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Abstract
We state the fractional Fourier transform and the continuous fractional wave packet
transform as ways for analyzing persistent signals such as almost periodic functions
and strong limit power signals. We construct frame decompositions for almost
periodic functions using these two transforms. Also a norm equality of this signal is
given using the continuous fractional wave packet transform.
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1 Introduction
The fractional Fourier transform (FrFT), which is a generalization of the classical Fourier
transform (FT), was introduced many years ago for solving the differential equation in
quantum mechanics. Today, it is one of the most commonly used tools in signal pro-
cessing. It has been investigated in numerous papers including [–]. Since it is poten-
tially useful, it seems to have remained largely unknown in signal processing field. Also
it has been introduced in optics as a fundamental tool for optical information processing
[, ]. FrFT has opened up the possibility of useful applications including the use and
detection of chirp signals, correlation and pattern recognition, space or time-variant fil-
tering, Synthetic Aperture Radar (SAR) image processing, etc. [, ]. FrFT is likely to have
something to offer in every area in which Fourier transform and related concepts are used.
The well-known properties of FT have been extended to FrFT as in [–].

Besides FT, time-frequency representations of signals, such as Wigner distribution,
short time Fourier transform (STFT)

S(τ , f ) =
√
π

∫ ∞

–∞
e–iutg(t – τ )f (t) dt,

where g(t) is the window function, and wavelet transform (WT)

W (b, a) =
√
a

∫ ∞

–∞
f (t)ψ

(
t – b

a

)
dt,
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where a is the scaling and b is the translation parameters, are widely used linear transforms
in speech processing, image processing or quantum physics.

ψb,a(t) =
√
a
ψ

(
t – b

a

)
, b ∈R, a >  (.)

is known as the mother wavelet.
The wave packet transform (WPT) [] is the combination of STFT and continuous WT,

that is the Fourier transform of a function windowed with a wavelet that is scaled by a and
translated by b:

WP(u, b, a) =
√

πa

∫ ∞

–∞
f (t)e–iutψ

(
t – b

a

)
dt. (.)

Here, the function √
πa eiutψ( t–b

a ) is known as the wavelet packet.
Using the idea of FrFT, WPT and fractional mother wavelet ψb,a,α , Huang and Suter

[] proposed the concept of the fractional wave packet transform (FrWPT), and Prasad
et al. [] modified FrWPT introducing the continuous fractional wave packet transform
(CFrWPT).

In this paper, we firstly introduce FrFT and CFrWPT and some of their properties in
brief. For a continuous signal f (t), FrFT turns out to be a continuous-frequency function
Fα(u), where u is the frequency associated with the fractional domain and α is the fraction.
CFrWPT is related to FrFT since they both use the same kernel. We use these transforms
as tools for analyzing almost periodic functions and strong limit power signals. General-
ized frame decompositions for almost periodic functions are constructed by using FrFT
and CFrWPT. We also give a version of norm identity for an almost periodic function
connected with CFrWPT.

2 Preliminaries
2.1 The fractional Fourier transform
We define the Fourier transform of a function f (t) as

F(u) =
√
π

∫ ∞

–∞
f (t)e–iut dt

so that its inverse is

f (t) =
√
π

∫ ∞

–∞
F(u)eiut du.

The fractional Fourier transform with angle α of a signal f (t) is defined as

Fα(u) =
∫ ∞

–∞
Kα(t, u)f (t) dt, (.)

where the kernel is

Kα(t, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
–i cotα

π
ei t+u

 cotα–iut cscα , α �= nπ ,

δ(t – u), α = nπ ,

δ(t + u), α = (n + )π .

(.)
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The original function f (t) can be found by using the inverse FrFT of Fα as

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞
–∞ K–α(t, u)Fα(u) du, α �= nπ ,

Fα(t), α = nπ ,

Fα(–t), α = (n + )π ,

(.)

where K–α(t, u) =
√

+i cotα
π

exp{–i t+u

 cotα + iut cscα}.
When α = π/, FrFT reduces to the ordinary Fourier transform. For the new results, we

deal with the case α �= nπ .
In developing fractional Fourier series, we first find the orthogonal basis. Using inverse

FrFT of an impulse function δ(t – nt), we get

φα,n(t) =
√

 + i cotα

π
exp

{
–i

t + (nt)


cotα + i(nt)t cscα

}
, (.)

where t is called the central frequency in the fractional Fourier domains. We can divide
each φα,n by

√
T cscα/(π ) in order to obtain an orthonormal basis

φ̃α,n(t) =
√

sinα + i cosα

T
e–i((t+(n(π/T) sinα))/) cotα+int(π/T). (.)

Thus, the fractional Fourier series expansion of a signal f (t) can be written as

f (t) =
∞∑

n=–∞
Cα,nφ̃α,n(t)

on a finite interval, say [–(T/), (T/)].

2.2 The continuous fractional wave packet transform
The fractional wave packet transform of a function f ∈ L(R) is defined as

WPα(u, b, a) =
∫ ∞

–∞
Kα(t, u)ψb,a(t)f (t) dt, (.)

where Kα(t, u) is the kernel defined in (.) and ψb,a(t) is the mother wavelet defined in
(.).

Shi et al. [] gave the definition of fractional mother wavelet as

ψb,a,α(t) =
√
a
ψ

(
t – b

a

)
e

–i
 (t–b) cotα

= ψb,a(t)e
–i
 (t–b) cotα (.)

for b ∈R, a >  and any angle α which indicates the order. If we take a = –m and b = n–m,
we get ψm,n,α(t) = m/ψ(mt – n)e –i

 (t–n–m) cotα as the orthogonal set.
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Using this fractional mother wavelet, the continuous fractional wave packet transform
is given as

CWPα(u, b, a)

=
∫ ∞

–∞
Kα(t, u)ψb,a,α(t)f (t) dt

=
Cα√

a

∫ ∞

–∞
ei t+u

 cotα–iut cscαe
i
 (t–b) cotαψ

(
t – b

a

)
f (t) dt, (.)

where Cα =
√

–i cotα
π

. Note that, for α = π/, CFrWPT corresponds to WPT.

2.3 Almost periodic functions
We define by Lp

loc the space of the functions f on R such that the function ‖f ‖p is locally
Lebesgue integrable on R for p ≥ . The space AP of almost periodic functions is the
closure of quasi-periodic functions in Lp

loc. This space consists of equivalence classes of
functions of the form

f (t) =
∞∑

k=

akeiλk t ,

where ak ∈ C and λk ∈ R (see [, ]). Equivalently, it is the completion of the space of
trigonometric polynomials on R whose elements can be written as

∑n
k= akeiλk t , where

n ∈ N, ak ∈ C and λk ∈ R. All AP functions are uniformly continuous and bounded, and
we have

‖f ‖
AP = lim

T→∞


T

∫ T

–T

∣∣f (t)
∣∣ dt.

Let Q(R) consist of functions q in the form

q(t) =

⎧⎨
⎩

∑m
l= λltαl , t ≥ ,

–
∑m

l= λl(–t)αl , t < ,
(.)

where m = , , . . . ,λl ∈R, l = , , . . . , m and α > α > · · · > αm > . A function of the form

P(t) =
n∑

k=

akeiqk (t)

is called a generalized trigonometric polynomial on R, where ak ∈ C, qk(t) ∈ Q(R), and
k = , , . . . , n. Denote by Gtrig(R) the set of all such polynomials. A function f on R is said
to have strong limit power if for every ε >  there exists Pε ∈ Gtrig(R) such that

‖f – Pε‖ = sup
{∣∣f (t) – Pε(t)

∣∣ : t ∈R
}

< ε. (.)

Denote by SLP(R) the set of all such functions. The inner product of the SLP(R) space
is defined by

〈f , g〉SLP = lim
T→∞


T

∫ T

–T
f (t)ḡ(t) dt.
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It is easy to see that AP(R) ⊂ SLP(R) and ‖f ‖AP = ‖f ‖SLP (see []). They both are the
closed subspace of L∞(R).

2.4 The Parseval relation
The Parseval identity deals with the power of a function or a signal in the time and fre-
quency domains. If F(u) and G(u) are the Fourier transforms of f (t) and g(t), respectively,
we state the Parseval relation as

∫ ∞

–∞
f (t)g(t) dt =

∫ ∞

–∞
F(u)G(u) du.

The similar relation holds for the FrFT as
∫ ∞

–∞
f (t)g(t) dt =

∫ ∞

–∞
Fα(u)Gα(u) du, (.)

where Fα(u) and Gα(u) are the FrFT of f (t) and g(t) with order α, respectively []. If f (t) =
g(t), we get

∫ ∞

–∞

∣∣f (t)
∣∣ dt =

∫ ∞

–∞

∣∣Fα(u)
∣∣ du. (.)

If f (t) is an AP function, it is easy to see that

∥∥Fα(u,ω)
∥∥

L(u),AP(ω) =
∥∥f (t,ω)

∥∥
L(t),AP(ω), (.)

where

∥∥f (t,ω)
∥∥

L(t),AP(ω) = lim
T→∞


T

∫ T

–T

∫ ∞

–∞

∣∣f (t,ω)
∣∣ dt dω.

3 Main results
Theorem  Let f be an almost periodic function. And let α be an angle where cotα >  and
α �= nπ , α �= (n+)π

 , n ∈ Z. Then FrFT of f is a strong limit power function in u.

Proof Let f (t) =
∑n

k= akeiλk t be a trigonometric polynomial. Then

Fα(u)

=
∫ ∞

–∞
f (t)Kα(t, u) dt

= Cα

n∑
k=

ak

∫ ∞

–∞
ei(λk t+ t

 cotα+ u
 cotα–ut cscα) dt

= Cα

n∑
k=

akei u
 cotα

∫ ∞

–∞
ei[(λk –u cscα)t+ cotα

 t] dt

= Cα

n∑
k=

akei u
 cotα

∫ ∞

–∞
e

i cotα
 [(t+ λk –u cscα

cotα )–( λk –u cscα

cotα )] dt

= Cα

n∑
k=

ake
i cotα

 [u–( λk –u cscα

cotα )]
∫ ∞

–∞
e– cotα

i (t+ λk –u cscα

cotα )
dt, (.)
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where Cα =
√

–i cotα
π

. Since

∫ ∞

–∞
e– cotα

i u du =
√

π i
cotα

,

we obtain

Fα(u) =
√

 + i tanα

n∑
k=

ake
i cotα

 [u–( λk –u cscα

cotα )]

=
√

 + i tanα

n∑
k=

akei[(cotα–csc α)u+λk secαu–
λ

k cotα
 ], (.)

which is a generalized trigonometric polynomial in u.
If f is a general almost periodic function, then there exists a sequence (fn) of trigono-

metric polynomials where fn → f uniformly. Since Fαn (u) ∈ Gtrig(R), we get Fα(u) ∈
SLP(R).

Thus it is sufficient to verify that, if ‖fn – f ‖∞ → , then ‖Fαn (u) – Fα(u)‖L∞(y) → .
Using the definition of FrFT, it is easy to see that

∣∣Fα(u)
∣∣ ≤

√
 – i cotα

π

∫ ∞

–∞

∣∣f (t)
∣∣dt

and

∣∣Fαn (u) – Fα(u)
∣∣ ≤

√
 – i cotα

π

∫ ∞

–∞

∣∣fn(t) – f (t)
∣∣dt → . (.)

Since ‖Fαn (u) – Fα(u)‖L∞(y) = sup |Fαn (u) – Fα(u)| → , hence the result follows. �

Theorem  There exist constants A, B >  such that

A‖f ‖
AP ≤ lim

N→∞


N + 

N∑
n=–N

∣∣〈f , φ̃α,n〉
∣∣

≤ B‖f ‖
AP (.)

for all almost periodic functions f .

Proof Let us begin with the case when f is a trigonometric polynomial f (t) =
∑K

k= akeiλk t .
Since

〈f , φ̃α,n〉 =
K∑

k=

ak

√
sinα + i cosα

T
e

i
 ( nπ

T sinα) cotα
∫ ∞

–∞
ei t

 cotα+i(λk –n π
T )t dt

=
K∑

k=

ak

√(
π i
cotα

)
sinα + i cosα

T
e

i
 ( nπ

T sinα) cotαe
–i

 cotα (λk–n π
T )

,
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we calculate


N + 

N∑
n=–N

∣∣〈f , φ̃α,n〉
∣∣

=


N + 

N∑
n=–N

K∑
k=

K∑
�=

π

T cotα
akā�e

–i
 cotα (λk –n π

T )
e

i
 cotα (λ�–n π

T )

=
π

(N + )T cotα

N∑
n=–N

( K∑
k=

|ak| +
∑ ′akā�j(λk ,λ�)

)
, (.)

where the last sum in (.) is taken over those k, � such that λk – λ� is a (nonzero) multiple
of π cotα. In this case,

∣∣∣∑ ′akā�j(λk ,λ�)
∣∣∣

=
∣∣∣∣
∑
λ∈R

∑
s∈Z\{}

aλāλ+πs cotαe
–i

 cotα (λ–n π
T )

e
i

 cotα (λ+πs cotα–n π
T )

∣∣∣∣

≤
∑

s∈Z\{}

(∑
λ∈R

|aλ|
∣∣e –i

 cotα (λ–n π
T ) ∣∣∣∣e i

 cotα (λ+πs cotα–n π
T ) ∣∣

)/

×
(∑

λ∈R
|aλ+πs cotα|∣∣e –i

 cotα (λ–n π
T ) ∣∣∣∣e i

 cotα (λ+πs cotα–n π
T ) ∣∣

)/

≤
∑

s∈Z\{}

∑
λ∈R

|aλ|.

As N → ∞, we get inequality (.) for the trigonometric polynomials. A standard approx-
imation argument completes the proof for almost periodic functions. �

Theorem  Let f be an almost periodic function, α be an angle different from nπ , where
n ∈ Z, and let a =

√
π . Then CFrWPT of f is a strong limit power function in b.

Proof Let f (t) =
∑n

k= akeiλk t be a trigonometric polynomial. Then

CWPα(u, b, a)

=
Cα√

a

∫ ∞

–∞

n∑
k=

akeiλk tei t+u
 cotα–iut cscαe

i
 (t–b) cotαψ

(
t – b

a

)
dt

=
Cα√

a
e

i
 (u–b) cotα

n∑
k=

ak

∫ ∞

–∞
ei(λk –u cscα)t+i cotαt

ψ

(
t – b

a

)
dt

= Cα

√
ae

i
 (u–b) cotα

n∑
k=

ak

∫ ∞

–∞
ei(λk –u cscα)(va+b)+i cotα(va+b)

ψ(v) dv

= Cα

√
ae

i
 (u–b) cotα

n∑
k=

akei(bλk –ub cscα+b cotα)

·
∫ ∞

–∞
eiav cotα–i(–ua––λk a sinα–ab cosα)v cscαψ(v) dv,
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where we have made the substitution v = (t – b)/a. If we take A = ua – λka sinα – ab cosα

and a =
√

π , we get

CWPα(u, b,
√

π ) = Cαπ /e
i
 (u–b) cotα

n∑
k=

akei(bλk –ub cscα+b cotα)–iπA cotα

·
∫ ∞

–∞
eiπ (v+A) cotα–iAv cscαψ(v) dv.

Therefore,

CWPα(u, b,
√

π ) = π /
n∑

k=

ak�α(A)eiqk (b), (.)

where �α(A) is FrFT of mother wavelet ψ and

qk(b) =
(




cotα – π cos α cscα

)
b

+
[
λk – u cscα – (λk – u cscα)π cos α

]
b

+
(




– π
)

u cotα – λ
kπ

 sinα cosα + λkπ
u cosα.

Hence, we see that CWPα(u, b,
√

π ) is a generalized trigonometric polynomial, and the
result follows as in the proof of Theorem . �

Theorem  Let f be an almost periodic function and ψ be an L admissible wavelet. Then

∥∥CWPα(u, b,
√

π )
∥∥

L(u),AP(b) = Cψ‖f ‖
AP. (.)

Proof Since f (t) =
∑n

k= akeiλk t is a trigonometric polynomial, we get

∥∥CWPα(u, b,
√

π )
∥∥

AP(b) =



√

π

n∑
k=

|ak|
∣∣�α

(√
π (u – λk sinα – b cosα)

)∣∣.

By using (.),

∥∥CWPα(u, b,
√

π )
∥∥

L(u),AP(b) =



√

π

n∑
k=

∫ ∞

–∞
|ak|

∣∣ψ(t)
∣∣ dt

= Cψ‖f ‖
AP. (.)

For general almost periodic functions f , we take a sequence fn such that ‖fn – f ‖∞ → , and
take them to be Bochner-Fejer approximants of the form fn(t) =

∑Kn
k= a(n)

k eiλk t (see []).
Then

∥∥CWPn
α(u, b,

√
π ) – CWPα(u, b,

√
π )

∥∥
L∞(b) ≤ Cα

√
a‖fn – f ‖∞‖ψ‖,

using the monotone convergence theorem, the limiting argument of (.) will be valid, and
the result follows. �
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Theorem  There exist constants A, B >  such that

A‖f ‖
AP ≤

∑
m∈Z

m lim
N→∞


N + 

N∑
n=–N

∣∣〈f ,ψm,n,α〉∣∣ ≤ B‖f ‖
AP (.)

for all almost periodic functions f .

Proof If f is a trigonometric polynomial f (t) =
∑K

k= akeiλk t , we see that

〈f ,ψm,n,α〉 = m/
K∑

k=

ak

∫ ∞

–∞
ψ

(
mt – n

)
e

i
 (t–n–m) cotαeiλk t dt

= –m/
K∑

k=

ei λk
m nak

∫ ∞

–∞
ψ(v)e

i
 ( v

m + nv
m ) cotαei λk

m v

= –m/
K∑

k=

ei λk
m nakψ̂

(
λk

m

)
e

–i
 (

λ
k

m + nλk
m ) cotα .

Hence we can write

lim
N→∞


N + 

N∑
n=–N

∞∑
m=–∞

∣∣〈f ,ψm,n,α〉∣∣

= –m
K∑

k=

|ak|
∞∑

m=–∞

∣∣∣∣ψ̂
(

λk

m

)∣∣∣∣


+ –m
∑ ′akā�j(λk ,λ�), (.)

where the last sum in (.) is taken over those k, � such that λk –λ� is a (nonzero) multiple
of m. In this case,

∣∣∣∑ ′akā�j(λk ,λ�)
∣∣∣

=

∣∣∣∣∣
∑
λ∈R

∑
s∈Z\{}

aλāλ+sm

∞∑
m=–∞

ψ̂

(
λ

m

)
ψ̂

(
λ

m + s
)

eisne
–i
 ( s(λ+sm)

m + sn
m ) cotα

∣∣∣∣∣

≤
∑

s∈Z\{}

( ∞∑
m=–∞

∑
λ∈R

|aλ|
∣∣∣∣ψ̂

(
λ

m

)∣∣∣∣
∣∣∣∣ψ̂

(
λ

m + s
)∣∣∣∣

)/

×
( ∞∑

m=–∞

∑
λ∈R

|aλ+sm |
∣∣∣∣ψ̂

(
λ

m

)∣∣∣∣
∣∣∣∣ψ̂

(
λ

m + s
)∣∣∣∣

)/

≤
∑

s∈Z\{}

( ∞∑
m=–∞

∑
λ∈R

|aλ|
∣∣∣∣ψ̂

(
λ

m

)∣∣∣∣
∣∣∣∣ψ̂

(
λ

m + s
)∣∣∣∣

)/

×
( ∞∑

m=–∞

∑
λ∈R

|aλ|
∣∣∣∣ψ̂

(
λ

m – s
)∣∣∣∣

∣∣∣∣ψ̂
(

λ

m

)∣∣∣∣
)/

≤
∑
λ∈R

|aλ|
∑

s∈Z\{}

(

(s)
(–s)

)/,
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where 
(s) = supλ∈R
∑

m∈Z |ψ̂( λ
m )||ψ̂( λ

m + s)|. If we assume

A = inf
λ∈R

∑
m∈Z

∣∣∣∣ψ̂
(

λ

m

)∣∣∣∣


–
∑

s∈Z\{}

(

(s)
(–s)

)/ > ,

B = sup
λ∈R

∑
m∈Z

∣∣∣∣ψ̂
(

λ

m

)∣∣∣∣


+
∑

s∈Z\{}

(

(s)
(–s)

)/ < ∞,

we get inequality (.) for the trigonometric polynomials. Then we find the result for al-
most periodic functions by a standard approximation. �

4 Conclusion
We analyzed the fractional Fourier transform and the continuous fractional wave packet
transform for almost periodic signals. We construct frame decompositions for almost pe-
riodic functions using these two transforms. Also a norm equality of this signal is given
using the continuous fractional wave packet transform.
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