2n) +Di(2m, 2n+ 1) +Di(2m+ 1, 2n+ 1)

4
(4.5)

for all m,n ∈ 0, ..., h − 1. This formula can be easily generalized to any size of

the codebook block.

The contraction by neighboring pixel averaging is still very popular but also

other solutions can be employed here. Barthel and Voye introduced anti-aliasing

filter what allowed to obtain better coding results [40]. Instead of averaging

neighboring pixels, the excess pixels can be removed. This solution slightly speeds

up encoding but has negative influence on the accuracy [17, 35].

4.3.9 Symmetry Operations

The symmetry operations, called also isometries, operate on pixel values of a

block without changing their values. They change the positions of pixels within

the block in a deterministic way. For a square block, there are eight canonical

isometries[44]:

1. identity

2. orthogonal reflection about mid-vertical axis of block,

3. orthogonal reflection about mid-horizontal axis of block,
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4. orthogonal reflection about first diagonal (m = n) of block,

5. orthogonal reflection about second diagonal of block,

6. rotation around center of block, through +90◦,

7. rotation around center of block, through +1800◦,

8. rotation around center of block, through −90◦.

The isometries significantly enlarge the size of the domain pool so they should

take effect in better fidelity of the reconstructed image. According to a number

of researchers, all isometries are used in same frequency during encoding[36, 46].

This proves that they are useful and fulfill their destination. At the same time,

other authors prove that the isometries are dispensable and have no positive ef-

fect [37, 47, 46]. Probably different design choices not directly related with the

isometries are the main cause of this contradiction [20]. However, an overwhelm-

ing agreement can be observed in the literature, that the use of the isometries

results in weaker rate-distortion relation [46, 48, 49, 50]. Besides, other affine

transformations can be used in place of isometries [47].

4.3.10 Block Intensity

The last component transformation also operates on pixel values but it changes

the luminance of pixels instead their positions. Once again, the most basic inten-

sity transformation was introduced already by Jacquin. It is linear and operates

on one codebook block (after application of symmetry operations) and one block

of unit components:

Ci
′ = siCi + oi1 (4.6)

The si and oi denote the scaling and offset respectively. These coefficients are

calculated by the encoder when the best approximation R ≈ skck + ok1 is found

(0 ≤ k < C, where C length of the codebook ).
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Although the linear intensity transformation still can be found in many more

present fractal compression methods, other transformations can be found in the

literature. According to the authors, these new approaches improve the fidelity of

the compression by enabling better approximation of a range block by a codebook

block.

4.3.11 Orthogonalization

Oien [51] modified the intensity transform by introducing orthogonal projection

prior to scaling. From the codebook block the dc component is being subtracted.

The dc denotes the mean pixel value of the codebook block:

dc =
C1
i + ...+ CCi

i

Ci
(4.7)

where Ci is the number of pixels in a codebook block.

The intensity transform in this case can be described by following formula:

Ci
′ = si(Ci −

〈Ci, 1〉
‖1‖2 ) + oi1 (4.8)

The 〈Ci, 1〉 is the inner product of the codebook block and the block of fixed

intensity ‖1‖ is the derived norm of an appropriate product space, i.e. L2 here.

this transformation yields a block that is orthogonal to the block of unit

coefficients 1 and gives several advantages. First of all the si and the oi coefficients

are decorrelated. When a special choice of domain pool is made (each domain

is a union of range blocks in Quadtree partitioning, the contraction based on

pixel averaging), the decoding is accelerated the convergence of the decoder is

guaranteed to be in a finite number of iterations. The number of iterations is

independent of the si and oi coefficients and only the sizes of the domains and

ranges influence it [52].
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4.3.11.1 Multiple Fixed Blocks

The topic of multiple fixed blocks was raised by Oien, Lepsoy and Ramstad [53]

and continued by Monro[?, 54] and many other researchers. The main idea is

based on replacing the single fixed block 1 with multiple fixed blocks Vh:

Ci
′ = siCi +

∑
h

oihVh (4.9)

4.3.11.2 Multiple Codebook Blocks

Another approach uses several codebook blocks that are independently scaled:

Ci
′ =

∑
h

sihCih +Oi1 (4.10)

It is also possible to merge the multiple fixed blocks approach with the multi-

ple codebook blocks approach. In this case, also domains that do not have to

be spatially contracted can be used.[55, 56, 57, 58, 59] The linear combination

multiple domain blocks and multiple fixed blocks was used in [57]and resulted in

great rate-distortion relation at the bit rate 0.43, the peak signal to noise ratio

achieved 34.5 dB .

4.3.11.3 Polynomials

Other attempt to the intensity transformation [Mon93a, Mon94b, Mon94a] resigns

from the linear character and uses higher order polynomials. When the transfor-

mation is a second order polynomial then an additional component is added to

Jacquins basic transformation the codebook block with quadratic form:

Ci
′ = [c′ | si2c2 + si1c+ oi1] (4.11)
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where c symbolizes a matrix coefficient of Ci and c′ a coefficient of Ci
′. The

third order polynomials will require extending the transformation with one more

component codebook block with cubic form:

Ci
′ = [c′ | si2c3 + si2c

2 + si1c+ oi1] (4.12)

When the basic linear transformation is used then a single pixel of the codebook

block is undergoes the following intensity transformation:

τ Ii = siz + oi (4.13)

The application of the polynomials modifies the shape of the fractal operator [60]

. Here the operator takes following form:

wi


x

y

z

 =


ai bi 0

ci di 0

0 0 τ Ii



x

y

1

 +


ei

fi

0

 (4.14)

The τ Ii (intensity transformation) looks as follows:

• order 2 polynomials

τ Ii (z) = si2z
2 + si1z + oi1 (4.15)

• order 3 polynomials

τ Ii (z) = si3z
3 + si2z

2 + si1z + oi1 (4.16)

Of course, also higher order polynomials can be applied but it results in worse

compression ratio because more parameters have to be encoded. However, the

higher order polynomials are used the better fidelity can be achieved [61]. The

use of second order polynomials turns out to be the best when it comes to the

rate-distortion relation [38].
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4.3.12 Quantization

The quantization occurs in encoding as well as decoding. During the encoding, the

scaling and offsets coefficients have to be quantized. The domain positions, the

description of used symmetry operations and any partition description relevant

to the adaptivity of the segmentation are represented by discrete values from the

beginning.

4.3.13 Quantization During Encoding

Most often, a uniform quantization is used. Nevertheless, the distribution of the

scaling or of the offset coefficient in general has a strongly non-uniform character.

The application of a uniform quantization method entails inefficiency and entropy

compression of quantized coefficients can be very useful for eliminating it.

Figure 4.12: Distributions of scaling and offset coefficients (second order polyno-
mial intensity transformation)[62]

The quantization occurs also during decoding. Each iteration of the algo-

rithm produces an image that is an approximation of the fixed point of the IFS.

In the original approach, the images created in successive iterations were stored

as raster images, i.e. the pixel values were quantized. However the brightness of
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the fixed points pixels takes real values and not discrete and the error caused by

quantization in this solution is propagating on the result of following iterations.

This may cause difficulties with reaching the correct values of brightness of some

pixels. This problem can be minimized by introducing matrices of real numbers

to represent the images created in successive iterations. This solution is called the

Accurate Decoding with Single-time Quantization and guarantees that the quan-

tization will be performed only once when the matrix from the last iteration will

be converted to a raster image [60].

4.3.14 Decoding Approaches

The fractal code contains the quantized coefficients of the fractal operator. The

decompression is actually the process of computing the fixed point described by

this operator. The fractal operator is independent of the size of the original image

so the decoding may result in a reconstructed image in any size the image may

be zoomed in or zoomed out comparing to the original one. The basic decoding

algorithm is based on PIFS and was already explained. One of advantages of

fractal compression is fast decoding usually it takes less than 10 iterations. How-

ever there are introduced some alternative approaches that improve the speed or

accuracy of the process.

4.3.14.1 Pixel Chaining

The method can be utilized only when the intensity transform is based on sub

sampling. In such situation, each pixel of a range block is associated with one

reference pixel in the domain block the range and the domain are paired by a

transformation. The reference pixel lies not only in the area of the domain block

but also in the area of some other range block. Thus, another reference pixel is

associated with it. In this way, a chain of pixels that are associated is created.

The pixel chain can be used in two manners. The first way is utilized it to track
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the path of influence in order to find a pixel with wanted value. The second way

executes a part of the chain long enough to achieve acceptable pixel value[35, 47].

4.3.14.2 Successive Correction Decoding

The basic decoding algorithm uses for each iteration a temporary image in which

the changes are made by transformations. This means that the image that pro-

vides the virtual codebook in current iteration remains unchanged by the trans-

formations and the range blocks are situated on the temporary image.

The successive correction method is inspired by Gauss-Seidel correction scheme.

The basis of the successive correction algorithm is resignation from the tempo-

rary images the transformations operate on the same image. The domain blocks

covering actually decoded range blocks are immediately updated, i.e. the change

made by one transformation is visible for transformations executed after that one

but in the same iteration.

The main advantage of this technique is increased decoding speed. A further

speed improvement can be made by ordering the transformation. In the image

are staked out domains with different density. Transformations that have domain

ranges in areas of the highest domain concentration are executed first in each

iteration [63, 64].

4.3.14.3 Hierarchical Decoding

The first stage of hierarchical decoding is actually nothing else as the baseline

decoding algorithm. The only difference is that the image is reconstructed at

a very low resolution the size of the range blocks is reduced to only one pixel.

This low-resolution image is treated as a basis to find the fixed point in any

other resolution with a deterministic algorithm (similar like in wavelet coding

the transformations from domains to ranges are treated as consecutive resolution

approximations in the Haar wavelet basis). Because vectors of lower dimensions

65



are processed during IFS reconstruction, there are considerable computational

savings comparing to the standard decoding scheme[65, 66, 67].

4.3.14.4 Decoding with Orthogonalization

his approach was already mentioned. It requires some changes of the encoding

process, i.e. all domain blocks from the pool have to consist of a union of range

blocks and the intensity transform has to utilize orthogonalization. These re-

strictions result in meaningful benefits: an uncomplex computationally decoding

algorithm based on pyramid-structure, decoding length independent of the trans-

formation coefficients (it depends only on domain and range sizes) and at least

as fast as in the basic scheme [52].

4.4 Post-processing

Any fractal compression method is based on blocks and, because of this, block

artifacts are always present in the reconstructed image. In order to reduce the

undesired artifacts the reconstructed image can be post-processed. The block

boundaries are subjected to smoothing [35, 47].

There are at least several ways to reduce the block artifacts during post-

processing. The first one is simply the right choice of partitioning method the

overlapped ranges give very good result, the blocks are also less noticeable when

a highly adaptive partitioning method is used.

A simple method that uses a lowpass filter can be engaged. However, the

results are not satisfying[35] . Other estimation-based methods, more complex,

give better performance [68, 4] .

There are also post-processing methods that depend on the partition scheme

used in the compression and heads for the best overall performance taking into
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consideration the human visual system. The Laplacian pyramidal filtering pre-

sented in[61] is an example of such method.

4.5 Discussion on Methods

As we saw in chapter, at the same time the diversity of issues connected with

building a fractal compression methods. Although the basis of fractal compression

remains the same in all implementations, there still is notable latitude during the

act of constructing a fractal compression method because there are no standards

to it and only a general idea how to utilize the fractal theory to image compression.

This freedom can be problematic because there is not always agreement which

solutions in particular elements of the fractal compression method yield the best

effects. This confusion is being amplified by the fact that each design decision

influences on the performance of other design elements.

As an example, the choice of partitioning scheme can be given there there

is a disagreement in the literature which one is the best. Some researchers ap-

point the simple Quadtree scheme as the superior comparing to polygonal and

HV partitions [22] . Others, at the same time, prove that the HV partitioning

gives better results than the Quadtree [36, 15, 29]. However, most of the re-

searchers agree that irregular regions give better results in rate-distortion sense

over Quadtree scheme [32, 27, 30, 29, 15, 69] . The comparison of HV with irreg-

ular schemes does not show as large superiority of the method based on irregular

regions [15] , especially the methods utilizing Quadtree partitioning in the split

phase [30, 31, 32], or even these two approaches yield very similar rate-distortion

performance[29]. One can notice that for small compression ratios, for which the

best fidelity can be obtained, the HV partitioning results in slightly better Peak-

Signal-to-Noise ratio. However, the irregular-shaped approaches allow encoding

an image with the same PSNR ratio faster. A remarkable observation is that none

of the partitioning schemes that are not based on right-angled regions matches

to the performance of above-mentioned methods [20].
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The effectiveness of fractal compression can be improved by merging it with

transform coding or wavelets. Nevertheless, such hybrid-methods are not dis-

cussed in the document.
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Chapter 5

Clustering

As we used K-Means Clustering in our Method we explain briefly about it in this

chapter.

Sorting images in segments and meaningful points has important effect in

images analysing as they contain many objects and features. Clustering is com-

putational tool to do segmentation that tries to find specific patterns or structures

in a data set. Objects in each cluster have a certain degree of membership. In

another word, clustering is a process of dividing object (pixel) into groups based

on its features. So, cluster means a set of similar objects (pixels), which they are

totally different from objects belonging to other clusters.

Clustering algorithms are classified in two groups: hard clustering algo-

rithm, soft clustering algorithm. In hard clustering methods data par-

titions to specific clusters and each data point belongs to just one cluster. soft

clustering algorithm is responsible to associate membership levels and conse-

quently locate each data points in one or more clusters [70].

Summarize of the clustering process is shown in sample below. The given

data segmented into three clusters identifies by three different colors Red, Blue

and Green.

Features that are based of classification of an images are like keyword and

content of image. Keyword based clustering is to assign a font which describes
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Figure 5.1: Three Clusters of given [70].

an image. A keyword represents different attributes of image. Each feature has a

specific value, one cluster made by similar keywords with same values. Relevance

feedback algorithm is a keyword based techniques.

Content based clustering represents every information taken from im-

age such as text or shape. The algorithms and tools, which applies statistical

formulas, or pattern recognition or etc called content-based clustering method.

K-Means clustering which uses pattern recognition to classify images is the most

popular example technique[71]. Also, Clustering method can be divided into

• supervised-clustering that clustering region can be defined manually

• unsupervised-clustering that clustering region already defined automat-

ically.

There are numerous clustering techniques have been used in image segmentation.
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5.1 K-Means Clustering

K-Means algorithm is a very popular method used to segment the image to K

clusters. Had been invented by Macqueen in 1967, it is unsupervised algorithm

that can overcome the typical clustering problem in image segmentation.

The process consists of steps to divide a given image data into a definite

number of clusters. The key idea is to assign K centroids to each cluster. Since

different locations cause different results, so then it would better to place centroids

as much as possible away from each other. Former step is to get points one by

one belonging to data set and put it in a nearest centroid. This step is completed

successfully until no more point has been left. As a result, an early group age

emerges out. In this moment only thing is to recalculate K new centroids as a

bar centers of clusters concluded from first process [72].

When K new centroids appear the newer calculation has to be done among

previous data set points and other new nearest centroid. As this loop persists on,

the K centroids change their places step by step till no more changes have been

seen Employing K-Means clustering algorithm may illustrate a certain number

of non hierarchical or flat and disjoint clusters [72]. Though, it is appropriate to

generate global clusters since it is an unsupervised, non-deterministic, numerical

and iterative method. In another word, data vectors in K-Means method are

divided into predefined and known number of clusters [73, 74].

At the beginning the centroids (mean) of the predefined clusters are initial-

ized randomly. The dimensions of the centroids are same as the dimension of the

data vectors. Each pixel is assigned to the cluster based on the closeness, which

is calculated by the Euclidian distance measure when all pixels are clustered, the

mean of each cluster is recalculated [75]. This process is repeated until no signif-

icant changes result for each cluster mean or for some fixed number of iterations.

K-Means algorithm typically consists of following steps:
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1. Choosing the k number of clustering manually or randomly:

vi, i = 1, 2, ..., k

2. Generating k clusters by assigning each point xj to nearest cluster mean vi

using Euclidean distance measurement:

dij = ||xj − vi||

3. Where X = x1, x2, ..., xn, is input data points. Compute matrix U corre-

sponds to classification of given points with the binary membership value

of jth point to ith cluster in such a way that U = [uij] where uij ∈ 0, 1 for

all i and j: 
∑k

j=1 uij = 1; forallj

0 <
∑k

j=1 uij < n forallj


4. Resuming calculation of cluster centers by averaging all pixels in cluster.

vi =

∑n
j=1 uijxj∑n
j=1 uij

; foralli

5. If a cluster mean is the same with previous iteration, stop otherwise go to

step.

Actually K-Means tries to find one mean in each cluster. It defines means by

taking K samples randomly and then follows the two iterations. It assigns each

point to nearest mean and substantially moves mean to center of its clusters.

The process easily can be seen in Figure 3.4, there are two clusters defining by

red and blue colors and for each cluster you can see corresponding centers. This

algorithm tries to minimizing an objective function, e.g. a squared error function.

The objective function J(U, V ) is:

J(U, V ) =
k∑
j=1

n∑
j=1

‖xj − vi‖2
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Where ‖xj − vi‖ is a chosen distance measure between a xj data point and

the cluster center, vi , is an indicator of the distance of the n data points from

their respective cluster centers. Here it shows sample Lena image segmented by

K-Means is shown as follows:

Figure 5.2: a) Lena image, b) Segmented image using K-Means [75].

To understand better there is a block diagram below, which indicates the

K-Means clustering process as well.

Briefly we can said K-Means Clustering follow these step:

1. Place K points into the space represented by the objects that are being

clustered. These points represent initial group centroids.

2. Allocate each object to the group that has the closest centroid.

3. When all objects have been allocate, recalculate the positions of the K

centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized

can be calculated.
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Figure 5.3: Block Diagram of K-Means Process.

The last figure in this part is an illustration of K-Means algorithm. First we

choose two cluster centers shown in red color, then the algorithm allocate each

objects to centers which is most similarity of them. In next step K-Means updates

the cluster means then allocate objects to most similar centers again and this step

is repeated until the centroids do not move anymore.
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Figure 5.4: Typical K-Means algorithm [76]
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Chapter 6

Method

Since this is an Method chapter, the main method of the project explained com-

pletely. Moreover, all steps that checked during the project mention by results to

show all what has been done and check during this project.

Our method consists of Three major parts:

• Construction of the pattern block and Classified energy(data base)

• Encoding Process ,

• Decoding Process, This part has been done by 2 different step.

6.1 Construction of the Classified Pattern and Energy Blocks

Here we choose our data set which include 5 images. In order to find database.

We obtain energy and pattern blocks of each image, collect all results in one

matrix, then by using K-means, clustered our results and eliminate similar ones.

By this way, we made our data base as 2 matrix:

• pattern block,

• Classified energy.
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Let Image data Im(m,n) which m,n that in our case m = n = 256 and the

range of entries are between 0 to 255 that changes to the real values by 0 to 1

where m and n are row and column pixel indices of the whole image[77].

we divided Training images to image blocks by size of i = j = 16, 8, 4, 2. The

pixel location of the kth row and lth column of the block, Br,c is represented by

PBr,c ,kl , where the pixel indices are k = 1 to i and l = 1 to j. The total number

for all images will be NB = (M ×N)/(I × J). Moreover, in Br,c, r, c represented

in the range of M/i and N/j.

All image blocks Br,c from left to the right direction are reshaped as column

vectors and constructed The BIM matrix. After the blocking process the image

matrix can be written as follows:

Im =



B1,1 B1,2 ... B1,(N/j)−1 B1,(N/j)

B2,1 B2,2 ... B2,(N/j)−1 B2,(N/j)

... ... ... ... ...

B(M/i)−1,1 B(M/i)−1,2 ... B(M/i)−1,(N/j)−1 B(M/i)−1,(N/j)

B(M/i),1 B(M/i),2 ... B(M/i),(N/j)−1 B(M/i),(N/j)


(6.1)

BIm is the transformed type of IM which column vectors are the block of the

matrix.

BIm =
[
B1,1 ... B1,(N/j) B2,1 ... ... B(M/i),(N/j)

]
(6.2)

The columns of the matrix BIm are called image block vector (IBV) and the

length of the IBV is represented by LIBV = i× j(8× 8 = 64or16× 16 = 256, etc.)

Here we proposed that any ith IBV of lenght LIBV
approximated by:

IBVi =SiPIPEIE, (i = 1, ..., NB) where Si is a real constant. IP ∈ {1, 2, ..., NIP}
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and IE ∈ {1, 2, ..., NIE} are the index number of CPB and CEB and NIP and

NIE are the total number of CPB and CEB indices. IP, IE,NIP , NIE are intigers.

ET
IE =

[
eIE1 eIE2 ... eIELIBV

]
is the vector form of CEB that generated

utilizing the luminance information of the images and it contains basically the

energy characteristics of IBVi.

Moreover, SiEIE carries almost maximum energy of IBVi in the Least Mean

Square (LMS). Si is to scale the luminance level of the IBVi. PIP is (LIBV×LIBV )

diagonal matrix such that

PIP = diag
[
PIP 1 PIP 2 ... PIP LIBV

]
. (6.3)

PIP is likes a pattern term on the quantity SiEIE that reflect the distinctive

properties of the image block data. It is well known that each IBV can be

spanned in a vector space formed by the orthonormal vectors ψik. Let the real

orthonormal vectors be the columns of a transposed transformation matrix (ψTi )

ψTi =
[
ψi1 ψi2 ... ψiLIBV

]
. (6.4)

It is evident that:

IBVi = ψTi Gi (6.5)

where

STi =
[
s1 s2 ... sLIBV

]
. (6.6)

from the property of ψTi = ψ−i
1, the equations ψiIBVi = ψiψ

−
i

1Si and Si =

psiiIBVi can be obtained respectively. So, IBVi can be written as a weighted

sum of these orthonormal vectors
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IBVi =

LIBV∑
k=1

skψik, k = 1, 2, 3, ..., LIBV . (6.7)

From the above equation, the coefficients of the IBV s can be obtained as

sk = ψi
T
k IBVi, k = 1, 2, 3, ..., LIBV . (6.8)

let

IBVit =
t∑

k=1

skψik,

be the truncated version of IBVi such that 1 ≤ t ≤ LIBV . it’s noted that if

t = LIBV , then IBVi will be equal to IBVit. By this way, the approximation

error (εt) is given by:

εt = IBVi − IBVit =

LIBV∑
k=t+1

skψik, (6.9)

ψik are determined by minimizing the expected value of the error vector with

respect to ψik in the LMS sense. The above-mentioned LMS process results in

the following eigenvalue problem [78]. ψik computed as the eigenvectors of the

correlation matrix (Ri) of the IBVi. By using orthonormality condition, the LMS

error is given by

εtε
T
t =

LIBV∑
k=t+1

s2
k. (6.10)

Let γt designate the expected value of the total squared error εtε
T
t . Then,

γt = E[εtε
T
t ] =

LIBV∑
k=t+1

E[s2
k], (6.11)
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E[s2
k] = E[ψi

T
k (IBV T

i IBVi)ψik] = ψi
T
kRiψik, (6.12)

where, Ri = E[IBV T
i IBVi] is defined as the correlation matrix of IBVi. In

order to obtain the optimum transform, it is desired to find ψik that minimizes γt

for given t, subject to the orthonormality constraint. Using Lagrange multipliers

λk, we minimize γt by taking the gradient of the equation obtained above with

respect to ψik:

γt =

LIBV∑
k=t+1

[ψi
T
kRiψik − λk(ψiTkRiψik − 1)],

δγt
δψik

=
δ

δψik
(6.13)

E[s2
k] = E[ψi

T
k (IBV T

i IBVi)ψik] = ψi
T
kRiψik[

LIBV∑
k=t+1

[ψi
T
kRiψik−λk(ψiTkRiψik−1)]] = 0,

(6.14)

2Riψik − 2λkψik = 0, Riψik = λkψik, (6.15)

Ri is the correlation matrix. It is real, symmetric with respect to its diagonal

elements, positive semidefinite, and Toeplitz matrix [79]

Ri =



ri(1) ri(2) ri(3) . . . ri(LIBV )

ri(2) ri(1) ri(2) . . . ri(LIBV − 1)

ri(3) ri(2) ri(1) . . . ri(LIBV − 2)
...

...
...

. . .
...

ri(LIBV ) ri(LIBV − 1) ri(LIBV − 2) . . . ri(1)


(6.16)

Obviously, λik and ψik are the eigenvalues and eigenvectors of the eigenvalue

problem under consideration. It is well known that the eigenvalues of Ri are

also real, distinct, and non-negative. Moreover, the eigenvectors ψik of the Ri
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are all orthonormal. Let eigenvalues be sorted in descending order such that

(λ1i ≥ λ2i ≥ λ3i ≥ ....LIBV i) with corresponding eigenvectors. The total energy

of the IBVi is the given by IBViT IBVi:

IBViT IBVi =

LIBV∑
k=1

si
2
k =

LIBV∑
k=1

λik. (6.17)

Equation (15) may be truncated by taking the first P = 1 principal compo-

nents, which have the highest energy of the IBVi such that:

IBVi ∼=
ρ∑

k=1

skψik. (6.18)

The simplest form of (16) can be obtained by setting ρ = 1. The eigenvector

ψik is called energy vector, which has the highest energy in LMS sense, may

approximate each image block belonging to the IBVi. Thus,

IBVi
∼= s1ψi1. (6.19)

In this case, one can vary the LIBV LIBV as a parameter in such way that

almost all the energy is captured within the first term of (16) and the rest becomes

negligible. That is why ψi1 is called the energy vector since it contains most of

the useful information of the original IBV under consideration. Once (17) is

obtained, it can be converted to an equality by means of a pattern term Pi which

is a diagonal matrix for each IBV . Thus IBVi is computed as:

IBVi = SiPiψi1.(6.20)
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In (18), diagonal entries pir of the matrix Pi are determined in terms of the

entries of ψi1r of the energy vector ψi1 and the entries (pixels) IBVir of the IBVi

by simple devision. Hence,

Pir =
IBVir
Siψi1r

, (r = 1, 2, ..., LIBV ). (6.21)

In essence, the quantities pir of (19) somewhat absorb the energy of the

terms eliminated by truncation of (16). In this paper, several tens of thousands

of IBV s were investigated and several thousands of energy and pattern blocks

were generated. It was observed that the energy and the pattern blocks exhibit

repetitive similarities. In this case, one can eliminate the similar energy and

pattern blocks and thus, constitute the so-called classified energy and classified

pattern block sets with one of a kind or unique blocks. For the elimination process

Pearson’s correlation coefficient (PCC) [?] is utilized. PCC is designated by ρXY

and given as

ρXY =

∑L
i=1(xiyi)− [

∑L
i=1 xi

∑L
i=1 yi]/L√

[
∑L

i=1 x
2
i − (

∑L
i=1 xi)

2/L].[
∑L

i=1 y
2
i − (

∑L
i=1 yi)

2/L]
. (6.22)

In (20)

X =
[
x1 x2 ... xL

]
.

and

Y =
[
y1 y2 ... yL

]
.

are two sequences subject to comparison, where L is the length of the sequences.

It is assumed that the two sequences 0.9 ≤ ρxy ≤ 1. Hence, similar energy and

pattern blocks are eliminated accordingly. During the execution of the elimination

stage, it is observed that similarity rate of the energy blocks are much higher

than the pattern blocks. Because of huge differences in the similarity rate or

in other words elimination rate, the numbers of classified energy blocks in the
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are almost identical if Classified Energy Pattern Block are very limited. This

is natural because energy blocks reflect the luminance information of the image

blocks, while pattern blocks carry the pattern or variable information in the

image blocks. This is in reality related to tasks of these blocks in the method

as explained in the beginning of this section. In order to Elimination we use K-

Means that we spoke about the procedure in chapter five. In order to clustering,

for CEB and CPB we choose 8 Cluster for CPB and 512 Cluster for CEB. These

quantity Has been chosen based on last step we have been done in 6.22. We put

all Signature values of all Images beside and made main Signature value matrix.

The same procedure has been done for Energy blocks too. By this way we have

2 big matrix by sizes that you see in table blow. then we use K-Means and we

made our Database CEB and CPB.

These representative energy and pattern blocks are renamed as classified

energy and pattern blocks and constitute the CEPB. Thus, the energy blocks

which have unique shapes are combined under the set called classified energy

block CEB = Enie;nie = 1, 2, 3, ..., NIE set.The integer Nie designates the total

number of elements in this set. Similarly, reduced pattern blocks are combined

under the set called classified pattern block CPB = Enip;nip = 1, 2, 3, ..., NIP

set. The Nip designates the total number of unique pattern sequences in CPB set.

Some similar energy and pattern blocks are depicted in Figures5and6,respectively.

Computational steps and the details of the encoding and decoding algorithms are

given in next sections respectively.

Table 6.1: Energy and signature values metrics size
Block sizes 2 ×2 4 ×4 8 ×8

EIE 4 ×1638 16 ×4096 64 ×1024
Si 4 ×16384 16 ×4096 64 ×1024
PIP 4 ×16384 16 ×4096 64 ×1024

As table shows by increasing the block size the number of samples decrease

for both EIE and PIP .
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Figure 6.1: CEPB construction

Table 6.2: CPB and CEB matrices sizes for different frame lenght
Block Sizes 2 ×2 4 ×4 8 ×8

CPB 30 ×4 30 ×16 30 ×64
CEB 256 ×4 256 ×16 256 ×64

6.2 Encoding Based on Fixed Block Sizes Method

First of all we defined input images’ Energy and Pattern blocks. All these pro-

cedure are same as the procedure that we did in Construction of the Classified

Pattern and Energy Blocks section to find training Images signature and energy

blocks. Then, by using the minimum distance or the total error δIẼ = ‖IBVi −

GIẼEIẼ‖2 for all IẼ = 1, 2, 3, ..., IE, ..., NIE the appropriate EIE founded from

CEB which yeilds the index IE of the EIE. So, δIẼ = min‖IBVi − SIẼEIẼ‖2 =

‖IBVi−SIEEIE‖2. By storing the index number of IE that refers to EIE,IBVi ≈

SIEEIE. All steps that done to find the appropriate EIE founded from CEB

should be done to find appropriate PIP founded from CPB. So, by minimizing

the error I − P̃ = 1, 2, 3, ..., Ip, ..., NIP that yields the index IP of PIP ,

δIP̃ = min‖IBVi − SIEPIP̃EIE‖
2 = ‖IBVi − SIEPIPEIE‖2. (6.23)

Then, storing the index number IP that refers to PIP . At the end of this

part, the best EIE and PIP founded by appropriate selection. So, IBVi is best
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described in terms of the patterns of EIE and PIP as IBVi ∼= SIEPIEEIE. In order

to compute new block scaling coefficient SIE, what done before for training test

by repeated as Si = (PIPEIE)T IBVi/(PIPEIE)T (PIPEIE) using fixed EIE and

PIP , to further minimize the distance between the vectors IBVi and SIEPIPEIE

in the LMS sense. In this case, the global minimum of the error is obtained and

it is given by δGlobal = ‖IBVi − SiPIPEIE‖2. At this step IBVAi = SiPIPEIE.

At this step we have data base that conclude all images 2× 2, 4× 4, 8× 8 blocks

Energy and pattern blocks. and the classification result based on all these images

for both Energy and pattern blocks.

Figure 6.2: Partitioning of an image into the image blocks and reshaping as vector
form,( Image block size:(i × j), Image block pixel:PBr,c,k,l , Image block vector:
IBVi by size: (i× j)×NB)
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6.3 Encoding Based on Quadtree Method

In this part encoding has been done based on Quadtree.At first part images

blocks have been found. In this regard we choose different thresholds by quantity

of2,5,10,15,20,30. Moreover, we made blocking by different size of block [80]:

• min block size=2, max block size=16

• min block size=4, max block size=8

• min block size=2, max block size=8

All other step step is same as Encoding section. the only difference is to do

it by different block size.

Figure 6.3: Blocked Image by Quadtree method, max block size=16, min block
size=2
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Figure 6.4: Encoding

6.4 Decoding Based on Fixed Block Sizes Method

As we mentioned in beginning of chapter, we have 2 parts in this step.

• Decoding Based on fixed block sizes Method,

• Decoding based on Quadtree Method.

There are three types of inputs for decoding:
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• encoding parameters Si, IP and IE which best represent the corresponding

image block vector IBVi of the input image received from transmitter part

for each image block vector of input images.

• Size of IBVi of the Im(m,n)(LIBV = i× jfori = j = [2, 4, 8, 16];

• The CEPB(CEB = EIE = 1, 2, ...NIEandCPBPIP ; IP = 1, 2, ..., NIP ) that

located in receiver part.

In order to decoding computational steps, after receiving encoding parame-

ters Si, IP and IE of IBVi from the transmitter, the corresponding IEth and

IPth classified Energy and pattern blocks are pulled from the CEPB. In the

next step, using the mathematical model IBVAi = SiPIPEIE approximated

image block vector IBVi is constructed. By repeating this step for each

IBV approximated version of ( ˆBIM) of the BIM is generated:

ˆBIm =
[
B̂1,1 . . . B̂1,(N/j) B̂2,1 . . . . . . B̂(M/j),(N/j)

]
(6.24)

• Decoded version of original image made by reshaping ( ˆBIM) as :

ˆIm =



B̂1,1 B̂1,2 . . . B̂1,(N/j)−1 B̂1,(N/j)

B̂2,1 B̂2,2 . . . B̂2,(N/j)−1 B̂2,(N/j)

. . . . . . . . . . . . . . .

B̂(M/j)−1,1 B̂(M/j)−1,2 . . . B̂(M/j)−1,(N/j)−1 B̂(M/j)−1,(N/j)

B̂(M/j),1 B̂(M/j),2 . . . B̂(M/j),(N/j)−1 B̂(M/j),(N/j)


(6.25)

At low bit rates blocking effect has been shown itself. Especially, when the

size of the CEPB is highly reduced or the size of the image blocks are increased

from 8× 8 to 16× 16.
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Figure 6.5: Decoding

6.5 Decoding based on Quadtree Method

In this part we used Quadtree method based on different block size from 2 × 2

to 16 × 16 block sizes. First of all, after pass image from Quadtree and make
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blocking, as what we do in Decoding Based on one size block part, replace each

block by the most similar blocks in our database. In fact, all parts have been

done done here is same as first method, but not only for one size, but also for

different sizes from 2× 2 to 16× 16. blow results for different Quadtree method

are shown.
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Chapter 7

Experimental Results and Discussion

7.1 Data Sets

5 gray-scale, 8bits/pixel, 256× 256 images has been used as data sets.

Figure 7.1: Data set images,8bits/pixel, Size: 256× 256
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7.2 Evaluation Metrics

Objective image and video quality metrics such as peak signal-to-noise ratio

(PSNR) and mean squared error (MSE) are the most widely used objective image

quality/distortion metrics and they can predict perceived image and video qual-

ity automatically. It should be also noted that these metrics are also criticized

because they are not correlating well with the perceived quality measurement.

Recently, image and video quality assessment research is trying to develop new

objective image and video quality measures such as structural-similarity-based

image quality assessment (SSIM) by considering HVS characteristics. Almost all

the works in the literature consider the PSNR and MSE as an evaluation metrics

to measure the quality of the image. Therefore, as a starting point at least for the

comparisons, the performance of the newly proposed method is measured using

PSNR and MSE metrics.

7.2.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is the ratio between the signals maximum power and the power of the

signals noise. The higher PSNR means better quality of the reconstructed image.

The PSNR can be computed as

PSNR = 20log10
b√
MSE

(7.1)

where is the largest possible value of the image signal (typically 255 or 1). The

PSNR is given in decibel units (dB) [81].

7.2.2 Mean Squared Error (MSE)

MSE represents the cumulative squared error between the original and the recon-

structed image [82], whereas PSNR represents a measure of the peak error. The

MSE can be described as the mean of the square of the differences in the pixel

92



values between the corresponding pixels of the two images. MSE can be written

as

MSE =
1

MN

i=1∑
M

j=1∑
N

[Im(m,n)− Îm(m,n)]2 (7.2)

where Im(m,n) and Îm(m,n) are the original and the reconstructed images,

respectively.M × N is the dimension of the images [83]. In our experiments the

dimension of the images is M = N = 256.

7.2.3 Compression Ratio (CR)

CR is defined as the ratio of the total number of bits required to represent the

original and reconstructed image blocks[84]. Other representation of the CR is

the bpp:

CR =
bitoriginal

bitreconstructed
, (7.3)

bpp(bitperpixel) =

√
LIBV
CR

. (7.4)

7.2.4 Structural Similarity (SSIM)

The structural similarity (SSIM) index is a method for predicting the perceived

quality of digital television and cinematic pictures, as well as other kinds of digital

images and videos [85].

SSIM is used for measuring the similarity between two images. The SSIM

index is a full reference metric; in other words, the measurement or prediction

of image quality is based on an initial uncompressed or distortion-free image as

reference. SSIM is designed to improve on traditional methods such as peak

signal-to-noise ratio (PSNR) and mean squared error (MSE), which have proven

to be inconsistent with human visual perception.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(7.5)
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In which:

µx equal to average of x,

µy equal to average of y,

σ2
x equal to variance of x,

σ−2
x equal to variance of y,

σxy equals to covariance of x, y,

c1 = (k1L)2 and c2 = (k2L)2 two variables to stabilize the division with

weak denominator,

L the dynamic range of the pixel-values (typically this is 2bitsperpixel − 1 ),

k1 = 0.01 and k2 = 0.03 by default.

The SSIM index satisfies the condition of symmetry:

SSIM(x, y) = SSIM(y, x) (7.6)

7.2.5 Arithmetic Compression Rate

Arithmetic coding is a common algorithm used in both lossless and lossy data

compression algorithms. It is an entropy encoding technique, in which the fre-

quently seen symbols are encoded with fewer bits than lesser seen symbols. It has

some advantages over well-known techniques such as Huffman coding. Arithmetic

compression rate has been found in this experiment too [86].

7.3 Experimental Results based on Fixed Block size method

The total number needed to represent n × n block size for each original image

is (n × n) × 8bits.The total number of classified Energy and pattern blocks are

determined as CPB and CEB sets like table blow:

It is also concluded that NIE and NIP are represented by 5 bits and 7 bits,

respectively. For representation of the block scaling coefficient (BSC) 5 bits are
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Table 7.1: Bit allocation table for the experiments

LIBV
Numberofbits
(withoutclustering)

CEPBsize
(withclustering)

Numberofbitsrequired
(withclustering)

2× 2 (2× 2)× 8
CEB = 30 < 25

CPB = 256 = 28

BSC = 5

CEB = 5
CPB = 7
BSC = 5

4× 4 (4× 4)× 8
CEB = 30 < 25

CPB = 256 = 28

BSC = 5

CEB = 5
CPB = 7
BSC = 5

8× 8 (8× 8)× 8
CEB = 30 < 25

CPB = 256 = 28

BSC = 5

CEB = 5
CPB = 7
BSC = 5

16× 16 (16× 16)× 8
CEB = 30 < 25

CPB = 256 = 28

BSC = 5

CEB = 5
CPB = 7
BSC = 5

good enough. As a result, 17 bits are required in total in order to represent the

n× n blocks of the images. In this case, the compression ratio will be computed

as follows:

CR =
bitoriginal
bitreconstruct

=
(n× n)× 8

(5 + 7 + 5)
(7.7)

or

bpp =

√
LIBV
CR

=

√
n× n
CR

(7.8)

Result for CR values are shown below:

Table 7.2: CR values for different block size
Block size

(i× j) Compression Rate

2× 2 CR = (2×2)×8
(5+7+5)

= 1, 8823

4× 4 CR = (4×4)×8
(5+7+5)

= 7, 5294

8× 8 CR = (8×8)×8
(5+7+5)

= 30, 1176

16× 16 CR = (16×16)×8
(5+7+5)

= 120, 4705
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It is clearly understood from the evaluation results given in the tables that,

the performance of the proposed method depends on the size of the LIBV . If the

size of the LIBV is increased in order to achieve higher compression ratios or lower

bit rates, the performance of the method is getting worse and the blocking effect

is also getting visible. Even in this case, it is remarkable that the PSNR levels

are not affected dramatically.

Table 7.3: Fixed block size method average results

Block size
(i× j)

Compression
Rate

Arithmetic
Compression

Rate
psnr mse ssim

2× 2 1,8824 4,8783 47,9622 1,64E-05 0,9925
4× 4 7,5294 22,2425 36,4762 2,60E-04 0,9543
8× 8 30,1176 61,7489 34,3565 4,59E-04 0,9504

16× 16 120,4706 307,3202 30,8865 9,52E-04 0,9019

The same results has been seen in Time results too. By Increasing LIBV time

results decrease too.

Table 7.4: Fixed block size method average time results

Block size
(i× j)

Compression
Rate

encoding
time

decoding
time

arithmetic
encoding

time

arithmetic
decoding

time
2× 2 1,8824 117,6781 27,5033 1,6184 1,7993
4× 4 7,5294 31,1423 6,9217 0.27959685 0,3100
8× 8 30,1176 12,9799 1,7772 0,2008 0,2196

16× 16 120,4706 27,2473 0,4337 0,0401 0,0500
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Table 7.5: Results for fix block size method, i=j=2

name
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

mdb011 1,8824 4,4498 46,9407 2,00E-05 0,9932
mdb012 1,8824 4,9086 46,6928 2,10E-05 0,9931
mdb013 1,8824 4,6671 48,2657 1,50E-05 0,9930
mdb014 1,8824 4,8368 48,1203 1,50E-05 0,9925
mdb015 1,8824 4,4841 48,8046 1,30E-05 0,9938
mdb016 1,8824 4,8916 47,7139 1,70E-05 0,9936
mdb017 1,8824 4,5938 50,6293 9,00E-06 0,9959
mdb018 1,8824 5,0938 49,6178 1,10E-05 0,9952
mdb019 1,8824 5,0101 46,3925 2,30E-05 0,9891
mdb020 1,8824 4,8723 46,5016 2,20E-05 0,9905
mdb021 1,8824 4,8029 46,8190 2,10E-05 0,9916
mdb022 1,8824 4,9905 48,2186 1,50E-05 0,9924
mdb023 1,8824 4,9360 47,8055 1,70E-05 0,9911
mdb024 1,8824 4,9976 48,8608 1,30E-05 0,9927
mdb025 1,8824 4,8547 47,6037 1,70E-05 0,9910
mdb026 1,8824 4,9190 48,3745 1,50E-05 0,9915
mdb027 1,8824 4,9732 48,5859 1,40E-05 0,9924
mdb028 1,8824 5,1108 49,0185 1,30E-05 0,9924
mdb029 1,8824 4,8893 46,0490 2,50E-05 0,9926
mdb030 1,8824 5,2849 48,2289 1,50E-05 0,9924
Average 1,8824 4,8783 47,9622 1,66E-05 0,9925

7.4 Experimental Results Based on Quadtree Method

About Quadtree method for all block sizes all results shown that by increasing

Threshold Compression Rates and MSE have increases and SSIM, PSNR and all

time results has decreases. the best resolution achieve in lower threshold. How-

ever,by decreasing block sizes these changes shown themselves by lower changes.

in the 4,8 block size we cannot see these changes in SSIM, PSNR and MSE so

visible. but time results affected directly.

As it has been seen in Quadtree results table in this method threshold and

block size affect compression rate, PSNR and other parametes.

By increasing the threshold, compression rate,mse increase and other pa-

rameters all have decrease. But by increasing the threshold and compression rate
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Table 7.6: Results for fixed block size method, i=j=4

name
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

mdb011 7,5294 21,0947 33,7373 4,23E-04 0,9574
mdb012 7,5294 22,7043 33,4445 4,52E-04 0,9530
mdb013 7,5294 20,3433 35,4842 2,83E-04 0,9593
mdb014 7,5294 20,6722 36,3591 2,31E-04 0,9600
mdb015 7,5294 20,4114 37,3939 1,82E-04 0,9615
mdb016 7,5294 21,1475 37,1076 1,95E-04 0,9577
mdb017 7,5294 21,4363 40,2669 9,40E-05 0,9748
mdb018 7,5294 22,7733 40,5861 8,70E-05 0,9745
mdb019 7,5294 22,5248 33,6278 4,34E-04 0,9331
mdb020 7,5294 21,5420 35,4231 2,87E-04 0,9453
mdb021 7,5294 22,5772 33,6582 4,31E-04 0,9443
mdb022 7,5294 22,5210 39,5741 1,10E-04 0,9573
mdb023 7,5294 23,0659 34,7530 3,35E-04 0,9494
mdb024 7,5294 23,6699 38,2689 1,49E-04 0,9584
mdb025 7,5294 22,4881 34,7654 3,34E-04 0,9338
mdb026 7,5294 22,3063 37,8655 1,63E-04 0,9431
mdb027 7,5294 23,3536 35,5588 2,78E-04 0,9483
mdb028 7,5294 24,0477 38,5869 1,38E-04 0,9506
mdb029 7,5294 22,7912 33,1074 4,89E-04 0,9595
mdb030 7,5294 23,3786 39,9550 1,01E-04 0,9654
average 7,5294 22,2425 36,4762 2,60E-04 0,9543

blocking effect shown itself more. But by increasing the threshold and compres-

sion rate blocking effect shown itself more.

In the comparison compression with out quadtree and with quadtree we can

see the average CR for all quadtree results in three group are in the better and

higher values and as we check the image we can see differences too.
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Table 7.7: Results for fixed block size method, i=j=8

name
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

mdb011 30,1176 59,7411 32,2547 5,95E-04 0,9505
mdb012 30,1176 60,1800 28,8975 1,29E-03 0,9389
mdb013 30,1176 60,3601 35,0293 3,14E-04 0,9589
mdb014 30,1176 58,8823 31,3114 7,39E-04 0,9532
mdb015 30,1176 60,1800 37,9976 1,59E-04 0,9612
mdb016 30,1176 62,0019 35,3103 2,94E-04 0,9559
mdb017 30,1176 66,3992 34,6605 3,42E-04 0,9658
mdb018 30,1176 66,7203 33,1749 4,81E-04 0,9660
mdb019 30,1176 63,0760 34,1677 3,83E-04 0,9336
mdb020 30,1176 59,1747 30,7799 8,36E-04 0,9353
mdb021 30,1176 61,8994 33,6220 4,34E-04 0,9431
mdb022 30,1176 62,1194 40,4755 9,00E-05 0,9597
mdb023 30,1176 62,5194 36,0530 2,48E-04 0,9480
mdb024 30,1176 60,5693 32,4528 5,68E-04 0,9504
mdb025 30,1176 61,7827 36,4375 2,27E-04 0,9363
mdb026 30,1176 60,8364 32,1229 6,13E-04 0,9371
mdb027 30,1176 61,8994 37,3328 1,85E-04 0,9507
mdb028 30,1176 60,6955 33,0948 4,90E-04 0,9454
mdb029 30,1176 61,7536 30,8579 8,21E-04 0,9522
mdb030 30,1176 64,1881 41,0961 7,80E-05 0,9658
average 30,1176 61,7489 34,3565 4,59E-04 0,9504
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Figure 7.2: Main mdb014
Image, size 256× 256

Figure 7.3: mdb014 Re-
construct image by 2 × 2
Block size, CR=1,882353,
PSNR=48,12,
MSE=0,000015,
ssim=0,992611

Figure 7.4: mdb014 Re-
construct image by 4 × 4
Block size, CR=7,529412,
PSNR=36,3591,
MSE=0,000231,
ssim=0,960011

Figure 7.5: mdb014
reconstructed im-
age by 8 × 8 block
size, CR=30,117647,
PSNR=31,31141,
MSE=0,0007395,
ssim=0,953234

Figure 7.6: mdb014
reconstructed image
by 16 × 16 block
size, CR=120,470688,
PSNR=30,652391,
MSE=0,000861,
ssim=0,903742

Figure 7.7: Effect of increasing block size
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Table 7.8: Results for fixed block size method, i=j=16

name
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

mdb011 120,4706 304,1114 27,8752 1,63E-03 0,9073
mdb012 120,4706 310,2296 25,2334 3,00E-03 0,8712
mdb013 120,4706 284,6298 31,0023 7,94E-04 0,9178
mdb014 120,4706 278,2845 30,6524 8,61E-04 0,9037
mdb015 120,4706 295,8736 33,2241 4,76E-04 0,9219
mdb016 120,4706 274,4963 30,7975 8,32E-04 0,9100
mdb017 120,4706 313,1947 31,2327 7,53E-04 0,9284
mdb018 120,4706 328,9134 29,4916 1,12E-03 0,9371
mdb019 120,4706 308,0423 29,2527 1,19E-03 0,8678
mdb020 120,4706 304,8186 29,0864 1,23E-03 0,8754
mdb021 120,4706 313,1947 29,9486 1,01E-03 0,8877
mdb022 120,4706 305,5291 34,1809 3,82E-04 0,9172
mdb023 120,4706 320,0781 31,5340 7,02E-04 0,9020
mdb024 120,4706 317,3656 32,5630 5,54E-04 0,9035
mdb025 120,4706 308,4047 31,4839 7,11E-04 0,8756
mdb026 120,4706 313,1947 32,8330 5,21E-04 0,8816
mdb027 120,4706 314,6987 32,2280 5,99E-04 0,8991
mdb028 120,4706 318,5225 33,2283 4,76E-04 0,8930
mdb029 120,4706 315,4561 27,3541 1,84E-03 0,9074
mdb030 120,4706 317,3656 34,5276 3,53E-04 0,9308
average 120,4706 307,3202 30,8865 9,52E-04 0,9019
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Table 7.9: Time results for fixed block size method, i=j=2

name
Compression

Rate
encoding

time
decoding

time

arithmetic
encoding

time

arithmetic
decoding

time
mdb011 1,8824 83,8576 24,3184 1,5618 1,6168
mdb012 1,8824 78,6266 23,5174 1,0275 1,1649
mdb013 1,8824 76,6076 24,5558 1,4707 1,5894
mdb014 1,8824 84,1880 22,8023 1,2623 1,3624
mdb015 1,8824 81,2746 23,8571 1,4472 1,5369
mdb016 1,8824 73,2993 22,1082 1,1949 1,2946
mdb017 1,8824 136,5233 29,0306 2,1171 2,3221
mdb018 1,8824 135,4280 29,3489 1,5134 1,7255
mdb019 1,8824 136,4756 28,9085 1,7252 1,9012
mdb020 1,8824 133,0402 29,0540 1,8456 2,0724
mdb021 1,8824 135,3536 32,5237 1,9096 2,1171
mdb022 1,8824 132,3471 29,2352 1,7095 1,8877
mdb023 1,8824 136,7210 31,8326 1,9523 2,2457
mdb024 1,8824 134,9423 28,6632 1,6309 1,8441
mdb025 1,8824 134,3141 28,0721 1,8909 2,0764
mdb026 1,8824 133,2489 27,9078 1,7673 1,9975
mdb027 1,8824 129,9531 27,6964 1,7019 1,9062
mdb028 1,8824 130,4838 29,0794 1,5249 1,7016
mdb029 1,8824 130,6529 27,6636 1,7579 1,9749
mdb030 1,8824 136,2244 29,8897 1,3578 1,6491
average 1,8824 117,6781 27,5033 1,6184 1,7993
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Table 7.10: Time results for fixed block size method, i=j=4

name
Compression

Rate
encoding

time
decoding

time

arithmetic
encoding

time

arithmetic
decoding

time
mdb011 7,5294 21,6013 6,0131 0,2253 0,2485
mdb012 7,5294 20,0153 5,8585 0,1969 0,2130
mdb013 7,5294 22,4019 6,2543 0,2545 0,2845
mdb014 7,5294 20,9434 6,2082 0,2276 0,2577
mdb015 7,5294 23,1296 6,4475 0,3306 0,3921
mdb016 7,5294 20,9744 6,7492 0,3866 0,4261
mdb017 7,5294 34,6815 8,7043 0,4450 0,3982
mdb018 7,5294 35,0179 7,2491 0,2746 0,3122
mdb019 7,5294 36,9732 7,2798 0,3486 0,3534
mdb020 7,5294 36,8239 7,2281 0,3403 0,3845
mdb021 7,5294 35,7339 7,2254 0,2748 0,3195
mdb022 7,5294 35,7426 6,9433 0,2763 0,3183
mdb023 7,5294 36,5211 7,3479 0,2544 0,2877
mdb024 7,5294 34,3090 6,7337 0,2325 0,2777
mdb025 7,5294 35,4288 6,9408 0,2897 0,3165
mdb026 7,5294 34,5417 6,8924 0,2838 0,3277
mdb027 7,5294 34,9815 6,8414 0,2230 0,2561
mdb028 7,5294 33,5504 6,9443 0,2146 0,2401
mdb029 7,5294 33,9532 7,0073 0,2704 0,3056
mdb030 7,5294 35,5209 7,5657 0,2424 0,2813
average 7,5294 31,1423 6,9217 0,2796 0,3100
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Table 7.11: Time results for fixed block size method, i=j=8

name
Compression

Rate
encoding

time
decoding

time

arithmetic
encoding

time

arithmetic
decoding

time
mdb011 30,1176 8,6243 1,5220 0,1512 0,1536
mdb012 30,1176 8,6616 1,5184 0,1551 0,1352
mdb013 30,1176 9,1110 1,5794 0,1449 0,1468
mdb014 30,1176 9,5278 1,4623 0,1770 0,1772
mdb015 30,1176 19,8836 1,4851 0,1329 0,1321
mdb016 30,1176 13,3756 1,9323 0,2266 0,2457
mdb017 30,1176 13,7331 1,8772 0,1880 0,2120
mdb018 30,1176 13,7748 1,8579 0,1832 0,2072
mdb019 30,1176 13,6800 2,2159 0,2213 0,2783
mdb020 30,1176 13,4222 1,7976 0,2292 0,2571
mdb021 30,1176 13,4803 1,8300 0,2205 0,2399
mdb022 30,1176 13,4524 1,7379 0,2097 0,2343
mdb023 30,1176 13,6269 1,8078 0,2094 0,2350
mdb024 30,1176 14,4380 1,7400 0,2265 0,2546
mdb025 30,1176 12,9640 1,7484 0,2121 0,2342
mdb026 30,1176 13,5919 1,7184 0,2170 0,2409
mdb027 30,1176 13,2581 1,9861 0,2427 0,2738
mdb028 30,1176 13,2634 1,7688 0,2220 0,2439
mdb029 30,1176 13,4043 2,0322 0,2198 0,2518
mdb030 30,1176 14,3238 1,9256 0,2269 0,2382
average 30,1176 12,9799 1,7772 0,2008 0,2196
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Table 7.12: Time results for fixed block size method, i=j=16

name
Compression

Rate
encoding

time
decoding

time

arithmetic
encoding

time

arithmetic
decoding

time
mdb011 120,4706 10,6693 0,3784 0,0251 0,0283
mdb012 120,4706 10,3077 0,3676 0,0206 0,0229
mdb013 120,4706 11,1375 0,3715 0,0434 0,0275
mdb014 120,4706 11,6281 0,3758 0,0320 0,0289
mdb015 120,4706 12,7660 0,3336 0,0322 0,0355
mdb016 120,4706 35,6555 0,4726 0,0612 0,0715
mdb017 120,4706 32,6552 0,4635 0,0361 0,0561
mdb018 120,4706 32,3935 0,4624 0,0369 0,0506
mdb019 120,4706 33,3807 0,4676 0,0529 0,0604
mdb020 120,4706 32,6370 0,4524 0,0389 0,0600
mdb021 120,4706 31,8754 0,4549 0,0390 0,0577
mdb022 120,4706 32,5779 0,4449 0,0374 0,0568
mdb023 120,4706 31,7509 0,4599 0,0441 0,0524
mdb024 120,4706 31,3332 0,4455 0,0341 0,0521
mdb025 120,4706 31,8167 0,4557 0,0464 0,0558
mdb026 120,4706 32,0834 0,4403 0,0389 0,0553
mdb027 120,4706 31,5661 0,4246 0,0566 0,0658
mdb028 120,4706 31,9790 0,4369 0,0447 0,0523
mdb029 120,4706 32,4399 0,4495 0,0460 0,0534
mdb030 120,4706 34,2932 0,5168 0,0344 0,0578
average 120,4706 27,2473 0,4337 0,0401 0,0500

Table 7.13: Quadtree method average results,max block size=8,min block size=2

Threshold
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

th=2 4,6464 11,4130 47,5067 1,85E-05 0,9915
th=5 8,4638 19,5581 44,4661 3,69E-05 0,9784
th=10 17,0412 34,5981 41,4561 7,29E-05 0,9614
th=15 21,8802 42,7046 40,8295 8,42E-05 0,9595
th=20 23,9465 46,6388 40,5621 8,93E-05 0,9592
th=30 25,3122 49,4884 40,2256 9,64E-05 0,9584

105



Table 7.14: Quadtree method average results,max block size=16,min block size=2

Threshold
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

th=2 4,9857 12,6505 47,4635 1,86E-05 0,9914
th=5 9,6659 23,1781 44,2839 3,85E-05 0,9771
th=10 24,1591 49,9682 40,3978 9,34E-05 0,9541
th=15 39,1550 77,3337 38,1417 1,57E-04 0,9403
th=20 51,0120 102,2006 36,7615 2,16E-04 0,9303
th=30 64,2455 135,7385 35,3904 2,96E-04 0,9194

Table 7.15: Quadtree method average results,max block size=4,min block size=2

Threshold
Compression

Rate

Arithmetic
Compression

Rate
psnr mse ssim

th=2 13,2727 33,2195 34,1766 4,99E-04 0,9498
th=5 15,1889 36,6110 34,1553 5,01E-04 0,9488
th=10 21,3898 45,5308 34,1087 5,03E-04 0,9484
th=20 27,1322 55,4249 34,1954 4,98E-04 0,9505
th=30 28,0504 57,3847 34,2065 4,98-04 0,9503

Table 7.16: Quadtree method average time results,max block size=8,min block
size=2

name
Compression

Rate

Arithmetic
Compression

Rate

encoding
time

decoding
time

aritmetic
encoding

time

aritmetic
decoding

time
th=2 4,6464 11,4130 98,6914 31,5504 0,9976 1,1079
th=5 8,4638 19,5581 52,3414 19,3488 0,5425 0,5782
th=10 17,0412 34,5981 24,2881 11,2803 0,2397 0,2617
th=15 21,8802 42,7046 21,5363 10,3073 0,2048 0,2238
th=20 23,9465 46,6388 20,7606 10,0939 0,1858 0,2029
th=30 25,3122 49,4884 20,3485 10,0960 0,1853 0,1969

Table 7.17: Quadtree method average time results,max block size=16,min block
size=2

Threshold
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
th=2 4,9857 97,7883 29,1511 0,8833 0,9447
th=5 9,6659 60,0336 19,5474 0,5053 0,5661
th=10 24,1591 38,7090 12,3693 0,3001 0,3162
th=15 39,1550 28,2064 9,4606 0,1527 0,1623
th=20 51,0120 24,9907 8,4495 0,1080 0,1146
th=30 64,2455 23,1812 7,6168 0,0812 0,0847
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Figure 7.8: mdb014
Quadtree based re-
constructed im-
age,max block size=16,
min block size=2,
th=2,CR=4,588673,
PSNR=47,258536,
MSE=0,000019,
ssim=0,991265

Figure 7.9: mdb014
Quadtree based recon-
structed image,max
block size=16, min
block size=5, th=5,
CR=10,917947,
PSNR=43,801308,
MSE=0,000042,
ssim=0,975211

Figure 7.10: mdb014
Quadtree based recon-
structed image,max
block size=16, min
block size=5, th=10,
CR=27,334784,
PSNR=40,315812,
MSE=0,000093,
ssim=0,956746

Figure 7.11: mdb014
Quadtree based recon-
structed image,max
block size=16, min
block size=5, th=15,
CR=41,313423,
PSNR=38,145787,
MSE=0,000153,
ssim=0,945913

Figure 7.12: mdb014
Quadtree based recon-
structed image,max
block size=16, min
block size=5, th=20,
CR=48,875548,
PSNR=36,863001,
MSE=0,000206,
ssim=0,937697

Figure 7.13: mdb014
Quadtree based re-
constructed image,
max block size=16,
min block size=5,
th=30, CR=57,645739,
PSNR=35,860321,
MSE=0,000259,
ssim=0,930412

Figure 7.14: Threshold increasing effect on Quadtree Method
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Figure 7.15: mdb014
Quadtree based recon-
structed image,max block
size=16,min block size=2,
th=10, CR=40,315812,
PSNR=43,801308,
MSE=0,000093,
ssim=0,956746

Figure 7.16: mdb014
Quadtree based recon-
structed image, max block
size=8, min block size=2,
th=10, CR=18,503357,
PSNR=41,885735,
MSE=0,000065,
ssim=0,965658

Figure 7.17: mdb014
Quadtree based recon-
structed image, max block
size=8, min block size=4,
th=10, CR=27,100589,
PSNR=31,111927,
MSE=0,000774,
ssim=0,952584

Figure 7.18: Block size effect on Quadtree base reconstruct image at th=10

Table 7.18: Quadtree method average time results, max block size = 4, min block
size = 2

Threshold
Compression

Rate

Arithmetic
Compression

Rate

encoding
time

decoding
time

aritmetic
encoding

time

aritmetic
decoding

time
th=2 13,2727 33,2195 41,2297 16,4401 0,3486 0,3761
th=5 15,1889 36,6110 37,2789 15,1836 0,3102 0,3537
th=10 21,3898 45,5308 29,9769 13,1416 0,3061 0,3362
th=20 27,1322 55,4249 26,4536 12,2013 0,2641 0,2808
th=30 28,0504 57,3847 25,9713 11,9575 0,2463 0,2663
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Table 7.19: Quadtree method results, th=2, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 4,8627 11,3750 46,5777 2,20E-05 0,9925
mdb012 4,2584 10,5019 45,4941 2,80E-05 0,9915
mdb013 4,7449 11,3094 47,9139 1,60E-05 0,9925
mdb014 4,3503 10,7873 47,2644 1,90E-05 0,9913
mdb015 5,4570 12,7603 48,6501 1,40E-05 0,9934
mdb016 4,9174 12,0779 47,4195 1,80E-05 0,9932
mdb017 7,0869 16,6532 50,1938 1,00E-05 0,9953
mdb018 7,0252 17,1977 49,3113 1,20E-05 0,9947
mdb019 3,4948 8,6884 46,2344 2,40E-05 0,9887
mdb020 3,6878 9,2864 45,8538 2,60E-05 0,9895
mdb021 4,3660 10,5992 46,8182 2,10E-05 0,9905
mdb022 5,0133 12,6754 47,7470 1,70E-05 0,9919
mdb023 4,0833 9,9987 47,6124 1,70E-05 0,9902
mdb024 4,5077 11,2203 48,1448 1,50E-05 0,9913
mdb025 3,6152 9,0692 47,4058 1,80E-05 0,9899
mdb026 3,9172 10,0421 47,5290 1,80E-05 0,9899
mdb027 3,8850 9,8289 48,3448 1,50E-05 0,9910
mdb028 3,8858 9,9834 48,0453 1,60E-05 0,9904
mdb029 4,7863 11,3987 46,0155 2,50E-05 0,9915
mdb030 4,9823 12,8069 47,5581 1,80E-05 0,9917
average 4,6464 11,4130 47,5067 1,85E-05 0,9915
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Table 7.20: Quadtree method results, th=5, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 9,2295 19,9854 43,9890 4,00E-05 0,9791
mdb012 8,3420 19,1088 43,0858 4,90E-05 0,9766
mdb013 9,3704 20,7046 44,5815 3,50E-05 0,9790
mdb014 9,5312 21,6946 43,9696 4,00E-05 0,9762
mdb015 8,2566 18,7861 45,8340 2,60E-05 0,9852
mdb016 7,8695 18,6666 44,8744 3,30E-05 0,9833
mdb017 10,4385 23,9003 47,3029 1,90E-05 0,9893
mdb018 10,2639 24,2482 46,9524 2,00E-05 0,9891
mdb019 6,3661 15,0491 43,1120 4,90E-05 0,9708
mdb020 6,9989 16,7106 43,1350 4,90E-05 0,9732
mdb021 7,2024 16,7237 44,1199 3,90E-05 0,9781
mdb022 7,9532 19,4377 45,1267 3,10E-05 0,9824
mdb023 8,5448 19,1722 44,0664 3,90E-05 0,9746
mdb024 9,0687 20,8715 44,6075 3,50E-05 0,9778
mdb025 6,7187 15,8523 43,7426 4,20E-05 0,9724
mdb026 7,3060 17,6230 43,9825 4,00E-05 0,9740
mdb027 8,8254 20,2941 44,2290 3,80E-05 0,9739
mdb028 8,6020 20,1942 44,1923 3,80E-05 0,9739
mdb029 9,1454 19,9249 43,7544 4,20E-05 0,9794
mdb030 9,2420 22,2147 44,6648 3,40E-05 0,9803
average 8,4638 19,5581 44,4661 3,69E-05 0,9784
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Table 7.21: Quadtree method results, th=10, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 17,2173 32,5518 41,6068 6,90E-05 0,9652
mdb012 15,8869 31,8828 41,1667 7,60E-05 0,9640
mdb013 17,9933 34,4609 42,1038 6,20E-05 0,9667
mdb014 18,5034 36,3590 41,8857 6,50E-05 0,9657
mdb015 15,9919 32,4265 41,7334 6,70E-05 0,9653
mdb016 16,2511 34,6551 41,1914 7,60E-05 0,9631
mdb017 17,4659 37,1710 43,4667 4,50E-05 0,9773
mdb018 17,6307 38,9856 43,4040 4,60E-05 0,9779
mdb019 14,7633 29,5991 39,8967 1,02E-04 0,9447
mdb020 15,8441 32,1127 40,2284 9,50E-05 0,9511
mdb021 15,1774 30,5707 40,6390 8,60E-05 0,9554
mdb022 17,4289 38,0318 41,2468 7,50E-05 0,9611
mdb023 17,1384 33,2976 41,2924 7,40E-05 0,9587
mdb024 18,6460 37,0155 41,8987 6,50E-05 0,9636
mdb025 16,0732 32,1102 40,3097 9,30E-05 0,9470
mdb026 16,9756 35,2303 40,6388 8,60E-05 0,9511
mdb027 18,9031 37,1954 41,6590 6,80E-05 0,9597
mdb028 18,1601 36,7322 41,4931 7,10E-05 0,9587
mdb029 16,2190 31,4519 41,4782 7,10E-05 0,9669
mdb030 18,5534 40,1223 41,7821 6,60E-05 0,9659
average 17,0412 34,5981 41,4561 7,29E-05 0,9614
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Table 7.22: Quadtree method results, th=15, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 20,5569 37,5155 41,2955 0,0001 9,65E-01
mdb012 18,7651 36,3647 41,0193 0,0001 9,65E-01
mdb013 22,1874 41,1529 41,4770 0,0001 9,65E-01
mdb014 22,4417 42,4344 41,5752 0,0001 9,66E-01
mdb015 21,5819 41,5146 40,8625 0,0001 9,62E-01
mdb016 23,8750 48,6228 40,2143 0,0001 9,59E-01
mdb017 21,5705 44,9079 42,3075 0,0001 9,74E-01
mdb018 22,2715 49,0459 42,0199 0,0001 9,76E-01
mdb019 20,1341 38,0339 39,3244 0,0001 9,42E-01
mdb020 20,8699 39,6925 39,8110 0,0001 9,50E-01
mdb021 20,4852 38,7687 39,9251 0,0001 9,52E-01
mdb022 24,0565 49,7616 40,5345 0,0001 9,59E-01
mdb023 21,2583 39,6235 41,0911 0,0001 9,59E-01
mdb024 22,3320 42,8725 41,8279 0,0001 9,65E-01
mdb025 22,1158 41,7543 39,5050 0,0001 9,42E-01
mdb026 23,8196 46,7874 39,8429 0,0001 9,46E-01
mdb027 23,6280 44,8406 41,1654 0,0001 9,58E-01
mdb028 23,2407 45,2323 40,7115 0,0001 9,55E-01
mdb029 19,4210 36,5867 40,7736 0,0001 9,65E-01
mdb030 22,9938 48,5800 41,3063 0,0001 9,65E-01
average 21,8802 42,7046 40,8295 0,0001 9,59E-01
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Table 7.23: Quadtree method results, th=20, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 21,6614 39,3056 41,2399 7,50E-05 0,9650
mdb012 19,6155 37,8404 40,9707 8,00E-05 0,9651
mdb013 23,7234 43,6688 41,4199 7,20E-05 0,9646
mdb014 23,6416 44,4670 41,4900 7,10E-05 0,9663
mdb015 23,9445 45,5507 40,5197 8,90E-05 0,9613
mdb016 26,8003 54,4786 40,1433 9,70E-05 0,9594
mdb017 23,3198 48,3906 41,8714 6,50E-05 0,9737
mdb018 25,5196 56,8858 40,9372 8,10E-05 0,9749
mdb019 22,2715 41,7169 39,1174 1,23E-04 0,9421
mdb020 22,6893 42,6103 39,7321 1,06E-04 0,9503
mdb021 22,5524 42,2966 39,6103 1,09E-04 0,9517
mdb022 28,4113 58,8460 40,1172 9,70E-05 0,9586
mdb023 22,6893 42,2192 40,9555 8,00E-05 0,9593
mdb024 23,4261 44,8934 41,7534 6,70E-05 0,9648
mdb025 24,2409 45,4746 39,4118 1,15E-04 0,9413
mdb026 25,6310 50,0072 39,7933 1,05E-04 0,9462
mdb027 24,8413 47,0741 41,0891 7,80E-05 0,9576
mdb028 25,6470 49,6838 40,2926 9,30E-05 0,9534
mdb029 21,1490 39,4639 40,4140 9,10E-05 0,9639
mdb030 27,1543 57,9020 40,3628 9,20E-05 0,9644
average 23,9465 46,6388 40,5621 8,93E-05 0,9592

113



Table 7.24: Quadtree method results, th=30, min block size=2, max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 22,3563 40,6000 40,8860 8,20E-05 0,9643
mdb012 20,0850 38,6543 40,7591 8,40E-05 0,9650
mdb013 24,5447 45,2265 41,2739 7,50E-05 0,9644
mdb014 24,7516 46,6698 41,1212 7,70E-05 0,9660
mdb015 26,7829 51,0828 40,3200 9,30E-05 0,9608
mdb016 28,0815 57,0545 40,0929 9,80E-05 0,9594
mdb017 25,7594 53,8491 41,2627 7,50E-05 0,9727
mdb018 27,5916 61,9232 40,5788 8,80E-05 0,9744
mdb019 23,5199 44,0569 38,9030 1,29E-04 0,9415
mdb020 23,7783 44,6469 39,4976 1,12E-04 0,9497
mdb021 23,6009 44,1850 39,5147 1,12E-04 0,9517
mdb022 29,9204 62,7008 40,0502 9,90E-05 0,9584
mdb023 25,1451 47,3334 39,1448 1,22E-04 0,9540
mdb024 24,9015 47,8693 40,8676 8,20E-05 0,9631
mdb025 25,1451 47,2140 39,2610 1,19E-04 0,9406
mdb026 26,3369 51,3555 39,7532 1,06E-04 0,9461
mdb027 25,3779 48,1960 40,7099 8,50E-05 0,9568
mdb028 26,7654 51,9856 39,8258 1,04E-04 0,9521
mdb029 22,3078 41,4048 40,1784 9,60E-05 0,9636
mdb030 29,4912 63,7607 40,5122 8,90E-05 0,9642
average 25,3122 49,4884 40,2256 9,64E-05 0,9584
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Table 7.25: Quadtree method results, th=2, min block size=2, max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb017 8,1357 19,9215 50,1375 1,00E-05 0,9949
mdb018 8,0544 20,6275 49,2589 1,20E-05 0,9943
mdb015 5,9722 14,5636 48,6243 1,40E-05 0,9933
mdb027 4,0329 10,4340 48,3058 1,50E-05 0,9909
mdb024 4,7569 12,2200 48,0937 1,60E-05 0,9912
mdb028 4,0361 10,6161 48,0219 1,60E-05 0,9903
mdb013 5,0739 12,4976 47,8993 1,60E-05 0,9923
mdb022 5,4275 14,3628 47,7194 1,70E-05 0,9918
mdb023 4,2650 10,7057 47,5887 1,70E-05 0,9901
mdb030 5,3729 14,4528 47,5236 1,80E-05 0,9916
mdb026 4,0882 10,7580 47,5141 1,80E-05 0,9897
mdb016 5,3016 13,4812 47,4061 1,80E-05 0,9931
mdb025 3,7419 9,5401 47,3831 1,80E-05 0,9897
mdb014 4,5887 11,7535 47,2585 1,90E-05 0,9913
mdb021 4,6129 11,5140 46,7464 2,10E-05 0,9898
mdb011 5,2175 12,6216 46,5336 2,20E-05 0,9919
mdb019 3,6193 9,1382 46,2275 2,40E-05 0,9886
mdb029 5,0978 12,5684 45,9591 2,50E-05 0,9913
mdb020 3,8379 9,8969 45,8335 2,60E-05 0,9894
mdb012 4,4802 11,3368 45,2343 3,00E-05 0,9908
average 4,9857 12,6505 47,4635 1,86E-05 0,9913
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Table 7.26: Quadtree method results, th=5, min block size=2, max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb017 12,9459 30,7911 47,1507 1,90E-05 0,9887
mdb018 12,6824 31,1951 46,8726 2,10E-05 0,9886
mdb015 9,5312 22,8023 45,7545 2,70E-05 0,9848
mdb022 9,1291 23,7393 45,0429 3,10E-05 0,9825
mdb016 8,9679 22,1921 44,8050 3,30E-05 0,9834
mdb030 10,8231 27,4791 44,5296 3,50E-05 0,9804
mdb024 10,3622 25,0409 44,4707 3,60E-05 0,9768
mdb013 10,8345 24,7510 44,4611 3,60E-05 0,9775
mdb028 9,5444 23,2024 43,9323 4,00E-05 0,9726
mdb011 10,6881 23,8970 43,8675 4,10E-05 0,9778
mdb021 7,9701 19,1196 43,8384 4,10E-05 0,9759
mdb026 8,0215 20,0188 43,8042 4,20E-05 0,9730
mdb014 10,9179 25,8885 43,8013 4,20E-05 0,9752
mdb027 9,8156 23,2027 43,7828 4,20E-05 0,9694
mdb023 9,5800 22,0751 43,7380 4,20E-05 0,9710
mdb025 7,2429 17,4681 43,4907 4,50E-05 0,9702
mdb029 10,5374 23,7087 43,4495 4,50E-05 0,9757
mdb020 7,6032 18,7251 43,0638 4,90E-05 0,9725
mdb019 6,8303 16,3992 42,9885 5,00E-05 0,9699
mdb012 9,2900 21,8665 42,8329 5,20E-05 0,9755
average 9,6659 23,1781 44,2839 3,85E-05 0,9771
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Table 7.27: Quadtree method results,th=10, min block size=2,max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb017 26,3706 56,0766 42,8824 5,10E-05 0,9745
mdb018 26,8879 59,7071 42,7002 5,40E-05 0,9752
mdb015 22,1277 46,4105 41,2483 7,50E-05 0,9620
mdb022 25,0379 57,1073 40,8947 8,10E-05 0,9591
mdb016 22,6145 49,6732 40,7903 8,30E-05 0,9606
mdb024 27,6101 56,3811 40,7256 8,50E-05 0,9573
mdb013 26,6096 51,2150 40,6130 8,70E-05 0,9576
mdb030 28,1199 62,3429 40,6013 8,70E-05 0,9602
mdb011 25,1759 48,0954 40,4768 9,00E-05 0,9573
mdb014 27,3348 55,0188 40,3158 9,30E-05 0,9567
mdb027 27,3894 54,5565 39,9956 1,00E-04 0,9455
mdb012 21,3910 43,8781 39,9858 1,00E-04 0,9563
mdb028 26,1194 54,6489 39,8831 1,03E-04 0,9480
mdb029 22,9810 44,8723 39,8514 1,03E-04 0,9555
mdb023 24,4572 47,8758 39,8344 1,04E-04 0,9476
mdb021 19,9292 40,8086 39,8330 1,04E-04 0,9484
mdb026 22,9810 48,8710 39,7675 1,05E-04 0,9444
mdb025 20,6602 41,5253 39,4377 1,14E-04 0,9379
mdb020 20,8065 43,2679 39,1791 1,21E-04 0,9421
mdb019 18,5786 37,0312 38,9403 1,28E-04 0,9357
average 24,1591 49,9682 40,3978 9,34E-05 0,9541
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Table 7.28: Quadtree method results,th=15,min block size=2, max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb017 39,3750 80,6318 40,1911 9,60E-05 0,9634
mdb018 42,2039 93,5936 39,8773 1,03E-04 0,9661
mdb011 34,9864 63,6310 39,1111 1,23E-04 0,9495
mdb022 45,8254 97,1084 38,5905 1,38E-04 0,9469
mdb024 40,7404 80,3753 38,5694 1,39E-04 0,9470
mdb013 40,6197 74,8315 38,5524 1,40E-04 0,9457
mdb015 38,3111 75,5349 38,4414 1,43E-04 0,9469
mdb012 28,8498 57,3557 38,3860 1,45E-04 0,9477
mdb016 45,0719 91,9925 38,3561 1,46E-04 0,9462
mdb030 44,2474 97,2164 38,3356 1,47E-04 0,9500
mdb014 41,3134 79,7214 38,1458 1,53E-04 0,9459
mdb023 36,8685 68,2978 37,9866 1,59E-04 0,9375
mdb021 32,8090 61,5506 37,8621 1,64E-04 0,9347
mdb027 45,6727 85,8047 37,8065 1,66E-04 0,9285
mdb029 32,1422 60,8682 37,7509 1,68E-04 0,9436
mdb028 44,2951 89,4499 37,6358 1,72E-04 0,9304
mdb026 44,8263 89,9602 37,1288 1,94E-04 0,9235
mdb020 34,7792 68,0385 36,9258 2,03E-04 0,9249
mdb025 38,4904 72,2932 36,6649 2,16E-04 0,9122
mdb019 31,6719 58,4181 36,5161 2,23E-04 0,9150
average 39,1550 77,3337 38,1417 1,57E-04 0,9403
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Table 7.29: Quadtree method results,th=20,min block size=2,max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb017 47,5750 97,2840 38,8924 1,29E-04 0,9575
mdb018 58,0527 132,5885 38,3977 1,45E-04 0,9607
mdb011 39,7942 71,9089 38,3164 1,47E-04 0,9446
mdb013 48,7596 88,6445 37,6656 1,71E-04 0,9400
mdb012 32,4979 65,0885 37,2246 1,89E-04 0,9398
mdb029 38,1689 70,8306 37,1886 1,91E-04 0,9394
mdb024 48,0194 96,7812 37,0342 1,98E-04 0,9371
mdb023 43,5908 80,8151 36,9337 2,03E-04 0,9301
mdb015 49,4635 96,4208 36,9037 2,04E-04 0,9373
mdb030 67,5956 152,3539 36,8795 2,05E-04 0,9429
mdb014 48,8755 94,6197 36,8630 2,06E-04 0,9377
mdb022 76,2434 167,3705 36,4027 2,29E-04 0,9329
mdb027 56,7703 107,9615 36,3060 2,34E-04 0,9158
mdb016 65,9689 137,4100 36,1622 2,42E-04 0,9307
mdb028 61,4352 127,8751 36,0445 2,49E-04 0,9166
mdb021 42,1174 78,8255 36,0306 2,49E-04 0,9198
mdb020 42,9982 83,2170 35,9346 2,55E-04 0,9168
mdb026 60,0886 123,3546 35,5606 2,78E-04 0,9078
mdb025 51,4437 96,1379 35,3957 2,89E-04 0,8978
mdb019 40,7808 74,5230 35,0939 3,09E-04 0,9006
average 51,0120 102,2006 36,7615 2,16E-04 0,9303
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Table 7.30: Quadtree method results,th=30,min block size=2,max block size=16

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb018 75,4046 178,6330 37,0936 1,95E-04 0,9535
mdb017 63,0362 131,4582 37,0822 1,96E-04 0,9485
mdb011 45,4204 83,9532 36,6083 2,18E-04 0,9338
mdb013 57,0064 105,3422 36,5214 2,23E-04 0,9315
mdb029 44,2474 81,7794 36,1672 2,42E-04 0,9325
mdb014 57,6457 113,3106 35,8603 2,59E-04 0,9304
mdb012 35,7157 72,9241 35,7437 2,66E-04 0,9296
mdb015 71,4727 141,7953 35,6556 2,72E-04 0,9267
mdb024 59,9135 125,8568 35,5624 2,78E-04 0,9257
mdb030 99,9691 257,9523 35,5552 2,78E-04 0,9357
mdb027 64,1174 125,3378 35,1560 3,05E-04 0,9062
mdb016 83,1840 177,2591 35,0567 3,12E-04 0,9212
mdb023 59,8263 115,0385 34,9781 3,18E-04 0,9135
mdb022 107,8338 275,6509 34,7716 3,33E-04 0,9200
mdb021 50,4961 96,2394 34,6798 3,40E-04 0,9063
mdb028 74,9920 166,1111 34,6230 3,45E-04 0,9044
mdb020 52,3607 104,0048 34,4685 3,57E-04 0,9024
mdb026 70,7350 151,4408 34,3636 3,66E-04 0,8961
mdb025 61,5271 117,9169 34,1547 3,84E-04 0,8844
mdb019 50,0048 92,7656 33,7060 4,26E-04 0,8850
average 64,2455 135,7385 35,3904 2,96E-04 0,9194
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Table 7.31: Quadtree method results,th=2,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 13,8252 32,6624 32,3333 5,84E-04 0,9532
mdb012 12,5931 32,2421 28,5955 1,38E-03 0,9367
mdb013 13,5384 32,3156 33,4391 4,53E-04 0,9560
mdb014 12,5126 30,9904 31,0912 7,78E-04 0,9500
mdb015 15,2732 35,1724 37,8745 1,63E-04 0,9606
mdb016 14,3461 34,8996 36,9310 2,03E-04 0,9574
mdb017 17,6307 42,0161 40,5298 8,90E-05 0,9735
mdb018 17,6231 42,8200 40,6168 8,70E-05 0,9745
mdb019 11,1974 29,7295 31,8835 6,48E-04 0,9300
mdb020 11,6610 30,3517 31,2900 7,43E-04 0,9359
mdb021 12,7730 31,8319 31,9630 6,36E-04 0,9406
mdb022 14,5491 36,0763 39,5681 1,10E-04 0,9572
mdb023 11,9839 30,4650 32,8314 5,21E-04 0,9468
mdb024 12,8009 32,7307 32,1377 6,11E-04 0,9490
mdb025 11,1791 29,9119 33,0104 5,00E-04 0,9321
mdb026 11,7880 31,6766 31,4642 7,14E-04 0,9334
mdb027 11,2341 29,5603 33,8352 4,14E-04 0,9473
mdb028 11,2896 31,0989 32,4620 5,67E-04 0,9412
mdb029 13,4675 32,1452 31,7069 6,75E-04 0,9559
mdb030 14,1877 35,6932 39,9685 1,01E-04 0,9654
average 13,2727 33,2195 34,1766 4,99E-04 0,9498
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Table 7.32: Quadtree method results,th=5,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 16,0419 36,3118 32,3166 5,87E-04 0,9514
mdb012 14,2714 34,9176 28,5906 1,38E-03 0,9358
mdb013 15,5917 35,8169 33,4228 4,55E-04 0,9547
mdb014 15,2846 36,2810 31,0778 7,80E-04 0,9485
mdb015 15,9795 36,7046 37,8523 1,64E-04 0,9601
mdb016 15,4164 36,9152 36,9114 2,04E-04 0,9567
mdb017 18,5870 43,9019 40,4961 8,90E-05 0,9731
mdb018 18,5618 44,7135 40,5814 8,70E-05 0,9741
mdb019 12,4936 32,2312 31,8695 6,50E-04 0,9285
mdb020 13,1741 33,1933 31,2794 7,45E-04 0,9346
mdb021 14,3862 34,6093 31,9507 6,38E-04 0,9395
mdb022 15,5387 38,2141 39,5339 1,11E-04 0,9565
mdb023 15,0386 35,8273 32,8051 5,24E-04 0,9449
mdb024 15,4337 37,1381 32,1259 6,13E-04 0,9481
mdb025 12,8932 32,6415 32,9992 5,01E-04 0,9314
mdb026 13,8345 35,4195 31,4566 7,15E-04 0,9328
mdb027 14,6008 35,0243 33,8188 4,15E-04 0,9465
mdb028 14,8218 36,8083 32,4498 5,69E-04 0,9406
mdb029 15,9609 36,5631 31,6868 6,78E-04 0,9540
mdb030 15,8685 38,9878 39,8809 1,03E-04 0,9641
average 15,1889 36,6110 34,1553 5,01E-04 0,9488
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Table 7.33: Quadtree method results,th=10,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 21,9271 44,2643 32,3001 5,89E-04 0,9505
mdb012 20,9230 44,9570 28,5871 1,39E-03 0,9360
mdb013 22,2474 44,7603 33,4081 4,56E-04 0,9547
mdb014 22,6269 46,7072 31,0697 7,82E-04 0,9491
mdb015 20,6706 43,0521 37,7463 1,68E-04 0,9578
mdb016 20,3534 44,5132 36,8576 2,06E-04 0,9557
mdb017 22,5031 50,0346 40,3882 9,10E-05 0,9720
mdb018 22,4785 51,0703 40,4567 9,00E-05 0,9732
mdb019 19,1051 41,4023 31,8448 6,54E-04 0,9277
mdb020 20,1046 43,1371 31,2522 7,50E-04 0,9331
mdb021 19,7001 41,7909 31,9334 6,41E-04 0,9391
mdb022 20,6291 45,7454 39,4123 1,14E-04 0,9556
mdb023 21,2363 44,3889 32,7843 5,27E-04 0,9446
mdb024 22,4662 47,4737 32,1113 6,15E-04 0,9483
mdb025 20,4445 42,8953 32,9891 5,02E-04 0,9320
mdb026 20,8065 45,2314 31,4480 7,16E-04 0,9332
mdb027 22,6893 46,5196 33,8238 4,15E-04 0,9483
mdb028 22,4662 47,6810 32,4476 5,69E-04 0,9417
mdb029 21,7416 45,0013 31,6582 6,83E-04 0,9524
mdb030 22,6768 49,9893 39,6563 1,08E-04 0,9621
average 21,3898 45,5308 34,1087 5,03E-04 0,9484

123



Table 7.34: Quadtree method results,th=15,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 25,2998 49,4658 32,3243 5,86E-04 0,9523
mdb012 24,3126 50,5167 28,6024 1,38E-03 0,9386
mdb013 25,7433 50,2962 33,4160 4,55E-04 0,9555
mdb014 26,0532 52,1537 31,0970 7,77E-04 0,9518
mdb015 25,1913 49,9167 37,7812 1,67E-04 0,9586
mdb016 25,7111 53,3165 36,9196 2,03E-04 0,9570
mdb017 25,6470 56,0466 40,3512 9,20E-05 0,9718
mdb018 25,5513 57,2554 40,5053 8,90E-05 0,9739
mdb019 24,3126 49,5055 31,8694 6,50E-04 0,9302
mdb020 25,0991 50,9129 31,2783 7,45E-04 0,9356
mdb021 24,7964 49,5605 31,9529 6,38E-04 0,9411
mdb022 25,8729 54,1061 39,5012 1,12E-04 0,9574
mdb023 25,5513 51,3555 32,8185 5,23E-04 0,9472
mdb024 26,3706 54,1872 32,1434 6,10E-04 0,9511
mdb025 25,4564 50,7760 32,9987 5,01E-04 0,9328
mdb026 26,3200 54,2026 31,4517 7,16E-04 0,9340
mdb027 26,8353 53,7828 33,8436 4,13E-04 0,9495
mdb028 26,2193 53,7773 32,4599 5,68E-04 0,9428
mdb029 24,3126 49,2451 31,6706 6,81E-04 0,9536
mdb030 25,9545 55,9464 39,7779 1,05E-04 0,9638
average 25,5305 52,3163 34,1382 5,01E-04 0,9499
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Table 7.35: Quadtree method results,th=20,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 26,4725 51,6591 32,3399 5,83E-04 0,9530
mdb012 25,3466 52,4091 28,6100 1,38E-03 0,9393
mdb013 27,3166 53,1894 33,4368 4,53E-04 0,9560
mdb014 27,1006 54,1508 31,1119 7,74E-04 0,9526
mdb015 26,7829 52,6420 37,8226 1,65E-04 0,9592
mdb016 28,1007 58,0768 36,9709 2,01E-04 0,9577
mdb017 26,5752 57,9676 40,4086 9,10E-05 0,9722
mdb018 26,7480 59,9255 40,5914 8,70E-05 0,9744
mdb019 26,3200 53,2016 31,8882 6,47E-04 0,9312
mdb020 26,8003 53,9516 31,2984 7,42E-04 0,9367
mdb021 26,4896 52,6962 31,9681 6,36E-04 0,9419
mdb022 28,8904 60,0043 39,8416 1,04E-04 0,9583
mdb023 26,8353 53,8270 32,8273 5,22E-04 0,9479
mdb024 27,3894 56,3024 32,1558 6,09E-04 0,9517
mdb025 27,3894 54,6020 33,0177 4,99E-04 0,9332
mdb026 28,0623 57,7473 31,4586 7,15E-04 0,9343
mdb027 28,0241 56,4206 33,8590 4,11E-04 0,9500
mdb028 28,0432 57,3071 32,4494 5,69E-04 0,9426
mdb029 25,9709 52,4314 31,6718 6,80E-04 0,9536
mdb030 27,9859 59,9872 40,1800 9,60E-05 0,9641
average 27,1322 55,4249 34,1954 4,98E-04 0,9505
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Table 7.36: Quadtree method results,th=30,min block size=4,max block size=8

name
Compression

Rate
Arithmetic

Compression Rate
psnr mse ssim

mdb011 26,9232 52,5049 32,3292 5,85E-04 0,9527
mdb012 25,7756 53,2569 28,6172 1,38E-03 0,9395
mdb013 27,9479 54,4687 33,4657 4,50E-04 0,9563
mdb014 27,9669 55,9196 31,1161 7,73E-04 0,9528
mdb015 28,6488 56,2028 37,8240 1,65E-04 0,9592
mdb016 29,3230 60,7043 36,9546 2,02E-04 0,9577
mdb017 27,6844 60,2353 40,3632 9,20E-05 0,9719
mdb018 27,7218 62,4115 40,5370 8,80E-05 0,9744
mdb019 27,4259 55,3601 31,9016 6,45E-04 0,9313
mdb020 27,4993 55,2959 31,2984 7,42E-04 0,9366
mdb021 27,4259 54,5877 31,9792 6,34E-04 0,9422
mdb022 29,9859 62,8605 39,9921 1,00E-04 0,9584
mdb023 28,1007 56,3902 32,7171 5,35E-04 0,9459
mdb024 28,0623 57,7092 32,1190 6,14E-04 0,9509
mdb025 28,2357 56,5377 33,0109 5,00E-04 0,9329
mdb026 28,6888 59,1814 31,4606 7,14E-04 0,9343
mdb027 28,3330 57,0343 33,8430 4,13E-04 0,9498
mdb028 28,9107 59,1764 32,4097 5,74E-04 0,9419
mdb029 26,8353 54,0044 31,6830 6,79E-04 0,9539
mdb030 29,5124 63,8519 40,5086 8,90E-05 0,9642
average 28,0504 57,3847 34,2065 4,98E-04 0,9503
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Table 7.37: Quadtree time results, th=2, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 4,8627 95,7455 29,9025 1,0459 1,1344
mdb012 4,2584 105,9455 32,8547 1,0058 1,1392
mdb013 4,7449 93,2147 30,6712 1,0331 1,1414
mdb014 4,3503 103,6046 32,0469 1,0265 1,1627
mdb015 5,4570 81,7437 27,4791 0,9534 1,0744
mdb016 4,9174 92,6730 30,5157 0,9929 1,1471
mdb017 7,0869 68,9790 22,3579 0,7063 0,7834
mdb018 7,0252 67,6180 22,6835 0,6581 0,7329
mdb019 3,4948 125,1190 36,6729 1,2157 1,3676
mdb020 3,6878 117,2035 36,8183 1,1690 1,2853
mdb021 4,3660 98,2089 31,1894 1,2891 1,1655
mdb022 5,0133 88,3170 30,5707 0,8248 0,9254
mdb023 4,0833 104,2306 34,5068 1,0633 1,1769
mdb024 4,5077 98,3257 32,9103 0,9572 1,1337
mdb025 3,6152 117,0552 36,7856 1,1634 1,2900
mdb026 3,9172 113,8944 34,9584 1,0536 1,2040
mdb027 3,8850 108,6941 34,9605 1,0499 1,2460
mdb028 3,8858 112,1945 33,7969 0,8845 1,0077
mdb029 4,7863 90,3038 30,3609 1,1010 1,1950
mdb030 4,9823 90,7587 28,9648 0,7584 0,8458
average 4,6464 98,6914 31,5504 0,9976 1,1079
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Table 7.38: Quadtree time results, th=5, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetik
decoding

time
mdb011 9,2295 52,5165 19,4709 0,6443 0,7024
mdb012 8,3420 57,4048 21,4363 0,6898 0,7369
mdb013 9,3704 55,7435 19,7829 0,5858 0,6382
mdb014 9,5312 50,9023 19,0593 0,6143 0,6267
mdb015 8,2566 58,0015 21,9847 0,7480 0,7182
mdb016 7,8695 62,8306 21,3242 0,7635 0,6857
mdb017 10,4385 48,6525 17,6307 0,5108 0,6328
mdb018 10,2639 50,2362 18,2654 0,4688 0,5242
mdb019 6,3661 72,3128 24,8856 0,7582 0,8480
mdb020 6,9989 66,0480 22,9854 0,6778 0,7577
mdb021 7,2024 67,9675 23,1868 0,8404 0,8157
mdb022 7,9532 64,0757 21,7224 0,6320 0,7137
mdb023 8,5448 60,5329 18,1245 0,3738 0,4049
mdb024 9,0687 39,0600 16,7036 0,3614 0,3851
mdb025 6,7187 46,0534 18,1681 0,4569 0,4706
mdb026 7,3060 42,5435 17,6382 0,3636 0,4100
mdb027 8,8254 39,0529 17,2851 0,3410 0,3756
mdb028 8,6020 38,3414 15,3270 0,3362 0,3674
mdb029 9,1454 35,6347 15,4558 0,3723 0,4068
mdb030 9,2420 38,9182 16,5402 0,3105 0,3440
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Table 7.39: Quadtree time results, th=10, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 17,2173 24,1727 11,7973 0,2889 0,3328
mdb012 15,8869 28,1567 11,8563 0,2508 0,2794
mdb013 17,9933 24,3931 12,0214 0,2596 0,2700
mdb014 18,5034 24,3526 10,6106 0,2186 0,2463
mdb015 15,9919 24,7344 13,0609 0,2981 0,3069
mdb016 16,2511 26,2984 12,2291 0,2308 0,2503
mdb017 17,4659 24,5211 11,2759 0,2152 0,2379
mdb018 17,6307 24,9374 11,9401 0,2355 0,2526
mdb019 14,7633 28,8454 12,3323 0,2787 0,3117
mdb020 15,8441 25,8901 10,9923 0,2409 0,2653
mdb021 15,1774 24,4335 11,1119 0,2663 0,2793
mdb022 17,4289 24,2069 10,6388 0,1954 0,2086
mdb023 17,1384 22,8168 10,6556 0,2411 0,2631
mdb024 18,6460 21,7528 10,2987 0,2368 0,2637
mdb025 16,0732 23,7995 11,0280 0,2424 0,2707
mdb026 16,9756 22,8967 10,6992 0,2299 0,2391
mdb027 18,9031 21,8953 11,6060 0,2144 0,2378
mdb028 18,1601 22,2095 10,3399 0,2120 0,2367
mdb029 16,2190 23,4800 10,8721 0,2568 0,2818
mdb030 18,5534 21,9693 10,2400 0,1813 0,1993
average 17,0412 24,2881 11,2803 0,2397 0,2617
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Table 7.40: Quadtree time results, th=15, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 20,5569 20,9666 9,8882 0,2259 0,2453
mdb012 18,7651 23,2382 10,3174 0,2251 0,2457
mdb013 22,1874 20,4913 10,6734 0,2045 0,2239
mdb014 22,4417 20,1592 10,1623 0,1935 0,2221
mdb015 21,5819 21,6263 9,7820 0,2034 0,2175
mdb016 23,8750 19,3747 9,4343 0,1598 0,1771
mdb017 21,5705 20,4406 9,8165 0,1742 0,1901
mdb018 22,2715 20,0584 9,6544 0,1498 0,1604
mdb019 20,1341 23,3432 10,8289 0,2673 0,3060
mdb020 20,8699 23,8075 10,8592 0,2204 0,2426
mdb021 20,4852 23,9859 12,1852 0,2669 0,2950
mdb022 24,0565 21,0726 10,1646 0,1617 0,1842
mdb023 21,2583 22,1370 10,1925 0,2248 0,2402
mdb024 22,3320 22,4784 10,8595 0,1958 0,2068
mdb025 22,1158 20,5934 10,2766 0,2058 0,2219
mdb026 23,8196 20,0779 9,7547 0,2217 0,2270
mdb027 23,6280 20,9324 9,8049 0,1866 0,2101
mdb028 23,2407 21,4079 10,0287 0,1856 0,2079
mdb029 19,4210 22,9248 10,8399 0,2293 0,2507
mdb030 22,9938 21,6089 10,6234 0,1938 0,2020
average 21,8802 21,5363 10,3073 0,2048 0,2238
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Table 7.41: Quadtree time results, th=20, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 21,6614 23,2561 10,2794 0,2223 0,2415
mdb012 19,6155 23,4300 11,0084 0,2212 0,2429
mdb013 23,7234 20,3128 9,5306 0,2000 0,2167
mdb014 23,6416 19,3704 9,5256 0,2016 0,2066
mdb015 23,9445 19,2333 9,5051 0,1861 0,2053
mdb016 26,8003 19,2784 9,7309 0,1750 0,2060
mdb017 23,3198 21,5657 9,8857 0,1645 0,1797
mdb018 25,5196 21,1015 10,2080 0,1152 0,1300
mdb019 22,2715 21,7795 9,9451 0,2000 0,2189
mdb020 22,6893 21,3095 11,6438 0,2032 0,2384
mdb021 22,5524 21,5830 11,2738 0,2121 0,2234
mdb022 28,4113 20,6097 10,5639 0,1228 0,1340
mdb023 22,6893 21,4602 9,9908 0,2080 0,2275
mdb024 23,4261 20,4327 9,9673 0,1897 0,2091
mdb025 24,2409 20,0383 9,8976 0,1961 0,2187
mdb026 25,6310 19,8371 9,6780 0,1753 0,1858
mdb027 24,8413 19,9638 9,8086 0,2039 0,2038
mdb028 25,6470 19,7513 9,6420 0,1688 0,1900
mdb029 21,1490 21,6380 10,3163 0,2285 0,2481
mdb030 27,1543 19,2600 9,4764 0,1221 0,1311
average 23,9465 20,7606 10,0939 0,1858 0,2029
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Table 7.42: Quadtree time results, th=30, min block size=2, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 22,3563 21,2479 10,2333 0,2196 0,2405
mdb012 20,0850 23,6667 10,7718 0,2214 0,2437
mdb013 24,5447 20,7505 10,0334 0,2030 0,2219
mdb014 24,7516 20,4421 10,4062 0,1850 0,1992
mdb015 26,7829 19,0802 9,5954 0,1713 0,1807
mdb016 28,0815 18,3446 9,2322 0,1686 0,1541
mdb017 25,7594 18,8910 10,9614 0,1854 0,1755
mdb018 27,5916 18,9845 9,4464 0,1011 0,1101
mdb019 23,5199 19,9844 10,6191 0,2611 0,2507
mdb020 23,7783 20,9980 9,9749 0,1985 0,2071
mdb021 23,6009 20,9757 10,9282 0,2052 0,2173
mdb022 29,9204 18,6565 9,4157 0,1105 0,1259
mdb023 25,1451 19,6585 9,6070 0,1969 0,2326
mdb024 24,9015 20,5131 10,0738 0,1992 0,2023
mdb025 25,1451 21,1946 10,0831 0,1948 0,2264
mdb026 26,3369 21,8458 10,0654 0,1651 0,1831
mdb027 25,3779 19,4128 9,6941 0,1810 0,1959
mdb028 26,7654 19,4744 10,6515 0,2008 0,1955
mdb029 22,3078 23,6018 10,9914 0,2332 0,2602
mdb030 29,4912 19,2464 9,1348 0,1053 0,1145
average 25,3122 20,3485 10,0960 0,1853 0,1969
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Table 7.43: Quadtree time results, th=2, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb017 8,1357 70,9018 20,0402 0,5683 0,6052
mdb018 8,0544 68,9052 20,2031 0,5147 0,5719
mdb015 5,9722 84,0379 25,4283 0,8741 0,8160
mdb027 4,0329 108,0327 33,1151 0,8816 0,9884
mdb024 4,7569 96,3305 31,2784 0,7834 0,8630
mdb028 4,0361 107,4844 33,0585 0,8150 0,9236
mdb013 5,0739 93,7798 27,2871 0,9060 0,9513
mdb022 5,4275 86,8944 28,9360 0,6780 0,8421
mdb023 4,2650 104,0204 31,5932 0,9909 1,1135
mdb030 5,3729 89,8801 25,8601 0,6516 0,7398
mdb026 4,0882 109,3701 31,6166 0,8766 0,9723
mdb016 5,3016 93,3594 28,0626 0,8170 0,8116
mdb025 3,7419 115,1059 33,6527 1,0222 1,1412
mdb014 4,5887 101,1880 30,2180 1,1570 0,9264
mdb021 4,6129 99,3157 28,9380 0,9826 0,9637
mdb011 5,2175 97,0056 26,9853 0,9734 1,0061
mdb019 3,6193 123,7546 34,5160 1,2616 1,3516
mdb029 5,0978 89,2199 27,0433 0,8692 0,9805
mdb020 3,8379 113,0744 34,9868 0,9351 1,0562
mdb012 4,4802 104,1060 30,2028 1,1077 1,2701
average 4,9857 97,7883 29,1511 0,8833 0,9447
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Table 7.44: Quadtree time results, th=5, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb017 12,9459 51,2788 16,6586 0,3613 0,3950
mdb018 12,6824 51,7944 15,7970 0,3944 0,4043
mdb015 9,5312 58,8699 18,2513 0,4691 0,5141
mdb022 9,1291 63,1542 20,9580 0,4151 0,4696
mdb016 8,9679 62,3269 21,3958 0,4968 0,5562
mdb030 10,8231 56,8490 18,1996 0,4010 0,4445
mdb024 10,3622 59,6175 20,0850 0,4829 0,6798
mdb013 10,8345 56,1063 17,9015 0,4597 0,5060
mdb028 9,5444 58,1480 19,9404 0,4503 0,5250
mdb011 10,6881 55,9880 17,0401 0,4837 0,5275
mdb021 7,9701 65,5744 21,7004 0,6209 0,6883
mdb026 8,0215 65,9638 21,6968 0,5710 0,7035
mdb014 10,9179 54,0942 17,2083 0,4055 0,4579
mdb027 9,8156 57,7282 18,3058 0,5181 0,5290
mdb023 9,5800 60,8583 19,8149 0,5811 0,6247
mdb025 7,2429 70,9550 22,7612 0,6303 0,6736
mdb029 10,5374 57,8696 19,8880 0,4934 0,6114
mdb020 7,6032 66,4730 22,1870 0,6195 0,6663
mdb019 6,8303 69,9715 22,7409 0,7022 0,7420
mdb012 9,2900 57,0516 18,4181 0,5491 0,6041
average 9,6659 60,0336 19,5474 0,5053 0,5661
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Table 7.45: Quadtree time results, th=10, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb017 26,3706 37,1654 11,5534 0,2343 0,2678
mdb018 26,8879 37,0656 11,7144 0,2040 0,2159
mdb015 22,1277 39,9954 12,3287 0,3011 0,3028
mdb022 25,0379 36,5132 11,7848 0,2909 0,2505
mdb016 22,6145 39,3169 12,2291 0,2735 0,3036
mdb024 27,6101 37,3523 11,4924 0,2617 0,3226
mdb013 26,6096 38,6240 12,4492 0,3151 0,3477
mdb030 28,1199 38,6048 12,2191 0,2161 0,2439
mdb011 25,1759 38,9874 13,1545 0,3359 0,3616
mdb014 27,3348 38,9272 12,1760 0,2751 0,2994
mdb027 27,3894 36,2991 12,0201 0,2981 0,3220
mdb012 21,3910 41,9692 13,4000 0,3507 0,3709
mdb028 26,1194 39,1774 12,5019 0,2905 0,2906
mdb029 22,9810 42,9661 13,1912 0,3775 0,3865
mdb023 24,4572 38,3455 12,0063 0,3343 0,3440
mdb021 19,9292 39,1341 12,8290 0,4043 0,3402
mdb026 22,9810 36,9170 12,1176 0,2884 0,3201
mdb025 20,6602 38,5192 12,5241 0,3114 0,3356
mdb020 20,8065 39,3660 12,4556 0,2924 0,3192
mdb019 18,5786 38,9342 13,2391 0,3465 0,3800
average 24,1591 38,7090 12,3693 0,3001 0,3162
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Table 7.46: Quadtree time results, th=15, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb017 39,3750 25,3548 8,3442 0,1076 0,1155
mdb018 42,2039 24,0785 8,2094 0,0882 0,0903
mdb011 34,9864 36,4457 11,2891 0,2876 0,2931
mdb022 45,8254 24,7391 8,2728 0,0729 0,0867
mdb024 40,7404 25,6837 9,3983 0,1297 0,1509
mdb013 40,6197 35,1864 10,8473 0,1978 0,2172
mdb015 38,3111 36,5776 11,0377 0,1912 0,2101
mdb012 28,8498 36,7503 11,6511 0,2452 0,2667
mdb016 45,0719 29,5134 8,5050 0,0983 0,1374
mdb030 44,2474 24,7224 8,5107 0,0891 0,1003
mdb014 41,3134 35,2952 11,0939 0,2673 0,2419
mdb023 36,8685 26,0991 9,9939 0,1453 0,1602
mdb021 32,8090 26,1417 9,8579 0,1887 0,1689
mdb027 45,6727 24,3757 8,4913 0,1108 0,1219
mdb029 32,1422 26,4482 9,1558 0,1534 0,1882
mdb028 44,2951 24,5433 8,7112 0,1127 0,1096
mdb026 44,8263 24,4037 8,5478 0,0992 0,1253
mdb020 34,7792 25,8680 9,2257 0,1553 0,1475
mdb025 38,4904 27,1333 8,9953 0,1451 0,1451
mdb019 31,6719 24,7686 9,0729 0,1680 0,1687
average 39,1550 28,2064 9,4606 0,1527 0,1623
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Table 7.47: Quadtree time results, th=20, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb017 47,5750 24,6530 8,2775 0,0937 0,1006
mdb018 58,0527 23,3710 7,9728 0,0530 0,0549
mdb011 39,7942 25,3385 8,6747 0,1382 0,1557
mdb013 48,7596 24,6261 8,6269 0,1237 0,1239
mdb012 32,4979 26,2955 9,0606 0,1416 0,2106
mdb029 38,1689 27,3538 9,6022 0,1535 0,1628
mdb024 48,0194 24,3637 8,4987 0,1232 0,1182
mdb023 43,5908 25,4881 8,5132 0,1233 0,1308
mdb015 49,4635 24,8725 8,5422 0,1220 0,1336
mdb030 67,5956 25,3206 7,8998 0,0498 0,0546
mdb014 48,8755 25,5442 8,7061 0,1173 0,1059
mdb022 76,2434 23,3346 8,1544 0,0615 0,0620
mdb027 56,7703 25,8779 8,0336 0,1005 0,1031
mdb016 65,9689 24,0041 7,8216 0,0658 0,0744
mdb028 61,4352 23,9185 8,0756 0,0849 0,0788
mdb021 42,1174 25,8823 8,4659 0,1266 0,1325
mdb020 42,9982 24,2874 8,5881 0,1229 0,1401
mdb026 60,0886 24,8770 8,5202 0,0894 0,0911
mdb025 51,4437 24,8292 8,5983 0,1334 0,1181
mdb019 40,7808 25,5753 8,3568 0,1347 0,1405
average 51,0120 24,9907 8,4495 0,1080 0,1146
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Table 7.48: Quadtree time results, th=30, min block size=2, max block size=16

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb018 75,4046 21,5154 7,1439 0,0353 0,0385
mdb017 63,0362 22,0465 7,2160 0,0678 0,0712
mdb011 45,4204 24,3223 8,5238 0,1237 0,1143
mdb013 57,0064 21,3145 6,9290 0,1061 0,0939
mdb029 44,2474 26,0284 8,5977 0,1089 0,1168
mdb014 57,6457 21,2754 6,9327 0,0804 0,0842
mdb012 35,7157 24,2012 7,9864 0,1090 0,1192
mdb015 71,4727 21,8492 7,3282 0,0680 0,0738
mdb024 59,9135 23,4260 7,3557 0,0679 0,0770
mdb030 99,9691 22,1358 6,8947 0,0283 0,0276
mdb027 64,1174 24,0437 7,4923 0,0727 0,0752
mdb016 83,1840 21,7600 7,0269 0,0584 0,0664
mdb023 59,8263 24,4197 7,5481 0,0825 0,0926
mdb022 107,8338 22,5429 6,9750 0,0180 0,0221
mdb021 50,4961 25,2199 8,8174 0,1086 0,1301
mdb028 74,9920 21,3113 6,9897 0,0631 0,0534
mdb020 52,3607 24,4228 8,4268 0,1048 0,1038
mdb026 70,7350 22,8753 8,0884 0,0689 0,1008
mdb025 61,5271 23,5980 7,4474 0,1067 0,1143
mdb019 50,0048 25,3160 8,6153 0,1439 0,1197
average 64,2455 23,1812 7,6168 0,0812 0,0847
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Table 7.49: Quadtree time results, th=2, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 13,8252 32,2289 16,9641 0,6362 0,5128
mdb012 12,5931 45,3627 16,6976 0,3234 0,4769
mdb013 13,5384 39,1441 16,1045 0,4010 0,4812
mdb014 12,5126 44,6101 16,8006 0,3403 0,3844
mdb015 15,2732 37,3314 15,2328 0,3718 0,4516
mdb016 14,3461 39,3915 16,5728 0,4231 0,4667
mdb017 17,6307 34,0135 14,2084 0,2902 0,3016
mdb018 17,6231 33,3559 14,1807 0,2290 0,2639
mdb019 11,1974 47,7806 17,5116 0,3078 0,3363
mdb020 11,6610 44,4809 17,3377 0,3831 0,4242
mdb021 12,7730 41,4924 17,0176 0,3256 0,3725
mdb022 14,5491 37,4761 15,3979 0,2619 0,2743
mdb023 11,9839 45,3124 17,0676 0,3522 0,3974
mdb024 12,8009 42,4072 16,6655 0,3515 0,3139
mdb025 11,1791 46,6804 17,1837 0,3324 0,3526
mdb026 11,7880 43,4259 16,8135 0,3405 0,3282
mdb027 11,2341 44,6377 18,7187 0,4269 0,3775
mdb028 11,2896 45,9657 17,4930 0,2390 0,2889
mdb029 13,4675 40,3979 15,4422 0,3686 0,4312
mdb030 14,1877 39,0994 15,3925 0,2675 0,2864
average 13,2727 41,2297 16,4401 0,3486 0,3761
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Table 7.50: Quadtree time results, th=5, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 16,0419 36,2734 14,4811 0,3920 0,3693
mdb012 14,2714 38,9967 15,1370 0,3764 0,4343
mdb013 15,5917 36,5239 15,0996 0,3608 0,4049
mdb014 15,2846 36,7892 14,9164 0,3198 0,3380
mdb015 15,9795 34,8419 14,5176 0,3173 0,4118
mdb016 15,4164 36,1057 14,7893 0,4008 0,4392
mdb017 18,5870 33,7843 13,6785 0,2691 0,2990
mdb018 18,5618 32,5999 13,8153 0,2637 0,2719
mdb019 12,4936 42,3483 16,5757 0,3668 0,4157
mdb020 13,1741 40,5393 16,3427 0,2971 0,3351
mdb021 14,3862 38,1650 15,7119 0,3119 0,3656
mdb022 15,5387 37,2182 15,0518 0,2312 0,2558
mdb023 15,0386 37,9388 15,2487 0,2981 0,3412
mdb024 15,4337 36,3680 14,7902 0,2360 0,2748
mdb025 12,8932 39,8623 16,3708 0,3021 0,3377
mdb026 13,8345 40,5416 17,3442 0,2802 0,3208
mdb027 14,6008 37,8142 15,5196 0,3494 0,3770
mdb028 14,8218 38,0068 15,1946 0,2525 0,2831
mdb029 15,9609 35,9158 14,4102 0,3351 0,3831
mdb030 15,8685 34,9438 14,6765 0,2440 0,4165
average 15,1889 37,2789 15,1836 0,3102 0,3537
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Table 7.51: Quadtree time results, th=10, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 21,9271 29,8791 13,8958 0,3607 0,4337
mdb012 20,9230 30,4835 13,1154 0,3200 0,3377
mdb013 22,2474 28,9225 12,7413 0,3419 0,3772
mdb014 22,6269 29,2142 12,7478 0,3075 0,3474
mdb015 20,6706 29,8230 13,1196 0,3453 0,3749
mdb016 20,3534 30,5850 13,5815 0,2997 0,3967
mdb017 22,5031 29,6156 13,9200 0,2954 0,2919
mdb018 22,4785 28,5448 12,6036 0,2153 0,2414
mdb019 19,1051 32,2404 14,1299 0,3739 0,4124
mdb020 20,1046 30,1419 13,0402 0,3292 0,3257
mdb021 19,7001 30,5997 13,3683 0,2966 0,3272
mdb022 20,6291 29,6119 13,1980 0,2699 0,2770
mdb023 21,2363 32,1768 12,7588 0,3101 0,3493
mdb024 22,4662 29,6522 13,1019 0,2714 0,2842
mdb025 20,4445 30,9662 12,9878 0,3794 0,3434
mdb026 20,8065 29,8694 13,1348 0,2952 0,3384
mdb027 22,6893 27,7771 12,8192 0,3289 0,3533
mdb028 22,4662 29,7435 12,9960 0,2687 0,2957
mdb029 21,7416 30,6723 12,7977 0,2840 0,3250
mdb030 22,6768 29,0186 12,7751 0,2285 0,2918
average 21,3898 29,9769 13,1416 0,3061 0,3362
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Table 7.52: Quadtree time results, th=15, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 25,2998 27,6985 12,1606 0,2997 0,3418
mdb012 24,3126 27,1807 12,3751 0,3153 0,3163
mdb013 25,7433 27,1030 12,1893 0,3099 0,3813
mdb014 26,0532 26,4157 11,9570 0,2418 0,2845
mdb015 25,1913 28,4627 12,3003 0,3536 0,3693
mdb016 25,7111 26,8301 12,4751 0,2272 0,2450
mdb017 25,6470 27,6203 12,4665 0,2311 0,2573
mdb018 25,5513 27,2596 12,7017 0,1819 0,2033
mdb019 24,3126 28,1706 13,1486 0,4062 0,4469
mdb020 25,0991 28,2267 12,6120 0,3057 0,3501
mdb021 24,7964 28,5616 13,5287 0,3162 0,4214
mdb022 25,8729 27,7569 14,0045 0,2334 0,2426
mdb023 25,5513 28,8175 13,0712 0,3180 0,3324
mdb024 26,3706 28,4854 12,7003 0,2970 0,2680
mdb025 25,4564 29,3033 12,9707 0,2764 0,3144
mdb026 26,3200 27,3225 12,6150 0,2475 0,2998
mdb027 26,8353 27,0449 12,3438 0,2599 0,2902
mdb028 26,2193 27,3942 12,7537 0,2196 0,2432
mdb029 24,3126 28,5644 12,9300 0,3194 0,3529
mdb030 25,9545 28,1456 12,0043 0,2455 0,2315
average 25,5305 27,8182 12,6654 0,2803 0,3096
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Table 7.53: Quadtree time results, th=20, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 26,4725 27,4362 11,9369 0,3171 0,3523
mdb012 25,3466 27,6351 12,5849 0,2867 0,2828
mdb013 27,3166 27,3259 12,7566 0,3675 0,3608
mdb014 27,1006 27,4772 12,1156 0,2636 0,2965
mdb015 26,7829 27,9488 12,8087 0,3080 0,2987
mdb016 28,1007 26,2142 12,8920 0,2451 0,2751
mdb017 26,5752 27,2012 12,2658 0,3252 0,2532
mdb018 26,7480 26,1772 13,1985 0,1751 0,2089
mdb019 26,3200 27,7285 12,8949 0,3343 0,3713
mdb020 26,8003 26,3814 12,6853 0,2483 0,2803
mdb021 26,4896 27,3508 13,1538 0,3022 0,3611
mdb022 28,8904 26,2782 12,1043 0,2338 0,2393
mdb023 26,8353 26,4004 11,5612 0,2399 0,2686
mdb024 27,3894 24,8242 11,6617 0,2582 0,2539
mdb025 27,3894 26,1706 11,6171 0,2439 0,2653
mdb026 28,0623 24,7793 11,3699 0,2387 0,2548
mdb027 28,0241 24,9212 11,6105 0,2392 0,2636
mdb028 28,0432 24,6969 11,5308 0,1942 0,2186
mdb029 25,9709 25,5430 11,8143 0,2906 0,3163
mdb030 27,9859 26,2211 11,4630 0,1698 0,1937
average 27,1322 26,4356 12,2013 0,2641 0,2808
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Table 7.54: Quadtree time results, th=30, min block size=4, max block size=8

name
Compression

Rate
encoding

time
decoding

time

aritmetic
encoding

time

aritmetic
decoding

time
mdb011 26,9232 25,3162 11,6340 0,2906 0,2805
mdb012 25,7756 25,5900 11,7968 0,2351 0,2628
mdb013 27,9479 24,6794 11,9827 0,2923 0,3279
mdb014 27,9669 25,6325 11,5197 0,2966 0,3198
mdb015 28,6488 25,7052 11,5518 0,2796 0,3038
mdb016 29,3230 25,7618 11,3426 0,2075 0,2304
mdb017 27,6844 24,7612 11,4268 0,2342 0,2385
mdb018 27,7218 25,2018 11,5540 0,1754 0,1734
mdb019 27,4259 25,2713 12,3390 0,2767 0,3257
mdb020 27,4993 27,6718 12,4871 0,2534 0,2741
mdb021 27,4259 26,7068 13,5044 0,2875 0,3334
mdb022 29,9859 26,6996 11,9012 0,2273 0,2168
mdb023 28,1007 26,2754 11,9577 0,2895 0,2899
mdb024 28,0623 27,0590 11,7871 0,1970 0,2208
mdb025 28,2357 25,3538 12,1443 0,2392 0,2561
mdb026 28,6888 25,2670 11,7674 0,2263 0,2438
mdb027 28,3330 26,1887 11,9897 0,2456 0,2874
mdb028 28,9107 25,6579 12,0578 0,1891 0,2121
mdb029 26,8353 27,2081 12,6635 0,2889 0,3145
mdb030 29,5124 27,4175 11,7419 0,1943 0,2143
average 28,0504 25,9713 11,9575 0,2463 0,2663

Figure 7.19: mdb014
Quadtree based recon-
structed image,max block
size=16,min block size=2,
th=10, CR=40,315812,
PSNR=43,801308,
MSE=0,000093,
ssim=0,956746

Figure 7.20: mdb014
Quadtree based recon-
structed image, max block
size=8, min block size=2,
th=10, CR=18,503357,
PSNR=41,885735,
MSE=0,000065,
ssim=0,965658

Figure 7.21: mdb014
Quadtree based recon-
structed image, max block
size=8, min block size=4,
th=10, CR=27,100589,
PSNR=31,111927,
MSE=0,000774,
ssim=0,952584

Figure 7.22: Block size effect on Quadtree base reconstruct image at th=10
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Figure 7.23: Main
mdb025 Image, size
256× 256

Figure 7.24: mdb025 Re-
construct image by 2 × 2
Block size, CR=1,882353,
PSNR=47,6,
MSE=0,000017,
ssim=0,991013

Figure 7.25: mdb025 Re-
construct image by 4 × 4
Block size, CR=7,529412,
PSNR=34,7654,
MSE=0,000334,
ssim=0,933879

Figure 7.26: mdb025
reconstructed im-
age by 8 × 8 block
size, CR=30,117647,
PSNR=31,364375,
MSE=0,000227,
ssim=0,936326

Figure 7.27: mdb025
reconstructed image
by 16 × 16 block
size, CR=120,470688,
PSNR=31,4839,
MSE=0,000711,
ssim=0,8756

Figure 7.28: Effect of increasing block size
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Figure 7.29: mdb014
Quadtree based recon-
structed image,max block
size=16,min block size=2,
th=2, CR=3,741867,
PSNR=47,483093,
MSE=0,000018,
ssim=0,989665

Figure 7.30: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=2,
th=2, CR=3,615212,
PSNR=47,405836,
MSE=0,000018,
ssim=0,989941

Figure 7.31: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=4,
th=2, CR=11,179147,
PSNR=33,0104,
MSE=0,0005,
ssim=0,932125

Figure 7.32: mdb014
Quadtree based recon-
structed image,max block
size=16,min block size=2,
th=10, CR=20,660171,
PSNR=39,437701,
MSE=0,000114,
ssim=0,937867

Figure 7.33: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=2,
th=10, CR=16,073209,
PSNR=40,30966,
MSE=0,000093,
ssim=0,947031

Figure 7.34: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=4,
th=10, CR=20,444462,
PSNR=32,989134,
MSE=0,000502,
ssim=0,932002

Figure 7.35: mdb014
Quadtree based recon-
structed image,max block
size=16,min block size=2,
th=20, CR=51,443654,
PSNR=35,395715,
MSE=0,000289,
ssim=0,897822

Figure 7.36: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=2,
th=20, CR=24,240889,
PSNR=39,411749,
MSE=0,000115,
ssim=0,941273

Figure 7.37: mdb025
Quadtree based recon-
structed image, max block
size=8, min block size=4,
th=20, CR=27,389405,
PSNR=33,01774,
MSE=0,000499,
ssim=0,933205

Figure 7.38: Affect of image compression based on Quadtree method, on breast
fibroadenoma image(zoom part) by different thresholds
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Chapter 8

Conclusion

In this paper, a new Mammography Compression Method Based on Classied

Energy and Pattern Building Block (CEPB) sets is proposed. In the method, first

the CEB and CPB sets are constructed and any image data can be reconstructed

block by block using a block scaling coefficient and the index numbers of the

classified energy and pattern blocks placed in the CEB and CPB.

The CEB and CPB sets are constructed for different sizes of image blocks

such as 2 by 2, 8 by 8 or 4 by 4 with respect to different compression ratios

desired.

Reconstructing of Image has been done based on 2 different method.

• fix block size Encoding and decoding

• Quadtree based encoding and decoding

the medical images have to be very accurate and details in Mammography image

are related to image quality sensitively. The satisfying level of the distortions for

medical images was mentioned in Chapter4.

At the end of a series of the experimental works, the evaluation results show

that the proposed method provides high compression ratios while preserving the

image quality . When the compression ratio versus image quality. Moreover,
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Results by Quadtree shows better compression ratio than fixed size block method.

The experiments proved that the proposed method can obtain the level (PSNR =

30− 47dB). Furthermore, an image of this quality is compressed at compression

ratio about (120 : 1, 1, 8 : 1) for fixed block size. By increasing block sizes

Compression ratio, arithmetic compression ratio and MSE increase, and PSNR,

SSIM decrease. The best results in this part has been seen in (4, 8) block sizes.

The results for different images have near values to each other. Also, as time

values that checked in this method encoding, decoding, arithmetic encoding and

arithmetic decoding times has been measured too. Again, we have same near

values too. The most used time is related to encoding part that the average

values change between 117-27s. Average decoding time changes between 27-0,4 s

for (2, 16) block sizes. One of the most important issues about this thesis is the

showing different aspects of images values that all details about image quality

and time information in this process is available and has been shown.

In the other hand, as Quadtree method it shows the huge increase in PSNR

and Compression rate quality. Thus, the use of Quadtree method reduces the file

size more that the first step. Moreover, this method is about two times efficiently

than the lossless compression methods specially in low thresholds for quadtree

(compression ratios not larger than 4 : 1). At compression ratios from 4,9 : 1 to

24 : 1 the PSNR varies from 40 dB to 47 dB for 2-16 block size. One of the most

important aspects of thesis is searching both threshold and block sizes affect on

image compression.

All values for image compression in threshold values by 2, 5, 10, 15, 20, and 30

has been shown for

• min block size = 2, max block size=8,

• min block size = 2, max block size=16,

• min block size = 2, max block size=4.

The average compression value for
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• min block size = 2, max block size=8 is about 17.04

• min block size = 2, max block size=16 is about 24,16

• min block size = 2, max block size=4 is 21,38.

PSNR values changes minimally in this method and near to each other. for

example in

• min block size = 2, max block size=8 in threshold=10 is 41,46

• min block size = 2, max block size=16 is 40,4

• min block size = 2, max block size=4 is 45,53

SSIM and MSE values change have been shown too.

Time results has been shown in this part too. we have decreasing in this values

specially in encoding time that is higher in fixed block size method.

The accuracy of method is high as quadtree method has been chosen and most

aspects of quadtree and the impact of it in image has been shown for different max

and min block size in quadtree and the affect of Threshold increasing in different

block size has been shown too. By this way it would be so easy to choose the best

Threshold and max and min block sizes in future tasks. It should be mention

that mammography images for different patient are so near to each other and

important details are very small to sense in images. This method by this quality

can perform very important role in medical image compression, as details that

can be seen in mammography is not visible in ultrasound or MRI images. The

good compression can play important role to used these images easily in hospitals

PACS system to compare them.

For the time being, the performance of the newly proposed method is mea-

sured using PSNR, MSE, SSIM metrics that SSIM part is newer.

In our future works we will be focused on better designed CEB and CPB in

order to increase the level of the PSNR while reducing the number of bits required
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representing the image blocks. Moreover, the methods that can search on better

performance as time issues aspect . In the other hand it would be great to search

about methods that can apply as post process after decoding in order to image

quality as enhancement such as using filtering method as Savitzky-Golay filter.
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