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IŞIK UNIVERSITY

2017



ENHANCEMENT OF THE CODED SPEECH USING

FILTERING
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IŞIK UNIVERSITY

2017
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SALİH SİNAN TAYLAN

APPROVED BY:
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FILTERING

Abstract

The processing and storage of speech signals are widely implemented in modern

communication systems. Decreasing the amount of information for modeling the

reconstruction of speech signal enhances the transmission and storage capacity of

the system.

It is important to compress speech without losing its important properties during

transmission or reconstruction independently from the speaker and speech sig-

nals itself. However, some losses inevitably occur in every compression process.

Increasing the compression ratio results in increased losses. Speech enhancement

algorithms may be used to enhance strongly compressed speech signals for better

intelligibility and quality. The purpose of this study is to enhance speech with

healing algorithms that compress speech signals while reducing background noise.

The SYMPES [1][2][4] algorithm used in this study compresses data resulting

in lesser loss than other known compression algorithms. As a result of the com-

pression, noise occurs in the background. The type of the noise cannot be classi-

fied. Attempts have been made to reduce these background noises (distortions)

by using different methods of speech enhancement algorithms. More than ten

speech enhancement algorithms have been investigated and implemented. Two

algorithms with the best-enhanced sound output were determined and compared.

One of them, Spectral Subtraction Algorithm, was applied via a geometric ap-

proach, which was investigated in 2008 by Yang Lu and Philipos C. Loizou [3].In

this algorithm, a noise spectrum is subtracted from the noisy speech signal and

then a clean signal spectrum is obtained. Moreover, in the absence of the signal,

the noise spectrum can be updated and predicted. This approach expressed that

the noise spectrum is not significantly different between update periods and is

a noisy cum stationary or slowly changing process. Forward and inverse Fourier

transforms are used in the algorithm; hence, the algorithm is quite simple. How-

ever, the simple subtraction algorithm is a costly operation. Subtraction must be

done with extreme caution to avoid any speech distortion.
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iiiIf too many subtractions are made, some speech information may be removed from

the center; if too little is subtracted, it can be observed that a clear majority of

the intervening noises are still present. The other speech enhancement method is

a statistical model based algorithm. This statistical speech enhancement method

involves predicting the statistic of a clean and noisy signal for a sample. In other

words, if a speech signal is distorted with a statistically independent noise, the

marginal probability distributions of the clean speech and noise signal must be

clearly known. In this model-based statistical method, signal and noise statistics

are estimated primarily from the speech and noise content. An optimal solu-

tion is obtained using statistical models and it is then used in conjunction with

distortion measures to solve the existing speech enhancement problem. In this

approach, different techniques have been applied to parameterize speech signals

such as autoregressive moving average (ARMA), autoregressive (AR), or moving

average (MA). Three prediction rules known as the maximum probability (ML),

maximum posterior (MAP), and minimum mean square error (MMSE) are used

in this approach and have many desirable features to estimate the parameters

of the speech signal. ML is used for the maintenance of non-random parame-

ters. The estimation methods MAP and MMSE are used for known parameters

of the previously known density function, which can be examined in advance as

a random variable. For the speech signal, this model uses the MAP estimation

approach, assuming a time-varying AR model for speech enhancement in which

both the model and signal are estimated from the noisy signal.

However, since the waveform of the speech signal is distorted as a result of the

signal improvement, the SNR results are not found very healthy. Therefore, the

results are evaluated by the Mean Opinion Score (MOS) test. A subjective test

based on MOS is also carried out on some selected utterances. The results of the

subjective test are also compared with those of the objective test to determine

the most appropriate objective measure for the evaluation of speech enhancement

algorithms. The strengths and weaknesses of the various algorithms are analyzed

and compared. Quality has been shown in detailed graphs that can be measured

and smoothed using the MOS, which defines the quality of speech by a listener

on a scale of 1 to 5.

Keywords: Speech enhancement, spectral subtraction, statistical model

based



FİLTRELEME KULLANARAK KODLANMIŞ SESİN

İYİLEŞTİRİLMESİ

Özet

Bu çalışma konuşma işaretini sıkıştırıp, arka plan da yer alan gürültünün in-

dirgenmesini sağlayan iyileştirme algoritmaları sayesinde arka plandaki gürültü

temizlenmesi hedeflenmiştir. Kullanılan sıkıştırma algoritması SYMPES’ in temel

amacı ifade edilmek istenirse; konuşma işaretlerinin işlenmesi, depolanması mod-

ern iletişim sistemlerinde oldukça önem taşımaktadır.

Özellikle konuşma işaretlerinin modellenmesi ya da yeniden oluşturulması sonu-

cunda, gerekli bilgi miktarının azaltılması, sayısal konuşma işaretlerinin depolan-

masını ve iletilmesini sağlayan sistemlerin kapasitesi ses verisi sıkıştırması sayesin-

de belirgin bir şekilde artmaktadır. Ancak bundan dolayı bir takım veri kaybı

olmakta ya da arka plan da gürültü oluşmaktadır.

Bu sıkıştırma algoritmalarında temel amaç; konuşma iletiminin ya da konuşmanın

yeniden oluşturulmasında konuşma işaretinin kendisinden ve konuşmacıdan bağım-

sız ve bilginin önemli özelliklerini kaybetmeden yüksek sıkıştırma oranları ile

oluşturmasıdır. Bu çalışma da kullanılan SYMPES algoritması da diğer bilinen

sıkıştırma algoritmalarına oranla daha az veri kaybı ile sıkıştırma yapmaktadır.

Yine de sıkıştırma sonucunda, arka planda birtakım gürültüler olmaktadır. Bu

gürültü diğer bir adı ile bozulmalar ses iyileştirme algoritmalarının farklı metot-

ları kullanarak minimize edilmeye çalışılmıştır. Araştırılan bu ses iyileştirme al-

goritmalarından gürültü kaynığının belli olmadığında arka plan gürültüsü için en

sağlıklı sonuçları veren iki algoritma önerilmiş: Spektral Çıkarma Algoritması ve

İstatistiksel Tabanlı Model metodudur. Bu metotlar arasındaki karşılaştırmalar

yapılmıştır.

Spektral Çıkarma Algoritması’nı özetlemek istersek; ses sinyaline karşılık, ek

gürültü düşünüldüğünde, gürültülü ses spektrumundan bir gürültü spektrumu

çıkartılarak, temiz bir sinyal spektrumun bir tahminin elde edilir. Gürültü spec-

trumu yokluğunda sinyal güncellenebilir ve tahmin edilebilmektedir. Bu yaklaşım,

gürültü spektrumunun güncelleme dönemleri arasında önemli ölçüde farklı ol-

madığını ve gürültülü durağan veya yavaş yavaş değişen bir süreç olduğunu özetler

iv



v
niteliktedir. İleri ve ters Fourier dönüşümleri algoritmada kullanılır. Bu ne-

denle algoritma oldukça basittir. Basit çıkarma algoritması maliyetli bir işlem

olduğudan dolayı çıkarma işlemi, herhangi bir konuşma bozulmasını önlemek için

çok dikkatli yapılmalıdır. Çok fazla çıkarma yapılırsa, bazı konuşma bilgileri

ortadan kaldırılabilir. Ancak çok az çıkarılırsa, araya giren gürültünün büyük

çoğunluğu kalabildiği gözlemlenmiştir. Buna ek olarak, bazı durumlarda spektral

çıkarmadan kaynaklanan konuşma bozukluklarının çoğu kaldırılmıştır.

Diğer bir yaklaşım ise istatistiksel model tabanlı algoritmalardır. Bu istatistiksel

konuşma geliştirme metodu, temiz ve gürültülü sinyalin ortak istatistiklerini net

bir şekilde bilinmesini ve konuşma sinyalleri için algısal bir bozulma önlemi gerek-

tiren belirli bir örnek fonksiyonu için gürültülü bir sinyalin temiz bir sinyalinin

tahmin edilmesi yaklaşımıdır.Diğer bir ifadeyle, eğer konuşma sinyalleri istatistik-

sel olarak bağımsız bir gürültüyle bozulursa, temiz konuşma ve gürültü sinyalinin

marjinal olasılık dağılımları açıkça bilinmesi gereklidir.

Bu model tabanlı istatiksel metotta, sinyal ve gürültü istatistikleri öncelikle konuş-

ma ve gürültü içeriğinden tahmin edilir. Optimal çözüm, istatistiksel modeller

kullanılarak elde edilir ve daha sonra mevcut konuşma geliştirme problemini

çözmek için bozulma önlemleri ile birlikte kullanılır. Bu yaklaşımda, otoregre-

sif hareketli ortalama (ARMA), otoregresif (AR) veya hareketli ortalama (MA)

gibi konuşma sinyallerini parametreleştirmek için farklı teknikler bu yaklaşımda

uygulanmıştır. Ayrıca, maksimum olasılık (ML), maksimum posteriori (MAP)

ve minimum ortalama karesel hata (MMSE) olarak bilinen üç tahmin kuralının,

konuşma sinyalinin parametrelerini tahmin etmek için birçok istenen özelliklere

sahip olduğu için bu yaklaşımda kullanılmıştır. ML rasgele olmayan parame-

trelerin bakımı için kullanılmıştır. Tahmin yöntemleri olan MAP ve MMSE,

önceden rastgele değişken olarak incelenebilen önceden bilinen yoğunluk fonksiy-

onunun bilinen parametreleri için kullanılmıştır. Konuşma sinyali için, bu model

hem gürültülü sinyalden hem modelin hem de sinyalin tahmin edildiği konuşma

geliştirme için zamanla değişen bir AR modeli varsayarak, MAP tahmini yaklaşımı

kullanılmıştır.

Bununla birlikte, sinyal gelişiminin sonucu olarak ses sinyalinin dalga biçimi

bozulduğundan, SNR sonuçları çok sağlıklı bulunmadığından, elde edilen sonuçlar



viMean Opinion Score (MOS) testi ile değerlendirilir. Bazı seçilmiş konuşmalar

üzerinde MOS temelli öznel bir test gerçekleştirilir.

Konuşma geliştirme algoritmalarının değerlendirilmesi için en uygun objektif önle-

mi belirlemek için öznel testin sonuçları da objektif test ile karşılaştırıldı. Çeşitli

algoritmaların güçlü ve zayıf yönleri analiz edilir ve karşılaştırılır. Kalite, bir

dinleyicinin konuşmanın kalitesini 1’den 5’e çıkardığı ‘Mean Opinion Score’ testi

(MOS) kullanılarak ölçülebilir ve gürültünün temizlendiğine dair ayrıntılar grafik-

lerle gösterilmektedir.

Anahtar kelimeler: ses iyileştirme, spektral çıkarma, istatistiksel model
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Chapter 1

Introduction

1.1 Speech Enhancement

Speech enhancement involves developing some perceptual aspects of reduced

speech with additional noise. The purpose of implementing speech enhancement

is to ensure better quality speech with increased intelligibility.

The requirement to improve the quality of speech signals occurs in many cases.

For instance, when communication in a channel is interrupted by noise or a lis-

teners sensation level is affected by long-term, high-level noise or when a speech

signal is compressed, as in this study. Speech enhancement algorithms sometimes

referred to as noise suppression algorithms, reduce or prevent background noise

to a certain degree[6][7][8].

Some general areas exist wherein speech enhancement algorithms are employed.

Voice communication through cellular telephones processed by preprocessors in

speech coding systems employed in mobile phone standards to prevent back-

ground noise from the environment, such as cars and restaurants. Furthermore,

noise recognition devices nowadays cell phones use speech enhancement algo-

rithms usually on a remote server. Moreover, in an air-ground communication

scenario, a pilots speech that has been distorted by exceptionally high levels of

cockpit noise must be processed using speech enhancement techniques to increase

intelligibility. Similarly, it is desirable to improve the intelligibility of the speech

quality in military operations. Finally, hearing impaired listeners who use hear-

ing assistances have great difficulty in communicating in noisy areas, and speech

1



enhancement algorithms are used to pre-process and thus ”clear” the noisy signal

before amplification.

It is possible to decrease background noise with speech enhancement algorithms,

but it may also distort speech intelligibility as well as induce speech corrup-

tion. Therefore, the primary challenge in designing efficient speech enhancement

algorithms is to prohibit noise without introducing any obvious distortions in

the signal. The performance of speech enhancement algorithms may be affected

by the number of microphones that are used. Typically, when the number of

microphones increase, speech development tasks become easier. Adaptive noise

cancellation techniques can be used when at least one microphone is located near

the noise source. This method focuses on speech enhancement signals reduced

by statistically uncorrelated additive noise. The enhancement algorithms defined

in this work can be used in a variety of noise conditions; thus, the signals are

not restricted to any particular noise signal. The purpose of this study is to en-

hance speech with healing algorithms that compress speech signals and reduce

background noise.

One of them, Spectral Subtraction Algorithm, was applied via a geometric ap-

proach which was investigated in 2008 by Yang Lu and Philipos C. Loizou[3][6].

In this algorithm, a noise spectrum is subtracted from the noisy speech signal

and then a clean signal spectrum is obtained. Moreover, in the absence of signal,

the noise spectrum can be updated and predicted. This approach expressed that

the noise spectrum is not significantly different between update periods and is

a noisy plus stationary or slowly changing process. Forward and inverse Fourier

transforms are used in this algorithm; hence, the algorithm is quite simple. Nev-

ertheless, the simple subtraction algorithm is a costly operation; subtraction must

be done with extreme caution to avoid any speech distortion. If too many sub-

tractions are made, some speech information can be extracted from the center; if

too little is subtracted, it can be observed that a clear majority of the intervening

noises are still present.

The other speech enhancement method is a statistical model based algorithm.

This statistical speech enhancement method involves predicting the statistic of a

clean and noisy signal for a sample. In other words, if a speech signal is distorted

with a statistically independent noise, the marginal probability distributions of

2



the clean speech and noise signal must be explicitly known. In this model-based

statistical method, signal and noise statistics are estimated primarily from the

speech and noise content. An optimal solution is obtained using statistical models

and it is then utilized in conjunction with distortion measures to solve the existing

speech enhancement problem.

In general, the intention of this research is to examine, compare, and improve

speech enhancement algorithms with respect to quality and comprehensibility.

1.2 Literature Review: Speech Enhancement

Since the 1970s, several single microphone DSP strategies have been put forward

in the literature to enhance noisy speech and even eliminate the noises that are

possible in the rear. Loizou [6], a valued scientist who uses his work on speech

development to a significant extent, has made a detailed study of these algorithms;

he explores and presents compressed speech enhancement techniques in two major

works. By testing the most appropriate approach, the compressed audio signal is

optimally enhanced.

The following two important works are mentioned:

• Spectral Subtraction algorithms [3]

• Statistical model-based algorithms

Furthermore, in addition to these speech enhancement algorithms, the other two

algorithms mentioned are also named as follows:

• Wiener filtering algorithms

• Subspace algorithms

Briefly, the Spectral Subtraction Algorithm estimates the background noise spec-

trum and tries to extract it from the noisy speech frequency spectrum.

Statistical model-based algorithms work on speech enhancement by providing

statistical strategies to estimate and improve the speech frequency spectrum. In

3



Wiener filtering algorithm, the main goal is to search for an optimal filter that

decreases the mean square error (MSE) between the output and desired signal.

The subspace algorithm dissociates the distorted signal into signal and noise sub-

spaces, separating the noisy subspace as invalid.

Hu and Loizou [3] compare the performance of these different algorithms. Fur-

thermore, there are many more algorithmic variations associated with sound en-

hancement. For example, the algorithm used in the harmonic properties of speech

components. Active noise cancellation techniques are also available depending on

the dual microphone multiple microphones (microphone array). In this work,

noise cancellation methods have been investigated and applied only for the signal

recorded in a single microcontroller.

R. Martin et al.[9] pointed out in their research that the Gaussian statistical

model provides a good approximation of DFT coefficients for speech noises. How-

ever, this assumption, which is used in mobile communications for speech signals

whose specific DFT frame dimensions are too short (10-40 ms), is not fully im-

plementable. Only the approach of R. Martin and colleagues is valid if the DFT

frame size is much longer than the correlation interval of the considered signal.

Cohen et al.[10] have been working on methods that cannot take place at all

frequencies and at all times. The authors estimated the likelihood that speech

will not be seen in an individual frequency coefficient. In this approach, under the

Laplace model, the minimum mean square error (MMSE) dimension estimator

and the ambiguity of speech presence were defined and also considered as two

case models for speech conditions.

R. Martin et al.[9] suggest an estimator based on the real and imaginary parts of

the noisy signal observed, where the real and imaginary parts of the clean signal

in the MMSE are estimated. Nevertheless, this predictor is modeled with a com-

bination of clean signal and noise, Gaussian, Gamma and Laplace distributions,

although the optimum spectral amplitude estimate is not.

C. Breithaupt et al.[11] have indicated that the speech coefficients of Laplace

and Gamma using the intensities of the real and imaginary parts are greatly

modeled. This observation led to the recreation of the most appropriate MMSE

short-time spectral amplitude (STSA) estimator parallel to the investigator, but

it was found to depend on different models, i.e., Laplace and/or Gamma for more

4



accurate predictors. However, it is difficult for some people to look for alternative

techniques to calculate the MMSE STSA estimator to derive such an estimator.

Malah et al.[9] modeled speech and noise signal spectrum components as in-

dependent Gaussian random variables and statistically reproduced the MMSE

STSA estimator. The researchers compared the STSA estimator derived from

the Wiener estimator and analyzed the performance of the proposed STSA es-

timator. Researchers have also examined the MMSE STSA estimator under the

uncertainty of the presence of a noisy signal.

Y. Ephraim et al.[29] used the STSA estimator to derive speech signals that are

minimized by minimizing the mean square error of the log-spectra (i.e., the orig-

inal STSA and its estimator) and investigated the development of noisy speech.

This estimator was additionally compared with the related minimum mean square

error STSA estimator reproduced earlier.

Xuchu et al.[13] proposed an improved algorithm (fast noise tracking algorithm)

using the MMSE-LSA algorithm. In these approaches, it is observed that it

conforms better to individual sound environments than different traditional al-

gorithm from other speech enhancement approaches. The major part of this

method generates the exponential estimate, which is updated using the time-

frequency correction factors calculated based on the probability corresponding to

the speech in each frequency range of the noisy speech spectrum.

Israel Cohen et al. Get.[14] suggested a minimum recursive recursion average

(MCRA) for estimating noise signals. The noise estimate is established by taking

the average of the spectral power values in the past and using the smoothing

parameter set by the signal existence probability in the sub-bands. The noise

estimation in this study can be explained through its efficiency regarding com-

putation, its ability to follow up the change in input signal to noise ratio (SNR),

and its rapid contribution to noise, which is robust and noise spectrum

Gustafsson et al.[15] proposed to obtain a lower resolution spectrum to handle

the first number and divide the existing analysis frame into smaller subframes.

The individual spectra in each subframe are then averaged to obtain a lower

variance spectrum. Gustafsson et al.[15] suggested using the adaptive exponential

averaging to smooth out the gain function over time to account for the second

number. Moreover, because of the utilization of the zero-phase gain function to
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avoid noncausal filtering, Gustafsson and et al.[15] have proposed the introduction

of a linear phase in the gain function

1.3 Aim and Outline of Thesis

1.3.1 Aim of Thesis

Using of SYMPES algorithms for compression of speech output with a noisy sig-

nal. This signal is post-processed with speed enhancement algorithms to explain

the noise and increase the quality of the speech and intelligibility. This thesis

aims to compare several speech enhancement algorithms: Spectral Subtraction

Algorithm and Statistical based model to improve the distortion of the output of

SYMPES.

1.3.2 Outline of Thesis

In Chapter 2, the speech coding method that is expressed a new systematic pro-

cedure for modeling speech signals on ”Envelopes and Signature Sequences” as

named SYMPES that is defined general method definition and systematic process

is expressed step by step. In Chapter 3, the understanding the enemy as named

noised and type of noises are clarified. In Chapter 4, the speech enhancement

algorithms used in this study are specified and summarized in this section. In

chapter 5, the spectral subtraction algorithm is described in detail and explained

theoretically. In chapter 6, statistical model based method is given, and the

methods in it are mentioned. Furthermore, in estimation theory, necessary of the

techniques for obtaining nonlinear estimators; for instance, Bayesian estimators

(e.g., MMSE and maximum posterior estimators) and maximum likelihood esti-

mators (ML) are explained. In Chapter 7, briefly, information has been given

about subjective listener test that is named Mean Opinion Score Test. Also, the

algorithms were compared with used MOS test, and the averages obtained from

the test result is explained. Finally, Chapter 8 includes discussion and conclusion

of the thesis.
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Chapter 2

Speech Compression Modeling

New speech modeling methods under the name SYMPES (A new systematic

procedure for modeling speech signals on ”Envelopes and Signature Sequences”)

have been examined and compared to the methods described. It is stated that

the method achieves significantly better hearing quality for the same compression

rate or better for SYMPES.

In these methods, after examining the signals of the physical properties first,

special waveforms were found. These are the best-defined waveforms called Sig-

nature Base Functions. Signature Base Functions of speech signals are provided

by utilizing the energy suppression feature of principal component analysis (PCA)

[19]. PCA responds optimally to the processing used to least squares mean (LMS)

regarding minimizing the error. The method has introduced in this research, con-

siderably improved the results of by introducing the concept of Signal Envelope

in the representation of speech signals. In this way, the frame signal is shown as

the new mathematical form, Xi ≈ CiEiSR, where Ci is a real constant called the

gain factor, SR and EK are derived correctly. The previously defined signature

set and envelope set, or short names respectively, are named PSS and PES. This

method of PSS and PES, which are formed as research results, is independent of

the speaker and the spoken language. When the proposed modeling technique

is used for communication, the transmission bandwidth is significantly reduced.

When this method is used for digital recording, it is beneficial to store a wider

area.
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2.1 The Method of SYMPES

Two classes of images can be distinguished, analog and digital images. Both types

fall into non temporal multimedia type. The speech signal was examined on a

frame-by-frame basis.

Figure 2.1: Division of speech signals into frames

As shown in Figure 2.1, in this approach represents a selected frame. With

reference to to Figure 2.1, at any time for frame i, the sampled speech signal that

is given by the vector Xi of length of LF , can be approximated as Xi ≈ CiEiSR

where

• The gain factor Ci is denoted as a real constant, K ∈ {1, 2, ..., NE}, R ∈
{1, 2, ..., NS}; K, R, NE, and NS are expressed as integers.

• The signature vector SRT = [SR1SR2...SRF ] consists of R using the statistical

instance of the speech signals and broadly includes the properties of the

original frame. Furthermore, it has been shown that the amount quantity

CiSR carries almost max Xi energy, which means LMS.

• The EK is (LF by LF ) is a diagonal matrix as described as follows:

EK = diag[eK1eK2 . . . eKLF
] (2.1)

• EK is defined as an envelope term on the quantity CiSR.
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• LF as an integer which gives the total number of samples in the ith frame.

A long sampled speech signal sequence x(n) is written as:

x(n) =
N∑
i=1

xiδi(n− i) (2.2)

In the above equation, i(n) represents the unit example, and xi describes the

width of the sequence x(n) for the ith sample. The boundary condition is thought

to be N →∞ for very long parts of speech, x(n) can also be determined in vector

notation.

XT = [x(1) x(2) x(3) ... x(N)] = [x1 x2 ... xN ] (2.3)

X have is named the Main Frame Vector and it is has divided frames with equal

lengths., , such as 16, 24, 64, or 128 samples, etc. in this representation. The

Main Frame Matrix that is indicated by MF is get obtained by means of the

frame vectors.

MF = [X1 X2 X3 · · · XNF
] (2.4)

where

Xi =


x(i−1)LF + 1

...

xiLF

 (2.5)

NF = N/NF is denoted by the total number of frames in X. Specifically, the

integers N and LF are chosen to be an integer in NF . It is stated that in a

vector space formed by orthonormal vectors
{
φik
}

, each frame vector or sequence

Xi can be spanned. It is explicitly stated that Xi =
∑LF

k=1 ckφik and the frames

coefficients are acquired as ck = φTikXi, k=1, 2, 3,...LF . Let it be 1 ≤ l ≤ LF so

that Xil =
∑l

k=1 ckφik is a truncated version of Xi. Then, the approximate error

(εl) is dedicated by (εl) = Xi −Xil =
∑LF

k=1 ckφik.
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Here, φik is defined by decreasing the expected value of the error , which is

expressed expresses the LMS giving the following eigenvalue problem [19].

Riφik = λkφik (2.6)

In (2.6), the matrix Ri = {ri(k, l); k, l = 1, 2, 3, ...LF} is expressed as the corre-

lation matrix. The diagonal elements are real, symmetric in terms of positive,

semi-definite and toeplitz. Its inputs and are stated as follow as,

Ri =



ri(1) ri(2) ri(3) . . . ri(LF )

ri(2) ri(1) ri(2) . . . ri(LF−1)

ri(3) ri(2) ri(1) . . . ri(LF−2)
...

...
...

. . . . . .

ri(LF ) ri(LF−1) ri(LF−2) . . . ri(1)


(2.7)

Obviously, λik and φik are specified as eigenvalues and eigenvectors of the problem

being considered. It is also known that the eigenvalues of Ri are non-negative,

real, and distinct. Furthermore, the eigenvectors φik seem to be entirely orthonor-

mal.

ri(d+ 1) =
1

LF

[iLF−d]∑
j=[(l−1)iLF +1]

xjxj+d (2.8)

The eigenvalues are sequenced in decreasing order with the corresponding eigen-

vectors (λi1 ≥ λi2 ≥ λi3 ... ≥ λiLF
). The total energy of the frame i is then

expressed as follows:

XT
i Xi =

LF∑
k=1

x2
ik =

LF∑
k=1

c2
ik =

LF∑
k=1

λik (2.9)

As can be seen, Equation (2.9) is cut by taking the main components of the first

p with the highest energy of the original signal,

Xi
∼=

p∑
k=1

ckφik (2.10)
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It is shown as follows; (2.10) is obtained by putting p=1 in its simplest form.

The eigenvalue vector φik is called the signature vector. In other words, it is

the highest energy signature vector in the sense of LMS. It is specified that each

frame belongs to the original speech signal. It looks like the following,

Xi
∼= c1φik (2.11)

In this case, the frame length LF has been changed to a parameter where almost all

of the energy (2.10) is caught in the first period and the rest becomes insignificant.

Hence, (2.11) is obtained. For this reason, φik contains the original signal frame,

which is called the signature vector of the most useful information. Once (2.11)

is acquired, (2.11), an envelope matrix for each frame is transformed into an

equation through Ei that is a diagonal matrix. Thus, Xi is calculated as:

Xi = CiEiφi1 (2.12)

(2.12) is expressed by a simple division of the diagonal inputs eir of the matrix

Ei, the entries of the signature vector φi1 and the entries φi1r of the frame vector

Xi,

eir =
xir

c1φi1r
(r = 1 , 2 , 3, ...LF ). (2.13)

Therefore, eir which is in fact the property of (2.13), absorbs some of the energy

of terms that are eliminated by truncating (2.10). When eir (the frame index

against eir ; n = 1, 2, 3, , LF ) and φi1r (the frame index against to φi1r; n=

1, 2, 3, ..., LF ) are plotted, it is seen that the patterns obtained are iterative

similarities. These similar speech signals have been inferred predicted as being

obtained due to the quasi-stationary behavior of the forms. Therefore, similar

patterns can be removed and a set of predefined ”Envelope (PES) and Signature

(PSS) Sequence” with some kind or unique patterns are created.

This method is a systematic process for modeling speech signals in four main

stages defined as follows:
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Step 1: Choosing of speech parts to create signature and envelope

sequences:

To examine the diversity of speech parts on a frame by frame, the basic features of

the speakers and languages that the signature and envelope sequences have been

assigned, are defined and investigated. This section has resulted in hundreds

of thousands of envelope and signature sequences for different languages. In

addition, these sequences exhibit a large number of similar models that need to

be removed.In this first step of the method, hundreds of thousands of envelopes

and signatures were created, and in addition, there are a similar number of models

that should be removed.

Step 2: Extraction of similar patterns:

Afterward,After similar the predefined Envelope (PSS) and Signature (PSS) forms

were created,. Then remove similar envelopes and similar layouts are removed to

and get obtain unique patterns. The Pearson Correlation correlation Coefficient

coefficient (PCC) was used to remove similar patterns as described in [6]. It is

determined by the PCC and is given as:

ρyz =

∑L
i=1(yizi)− [

∑L
i=1 yi

∑L
i=1 zi]/L

(
√∑L

i=1(y2
i )− (

∑L
i=1 yi)

2/L[
∑L

i=1(z2
i )− (

∑L
i=1(zi)2]/L]

(2.14)

In this equation, is always between -1 and +1, a nd while Y = [y1 y2 ... yLF
] and

Z = [z1 z2 ... zLF
] are two sequences subject to comparison. ρyz = 1 specifies

that the two vectors are the same. ρyz = 0 corresponds to vectors completely

unrelated to each other. If 0.9 ≤ ρyz ≤ 1, it is assumed that the two series

are almost identical. Therefore, similar signature and envelope sequences have

been removed accordingly and unique signature and envelope sequences have been

obtained.

Step 3: Using the speech enhancement method to reduce noises in the

background at the end of the reconstruction:

The frame is ready to synthesize a particular speech segment x(n) for N length,

frame by frame, after PSS and PES are generated. In this case, it should be

divided into frames of length LF to form the main frame vector of (2.5). Then for

each frame Xi calculates the best approximation XAi = CiEKSR by subtracting

SR from the PSS, and EK from the PES and then by computing the actual
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coefficient Ci to reduce each frame error, which is defined by ε ≈ εi(n) = xi(n)−
CiEKSR; it is made with the sense of LMS. At the end of this, approximate

frame vectors (arrays)XAi are gathered under the approximate main frame matrix

MAF = [XA1 XA2 XA3 ... XANF
] to reconstruct the speech as xA ≈ x(n).

Step 4: Reconstruction of speech frame by frame:

At the end of the third step, the reconstructed signal as a result of combining the

speech frames in consecutive order contains unexpected spikes. These spikes can

produce unexpected background sounds that can be qualified as musical noise.

The purpose of this study implies is to use and examine the speech enhancement

methods, and by comparing these methods, it will be possible to experience that

the audio signal compressed with the best performance can be significantly re-

duced by speech enhancement methods. In this approach, it is explicitly stated

that the gain factor Ci of frame i is reconstructed with three important param-

eters,i.e., the index R of the predefined signature vector SR drawn from PSS

and the index K obtained from the predefined envelope parameter EK pulled

from PES. The SR and EK parameters are specified to reduce the LMS error

described by the difference between the original frame part Xi and the model

XAi = CiEKSR.

Finally, in this method, frame speech signals are presented to the frame by means

of predefined ”Signature and Envelope” patterns. In this process, the recon-

structed speech frame XAi is defined by the multiplication of three main quanti-

ties, the gain factor Ci, the diagonal envelope matrix EK , and the frame signature

vector or briefly, XAi = CiEKSR. Signature and envelope samples were selected

from the relevant PSS and PES generated using a speech model variation in-

cluded in the IPA. The PSS and PES array sets are independent of the speaker

and the underside, that which is almost universal. During the synthesis process,

each speech frame is indicated by the gain factor Ci and is the R and K indices,

respectively, of the predefined signature and envelope patterns.

Subjective test evaluations show that SYMPES improves quality at lower com-

pression ratios (CR � 8) to better than ADPCM (16, 24, 32 and 48 kbps). In

other respects, SYMPES results in excellent hearing quality at higher compression

ratios (CR� 8) than ADPCM and LPC techniques.
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Chapter 3

Understanding the Enemy: Noise

In generally, the Spectral spectral Subtraction subtraction is used to designing

algorithms to before struggle counter additive noise. It is critical to understand

the attitude of different kinds of noises fully; the variation between the noise

sources in conditions of spectral and temporal features, and the range of noise

levels that can be met in real life.

3.1 Noise Sources

Wherever we go, noise is always in our surroundings. Noise is available, for

instance, in the car (e.g., engine noise, the wind), in the street (horn sound, street

construction work, etc.), on the plane in the car (the wind, engine noise, etc.), and

the office (PC fan noise, keyboard sound, etc.), and the shopping centers (e.g.,

people talking, sales representatives talking, etc.). As these examples explained,

noise appears in different versions and shapes in daily life.

The noisy signal can be stationary, so it does not change over time like the fan

sound from PCs. The noisy signal can also be nonstationary, as like such as

the restaurant noise, that is, the noise of various spoken people talking in the

background noise of mixed with noise spreading from the kitchen.

Spectral and temporal features of the restaurant noise are frequently changing as

people keep going speaking in neighboring tables and as the waiters interact and

converse with people. Evidently, the duty of preventing noise that is nonstation-

ary as well as always changing ever changing is harder more difficult than the

preventing from stationary noise.
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Figure 3.1: Example noise from a car

The other particular characteristic of the different types of noises is the form of

their spectrum, especially as it depends on the distribution of noisy signal energy

in the frequency domain.

Figure 3.2: Long-term average spectrum

For example, the noisy energy of the wind noise is at low frequencies, such as

below 500 Hz. In restaurant, noisy signal, otherwise, holds a wide frequency

range. Figures 3.1 to 3.5 show example time waveforms of car noise, train noise,

and restaurant noise. The corresponding long time mean spectra of the noise

sources that are given in the examples are also shown. In the three noisy signal

sources, the car noise (Figure 3.1) is relatively stationary, but there are not train
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and restaurant voices. Figures 3.1 to 3.5 show that the differences between these

three noisy signal sources are clearer in the frequency domain than in the time

domain. The noise of the noisy signal in the vehicle is concentrated at very low

frequencies because it is low pass in nature. However, since it has a wide frequency

range, the train noise is wideband.

3.1.1 Noisy Signal and Speech Levels in Various Environments

The information of speech and noise intensity levels are is critical to the design of

speech enhancement algorithms. The signal-to-noise ratio (SNR) levels encoun-

tered can be estimated in realistic environments, which that is important, because

speech enhancement algorithms must be effective in preventing from noise and

increasing speech quality in the range of SNR levels.

An exhaustive analysis and estimate of speech and noise levels in real-world envi-

ronments was done by Pearsons [20]. They considered a variety of environments

encountered in daily life, which included classrooms, urban and suburban houses

(inside and outside), hospitals (nursing stations and patient rooms), department

stores, trains, and airplanes.

Figure 3.3: Example noise from a train
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Figure 3.4: Long-term average spectrum.

Figure 3.5: Example noise from a restaurant and (b) its long-term average spec-
trum.
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Chapter 4

Classification of Speech Enhancement Algorithms

Classifying the methods of speech enhancement with many methods is possible.

In general, it is quite difficult for a particular algorithm to work homogeneously

across all types of noise. For this reason, speech enhancement systems are based

on certain hypotheses and constraints, which are dependent on the environment

and dependent on the application. In general, the performance of the speech

enhancement algorithm may depend on the following factors:

• The determinative limitations on the number of noise sources that are used

may provide for different uses of previously known information about the

signal of interest and the corrupting signal,

• Model-based conditions such as (non-stationary) limitations on the permis-

sible time variation for the corrupting signal; a restriction of the algorithm

to uncorrelated noise.

The number of input channels (one / two / multiple) coming from the speech en-

hancement systems can be classified according to the field of application (time or

frequency), depending on the type of algorithm (Adapted or Adaptable) [23][24][25].

Especially In particular, in speech development literature, various speech process-

ing methods are separated into single and multi-channel development techniques.

This system uses the most common real-time implemented algorithms; mobile

communication, hearing aids, etc. It is usually not available to for use it as a

second channel.

Single microphone systems: This system uses the most common real-time

implemented algorithms, mobile communication, hearing aids, etc. It is usually
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not available to be used it as a second channel. These systems are easy to set

up and are much cheaper the multiple input systems. One of the most difficult

situations of difficult speech convergence is that there is no reference signal to

noise and clean speech is not pre-processed before being affected by the speech

voice. Single channel systems use different speech statistics and undesired noises.

It can be said that the performance of these methods is commonly limited to

non-stationary noise because most of them are noisy at speech intervals and the

performance is assumed to be considerably reduced at low SNRs.

Multiple microphone systems: A noise reference in a noise cancellation de-

vice that suffers from multiple signal input to the system, and noise cancellation

is utilized in these systems. Specific limitations for single-channel systems are

clearly marked by taking into account the spatial characteristics of the signal and

noise source. Multiple microphone systems are intended to be more complex.

Adaptive noise cancellation is one such powerful speech enhancement technique

based on the availability of an auxiliary channel, known as source path, where a

correlated sample or reference of the contaminating noise is present. This kind

of powerful speech enhancement technique is called adaptive noise cancellation,

which occurs within the presence of a correlated example or a reference channel

that is known to have a reference noise. Delayed and summed beamforming is

the most direct approach. For instance, multi-sensor beamforming [26] is per-

formed via microprocessor arrays reproduced from radar and sonar applications.

The underlying idea behind this system is based on the assumption that the di-

rection of arrival of the desired signal. It is known and also the improvement

of the reflections is small. Further, for each sensor to correctly align the phase

function, the desired signal can be increased, and all the noisy components not in

phase are ignored. From this point on, the analysis in this section will focus on

single-channel enhancement techniques, since this constitutes the most common

use of enhancement algorithms.

4.1 Single Channel Enhancement Systems

Over the last few decades, the problem of enhancing noise-reduced speech in the

background has only been a useful research topic when there is noisy speech. As

mentioned earlier, if there is only one microphone available, speech is one of the

most demanding conditions for enrichment because no specific reference signal is

available for noise. It cannot be prepared before the clean speech is exhibited

19



to noise. Single-channel systems clearly show limited performance, because they

are enhanced despite the loss in the signal [27][28]. For this reason, there is a

contrast between quality and intelligibility. Therefore, if we want a quality signal,

we should not compromise on clarity.

The existing single-channel speech enhancement systems are separated into three

groups:

1. Model based speech enhancement.

2. Short-time spectral spectral amplitude amplitude estimation based speech

enhancement.

3. Enhancement based on Perceptual perceptual criteria.

4.1.1 Statistical Model Based Algorithms

This speech enhancement method involves predicting a clean signal of a noisy

signal for a particular sample function that requires explicit knowledge of the

clean signal. Noisy signal statistic requires a perceptual distortion measure for

speech signals. For this reason, if statistically, independent noise distorts the

speech signals, the marginal probability distributions of the clean speech and

noise signal should be precisely known.

The problem of speech enhancement is explained in a statistical estimation ap-

proach. The series of measurements corresponding to the Fourier transform co-

efficients of the noisy signal is implemented. It is necessary to find a clean signal

conversion coefficient, for instance; a linear or non-linear estimation of the corre-

sponding parameter.

For example, minimum mean square error (MMSE) algorithm are lies in this cate-

gory along with others. The work on this subject have been started with McAulay

and Malpass [28], and the maximum likelihood approach has been recommended

in predicting the Fourier transform coefficients of the clean signal. This approach

has been followed by studies by Ephraim and Malah [29] as the MMSE estimator.
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Hendriks’ theoretical approach can be applied as a two-step procedure:

1. The signal and noise statistics are estimated from the speech and noise con-

tent. The optimal solution is obtained by utilizing statistical models and

then used together with distortion measures to solve the available speech

enhancement problem. Different techniques are applied to parameterize the

speech signal such as autoregressive moving average (ARMA), autoregres-

sive (AR) or moving average (MA). It is known that the three estimation

rules are known as maximum probability (ML), maximum posterior (MAP)

and minimum mean square error (MMSE) have many desirable properties

to estimate the parameters of a speech signal. Regularly, ML is utilized

for non-random parameter maintenance. MAP and MMSE, which are esti-

mation methods, are widely used for known parameters of a priori density

function which can be thought as random variables.

For the speech signal, this model is proposed by using the MAP estimation

approach. It is a supposed a time-varying AR model for the speech en-

hancement in which both the model and the signal are estimated from the

noisy signal [32]. The maximization of the likelihood probability function is

carried out once in the AR model by supposing the clean signal. It is present

and additionally by repeating. On the clean signal using a known estimate

of the estimated model and the noise power spectral density accepted.

2. As another class entering this category, examples of Hidden Markov Model

(HMM) as a development technique is are introduced. HMM essential

speech models implement well to better represent the different spectrums of

speech signals as well as the correlation of the time frequency of the signal

(i.e., second-order statistics of speech signals.) Time-frequency correlation

can be useful to significantly influence the robustness of the signal estimator

for the required smoothness restriction in enhancement implementations.

4.1.2 Enhancement Based on Short-Time Spectral Amplitude Esti-

mation

The short-term spectral amplitude estimate is depended dependent on most com-

monly used speech enhancement techniques. Specifically, it is easier to calculate

the original spectral amplitude. When when comparing, the spectral amplitude

associated with the original clean speech and estimating both the amplitude and
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the phase. As stated in [33], it is known that the short-term spectral amplitude

is more important for the intelligibility and quality of speaking.

Speech enhancement techniques can be divided into two main groups [33]. This

method is indicated on the principle of spectral subtraction as a first group. It is

based on the removal of the noise, by shifting sequential short speech segments

to the frequency domain, and by removing the noise estimate estimated during

speech pauses. The method usually is sets the particular frequency ”coefficients”

of the words on a frame basis. In the second group, the impaired speech that

includes the methods previously. It used to obtain a filter applied to the impaired

speech first.

Different methods (differentiated by noise estimation, suppression rules, and other

details) are all known as Short Term Spectral Amplitude (STSA) methods. More-

over, the majority are known as subtractive type algorithms. Speech and noise

signal are commonly supposed to be uncorrelated. Spectral subtraction method

is one of the most comprehensive speech enhancement techniques on short-term

amplitude estimation.

4.1.3 Speech Enhancement According to Perception Criteria

The detection of voice or speech signal is the result of various physiological and

psychological influences not fully understood. For this reason, although the clarity

of speech is strongly related to the perception of the human being, these aspects

are not involved in the processing of noisy speech. In contrast to the above

described methods, in which only signal and speech features are applied. Various

various improvisations can be made taking advantage of the characteristics of the

human ear in the area of noise suppression and speech enhancement.

These speech enhancement techniques aim to overcome the problem of classical

trade noise reduction and speech impairment, where the speech is masked against

further suppression of the noise. The possibility of further distortion [35] of speech

by this means is significantly reduced.
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Chapter 5

Spectral Subtraction Algorithms

5.1 Introduction

The spectral subtractive algorithms were firstly recommended by Weiss et al. [35]

in the correlation domain and subsequently by Boll [36] in the Fourier transform

domain.

The spectral subtraction algorithm is one of the earliest researchers related to

noise reduction in history. Moreover, further research has been performed, and

more articles have been written to describing the differences of this algorithm

compared to other algorithms. When additional noise is considered, a noise spec-

trum is neglected in the noisy signal spectrum, and a clean signal spectrum is

taken. In the absence of signal, the noise signal spectrum can be updated and

estimated.

This approach implies that the noise spectrum is not considerably different be-

tween the update periods and a noisy stationary or slowly changing process. The

inverse discrete Fourier transform of the estimated signal spectrum is computed

to obtain the enhanced signal by using the phase of the noisy signal. The for-

ward and inverse Fourier transforms are used in the algorithm; therefore, the

algorithm is quite simple. The simple subtraction algorithm is a costly process.

The subtraction process must be performed with much care to prevent any speech

distortion. If too many subtractions are done, some speech information may be

reduced, but if too little is subtracted, the vast majority of intervening noise may

stay.
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Many methods have been recommended for interferences due to noise residues;

moreover, in some cases, most of the speech impairments result from spectral

subtraction, and thus, noise residues have been removed.

5.2 Basic Principles of Spectral Subtraction

Assuming that y(n) is the input signal causing the noise, which is created from a

clean speech signal x(n) and an additional noisy signal, d(n), given by

y(n) = x(n) + d(n) (5.1)

The discrete-time Fourier transform of both sides is given as

Y (w) = X(w) +D(w) (5.2)

The polar form can be expressed Y (w) as:

Y (w) = |Y (w)|xjφy(w) (5.3)

where

|Y (w)| is defined the magnitude spectrum

φy(w) is defined the spectrum of the distorted noisy signal

The noisy signal spectrum, i.e., D(w) = |D(w)|ejφd(w) defines magnitude and

phase spectrum. The noisy signal magnitude is an unknown parameter. Ad-

ditionally, it can be modified by the mean value of the calculated non-speech

activity. Likewise, the noisy speech phase φy(w) can be replaced by the noise

phase φd(w). The part that affects the comprehension of speech influences the

intelligibility quality of speech [31]. After these modifications are given to (5.2),

a prediction is obtained for the clean signal spectrum as follows:

X̂(w) =
[∣∣Y (w)

∣∣− ∣∣D̂(w)
∣∣]ejφy(w) (5.4)
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This symbol ”ˆ” will be used to represent the estimated spectrum or estimated

interest parameters. Exclusively, the inverse Fourier transform (IFT) of is utilized

to obtain the enhanced speech signal. The basic principle of spectral subtraction

is summarized in Equation 5.4. The noisy speech signal, which is the amplitude

spectrum, is calculated by fast Fourier transform (FFT) and the noise spectrum

is estimated without speech.

The spectrum of the noisy signal magnitude is subtracted from the noisy speech

magnitude spectrum, and thus, the IFT of the difference spectra is taken to

generate the enhanced speech signal. It has been noted that the spectrum of the

enhanced signal magnitude, X̂(w) =
∣∣Y (w)

∣∣ − ∣∣D̂(w)
∣∣, may be negative due to

errors in estimating the noise spectrum. The magnitude of the spectra cannot

be negative; for this reason, care must be taken to provide that |D̂(w)| is not

always negative when excluded from the two spectra. An alternative approach

to correct the difference spectra in the half-wave direction so that the negative

spectral components are set to zero, is given as:

∣∣D̂(w)
∣∣ =

{
−x, if |Y (w)| − |D̂(w)|
x, else

(5.5)

Half-wave rectification is only one way of ensuring non-negative |X̂(w)| in many

ways. The previous derivation makes it easy to expand in the power spectrum

domain, which is the magnitude spectral subtraction algorithm. In some cases,

it may be useful to work with power spectra instead of magnitude spectra as an

alternative. To obtain the short-term power spectrum without a noisy speech

signal, when multiplied encode the value in (5.2) by conjugate Y ∗(w), we get the

following equation:

|Y (w)|2 = |X(w)|2 + |D(w)|2 +X(w) ·D∗(w) +X∗(w)D(w)

= |X(w)|2 + |D(w)|2 + 2Re
{
X(w) ·D∗(w)

} (5.6)

The terms, |D(w)|2 and X(w) ·D∗(w), which are the terms of the above equation,

are not clearly obtained and they are approximated as, E
{
|D(w)|2

}
, E
{
X∗(w) ·

D(w)
}

and E
{
X(w) · D∗(w)

}
where the expectation operator is denoted E[·].

In particular, E
{
|D(w)|2

}
is predicted throughout non-speech activity and it is

expressed in |D̂(w)|2 shape. A clean signal x(n), assuming d(n) is uncorrelated
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and zero mean. In this case, the elements of the equation, which are E
{
X∗(w) ·

D(w)
}

and E
{
X(w) ·D∗(w)

}
are degraded to zero. In this manner, the estimate

of the clean speech power spectrum can be determined as follows after using the

previous assumptions:

|X̂(w)|2 = |Ŷ (w)|2 − |D̂(w)|2 (5.7)

In the preceding equation, the power spectrum extraction algorithm is explained.

As previously mentioned, it is not guaranteed in (5.7) that the power spectrum

X̂(w)|2 is positive, but can be a half-wave rectifier, specified in (5.5). Eventually,

an enhancement signal was acquired by calculating the IFT by using the phase

of the noisy speech signal. If the IFT of either side of (5.7) is taken, a similar

equation is obtained in the autocorrelation domain, as described below:

rx̂x̂ = ryy(n)− rd̂d̂(n) (5.8)

rx̂x̂(n), rŷŷ(n) and rd̂d̂(n) are the autocorrelation sequences of the estimated clean

signal, noisy speech signal, and estimated noise signal, respectively, given in the

above equation. Accordingly, subtraction can be accomplished in the autocorre-

lation domain. Thus, a technique was recommended by Weiss et al. [35]. He also

recommended implementing the subtraction in the cepstrum domain. Equation

5.7 can be written as follows:

|X̂(w)|2 = H2(w)|Y (w)|2 (5.9)

where

H(w) =

√
1− |D̂(w)|2
|Y (w)|2

(5.10)

The system transfer function is known as H(w), which is also indicated as the

gain function in speech enhancement. It should be noted that H(w) in (5.10) is

always positive and correct in principle. Moreover, the values are in the interval

of 0 ≤ H(w) ≤ 1. Sometimes negative values are obtained due to incorrect

estimates of the noise spectrum. To obtain the enhanced power spectrum |X̂(w)|2,
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suppression is applied to a frequency noise power spectrum |Ŷ (w)|2 that provides

H(w), which is called the suppression function.

There is a specific speech enhancement algorithm according to the shape of the

suppression function, i.e., each algorithm has a special suppression function. For

this reason, it is often possible to compare the corresponding suppression functions

by comparing different algorithms. The fact that H(w) is a real value and when

the IFT of is taken it is equal to zero, and hence, it is symmetrical and non-causal.

Equation 5.9 corresponds to the time domain for a non-causal filtering operation

by changing the suppression function. This method is recommended.

Another general version of the spectral subtraction algorithm is as follows:

|X̂(w)|p = |Y (w)|p − |D̂(w)|p (5.11)

P is the power of the power specified by the above equation. The original mag-

nitude power spectral subtraction [3] is obtained with p = 1 and p = 2 with

the spectral subtraction algorithm. The generic form of the spectral subtraction

algorithm is represented in Figure 5.1. It was noted that (5.7) and (5.11) are only

approximate values because of the inclusion of cross terms. The cross terms in

(5.6) are statistically insignificant when using sufficient data and assuming that

the signals are stationary.

However, speech signals are nonstationary. In many implementations, the speech

signal cross-expectation terms may not necessarily be zero and are processed on

a per-frame basis. As shown, the cross terms are not insignificant, at least at low

frequencies, near the values of the power spectrum of the noisy speech signal. The

values of small and perhaps insignificant cross terms at extremely high frequencies

can be compared to noisy speech magnitudes at low frequencies. In most spectral

subtraction algorithms, it is assumed that the cross terms are zero, although the

fact that the entire spectrum cannot be neglected is also zero.

A process for estimating cross terms has been recommended [3]. The effects

of subtracting cross terms are discussed using the geometric observe of spectral

subtraction.
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Figure 5.1: General form of the algorithm of spectral subtraction

5.3 Geometric View of Spectral Subtraction

From (5.1), two complex-valued spectra of frequency wk are summed to obtain the

frequency noisy spectrum Y (wk) at frequency wk. For this reason, the summation

of X(wk) and D(wk) complex numbers can be expressed geometrically as Y (wk)

in the complex plane. The illustration of Y (wk) and a vector in summation to

X(wk) and D(wk) in the complex plane is shown in Figure 5.2. When the noisy

signal spectrum is geometrically represented in the complex plane in Figure 5.2,

it can provide important information for the spectral subtraction approach.

On the difference between the phases of the clean and noisy signal spectrum,

such a geometric perspective can provide an upper limit [39]; for example, it

will explain the conditions that it is safe to take the approach that the noisy

speech spectrum can be changed to the phase of the clean signal spectrum phase.

Y (wk) will also indicate whether it is theoretically possible to fully reproduce the

noise and the clean signal magnitude |X(wk)| in the given noisy speech spectrum

Y (wk) and under what conditions. Finally, how the magnitude spectrum affects

the estimation accuracy when the (5.6) cross terms are extracted from the center

will be described in the next sections.
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Figure 5.2: Noisy speech spectrum Y(w) that indicates complex vector addition
of clean spectrum X(w) with noise spectrum D(w).

5.3.1 Upper Limits on the Difference Between the Phases of the Noisy

and Clean Signals

Y (wk) is expressed as the complex spectrum that describes the magnitude and

phase in polar form and the real or imaginary parts as follows as:

Y (wk) = aY e
jφy (5.12)

where

The magnitude spectrum is expressed by ay (ie., ay
∆
= Y (wk))

The phase spectrum expressed by θy

We subtract the frequency variable wk for simplicity. Likewise, it can express

clean signal and noise spectra in polar form as follows:

X(wk) = aXe
jθX , D(wk) = aDe

jθD (5.13)

The upper limit of the difference between the noisy and clean phases is determined

by θy − θx. The vector diagram shown Figure 5.2 should be considered.
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The phase difference θy − θx is expressed by the following equation [39]:

tan(θy − θx) =
aDsin(θD − θX)

aX + aDcos(θD − θX)
(5.14)

It is easy to see from Figure.8 that when the noise and clean signal vectors are

perpendicular to each other, the phase difference reaches the maximum value,

i.e., when θD − θX = π/5

Figure 5.3: Diagram showing the trigonometric relationship of phase difference
among noisy and clean signals.

In (5.14) replace π/2 for θD − θX , and when solved for the phase difference we

obtain the following upper limit:

θD − θX = |θD−θX= Π
2

∆
= θmax = tan−1 aD

aX
(5.15)

Note that the upper limit for
∣∣θD − θX∣∣ > π/2 is π, and the upper limit specified

in the above equation applies to
∣∣θD − θX∣∣ < π/5

ξ =
a2
x

a2
d

(5.16)

The frequency bin is expressed as the instantaneous spectral SNR in wk, so that

(5.16) can be written as:
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ξ = tan−1 1√
ξ

(5.17)

The upper limit of the difference between clean and noisy phases as a function of

the SNR is defined in (5.16). As predicted, the larger the SNR, the smaller the

difference between clean (θX) and (θY ) noisy phases.

It has been expressed to be implemented that the noisy spectral phase at a partic-

ular frequency coefficient, the phase of the clean signal spectrum, the correspond-

ing SNR is large in this segment. As part of speech enhancement, the following

strategy can be implemented: the noisy phase can use the noisy phase as long as

the phase difference is not identified by the hearing system.

5.3.2 Alternate Spectral-Subtractive Rules and Theoretical Limits

The previous part also shows that it is not necessary to fully restore the signal

phase when the spectral SNR is high enough. In the next part, the signal size is

returned into the problem of spectrum estimation.

By estimating the magnitude of the noise, it has been shown whether it is possible

to improve the magnitude spectrum of the clean signal with relatively high ac-

curacy. The question arises whether the phase information access of the relevant

subject is critical for enhancing the signal magnitude spectrum, if so, is it neces-

sary to have the correct signal size for accurate phase estimation? In response to

this question, alternative spectral subtraction rules are acquired from those given

in Section 5.1, and the relationship between the phases and magnitudes of the

signals is examined. The real and imaginary parts of either side of (5.2) are set

equal to each other, utilizing the notation in (5.12) and (5.13):

aXcos(θX) = aY cos(θY )− aDcos(θD) (5.18)

aXsin(θX) = aY sin(θY )− aDsin(θD) (5.19)

These are obtained by taking and adding the squares of (5.18) and (5.19) as

follows:
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a2
Y = a2

X + a2
D + 2aXaDcos(θX − θD) (5.20)

It is seen that the previous equation is the same as in (5.6)

Re
{
X(w)D∗(w)

}
aXaDcos(θX − θD) (5.21)

In (5.20), ax is a quadratic function as described and the following two solutions

are explained:

aX = −aDaXD ±
√
a2
D(c2

XD − 1) + a2
Y (5.22)

The cXD in (5.22) is defined as follows:

cXD
∆
= cos(θX − θD) (5.23)

Equation 5.20 is a function of the clean signal phase and magnitude of the cross

terms, which prevents it from enhancing it. However, a different form of the

equation, the magnitude of the noisy speech with cross terms, and the functions

of the phase can be derived:

a2
X = a2

X + a2
D − 2aY aDcos(θY − θD) (5.24)

When cos(θY − θD) = 1 is specified, the previous equation is reduced for the

standard subtraction rule given in (5.5). For clean signal magnitude, the differ-

ent algebraic operations of (5.18) and (5.19) result in different expressions. For

example, the clean signal magnitude ax is shown to utilize the following equation:

aX = aY cXY ±
√
a2
Y (c2

XY − 1) + a2
D (5.25)

where cXY is defined as follows:

cXD
∆
= cos(θX − θY ) (5.26)
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For example, cXD in (5.12), then we obtained a2
X = a2

Y − a2
D. Geometrically, if

cos(±π/2) = 0, when the clean and noise vectors are perpendicular to each other,

they are expressed as cXD. Statistically, if the noisy and clean signals have zero

mean and the spectrum is orthogonal, they are uncorrelated. It is noted that the

common assumption is that the noise and clean signal are uncorrelated to each

other.

Therefore, it is very straightforward to use the standard power subtraction rule,

(5.5), under conditions where signal and noise vectors are perpendicular to each

other. Depending on (5.20), in the same circumstances, the power spectrum

extraction rule, (5.7), is also true. Here, when it is assumed that the phase

difference (θX − θD) is uniformly distributed in the range [−π, π]. In this case, it

can be expressed that E[cXD] = 0.

Figure 5.4: Geometric view of high and low SNR conditions

If cXY = 1 in (5.25) and take negative sign, after aX = aY − aD is obtained.
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Geometrically, cXY = 1 indicates that the noisy and clean signal vectors are co-

linear, so, in the same direction. Noisy and clean signal vectors are roughly co-

linear when SNR is high, i.e., when aX >> aD, as shown in Figure 5.4 Therefore,

the standard subtraction rule (5.5) is quite accurate under high SNR conditions.

It is clear that the subtractive rules are given in (5.22) and (5.25)which are easier

and simpler to use than those given in (5.5)and (5.7) because they do not make

statistical assumptions about the relationship between clean signals and noise, the

existence of cross terms is considered. However, subtractive rules (5.22) and (5.25)

are ambiguous because there is no simple way to determine which sign (±) to use.

Alternative subtractive rules used to avoid quadratic terms in can be derived by

algebraically manipulating (5.18) and (5.19) without any sign uncertainty.

One example of these rules is given as below:

aX = aY cY X − aDcXD (5.27)

aX =
aY cY D − aD

cXD
(5.28)

aX =
aY − aDcY D

cXY
(5.29)

a2
x = (aY − aDcY D)2 + a2

D(1− c2
Y D) (5.30)

a2
x = (aD − aY cY D)2 + a2

Y (1− c2
Y D) (5.31)

a2
x =

a2
D(1− c2

Y D)

(1− c2
Y X)

(5.32)

a2
x =

a2
Y (1− c2

Y D)

(1− c2
XD)

(5.33)

Beginning with (5.30), after that we obtained aX = aY − aD. Geometrically, when

cY D = 1 is noisy and the noise vectors are co-linear in the same direction, they
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point to the same direction. As noise and noise vectors are approximately co-

linear, as shown in Figure 5.4 The SNR is low, so that, when aD � ax. There-

fore, (5.30), under low SNR conditions, decrease the standard subtraction rule

expressed in (5.5).

Where cY X ≈ 1 corresponds to a high SNR condition seen in Figure 5.4, (5.27)

is observed to resemble the over subtraction rule proposed in [40], with the over

subtraction factor explicitly indicated by cXD. The value cXD is always equal to

value when over-subtraction factor is always equal to it. Only a distinct relation

for instantaneous SNR (as well as shown in (5.16)) is given in (5.32) regarding

signal/noise phases:

ξ
∆
=
a2
X

a2
D

=
(1− c2

Y D)

(1− c2
Y X)

(5.34)

The geometric explication of high and low SNR conditions is consistent as shown

in Figure 5.4 and described in the preceding equation. More specifically, if cY X ≈
1, the denominator can be small and will result in large values of ξ, i.e., a high

SNR case. Similarly, if cY D ≈ 1, the numerator will be small and the small values

of ξ are small in SNR value case. Finally, (5.33) shows that the phase distinction

among the noisy signal and the noisy/clean signal is clearly related to the gain

function ax − ay in the system:

h
∆
=
a2
X

a2
D

=

√
(1− c2

Y D)

(1− c2
Y X)

(5.35)

Fundamentally, the clean signal amplitude aX should multiply by the previous

gain function of the noisy amplitude aY . It is stated that the approach to this

gain function is that the power spectrum subtraction method has fallen to the

gain function. If cXD = 0, is statistically perpendicular, the signal and noise are

perpendicular to each other. To confirm this, solve for cY D in (5.28) together

with cXD = 0 and then obtain the following equation:

cY D =
aD
aY

(5.36)

The gain rule in (5.10), assuming cXD = 0, because it is assumed that the noisy

and clean signal are perpendicular to each other. However, several methods have
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been proposed for phase estimation that need to be investigated in previous anal-

yses. One way is to derive and use the phases of noisy and clean signals as shown

in (5.14), explicit relationships between them based on trigonometric factors. An-

other way is to use (5.20) and (5.24), and by making the necessary changes using

cY D and cXD, the following equation is obtained as:

cY D =
a2
Y + a2

D − a2
X

2aXaD
(5.37)

cXD =
a2
Y − a2

X − a2
D

2aXaD
(5.38)

It is easy to show that cY X is given with the following equation as:

cY X =
a2
Y + a2

X − a2
D

2aXaY
(5.39)

Obviously, the principal obstacle to estimating the phase distinctions among sig-

nal and noise signals are using previous equations that they are not dependent on

the clean signal amplitude. It uses estimated ax values as a reasonable solution

to make assumptions that imply and the spectra of magnitude do not change.

Therefore, when the spectral SNR is sufficiently high, it is safe to use a noisy phase

instead of a clean signal phase. The phase difference should not be perceivable,

depending on the explanations given in [39]. It has a phase estimation critical

significance for accurate signal magnitude estimation. It is not possible to obtain

the magnitude spectrum of the clean signal, even though it can reach the noise.

It is necessary to acquire phase information.

When the subtractive rule determined in (5.33) is uniformly associated with the

phase difference between noisy and clean signals, after that, the signal magni-

tude can be recovered without the need for significant information about noise

magnitude. However, the fact that the phase distinctions between the noisy or

clean signal and the noise signal are implicitly embedded is made possible by the

knowledge of the magnitude of the noise (in see (5.37)).
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5.4 Nonlinear Spectral Subtraction

This method is applied in the spectral subtraction algorithm recommended by

Berouti et al. [40]. It is assumed that all spectral components that are noisy are

affected at equal levels. As a result, a single over-subtraction factor is used to

extracted a robust estimate over the entire spectrum. However, this is not the

case with real world noises (e.g., car noise and restaurant noises).

Some disturbing noise may affect the low-frequency region of the spectrum more

than the high-frequency region. This suggests using a frequency-dependent sub-

traction factor to add different types of noises to account. The nonlinear spectral

subtraction (NSS) recommended in [41] is a modification of the method suggested

in [40], because the subtraction factor frequency is dependent and subtraction is

not linear. Larger values occur at frequencies with low SNR levels, while smaller

values are derived at frequencies with high SNR levels. The format of the sub-

traction rule used in the non-linear subtraction algorithm is as follows:

∣∣X̂(w)
∣∣ =

{ ∣∣Ȳ (w)
∣∣− a(w)N(w) if

∣∣Ȳ (w)
∣∣ > a(w)N(w) + β.

∣∣D̄(w)
∣∣

β|Ȳ (w)
∣∣ else

(5.40)

where

β is the spectral floor (set to 0.1 in [41])

|Ȳ (w)| and |X̄(w)| respectively referred to as noisy speech and noisy smoothed

estimates.

a(w) is specified as a frequency-dependent subtraction factor

N(w) is specified as a nonlinear function of the noise spectrum

The tenderized estimates of noise (indicated as |D̄(w)| ) and noisy speech (indi-

cated as |Ȳ (w)| ) obtained as follows:

∣∣Ȳi(w)
∣∣ = µy

∣∣Ȳi−1(w)
∣∣+ (1− µy)

∣∣Ȳi(w)
∣∣∣∣D̄i(w)

∣∣ = µd
∣∣D̄i−1(w)

∣∣+ (1− µd)
∣∣D̄i(w)

∣∣ (5.41)
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|Ȳi(w)| is the magnitude spectrum obtained in the ith frame of noisy speech

|D̄i(w)| is the estimate for the ith frame of the spectral magnitude spectrum

The values of the constants , take values in the interval 0.1 ≤ µy ≤ 0.5 and

0.5 ≤ µd ≤ 0.9. The term N(w) of was obtained by calculating the maximum of

|D̄i(w)| the noise magnitude spectra over the last 40 frames:

N(w) = max
i−40≤j≤

(|D̂j(w)|) (5.42)

It should be noted that for all frequencies in [40], a(w) is a constant; it changes

only from frame to frame based on a posteriori SNR. For the function of a(w)

in (5.40), several nonlinear functions are proposed in [41] and different weighting

types are specified for SNR. One of the many functions [41] is given in the following

form:

a(w) =
1

1 + γρ(w)
(5.43)

In the equation below, ρ(w) is the square root of a posteriori SNR estimate and

γ is a scaling factor as follow as:

ρ(w) =
|Ȳ (w)|
|D̄(w)|

(5.44)

It should be noted that the function in Eq. (5.43) resembles the extreme auction

function proposed by Berouti et al. [40], in that it applies a small weight because

the posteriori SNR [i.e., large values of ρ(w)] values have a large weight with

respect to frequencies having high frequencies and low SNR [i.e., for small values

of ρ(w)] values. In contrast to the over subtraction algorithm, the weighting is

implemented separately to each frequency coefficient.
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5.5 Minimum Mean Square Error Spectral Subtraction Algorithm

In previous methods, subtraction parameters were specified experimentally and

were not optimally selected in any sense. Sim et al. [42] recommended a mean

square error method to optimally select subtraction parameters. Their deriva-

tion was depended on a generalized spectral subtraction algorithm, which is a

parametric formulation. Obviously, a general version of the spectral subtraction

algorithm is considered as in the following equation:

|X̂(w)|p = γp(w)|Y (w)|p − ap(w)|D̂(w)|p (5.45)

where

γp(w) and ap(w) are related parameters

p is expressed as the power exponent

D̂(w) is expressed as the mean noise spectrum acquired during non-speech activ-

ity.

It should be noted that if γp(w) = 1, ap(w), and p = 2, that are set as shown and

the parameters in (5.45). Furthermore, when set to γp(w) = cY X(w), ap(w) =

cXD, and p = 1, then the inference rule given in (5.27) is obtained, where cXY

and cXD are defined in (5.26) and (5.23), respectively. The parameters γp(w) and

are ap(w) optimally determined by minimizing the mean squared error spectrum:

ep(w) = |Xp(w)|p − |X̂|p (5.46)

where, an ideal spectral subtraction model is assumed. |Xp(w)|p is specified as

the clean speech spectrum. It is stated here that the noisy speech spectrum is

supposed to be composed of the sum of the two independent spectra, the true

noise spectrum and |Xp(w)|p. That is, the following equation appears to be valid

for some constant p:

|Y (w)|p = |Xp(w)|p + |D(w)|p (5.47)
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where D(w) is shown as the true noise spectrum. Theoretically, in the previous

equation it is expressed that the phases of the clean signal spectrum for p = 1

are equal to the phases of the noise spectrum.

When the mean square error of the error spectrum ep(w), i.e., E
[{
ep(w)

}2]
, with

respect to γp(w) and ep(w) is minimized by minimizing the mean-square error of

the error spectrum ep(w), that is, E
[{
ep(w)

}2]
, with respect to γp(w) and ep(w).

The most appropriate subtractive parameters are obtained with the following:

ap(w) =
ξp(w)

1 + ξp(w)
(5.48)

γp(w) =
ξp(w)

1 + ξp(w)

{
1− 1 + ξ−

p
2 (w)

}
(5.49)

where

ξ(w) =
E
[∣∣Xp(w)

∣∣2]
E
[∣∣D(w)

∣∣2] (5.50)

The previous equations are derived after assuming that the individual spectral

components of noise and speech are zero-mean and complex-Gaussian random

variables statistically independent. This assumption is necessary to simplify the

solution.

Conversion of (5.48) and (5.49) to (5.45) yields the most appropriate parametric

estimation:

∣∣X̂(w)
∣∣ =

{ ξp(w)

1 + ξp(w)

[∣∣Y (w)
∣∣p − (1− ξ−

p
2 (w))

∣∣D̂(w)
∣∣p]}1/p

(5.51)

The previous estimator has been derived without making any assumptions about

the relationship between the two parameters γp(w) and ap(w), and therefore is

called the unrestricted estimator. Sim et al. [42], also assumed that the two

parameters are equal to each other, i.e., γp(w) = ap(w) and a different estimator

is derived. The form of the optimal constrained estimator obtained is as follows:

∣∣X̂(w)
∣∣ =

{ ξp(w)

1 + ξp(w)

[∣∣Y (w)
∣∣p − ∣∣D̂(w)

∣∣p]}1/p

(5.52)
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where p is a power exponent given here, δp is constant ( 0.2146, 0.5, and 0.7055

for p = 1, 2, and 3, respectively). A lower spectral bound was implemented in

(5.40) to limit the attenuation of low-energy speech segments. The smoothed

lower bound spectrum is obtained by averaging a noise-coded spectrum of the

enhanced and smoothed spectrum estimated in the previous frame, an attenuated

version of x(n) (0 < µ < 1);

µ
∣∣Ȳ (w)

∣∣ = 0.5(µ
∣∣Y (w)

∣∣) +
∣∣X̄prev(w)

∣∣) (5.53)

where the smoothed lower spectral bound is specified as µ|Ȳ (w)|. That is, when

the enhanced spectral value µ|Y (w)| in (5.22) was small, and it should be set

equal to µ|Ȳ |. The form of the last constrained estimator was as follows as:

∣∣X̄(w)
∣∣ =

{ ∣∣X̂(w)
∣∣ if

∣∣X̂(w)
∣∣ ≥ µ

∣∣Y (w)
∣∣

µ
∣∣Ȳ (w)

∣∣ else
(5.54)

It should be noted that the term |X̄prev(w)| used in (5.53) is based on the previous

equilibrium and is not included in (5.52). The previous parameter µ (set in the

range of 0.05 − 0.2 in [42]) was used as a spectral flooring constant very similar

to the parameter β in (5.41).

The parameter ξ(w) in (5.50) that corresponds to the ratio of signal power to

noise, and is often denoted as a priori SNR. Unfortunately, this term cannot

be determined because we cannot access the exact clean signal. Following the

approach recommended in [29], Sim et al. [42] a priori SNR is calculated as

shown in the following equation:

ξ(w) ≈ (1− η)max
( |Y (w)|2

|D̂(w)|2
− 1, 0

)
+ η
|x̄prev(w)|2

|D̂(w)|
(5.55)

where η(n) is a smoothing constant (set to 0.96) and |x̄prev(w)| is the enhanced

spectrum calculated in the previous frame. Equation 5.55 basically expresses

the weighted average of the current instantaneous SNR (first term) and the old

SNR (second term). The estimate of the noise spectrum has been corrected and

improved in a similar way. The two previous estimators are compared with the

standard spectral subtraction algorithm [11] using objective measures, which are
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namely log-likelihood evaluates and the SNR [28]. The major enhancements (for

the same p value) are observed only for low SNR levels compared to the standard

spectrum subtraction algorithm. p = 0.1 in (5.54) was used as the constrained

estimator. The performance achieved with p = 1 and 2 is almost the same.

For the constrained estimator, µ = 0.1 in (5.54) was used. Performance obtained

with p = 1 and 2 was nearly the same. The analysis of the two estimators

shows that the compression function of the unrestricted estimator (calculated as

|X̂(w)|/|Y (w)|) has a similar bias to the average MMSE estimate [29]. The com-

parison between the suppression functions of the two estimators reveals that the

restrictive estimator provides more noise reduction than the unrestricted predic-

tor, especially for low-energy speech parts.

5.6 Spectral Subtraction Using Adaptive Gain Averaging

Gustafsson et al. [15] proposed to obtain a lower resolution spectrum to handle

the first number and divide the existing analysis frame into smaller subframes.

The individual spectra in each subframe are averaged to obtain a lower variance

spectrum. Gustafsson et al. [15] suggested using the adaptive exponential averag-

ing to smooth out the gain function over time to account for the second number,

because of the utilization of the zero-phase gain function to avoid noncausal fil-

tering. Gustafsson et al. [15] have proposed the introduction of a linear phase

in the gain function. The recommended spectral subtraction algorithm decreases

the processing delay to the period of the analysis frame. The block diagram of

the proposed spectral subtraction algorithm is shown in Figure 5.5 5.6 [15].

The input signal is divided into sample squares of L and divided into subframes

each consisting of M(M < L) samples. The calculated spectra in each subframe,

|Ȳ (M)
i (w)| and a lower variance size spectrum estimate, which indicates the num-

ber of spectrum components of the upper variant (i.e., the size of the FFT), and

is expressed as an i frame number. A lower-resolution gain function of |Ȳ (M)
i (w)|

is constructed as follows:

G
(M)
i (w) = 1− k

∣∣D̂(M)
i (wk)

∣∣∣∣Ȳ (M)
i (w)

∣∣ (5.56)

where k specifies as a subtraction factor (set to k = 0.7 in [15])
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Figure 5.5: Spectral subtraction algorithm with adaptive gain averaging

Figure 5.6: Block diagram of the spectral subtraction algorithm with adaptive
gain averaging

D̂
(M)
i (w) specifies the estimated magnitude spectrum updated during speech seg-

ments for which speech is not available. In order to decrease the variable of the

gain function, G
(M)
i (w) is averaged over time as shown in the following equation:

Ḡ
(M)
i (w) = aiḠ

(M)
i−1 (w) + (1− ai)G(M)

i (w) (5.57)

where Ḡ
(M)
i (w) indicates the smoothed gain function in frame i and ai is desig-

nated as the adaptive smoothing parameter.
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The adaptive mean parameter ai is extracted from a spectral inconsistency mea-

sure identified as βi as follows:

βi = min
(∑M−1

wk

∣∣∣∣∣∣Ḡ(M)
i (wk)

∣∣− ∣∣D̂(M)
i (wk)

∣∣∣∣∣∣∑M−1
wk

∣∣D̂(M)
i (wk)

∣∣ , 1
)

(5.58)

According to the background noise, the previous inconsistency criterion marks

a spectral change roughly. Small inconsistency value recommends a relatively

stationary background noise while a large inconsistency value suggests situations

where highly variable background noise is present or speech. The adaptive aver-

aging parameter ai is computed from βi as follows as:

ai =

{
γai−1 + (1− γ)(1− βi) if ai−1 < 1− (1− βi)

1− βi Otherwise
(5.59)

where γ is specified as a smoothing parameter (γ = 0.8 [5]). The rapid reduction

of the adaptive parameter allows the gain function to quickly adapt to the new

input signal, but allows it to gradually increase. Following a mean operation of

(5.56), a linear phase is applied to the gain function to produce a causal filter.

These results lead to a filter with the following time-domain symmetry [33]:

gM(n) = ±gM(M − 1− n) n = 0, 1, . . . ,M − 1 (5.60)

where gM(n) denotes the gain function and Ḡ
(M)
i (w) denotes the IFT. The original

frame length (L) of the obtained filter has a delay of (M − 1)/2 on one part.

Finally, after creating a linear phase in the gain function, interpolate Ḡ
(M)
i (w)

from the function at M−point to form the N−point function, where N is the size

of the FFT. It has not been forgotten that N is chosen to be N > L + M and

therefore circular convolution effects are avoided. The resulting output signal is

described below, obtained by calculating the inverse FFT:

X̂
(M)
i (w) = Ḡ

(N)
i (w) · Y (N)

i (w) (5.61)

where
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X̂
(M)
i (w) is the enhanced complex spectrum

Ḡ
(N)
i (w) is the N-point interpolated gain function

Y
(N)
i (w) is the complex spectrum of noisy speech, the L-sample input signal

obtained after zero padding

In (5.61), the inverse FFT of X̂
(M)
i (w) yields the linear convolution of the gain

function gM(n) (n = 0, 1, ,M1) of with the noisy signal y(n). Figure 5.7 shows

an example of the average gain function with and without adaptive averaging

for the fixed frequency fraction. Figure 5.8 indicates the gain function given in

(5.56) with no averaging, and Figure 5.9 indicates the gain function given in (5.58)

obtained with adaptive averaging.

The gain function indicates in Figure 5.8 has changed considerably, especially in

speech segments where speech is not present (for example, the part at t < 0.5s and

t > 5.5s). In contrast, the gain function in Figure 5.9 is observed to be relatively

smooth. The adaptive mean parameter calculated using (5.59) is shown in Figure

5.10. Large values of are obtained when the spectral inconsistency value is small

and suggest constant background noise conditions (t < 0.5s and t > 5.5s)

Figure 5.7: A sample noisy sentence. Example gain functions (for a fixed fre-
quency) obtained

Figure 5.8: Example gain functions (for a fixed frequency) obtained without
averaging
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Figure 5.9: Example gain functions (for a fixed frequency) obtained with averag-
ing (Equation 5.57)

Figure 5.10: The instantaneous values of the smoothing parameter used in the
gain averaging.

When speech is present, small values of ai are obtained (see for example t ≈ 1.25s

and t ≈ 0.8s). The following parameters are found in [15] for a good study of

speech sampled at 8 kHz: L = 160, M = 32, and N = 256. Although power

spectral subtraction can be used in practice, the magnitude spectrum is used in

subtraction [15], as shown in (5.56).
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Chapter 6

Statistical Model Based Methods

6.1 Introduction

In this section, nonlinear estimators of extreme magnitude (i.e., the module of

the DFT coefficients) from the complex spectrum of the signal are discussed using

various statistical models and optimization criteria. These nonlinear estimators

explicitly add the noise probability density function (PDF) and the speech DFT

coefficients to the account, and in some cases the non-Gaussian prior distributions

are used.

Usually, by incorporating the probability of the presence of speech into the cal-

culations with soft decision-making gains that add to these estimators, speech

enhancement methods have been applied in a statistical estimation framework

[30]. When an unknown series of measurements is assigned to a parameter, we

wish to find a non-linear estimator of the relevant parameter. In this method, the

measurements correspond to a set of DFT coefficients of the noisy signal spec-

trum, and the relevant parameters form a set of DFT coefficients of the clean

signal spectrum. There are many techniques for deriving these nonlinear estima-

tors in the literature of estimation theory [30]. For instance, Bayesian estimators

(e.g., MMSE and maximum posteriori estimators) and maximum likelihood es-

timators (ML) are available. In addition, these estimators differentiate in terms

of the assumptions generated, the relevant parameter interest (e.g., deterministic

but unknown, random), and the optimization criterion applied.
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6.2 Maximum-Likelihood Estimators

The ML [30] approach is also the most popular approach to obtaining practi-

cal estimators of statistical estimation theory, and even the most complex es-

timation problems are often used. This method was first applied to enhance

speech by McAulay and Malpass [28]. It is assumed that an N -point data set

y =
{
y(0), y(1), , y(N1)

}
is connected to an unknown parameter θ. In the speech

enhancement y (observed data set) is specified as the noisy speech magnitude

spectrum and in the interest parameter θ. It also refers to the PDF of y, denoted

by p(y; θ). The PDF of y is denoted by the unknown θ parameter and denoted

by a semicolon. The θ parameter affects the probability of y, the values of θ are

subtracted from the observed values of y; the following question can be asked

against this statement: Is θ the largest value produced y which is the observed

data? Mathematically, the maximizing θ of p(y; θ) can be investigated as given

in the following equation,

θ̂ML = arg max
θ
p(y; θ) (6.1)

The previous estimate θ̂ML, is the expressed ML estimate of θ. The PDF p(y; θ)

is called the probability function, given that it can be seen as a function of an

unknown parameter with y fixed. To find ,p(y; θ) is distinguished by θ. The

derivative zero is equally set and solved for θ. In some cases, it has been sug-

gested that instead of this, it is more appropriate to find by derivation of the

log-likelihood function p(y; θ). The θ parameter is not known but must be con-

sidered deterministic. This assumption indicates Bayesian maximum likelihood

estimation (MLE) when θ is assumed to be random.

The sampled noisy speech signal y(n) = x(n) +d(n) consisting of the clean signal

x(n) and the noise signal d(n) is specified. In the frequency domain, sampled

noisy speech signal looks like the following:

Y (wk) = X(wk) +D(wk) (6.2)

for wk = 2πk/N and k = 0, 1, 2, · · · , N − 1, where N is the frame length in the

samples.
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The previous equation can also be expressed in polar form as

Yke
jθy(k) = Xke

jθx(k) +Dke
jθd(k) (6.3)

where{
Yk, Xk, Dk

}
defines the magnitudes,{

θy(k), θx(k), θd(k)
}

indicates the phases at noisy speech signal of frequency co-

efficient k, clean speech signal, and noise signal separately and respectively.

In the ML approach, recommended by McAulay and Malpass [28], the magni-

tude and phase spectra of the clean signal, i.e., Xk and θx(k) are unknown but

are noted deterministic parameters. The PDF of the noise Fourier transform

coefficients D(wk) is supposed to be zero-mean and complex Gaussian. It is ex-

pressed that the real and imaginary parts of D(wk) are assumed to have λd(k/2)

variances. Depending on these two assumptions, the probability density of inves-

tigated noisy speech DFT coefficients, Y (wk). The probability density of Y (wk)

is also Gaussian, which denotes variance of λd(k) and the average of Xke
jθx(k) as

follows:

p(Y (wk);Xk, θx(k)) =
1

πλd(k)
exp
[
− |Y (wk)−Xke

jθx(k)|2

λd(k)

]
=

1

πλd(k)
exp
[
−
Y 2
k − 2XkRe

{
ejθx(k)Y (wk)

}
+X2

k

λd(k)

] (6.4)

To obtain the ML estimate of Xk, the maximum p(Y (wk);Xk, θx(k)) with about

Xk. However, this is not clear, because p(Y (wk);Xk, θx(k)) is named function of

two unknown parameters: the phase and the magnitude. The phase parameter is

assumed as an annoyance parameter that can be easily removed by ”integrating

it out.” More specifically, the phase parameter can be reduced by maximizing the

following mean probability function:

pL(Y (wk);Xk) =

2π∫
0

p(Y (wk);Xk, θx)p(θx)dθx (6.5)
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The index k is dropped from the phase to provide simplicity. Assuming a homoge-

neous distribution over (0, 2π) for the phase θx, that is p(θx) = 1
2π

for θx ∈ [0, 2π]

the probability function is as follows as:

pL(Y (wk);Xk) =
1

πλd(k)
exp

[
−Y

2
k +X2

k

λd(k)

]
1

2π

2π∫
0

exp

[
−

2XkRe
{
ejθx(k)Y (wk)

}
λd(k)

]
dθk

(6.6)

The integral of the previous equation is known as the first modified Bessel function

is given as

Io(|x|) =
1

2π

2π∫
0

= exp
[
Re(xe−jθx)

]
dθx (6.7)

and the likelihood function in (6.6) simplifies as follows,

pL(Y (wk);Xk) =
1

πλd(k)

1√
2π 2XkYk

λd(k)

exp
[
− Y 2

k +X2
k − 2XkYk
λd(k)

]
(6.8)

After reproducing the log-likelihood function pL(Y (wk);Xk), which is associated

with the unknown parameter Xk, and after equalizing the derivative zero, the ML

estimate of the size spectrum is obtained as follows:

X̂k =
1

2

[
Yk +

√
Y 2
k − λd(k)

]
(6.9)

When the noisy signal phase θy is used instead of θx, the estimate of the clean

signal spectrum, the clean signal is used as an estimate of the signal frequency;

it is expressed as:

X̂(wk) = X̂ke
jθy = X̂k

Y (wk)

Yk

=

[
1

2

√
Y 2
k − λk(k)

Y 2
k

]
Y (wk)

(6.10)
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γk
∆
= Y 2

k /λd(k) has a posteriori or evaluated SNR value based on the described

expressions, the previous equation can be written as:

X̂(wk) =

[
1

2
+

1

2

√
γk − 1

γk

]
Y (wk)

= GML(γk)Y (wk)

(6.11)

where GML(γk) represents the gain function of the ML estimator. The previous

acquiring implies that the signal magnitude and phase (Xk and θk ) are unknown,

but it is deterministic. Defining that the signal and speech DFT coefficients are

independent in Gaussian process with zero mean, but the signal variance is ex-

pressed as variance λx(k) that is deterministic, and then we acquired a likelihood

function. The signal and noise are denoted to be independent. The variance of

Y (wk), indicated as λy(k) is expressed by λy(x) = λx(k) + λd(k). Hence, the

probability density of Y (wk) is given by the following equation:

pL(Y (wk);λx(k)) =
1

πλx(k) + λd(k)
exp

[
− Y 2

k

λx(k) + λx(k)

]
(6.12)

Maximizing the likelihood function pL(Y (wk);λx(k)) with respect to λx(k), we

get as the following equation,

λ̂x(k) = Y 2
k − λd(k) (6.13)

Given that Y 2
k ≈ λx(k) and D2

k ≈ λd(k) and (Y 2
k − λd(k) > 0) get an estimate of

the signal size spectrum as obtained in the following equation:

X̂k =
√
Y 2
k − λx(k) (6.14)

It should be noted that this estimator of Xk is nothing more than a power spec-

trum subtraction estimator. For this reason, assuming that the original power

spectrum subtraction approach is modeled as independent Gaussian random pro-

cesses of signal and noise Fourier transform coefficients. ML can be derived using

principles and signal variance λx(k) can be calculated but is deterministic.
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The estimation of the clean signal spectrum acquired by power spectrum subtrac-

tion is calculated as follows in (6.11):

X̂(wk) = X̂ke
jθy = X̂k

Y (wk)

Yk

=

√
Y 2
k − λd(k)

Y 2
k

Y (wk)

(6.15)

The previous equation for γ(k) can be written as:

X̂(wk) =

√
γk − 1

γk
Y (wk)

= GPS(γk)Y (wk)

(6.16)

The gain function of the power spectral subtraction method is expressed as

GPS(γk). Finally, it should be noted that when λx(k) in (6.6) replaces the ML

estimate, the following equation is obtained,

X̂(wk) =
λx(k)

λx(k) + λd(k)
Y (wk) (6.17)

we get

X̂(wk) =
Y 2
k − λd(k)

Y 2
k

Y (wk)

=
γk − 1

γk
Y (wk)

= G2
PS(γk)Y (wk)

(6.18)

6.3 Bayesian Estimators

In the previous section, the ML approach has been shown for the parameter

estimation and it has been stated here that the interest parameter assumed to

be the θ was deterministic but unknown. In this section, it is assumed that θ

is a random variable, and thus, a random variable is predicted to occur. This

approach is called Bayesian approach because this application is based on Bayes

theorem. The primary motivation behind the Bayesian approach is the fact that
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when knowledge of θ is identified in advance, i.e., when p(θ) is known, it is

necessary to include the estimator in order to improve the estimation accuracy.

Bayes estimators perform better than MLE predictors, because they typically use

information in advance. In the other part, the Bayesian concept explains the

methods of minimizing the mean square error between the true and estimated

magnitude spectra.

6.4 MMSE Estimator

In the previous part, it was stated that the error between the linear model of

the clean spectrum and the actual spectrum can be derived by minimizing the

error. Many researchers who acknowledge the importance of short-time spectral

amplitude (STSA) on speech intelligibility and quality of speech have suggested

the most appropriate methods for obtaining spectral amplitudes from noisy ob-

servations. Specifically, the most suitable estimators were sought to reduce the

mean square error between predicted and actual quantities to a minimum:

e = E
{

(X̂k −Xk)
2
}

(6.19)

where

X̂k is expressed as an estimate of the spectral magnitude in the frequency domain

The actual magnitude of the clean signal is specified as Xk

Depending on how the expectation is applied, the minimization of (6.19) can be

achieved in two ways. Y is the investigated noisy speech spectrum, p(Y;Xk),

which indicates [Y (w0)Y (w1) · · ·Y (wN−1)] in the classical MSE approach. In

Bayesian MSE approach, expectation is made about common joint PDF p(Y;Xk)

and Bayes MSE is given by

X̂k =

∫∫
(X̂k −Xk)

2p(Y;Xk)dYdXk (6.20)
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The optimal MMSE estimator is generated to the minimization of the Bayes MSE

according to X̂k

X̂k =

∫
Xkp(Xk|Y)dXk = E[(XkY)]

= E
[
(Xk

∣∣[Y (w0)Y (w1) . . . Y (wN−1)]
] (6.21)

This expresses the mean of a posteriori PDF of Xk. The posterior PDF p(Y;Xk)

is the clean spectrum amplitudes with the amplitudes acquired after investigating

all the data in the posterior PDF. In contrast, the PDF of the clean amplitudes

before the data is observed indicates a priori PDF of the Xk, that is p(Xk). The

MMSE estimate given in (6.21) is not assumed to be a linear relationship between

the observed data and the estimator, but includes knowledge of the probability

distributions of speech and noise DFT coefficients.

Assuming we already have knowledge about the distributions of speech and speech

DFT coefficients, we can evaluate if we assume that we have averages of the

posterior PDF of Xk, i.e., the mean of p(Y;Xk), and the distributions of speech

and sound DFT coefficients.

However, it is difficult to measure the true probability distributions of the speech

Fourier transform coefficients because the speech and sometimes the noise sig-

nal is not a stationary or ergodic operation. They have often tried to measure

the probability distributions [46][47] by examining the long-term behavior of the

method. Histograms of the Fourier coefficients have been questioned to measure

the relative frequency of the Fourier transform coefficients rather than the ac-

tual probability density of the Fourier transform coefficients obtained using large

quantities of data [29]. Ephraim and Malah [29] proposed a statistical model

using the asymptotic statistical properties of the Fourier transform coefficients to

remove these problems [48].

This model makes two assumptions:

1. The real and imaginary parts with Fourier transform coefficients have a

Gaussian probability distribution. The averages of the coefficients are zero

and the variances of the coefficients replace over time, depending on the

instability of speaking.
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2. The Fourier transform coefficients are statistically uncorrelated and thus

independent.

The Gaussian hypothesis is motivated by the central limit theorem [52] because

the Fourier transform coefficients are computed as a sum of N random variables.

For example, the calculation of the Fourier transform coefficients of noisy speech,

Y (wk), is expressed as:

Y (wk) =
N−1∑
n=0

y(n)e−jwkn = y(0) + a1y(1) + a2y(2) + · · ·+ aN−1y(N − 1) (6.22)

where

am = exp(−jwkm) are constants

y(n) are the time-domain samples of the noisy speech signals

When the statistically independent random variables
{
y(n)

}N−1

n=0
are indepen-

dent, Y (wk) is Gaussian according to the resultant central limit theorem [52].

The central limit theorem applies in the case of speech signals as well as weakly

dependent samples of sufficiently separated samples. The unrelated assumption

is motivated by the approach of the correlation between different Fourier coeffi-

cients as the frame length of the analysis approaches N infinity. The assumption

of independence is a direct result of the irrelevant assumption, since the Fourier

coefficients are both uncorrelated and Gaussian, then they are also independent.

However, in speech applications, due to the stability of the speech signal. This

can lead to a degree of correlation of the Fourier transform coefficients. How-

ever, overlapping analysis windows are often used in practice. Although such

”window overlap” clearly violates the unrelated assumption, the resulting models

have proven to be practical and useful in practice.
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6.4.1 MMSE Magnitude Estimator

To determine the MMSE estimator, first the posterior PDF of Xk, p(Xk|Y (wk)),

is calculated. It was used to determine Bayes’ rule as follows:

p(Xk|Y (wk)) =
p(Y (wk)

∣∣Xk)p(Xk)

p(Y (wk))
)

=
p(Y (wk)

∣∣Xk)p(Xk)∫∞
0
p(Y (wk)

∣∣xk)p(xk)dxk
(6.23)

where xk is a realization of the random variable Xk. It should be noted that

p(Y (wk)) is a normalization factor required to ensure that p(Xk

∣∣Y (wk)) inte-

grates with 1. If we assume statistical independence between Fourier transform

coefficients, that is,

E
[
Xk|Y (w0)Y (w1)Y (w2) . . . Y (wN−1)

]
= E[Xk|Y (wk)] (6.24)

and p(xk
∣∣Y (wk)), the estimator in (6.21) is simplified as shown in the following

equation,

X̂k = E[Xk|Y (wk)]

=

∞∫
0

xkp(xk|Y (wk))dk

=

∫∞
0
xkp(xk|Y (wk))dxk∫∞

0
p(Ywk

)|xk)p(xk)dxk

(6.25)

After that,

p(Y (wk)|Xk)p(Xk) =

2π∫
0

p(Y (wk)|xk, θk)p(xk, θk)dθk (6.26)
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θx is the actualization of the phase random variable of X(wk) (for clarity, the

index k is reduced at θx), we get

X̂k =

∫∞
0

∫ 2π

0
xkp(Y (wk)|xk, θx)dxk∫∞

0

∫ 2π

0
p(Y (wk)|xk, θx)p(xk, θx)dθxdxk

(6.27)

Next, p(Y (wk)|xk, θx) and p(xk, θx) need to be estimated. It is known from the

statistical model that Y (wk) is the sum of two zero-complex Gaussian random

variables. For this reason, the conditional PDF p(Y (wk)|xk, θx) must also be

Gaussian:

p(Y (wk)|xk, θx) = pD(Y (wk)−X(wk)) (6.28)

where pD(·) is expressed as the PDF of noisy Fourier transformation coefficients

D(wk). The previous equation is then obtained by

p(Y (wk)|xk, θx) =
1

πλd(k)
exp

{
− 1

λd(k)
|Y (wk)−X(wk)|2

}
(6.29)

Here, the variance of the kth noise spectral component k is given as λd(k) =

E
{
|D(wk)|2

}
. For complex Gaussian random variables, it is known that the

random variables (Xk) and phase (θx(k)) of X(wk) are independent of the random

variables [52], and for this reason the joint PDF p(xk, θx) such as the product of

the exclusive PDFs, that is, p(xk, θx) = p(xk)(θx).

The PDF of Xk is Rayleigh, because Xk =
√
r(k)2 + i(k)2, over here r(k) =

Re[X(wk)] and i(k) = Im[X(wk)] are Gaussian random variables [52]. θx(k)

equals PDF uniformly in interval (−π, π) and hence the common probability

p(xk, θx) is expressed in an equation as follow as

p(xk, θx) =
xk

πλx(k)
exp
{
− x2

k

λx(k)

}
(6.30)

where λx(k) = E
{
|X(wk)|2

}
denotes the variance of the kth spectral parameter

of the clean signal.
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By replacing (6.29) and (6.30) with (6.25), the MMSE magnitude estimator was

obtained:

X̂k =
√
λkΓ(1.5)Φ(−0.5, 1;−vk) (6.31)

where Γ(·) is the gamma function, φ(a, b; c) is called the confluent hypergeometric

function, and λk is given by

λk =
λk

λx(k) + λd(k)
=
λx(k)

1 + ξk
(6.32)

and vk is described by

vk =
ξk

1 + ξk
γk (6.33)

where γk and ξk are described by

γk =
Y 2
k

λd(k)
(6.34)

ξk =
λx(k)

λd(k)
(6.35)

The parameters of ξ and γk are called a priori and posteriori SNR, respectively.

A priori SNR ξ can be viewed as the true SNR of the kth spectrum component,

as a posteriori SNR γk is assumed to be the noticed or evaluated SNR after the

noisy addition of the spectral component. Equation 6.31 can also be written as

X̂k =

√
vk
γk

Γ(1.5)Φ(−0.5, 1; vk) (6.36)
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Because
√
λk is simplified by using (6.33) to (6.36)

√
λk =

√
λx(k)

1 + ξk

=

√
ξkλd(k)

1 + ξk

=

√
ξkY 2

k

(1 + ξk)γk

γk
γk

=

√
ξkY 2

k

(1 + ξk)

1

(γk)2
Yk

=

√
vk
γk
Yk

(6.37)

Finally, the confluent hypergeometric function in (6.36) is written in terms of

Bessel functions and the MMSE estimator can be expressed as:

X̂k =

√
π

2

√
vk
γk

exp(−vk
2

)
[
(1 + vk)I0

(vk
2

)
+ vkI0

(vk
2

)]
Yk (6.38)

where I1(·) and I0(·) are expressed as replaced Bessel functions of first and zero

order, respectively. Equation (6.38) or (6.36) is preferred over the original (6.30),

since the estimated size is expressed as a gain function, such as X̂k = G(ξk, γk)Yk.

The spectral gain function G(ξk, γk)

G(ξk, γk) =
X̂k

Yk
=

√
π

2

√
vk
γk

exp(−vk
2

)
[
(1 + vk)I0

(vk
2

)
+ vkI0

(vk
2

)]
(6.39)

is signified as a function of two parameters: a posteriori SNR and a value γk a

priori SNR ξk. For large values of the instantaneous SNR, the MMSE acquisition

function is given by the following equation:

Gw(ξk) =
ξk

1 + ξk
(6.40)
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6.4.2 Estimating the a Priori SNR

The MMSE amplitude estimate in (6.36) has been regenerated assuming that

there is an SNR and a noise variance (λd(k)) in advance. Nevertheless, in practice,

only the noisy speech signal can be accessed. However, the estimation of ξk is

more difficult to make.

First, Ephraim and Malah [29] investigated the sensitivity of the amplitude esti-

mator for the errors of a priori SNR ξk. They found that the MMSE estimator

is insensitive to small fluctuations of ξk. Furthermore, from another perspective,

it should be assumed that the MMSE estimator is sensitive to low estimates and

the a priori SNR ξk is greater. Several different methods have been proposed for

estimating the a priori SNR ξk [29][51][53]. Many of these methods have been

described as extensions and improvements of the methods recommended in [30].

6.4.3 Maximum-Likelihood Method

This method [29], which is expressed as an ML approach, is used to estimate

the SNR ξk of λx(k), which is firstly determined as unknown and accepted as

a deterministic parameter. When λx(k) is given and λd(k) is assumed to be

estimated during non-speech activity, (6.35) is used to obtain ξk.

This estimate is based on L, which is the past consecutive observations of the noisy

speech magnitudes obtained in the mth analysis and the frequency coefficient

k of Yk(m)
∆
=
{
Yk(m), Yk(m − 1), . . . , Yk(m − L + 1)

}
. Assuming statistical

independence between L observations and using the Gaussian statistical model,

the following probability function is constructed:

p(Yk(m);λx(k), λd(k)) =
L=1∏
j=0

1

π(λx(k) + λd(k))
exp

(
− Y 2

k (m− j)
λx(k) + λd(k)

)
(6.41)
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The previous likelihood function is maximized with respect to λx(k) and λd(k) is

estimated for frame m:

λ̂x(k,m) =

{
1
L

∑L−1
j=0 Y

2
k (m− j)− λd(k,m) if nonnegative

0 else

=max

(
1

L

L−1∑
j=0

Y 2
k (m− j)− λd(k,m), 0

) (6.42)

After dividing both sides by λd(k,m), the following equation is obtained

ξ̂k(m) = max

(
1

L

L−1∑
j=0

γ2
k(m− j)− 1, 0

)
(6.43)

where represents γk(m)
∆

Y 2
k (m)/λd(k,m) the posteriori SNR of frame m, and max

(·) operator is applied so that ξk is always nonnegative. In practice, the moving

average is replaced by a recursive averaging operation of (6.43)

γ̄k(m)
∆
= aγ̄k(m− 1) + (1− a)

γ̄k(m)

β
(6.44)

In the range given here 0 ≤ a < 1 is the correction constant expressed and β ≥ 1

means a correction factor. The final ML estimator of ξ has the form

ξ̂k(m) = max(γ̂(m)− 1, 0) (6.45)

Interestingly, when L = 1, the previous ML estimator ξk(m) = max(γ(m)− 1, 0)

only produces a gain function depending on γk.
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6.5 Implementation and Evaluation of the MMSE Estimator

The minimum mean square error algorithm has been reviewed and applied in

the following four basic steps. For each speech frame separated by windows, the

following steps are applied:

Step 1: The DFT of the noisy speech signal is calculated: (wk) = Ykexp(jθy(k))

Step 2: λk is predicted as a posteriori term γk as γk = Y 2
k /λd(k) over the power

spectrum of the noise signal calculated during the non-speech activity. Thereafter,

ξk is calculated by applying (6.45).

Step 3: Applying (6.38), the enhanced signal amplitude X̂k is estimated.

Step 4: The enhanced signal spectrum must be constructed as X̂k = X̂kexp(jθy(k))

and the inverse DFT of X̂k(wk) must be computed to obtain the enhanced time-

domain signal x̂(n) corresponding to a given input speech frame.

The Hamming-window was opened prior to the DFT analysis of the speech signal

[6]. In each frame, the overlap and add method is used to synthesize the enhanced

signal x̂(n). In each frame, the overlap and add method is used to synthesize the

enhanced signal . By explaining the performance of the MMSE algorithm [29],

the effects on the development of spectral subtraction and ML algorithms have

been explored and compared [29]. Enhanced speech had residual noise; that is,

the value produced in the spectral extraction of the speech signal, was not the

residue ”musical.” On the contrary, when a priori SNR was estimated using the

ML approach in (6.45), ”musical noise” was obtained in the enhanced speech.

Furthermore, the MMSE estimator gave a similar speech quality with a priori

SNR (a = 0.725 and β = 2 a = 2 in (6.44)) estimated when using the ML

approach.
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Chapter 7

Experimental Work

7.1 Subjective Listening Tests

The subjective listening test [55] helps people to compare and evaluate the quality

of their speech by providing listening to recorded speech. It is known that listeners

of recorded voices can evaluate the same speech differently. However, when a

sufficiently large sample size is applied, the corresponding subjectivity average

can be obtained. Enhanced speech listening is intended for human ears, and

perhaps this is the best evaluation method. The major disadvantage of these

tests is that they are very tedious and time-consuming to perform subjective

listening tests. The two most commonly used subjective tests are the MOS and

the paired listening test.

7.2 Mean Opinion Score Test

A subjective test based on MOS is also carried out on some selected utterances.

The results of the subjective test were also compared with those of the objective

test to determine the most appropriate objective measure for the evaluation of

speech enhancement algorithms. The strengths and weaknesses of the various

algorithms are analyzed and compared. The first objective is by far the most

common focus of most researchers in the area. The quality of speech, i.e., how

pleasant it sounds to a human listener, is a high subjective measurement. On the

other hand, intelligibility, or how much information can be removed from a speech,

is an objective measure. Quality can be measured using the Mean Opinion Score

(MOS) in which a listener rates the quality of a speech from 1 to 5. Intelligibility

analyses are conducted differently as the emphasis is on the understanding of
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speech. In such tests, listeners are asked to listen to several sentences or separate

words, and they should write down the words they can recognize. Based on the

percentage of correctly recognized words, an intelligibility score is obtained.

The mean opinion score (MOS) is the most commonly used global method for

evaluating the user’s recorded speech data. In this method, listeners can rate

speech that is individually tested at all on a numeric scale of five based on their

auditory impressions. The MOS scale is given in Figure 7.1 The measurements

required for the test are regularly made with a group of auditors and then the

scores are averaged to obtain the final MOS. Sample test speeches with known

MOS values is provided for the good and unbiased evaluation of auditors where

normalization may be performed to reduce the prejudice of the audiences concern-

ing the MOS values being high or low. MOS rating of 3 and above is considered

to be” toll quality.” However, relative scores in comparing speech enhancement

algorithms are more important than total ratings. A detailed explanation of how

this particular subjective test is conducted in ITU-T Recommendation P.830 is

given.

Figure 7.1: Mean Opinion Score five-point scale in table

7.3 Comparison of Algorithms using MOS

34 different sound sample that used in SYMPES code are treated with the geo-

metric approach and Richard Hendriks algorithms. It is observed that it is not

possible to evaluate outputs objectively. Then MOS test has been decided as a

subjective evaluation method. In the test, 40 people listened to 34 sound samples

with different sampling frequencies, 16 kbps, 32 kbps, 64 kbps and voted them

from 1 to 5 as worst to best. The Sympes16 +GA, Sympes16 +hen, Sympes16,

Sympes32+GA, Sympes32+hen, Sympes32, Sympes64+GA, Sympes64+hen,

Sympes64 averages were calculated.
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Figure 7.2: Average Ratings per Output in Table

Each result of MOS test was given in Figure 7.2. As seen in the table, for 16 kbps

the best results are obtained at Sympes16 + GA with score 5.000. The worst

results are obtained at Sympes16 with 3.225. As seen in the table, for 32 kbps

the best results are achieved at Sympes32 + GA with score 3.889. The worst

results are obtained at Sympes32 with 2.000.

Moreover, the spectrum analyzes of the best, the mid and the worst averages for 16

kbps were given in figures below. Red areas represent high frequencies signal with

high powers. The graphs are colored from green to red representing the power

of the signal from low to high. The high powers signals in low frequencies in the

spectrum of the original signal (Figure 7.4) are observed strongly in Hendrikss

spectrum above 0,2-0,3 frequency (Figure 7.6).

In other words, background noise remains still exist due to distortion in Hendrikss

spectrum. On the other hand, the high power signals are rarely observed in GA

and SYMPES spectrum. It is seen that sound is improved in mid and high

frequencies, therefore, it is better than GA as also seen in MOS test result.

65



Figure 7.3: Average Ratings of MOS Score

Figure 7.4: Spectrum Analyze of 16kbps original speech signal
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Figure 7.5: Spectrum Analyze of 16kbps SYMPES16+GA (Geometric Approach)

Figure 7.6: Spectrum Analyze of 16kbps SYMPES16+hen (Hendriks Approach)
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Figure 7.7: Spectrum Analyze of 16kbps SYMPES16 (Speech Coding)
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Chapter 8

Conclusion

In this study, the coding method SYMPES, which is used to compress speech sig-

nals is used. The SYMPES method used is important to enhance speech signals

in processing and storing the intended speech signals in modern communication

systems. The SYMPES method used is important in estimating speech signals

in processing and storing the expected speech signals in modern communication

systems. In particular, as a result of modeling or reconstruction of speech sig-

nals, reduces the amount of information needed for compressed signals. The

compression and transmission of digital speech signals is considerably improved

by compressing the speech data. However, compression results in data loss or

background noise.

This study has attempted to improve the distortion of the background that was

made without being compressed. The speech enhancement algorithms used in this

study have been done with speech enhancement algorithms; spectral subtraction

algorithm and statistical-based model, which give very useful results to improve

the distortion of the background. These algorithms are explained in detail, and

the differences between them are examined and tested to determine which is

better. However, a subjective test was used instead of an objective test. It

is seen that the enhanced signals are distorted in the waveform. It has been

found that the SNRs of the output of the signals that are improved after being

compressed due to the distortion of this waveform will not be a good result. For

this reason, the MOS test, which is a subjective test, is compared with the two

speech enhancement algorithms mentioned above.

Thirty-four compressed speech records using SYMPES coding were enhanced us-

ing speech enhancement algorithms. These enhanced sounds were listened to by

40 people for 16 kbps, 32 kbps, and 64 kbps sampling frequency outputs for MOS
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testing. In the MOS test [Section 7], the best was scored 5 and the worst as 1

by the listeners. According to the MOS test results shown in Table ... the best

enhancement is made by the spectral subtraction algorithm. The best average

result for 16 kbps is 5.00 for SYMPES16 + GA and the worst is 3.222 in the MOS

test. The other enhancement algorithm is best at 2.889 and the worst at 1.444

for the study of Hendriks.

In addition, spectral analysis graphs show that the GA noise is better enhanced

at mid and high frequencies than the study of Hendriks. Thus, the explanation

for the above spectrum analysis graph proves the results of the MOS test.
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