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EVALUATION OF FEATURE SELECTION AND

ENCODING METHODS FOR SUPERPIXEL IMAGE

PARSING

Abstract

This thesis is about image parsing which is one of the important problems in

computer vision. The goal of image parsing is segmentation of object and labeling

of each object.

Recently, a popular way of image segmentation and classification is superpix-

els. Image is segmented into visually logical small regions by using superpixel

algorithm and then, superpixels are parsed into different classes. Classification

performance is significantly affected by the properties of superpixel algorithm and

parametric settings. SuperParsing is one of the superpixel-based image parsing

algorithm and provides a succesful nonparametric solution for image segmentation

and classification problem without any need for classifier training. SuperParsing

labels each superpixel based on feature matching between the superpixel and a

subset of the training superpixels. The training subset is determined by global

matching between the test image and the training set. For superpixel match-

ing the method makes use of a rich set of superpixel features. Class conditional

log-likelihood is computed based on these matched features.

The main objective of this thesis is to show improvements in labeling accuracy

percentage by using feature encoding and selection methods, including learned

features from Convolutional Neural Network (CNN) models. We perform two dif-

ferent encoding methods to selected features of superpixels and show that feature

encoding improves parsing accuracy. The applied feature encoding methods are

locality-constrained linear encoding (LLC) and kernel codebook encoding (KCB).

LLC encoding method gives us 2.6% improvement on per-pixel accuracy for SIFT

Flow dataset and 6.8% improvement on per-pixel accuracy for 19-class LabelMe

dataset. KCB encoding method gives us 3.6% improvement on per-pixel accuracy

for SIFT Flow dataset and 6.2% improvement on per-pixel accuracy for 19-class

LabelMe dataset. All these results are overall improvement which are computed

over original SuperParsing.
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iiiMost recent studies about image segmentation and classification use CNN to

improve their accuracy percentage. Features extracted from pre-trained networks,

which are trained on large image databases, can be used in addition to hand-

crafted features in image segmentation. Last layer of these CNN models give the

best features for classification. We test learned CNN features together with KCB

or LLC encoding methods. We use CNN features both for global matching and

superpixel matching. These tests give us 7.3% overall improvement over original

SuperParsing on SIFT Flow dataset and 10.3% overall improvement over original

SuperParsing on 19-class LabelMe dataset.

Keywords: image parsing, feature encoding, image segmentation, image

classification, cnn models



SÜPERPİKSEL İMGE AYRIŞTIRMASI İÇİN

ÖZNİTELİK SEÇİMİ VE KODLAMA

YÖNTEMLERİNİN DEĞERLENDİRMESİ

Özet

Bu tez, bilgisayarla görünün önemli problemlerinden olan görüntü ayrştırma ile

ilgilidir. Görüntü ayrıştırmanın amacı nesnenin bölütlenmesi ve her bir nesnenin

etiketlenmesidir.

Son zamanlarda imge bölütleme ve sınıflandırmanın popüler yolu süperpiksellerdir.

Görüntü, süperpiksel algoritması kullanlarak grsel olarak küçük mantıksal bölgele-

re bölünür. Daha sonra süperpikseller farklı sınıflara ayrılır. Sınıflandırma perfor-

mansı süperpiksel algoritmasının özelliklerinden ve parametre ayarlardan önemli

ölçüde etkilenmektedir. SuperParsing, süperpiksel tabanlı bir görüntü ayrıştırma

algoritmasıdır. Bu algoritma herhangi bir sınıflandırıcıya ihtiyaç duymadan başarı-

lı bir parametrik olmayan çözüm sa ‘glar. SuperParsing her bir süperpikseli süper-

piksel ve e ‘gitim süperpiksellerinin altkümesi arasındaki öznitelik eşlemesine ba ‘glı

olarak etiketler. Bu e ‘gitim altkümesi test görüntüsü ve e ‘gitim kümesi arasındaki

global eşleme tarafndan belirlenir. Bu yöntem süperpiksel eşleme için süperpiksel

özelliklerinin zengin bir kümesini kullanır. Koşullu sınıf olabilirli ‘gi bu eşlenmiş

özniteliklere ba ‘glı olarak hesaplanır.

Bu tezin temel amacı Evrişimsel Sinir A ‘gı (ESA) modellerinden ö ‘grenilmiş öznite-

likleri içeren öznitelik kodlama ve seçim yöntemleri kullanılarak etiketleme do ‘gru-

lu ‘gu yüzdesindeki gelişmeleri göstermektir. Süperpiksellerin seçilmiş öznitelikleri-

ne iki farklı kodlama yöntemi uyguluyoruz ve öznitelik kodlamanın ayrıştırma

do ‘grulu ‘gunu geliştirdi ‘gini gösteriyoruz. Yerellik-Kısıtlı Do ‘grusal (YDK) ve Ker-

nel Kod-tablosu (KKT) gibi öznitelik kodlama yöntemleri uygulanmıştır. YDK

kodlama yöntemi SIFT Flow veri kümesinde %2.6 ve 19 sınıflı LabelMe veri

kümesinde ise %6.8 artış sa ‘glamıştır. KKT kodlama yöntemi SIFT Flow veri

kümesinde %3.6 ve 19 sınıflı LabelMe veri kümesinde ise %6.2 artış sa ‘glamıştır.

Tüm bu sonuçlar orijinal SuperParsing üzerinden hesaplanan toplam kazançtır.

Son zamanlardaki görüntü bölütleme ve sınıflandırma çalışmaların ço ‘gunlu ‘gu

do ‘gruluk yüzdelerini geliştirmek için ESA kullanır. Görüntü bölütlemede büyük
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v
görüntü veri tabanlarında e ‘gitilmiş olan ön e ‘gitimli a ‘glardan çıkartılan öznitelikler

el yapımı özniteliklere ek olarak kullanılabilir. Bu ESA modellerinin son katman-

ları sınıflandırma için en iyi öznitelikleri verir. Ö ‘grenilmiş ESA özniteliklerini

KKT veya YDK kodlama yöntemleri ile birlikte test ettik. ESA özniteliklerini

hem global eşleme hem de süperpiksel eşleme için kullandık. Bu testler orijinal

SuperParsing üzerine SIFT Flow veri kümesinde %7.3 ve 19 sınıflı LabelMe veri

kümesinde ise %10.3 toplam kazanç sa ‘glamıştır.

Anahtar kelimeler: imge ayrıştırma, öznitelik kodlaması, imge bölütleme,

imge sınıflandırması, cnn modelleri
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Chapter 1

Introduction

Object and scene semantic segmentation (i.e. image parsing) are basic problems of

computer vision. The goal of image parsing is segmentation of object and labeling

of each object. In the last few years, complex and difficult classification methods

became usable and accuracies of classification are really improved by helping the

developments in the deep learning and more capacity in computation. Recent

trends in image parsing are using superpixel based segmentation or training deep

CNN architectures. We will explain these developments in the next sections.

1.1 Superpixels

Superpixel-based methods recently have the best performance in image label-

ing/parsing problems. Superpixels refer a limited form of region segmentation

and combination of pixels. Their aim is reducing the complexity of image by

using group of pixel for avoiding undersegmentation. [1] The image is segmented

to atomic regions that are visually meaningful in superpixel-based segmentation

method. These regions are coherent with object boundaries. Then the parsing/la-

beling algorithm applies to all the superpixel’s pixels same semantic label. So, the

process achieves a labeling of the entire image that is spatially consistent. How-

ever, superpixels provide attractive representation for computer vision problem by

1



Figure 1.1: Superpixel Segmentation [3]

representing redundancy in the image and describing original segment-based de-

scriptors. Superpixels use morphological and geometric features of each segment

beside of standard descriptors such as SIFT. [2]

In superpixel level, features are determined by Bag of Words (BoW) approach.

First of all, feature vector is calculated for each pixel that belongs to superpixel.

Then these features quantized as a vector and quantization indices histograms are

extracted. The computed histogram is used as a feature descriptor for superpixel.

[3]

1.2 Neural Network

Deep learning is one of the machine learning class. It uses many layers consec-

utively for extraction of feature. The algorithms are based on the supervised or

unsupervised learning of features [4].

As shown in Figure (1.2) each layer is processed one by one and trained in a

greedy manner consecutively. After the training of previous layers, a new layer

is trained by using the previous layers that are input data of encoding. Then a

supervised fine-tuning level of the entire network can be fulfilled.

2



Figure 1.2: Deep learning scheme: the supervised fine-tuning stage that is
affecting all layers are following a greedy unsupervised layer-wise pretraining stage
[5]

Recently, in the image classification problems, deep learning methods such as

convolutional neural network have obtained important popularity [6]. Actually,

artificial neural networks are computational models that they are formed by con-

sidering the neuronal structure of the human brain [6]. There are lots of convo-

lution and pooling layers in the CNN where their parameters are learned during

the process of training [6]. Due to CNN usage, performance of computer vision

tasks are improved such as image recognition [7], scene recognition [8], and video

classification [9].

CNN consist of many layers that they are convolution layer, pooling layer, and

fully-connected layer. In the convolution layer, it extracts features by using convo-

lution operation. Pooling layer reduces feature dimension. In the fully-connected

layer, input pattern is classified with high-level feature extracted from previous

layers.

Generally deep networks compute a general nonlinear function of the whole image

whereas Fully Convolutional Network (FCN) performs a nonlinear filtering of the

image. [10]. The initial works on CNN use sliding window approach for semantic

segmentation, but FCN uses multiple convolution layers to obtain dense pixel

level labeling.
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Figure 1.3: System of FCN [10]

1.3 Feature Encoding

Superpixel features are typically computed by Bag of Words (BoW) method. The

basic approach in BoW is to perform quantization by assigning the feature vectors

to the nearest codewords in the codebook and to use histogram of the quantized

features as a descriptor [3]. Recently, feature encoding is being used instead of

BoW.

Three basic steps can be mentioned in classification problems [11]:

• Extraction of local (pixel-level) features

• Obtaining feature descriptor for image/object/superpixel by using pooling

and encoding of feature vectors

• Classification of image/object/superpixel descriptor

The basic method is to quantized local features for computing a spatial histogram

of visual words. Alternative encoding methods have begun to replace the hard

mapping method. This method keep more information about the original image

features. This work can be done in two ways:

1. by representing features as combinations of visual words that is using by

soft mapping [12] and local linear encoding [13], and

4



2. by saving the difference between the visual words and the features that is

using by Fisher encoding [14] and super-vector encoding [15].

Recently, in the area of computer vision works are used soft mapping instead of

hard mapping. Some of these works: Locality-Constrained Linear Coding [13],

Fisher-vector Coding [14], Super-Vector Coding [15], Kernel Codebook Encoding

[12]. Instead of hard mapping methods, using these improved coding methods

reduce the loss of information caused by quantization to obtain more diverse

descriptor. As a result, it provides improved classification results.

In this thesis, we focused on two of those encoding methods. One is KCB which

uses soft mapping method instead of hard mapping for vector quantization. This

mapping method assigns more than one codewords instead of assigning only one

codeword [3]. The other one is LLC, which also uses soft mapping but with a

different weighting mechanism.

1.4 Related Work

SuperParsing [16] represents an effective and simple nonparametric approach to

the image segmentation problem. The approach needs no training, and it can

easily set to different datasets that they have tens of thousands of images and

hundreds of labels. The approach works as a scene-level matching by using global

image descriptors, superpixel-level by using local features and MRF optimization

for combining neighborhood context.

David & Fergus [17] proposed a non-parametric solution to scene parsing by

considering the work of [16]. They added two different operation:

• A principled and efficient method to learn per-descriptor weights which is

minimizing classification error,

• Training set’s context driven adaptation that is used for each query to

improve performance on rare classes.

5



We applied some weights to the different descriptors, but we found these descrip-

tors by testing different alternatives.

In work of George [18], per-pixel accuracy was improved with a nonparametric

scene parsing approach. Firstly, it improves estimation of label likelihood at su-

perpixels by combining scores of likelihood from different probabilistic classifiers.

Secondly, it was combining semantic context in the process of parsing through

global label costs. The approach uses global likelihood cost estimate for each

label, instead of likelihoods estimated from a retrieval set.

In Nguyen’s adaptive [19] work, they present an adaptive nonparametric approach

to the image parsing. For given test images, retrieval set is found from training

images set. Then, each superpixel’s category is assigned by the majority vote

of the k-nearest neighbor superpixels. The method proposes a different adaptive

nonparametric approach that it determines the sample specific k for each test

image instead of fixing the k as same with traditional approaches of nonparametric

methods.

In Nguyen’s exploiting [6] work, they added the application of generic multi-level

CNN approach into the image parsing. They were created the retrieval set by

using global-level CNN feature matching similarities. Then, the similar images

and the input test image are oversegmented into superpixels. Each superpixel’s

category is assigned by the majority vote of the k-nearest neighbor superpixels

based on hand-crafted features and regional-level CNN features matching.

In work of Myeong & Lee [20] presents an original nonparametric approach for

semantic segmentation by using high-order semantic relations. They propose the

semantic relation transfer that is a method to move objects’ high-order semantic

relations from annotated images to unlabeled images.

6



1.5 Organization of Thesis

This thesis is organized as follows. In Chapter 2 we will explain superpixels and

detailed of superparsing algorithm. Then feature encoding methods will be in

Chapter 3. In Chapter 4 we will see more information about convolutional neural

network. Our experiment details and results will be in Chapter 5 and we conclude

our work and discuss future work in Chapter 6.

7



Chapter 2

SuperParsing Algorithm

One of the simple and efficient method for problem of image parsing is SuperPars-

ing algorithm. The algorithm uses superpixels for image parsing. SuperParsing

algorithm is based on nonparametric, data-driven approach by using superpixels

for image parsing. It can easily be adapted to larger datasets and sets of label.

The method does not require a classifier training instead it uses a retrieval set

of scenes. The retrieval set is created from similar training image for each new

test image. Retrieval set gives a knowledge for classification. It is found with

matching at the level of scene by using global image features and then image is

labeled with matching at the level of superpixel by using local features. If the

retrieval set images and test images are very similar to each other, the labeling

is transferred to the level of superpixels or coherent image regions generated by

a bottom-up segmentation method. The label transfer works with an algorithm

to find nearest-neighbors.

SuperParsing algorithm uses class conditional likelihood ratios that are computed

by using local probability densities of features that are estimated from the training

set. Generally, this approach gives successful results for datasets with medium

to large sizes. However, estimation accuracy is not successful in the tails of the

feature distribution because there are fewer samples of training for the rare, under-

represented classes of the dataset. This problem can be solved by adding new

training samples for the under-represented classes [17]. However, when setting the

8



Figure 2.1: System Overview of SuperParsing Algorithm

dataset for improving mean class accuracy in labeling, generally reduces accuracy

of pixel-level.

The system of this method works as shown in Figure (2.1). Firstly, superpixels

are generated from test image. At the same time, retrieval set is created as a

9



subset of similar images in the training set of test images. Feature extraction

is performed for all the superpixels. Per-class likelihood is calculated by using

feature distributions estimated from the retrieval set. Finally, Markov Random

Field (MRF) optimization is performed on the image to get the final labeling.

2.1 Superpixels

Recently, scene and object classification are basic problems at the working on

computer vision. Superpixels are successfully used for image labeling. Superpix-

els’ form is cluster of multiple pixels, so they are more informative than pixels

for scene analysis. Superpixels are obtained by using the fast graph-based seg-

mentation algorithm of [21] and superpixels’ appearance is described by using 20

different superpixel features. There are five features:

• Shape: It extracts the area of superpixel associated with image’s area,

the mask of superpixel through the bounding box of superpixel, and the

bounding box width/height associated with image width/height to represent

the shape [6].

• Location: It extracts the mask of superpixel shape through the image, and

the bounding box’s top height associated with image height [6].

• Texture: One of the important component in scene understanding is tex-

ture. Texton histogram [22], and the quantized SIFT histogram [16] are

used as texture features.

• Color: The other important component is color in the human visual sys-

tem for specifying properties of objects, scene understandings, etc. Su-

perpixels help to extract color information such as RGB color information

(mean,standard deviation), the color histogram (RGB, 11 bins per channel)

[6].

10



• Appearance: Overall appearance of the superpixel can be represented by

gist descriptor [23]. The grayscale gist is extracted from the bounding box

of the superpixel [6].

Specially, texton histograms and dense SIFT descriptors are computed both for

the superpixel region and for 10 pixels dilated region. Actually, the SIFT features

are more powerful than texton features. Also, computing the left/right/top/bot-

tom boundary histograms is useful for SIFT features. For each superpixel, all

these features are computed and kept together with their class labels. A training

superpixels is assigned to a class label if more than 50% of the superpixel region

overlaps overlaps with the segment mask for that label.

2.1.1 Retrieval Set

The SuperParsing method is data-driven and nonparametric because of this re-

trieval set is used in the process. The step is important for the parsing method to

find a good and comparatively small retrieval set of training images. Superpixels

of a test image are matched with the training superpixels in this retrieval set only.

This improves computational efficiency and provides scene level context for the

subsequent superpixel matching step. A good retrieval set should iclude images

of a similar scene type of training image together with similar objects and spatial

layouts. To get this type of similarity between test image and training image,

spatial pyramid, gist and color histogram can be used.

• Spatial Pyramid: This technique divides the image into gradually fine

sub-regions and computing local features’ histograms through the resulting

sub-regions [24]. Also, the technique shows that the best results can be

obtained by using combining of multiple resolutions.

• Gist: Observer can describe a meaningful information from a instantaneous

scene that is a gist. The description of gist contains the scene semantic label
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that are related to the function of scenes, some objects, and their surface

characteristics, together with spatial layout [25].

• Color Histogram: It has a 3-channel RGB and there are 8 bins per each

channel.

Euclidean distance of each feature type is calculated from the query images and all

training images. Then all training images are ranked according to this calculation

in increasing order. After that minimum of the each feature ranks is taken to

obtain a single ranking for each training image. Finally, the top X that depends

on dataset size, images are chosen as a retrieval set. To take the minimum of each

feature ranks amounts gives better results than average of the ranks. Finding

the best scene matches with good global descriptors is important for improving

the success of subsequent superpixel matching. After the global matching, the

retrieval set is ready to be an input for calculation of per-class likelihood for

superpixel features encoded features which are coming from superpixels.

2.1.2 Local Superpixel Labeling

After segmenting the test image and extracting the superpixel features, a likeli-

hood ratio score is computed for all possible class labels and for each feature of

a test superpixel. For the given class, features are independent of each other by

making the Naive Bayes assumption. For superpixel si and class c, the likelihood

ratio is

L(si, c) = log
P (si|c)
P (si|c̄)

=
∑
k

log
P (fki |c)
P (fki |c̄)

(2.1)

where c̄ is the set of all classes excluding c, and fki is the feature vector of the

kth type for si. The conditional densities P (fki |c)/P (fki |c̄) are locally estimated

in the neighborhood of fki using labeled feature vectors from the retrieval set [2].

Specifically, if D is the set of all superpixels in the training set and Nk
i is the set
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of superpixels from the retrieval set within a local neighborhood of fki , then

P (fki |c)
P (fki |c̄)

=
(n(c,Nk

i ) + ε)/n(c,D)

(n(c̄, Nk
i ) + ε)/n(c̄, D)

=
n(c,Nk

i ) + ε

n(c̄, Nk
i ) + ε

× n(c̄, D)

n(c,D)
(2.2)

where n(c, S) is the number of superpixels in set S with class label c, and ε is a

small constant used to smooth likelihood counts [2]. The set Nk
i contains retrieval

set feature vectors whose L2 distance from fki is below a fixed threshold [2]. Note

that the whole training set D is used to estimate P (c) and P (c̄), instead of just

the retrieval set [2]. At that time, labeling of the image is obtained by simply

assigning to each superpixel the class that maximizes eq. 2.2. After this initial

labeling, contextual inference is performed in superpixel neighborhood using MRF

optimization to smooth out and improve superpixel labels.
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Chapter 3

Feature Encoding Methods

Superpixel features are typically computed by Bag of Words (BoW) method. The

basic approach in BoW is to perform quantizition by assigning the feature vectors

to the nearest codewords in the codebook and to use histogram of the quantized

features as a descriptor [3]. Recently, feature encoding is being used instead of

BoW. The basic method is to quantize local features for computing a spatial

histogram of visual words. In the literature, there are two main types of mapping

methods:

• Hard Mapping: The method matches nearest visual word in the given dic-

tionary with each descriptor vector. However, two different feature vectors

can be assigned same visual word without any distinction. This condition

leads significant loss of information because of the codeword uncertainty

that is not interested with the meaning ambiguity. Codeword uncertainty

scales the contributions to each bin, so that each feature contributes a con-

stant amount across all of the bins. In this method descriptor belongs to

only one nearest word. It occurs lots of quantization fault because of these

two reasons.

As we mentioned on introduction kmeans is a clustering algorithm that is

used to obtain the codewords in the codebook.
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– Kmeans Clustering: Separates the local descriptor space into in-

formative regions [11]. These regions are named as visual words and

gathering of visual words is named as a visual vocabulary.

• Soft Mapping: The method assigns each descriptor vector to more than

one nearest visual word. It sets weighted assignment according to word

centers in local descriptor space. It keeps more information about original

image features than hard mapping. Assigning weighted assignment to all

visual words reduce problems of hard mapping .

Figure 3.1: System Overview of Feature Encoding Methods
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3.1 Kernel Codebook Encoding

KCB is the method that is applied soft mapping. Weights which are assigning to

codewords, calculated by using kernel distance function. In [12], there are more

information about coding of descriptors. The detailed information is like that (x

is feature vector and let at be a codeword, 1 ≤ t ≤ A) [3]:

[fkcb(X)]t =
K(x, at)∑
j=1K(x, aj)

(3.1)

when

K(x, a) = exp(−‖x− a‖2

2σ2
) (3.2)

To get more efficient results on KCB encoding, the feature vectors should be

recommended be encrypted with nearest 5 visual words. σ parameter determines

how homogenous the weights are distributed in KCB. The weights get close each

other when σ increases. In summary, shape of kernel directly comes from distance

function, size of kernel depends on data and image descriptor.

Let T be a number of total visual word in codebook. Coefficient of features are

zero except result of KCB encoding fkcb(x) = [[fkcb(x)]1...[fkcb(x)]T ] length of the

code vector is T and A = 5 nearest visual word.

The last step for KCB descriptor is merging of code vectors that they belong

to superpixel. The most preffered methods are average pooling and maximum

pooling.

• Average Pooling: The method decreases the dimension of data. Pooling

is necessary to obtain single descriptor for the whole region. This operator

sums and normalizes coefficients of all local descriptors that belong to the

superpixel.
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fkcb =
1

|SP |
∑
iεSP

fkcb(xi) (3.3)

where |SP | represents the size of superpixel that is the number of pixel.

Hence, feature histogram is obtained by using average pooling method.

• Maximum Pooling: Also, this method works in the same way as an

average pooling to decrease the dimension. The method choses the biggest

coefficients to get the best classification performance. It represents whether

each visual word exists or not in the image. In the encoding each bin is

assigned to the maximum of SIFT feature encodings in that region.

3.2 Locality-Constrained Linear Encoding

LLC is the simple and effective coding method which is using soft quantization

operation. It uses the locality constraints for projecting each descriptor into its

local-coordinate system [13]. Then the projected coordinates are combined by

using max pooling operation for creating the final representation.

Figure 3.2: In image classification, spatial pyramid structure’s flowchart for pool-
ing features (left)
Locality-constrained linear coding process (right) [13]
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In LLC, feature vector is expressed as a linear combination of codewords in the

local neighborhood. A different approach is used to determine weights which are

assigned to codewords. Assigned weights to the codewords α = [α1, α2, ..., αA]T

determines using the solution of following optimization problem:

α∗ = argmin1Tα=1‖x−Bα‖2 + β‖α‖2

when x is a set of visual words closest to the feature vector, B = [a1, a2, ..., aA]

column matrix occurs from the closest codewords, β is a small smoothing constant

and sum of the weights is set equal to 1,that is 1Tα = 1.

If the number of visual word in the codebooks is T obtained from LLC and only

the coefficients that correspond to A = 5 closest visual word, different from zero:

[fllc(x)]Iat = αt, 1 ≤ t ≤ A

(Iat is row number in the vocabulary of a visual word at)

The last step of LLC is combining of superpixels codevectors. In LLC, it was

observed that the maximum pooling was more successful than the average pooling.

Because of that,

fllc = max
iεSP

[fllc(xi)]t, 1 ≤ t ≤ T

Finally, superpixel codevector is normalized to be norm 1 as following:

fNllc =
fllc
‖fllc‖

18



3.3 Modifications of Feature Encoding

We use same global features as SuperParsing, which are SpatialPyramid, Gist of

Color, Color Histograms. We also use the same local descriptors as SuperParsing

except for six SIFT descriptor. These SIFT descriptors are either KCB or LLC

encoded and used in superpixel matching. Therefore the modifications are as

follows:

• We applied the encoding methods (LLC - KCB) instead of Bag of Words

method for SIFT features.

• Nearest R number superpixels from retrieval set are included to Nk
i neigh-

borhood.

• L1 and Bhattacharyya (dB) metrics are tested for distance computation

between KCB encoded SIFT descriptors

dB(fi, fj) = −ln

(
T∑
t=1

√
[fi]t.[fj]t

)

• L2 distance is used for LLC encoded SIFT descriptors.
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Chapter 4

Convolutional Neural Networks

Convolutional Neural Networks are known as CNNs or ConvNets. Convolutional

Neural Networks and Neural Networks are similar to each other. Neural Networks

consist of neurons which are able to learn weights and biases. Some inputs are

received from each neuron, these neurons perform a dot product on received inputs

and follows it with a non-linearity. The all network refer a single differentiable

score function that is from the pixels of raw image on one end to class scores at

the other. Also, the neural networks have a loss function on the last layer that is

fully-connected. [26]

Convolutional Neural Network architectures make the clear assumption that the

inputs are images, segment descriptors and global descriptors. The ConvNet

architectures let us encode exact properties into the architecture. After that,

these make the forward function more efficient for implementing and reducing

the amount of parameters in the network.

4.1 Overview

Neural Networks receive a single vector as an input, and convert it by using a series

of hidden layers. Each hidden layer consists of a series of neurons. These neurons

are fully-connected to all neurons in the previous layer, they work completely

independently in a single layer function. Also, they do not share any connections.
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Figure 4.1: System Overview of CNN Models

The last layer that is fully-connected layer, is named output layer and it shows

the class scores in classification settings. [26]

Convolutional Neural Networks benefit from the fact that the input is an image.

Especially, the layers of a CNNs have arrangement of neurons in 3 dimensions:

width, height, and depth differently according to Neural Network.
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Figure 4.2: System Overview of Convolutional Neural Network Layers [27]

4.2 ConvNet Layers

A Convolutional Neural Networks consist of layers. Each layer converts an input

volume to an output volume by using a differentiable function. There are three

main types of layers for building ConvNet architectures:

• Convolutional Layer

• Pooling Layer

• Fully-Connected Layer

All these layers can be seen in Figure (4.2) as an example. First of all, we extract

the feature in the convolution layers and then reduce the feature dimension by

using maximum pooling. Finally, we use the last layer for classifying.
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4.2.1 Convolutional Layer

The convolutional layer is the main part of a ConvNet which is lifting the heavy

computation. In this layer, nodes are grouped on each layer into 2-D planes. Each

plane is connected with more than one input planes. In a small region, weighted

sum of input nodes is computed by each node.

4.2.2 Pooling Layer

Generally, inserting a pooling layer to a successive convolutional layers in a Con-

vNet architecture is used. It is used to reduce the quantity of parameters and

computation in the network by reducing the spatial size of the representation as

shown in Figure (4.3). Because of these, it also controls overfitting.

In the pooling layers that is generally called max-pooling layers, nodes are grouped

on each layer into planes. Differently from convolution layer, each plane is con-

nected with just one input plane. In a small region, each node chooses maximum

from the input nodes. [27]

Figure 4.3: Pooling layer downsamples the volume spatially, the volume depth is
preserved [26]
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The max operation at the pooling layer operates independently on the input’s

each depth slice and changes the slice size spatially, see Figure (4.4). Zero-

padding usage is not common for pooling layers.

Figure 4.4: Example of max operation [26]

4.2.3 Fully-Connected Layer

The other most common layer in ConvNet is fully-connected layers is that these

layers are identified as a family of functions. The weights of the network param-

eterize these layers. In this layer, single layer’s neurons don’t share connections,

but between two adjacent layers’ neurons are fully pairwise connected [28]. As

shown in Figure (4.5), all the input nodes are fully connected with each node.

Every nodes compute sum of weighted of all the input nodes.

Figure 4.5: Fully-Connected Layer [27]
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Fully-connected layer’s neurons have connections with all activations in the pre-

vious layer, exactly like in regular Neural Networks. Hence, neurons’ activations

can be calculated by using a matrix multiplication. There are two example of

fully-connected layers for Neural Network:

Figure 4.6: A 2-Layer Neural Network that consists 3 inputs, 1 hidden layer with
4 neurons, and 1 output layer with 2 neurons (left)
A 3-Layer Neural Network that consists 3 inputs, 2 hidden layers each with 4
neurons, and 1 output layer with 1 neuron (right) [26]

4.3 Feature Extraction using ConvNets

Deep neural networks learn image features in a hierarchy. Several works have

shown before that these learned features can be used in image classification tasks

instead of hand-crafted features. In deep neural networks, low level features,

such as corners, edges, are learned from lower layers whereas color, shape etc.

are learned by middle layers. Also, higher layers learn high level features which

represent the objects in the image. [29]

Furthermore, CNN can be used as a feature extractor by using the activations

available before network’s last fully connected layer. The activations will be acting

as a feature vector for a general classifier during learning and classification stages.

The pre-trained CNN models such as imagenet-vgg and alexnet could be used as

a feature extractor. [29]
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4.4 Modifications of CNN

SuperParsing uses global descriptors such as Spatial Pyramid, Gist of Color, Color

Histograms for global matching to find the retrieval set, and local descriptors

such as SIFT, texton etc. Additionally to these descriptors CNN models such as

imagenet-vgg [30] and alexnet [7], which are trained on ILSVRC ImageNet dataset

[31], use both for global and local descriptors. Therefore the modifications are as

follows:

• As an alternative to global descriptors of SuperParsing, we use learned

features from alexnet and vgg for the global matching of the whole image.

• We also use alex and vgg features as local descriptors for superpixels for

this purpose we set the whole image to zero except for the superpixel region

and compute the output of the cnn model for this superpixel only image

• We added global and segment descriptors of CNN models in addition to

LLC or KCB encoded features. Other part of the system remains the same.
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Chapter 5

Experimental Work

In our work, we applied LLC, and KCB encoding methods, and CNN feature

learned from pre-trained models on SIFT Flow and 19-class LabelMe datasets.

Also, we used MRF optimization to improve resulting accuracy. MRF is a joint

probability distribution’s graphical model. It is used to make contextual inference

by using superpixel neighborhoods.

We used the original SuperParsing segment descriptors which represent shape,

location, texture, color, and appearance. In our work, we replaced the six original

SIFT descriptors [16] with their KCB and LLC encoded versions. Also, we used

learned CNN features from pre-trained CNN architectures such as alexnet and

imagenet-vgg to improve pixel accuracy. Descriptors used for:

• Shape

– ’centered mask sp’

– ’bb extent’

– ’pixel area’

• Location

– ’absolute mask’

– ’top height’
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• Texture

– ’int text hist mr’

– ’dial text hist mr’

• Color

– ’mean color’

– ’color std’

– ’color hist’

– ’dial color hist’

• Appearance

– ’color thumb’

– ’color thumb mask’

– ’gist int’

• LLC

– ’LLC Sift’

– ’LLC Sift dial’

– ’LLC Sift bottom’

– ’LLC Sift top’

– ’LLC Sift right’

– ’LLC Sift left’

• KCB

– ’KCB Sift’

– ’KCB Sift dial’

– ’KCB Sift bottom’

– ’KCB Sift top’
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– ’KCB Sift right’

– ’KCB Sift left’

• CNN

– ’cnn feat’

– ’cnn feat alex’

• Global Descriptors

– ’spatialPryScale’

– ’colorGist’

– ’coHist’

– ’cnn feat’

– ’cnn feat alex’

We made our tests with different parameter set as follows. We used two different

retrieval set size as 100 and 200 images. In original SuperParsing [16], they used

200 images for retrieval set. We used 100 images retrieval set for some 19-class

LabelMe dataset experiments. In graph-based segmentation method (GBS) [21],

superpixel color consistency is controlled by K and the minimum superpixel size

is determined by S. The nearest neighbor set size is R. The average number of

samples in the retrieval set and R is proportional to each other. Value of R is 15

and 30 when (K = 400, S = 200) and (K = 200, S = 100), respectively.

In addition to all, we tested two different alternatives of vocabulary size and β

parameter for LLC, three different alternatives of σ parameter for KCB. Value

of vocabulary sizes are 256, and 512. β parameters’ values are 0.012, and 0.015.

The σ parameters are 75, 100, and 125.

We used L2-normalization for LLC feature vectors and L1-normalization for KCB

feature vectors [16]. We tested L1 and Bhattacharyya metrics dB to compute dis-

tance between KCB encoded SIFT descriptors. L2 metric is used for LLC, original
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descriptors, and CNN features. In simulations, pixel-level classification accuracy

(i.e. correctly classified pixel percentage) and average of per-class accuracies are

compared.

5.1 SIFT Flow Dataset

The dataset consists of 2, 688 images with these 33 classes:

1. Sky

2. Building

3. Tree

4. Mountain

5. Road

6. Sea

7. Field

8. Car

9. Sand

10. River

11. Plant

12. Grass

13. Window

14. Sidewalk

15. Rock

16. Bridge

17. Door

18. Fence

19. Person

20. Staircase

21. Awning

22. Sign

23. Boat

24. Crosswalk

25. Pole

26. Bus

27. Balcony

28. Streetlight

29. Sun

30. Bird

31. Cow

32. Dessert

33. Moon

These images size are 256x256 pixels. Generally, the dataset is divided into 2, 488

images for training and 200 images for test.
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5.1.1 Experiments with LLC

Shape, location, texture, color, appearance, and LLC encoded descriptors are

used for LLC experiments. Original SIFT descriptors are removed. We used

retrieval set size as 200 in this experiment. LLC tables are organized as follows:

MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, β parameter, distance

metric, respectively.

• M1: 256/0.015/L2 • M2: 512/0.012/L2

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M1 76.7/28.6 77.6/24.6
M2 75.8/29.1 76.8/26.7

Table 5.1: K400 S200 with baseline and best MRF on SIFT Flow dataset for LLC

We tested LLC method with two different parameter sets that they are K = 400,

S = 200 and K = 200, S = 100.

For the first set that is K = 400, S = 200:

We can see at the Table 5.1, using small vocabulary size (256) and big β pa-

rameter (0.015) can improve the per-pixel accuracy approximately %1. However,

average per-class accuracies are dropped down with these parameter settings.

• M3: 256/0.015/L2 • M4: 512/0.015/L2

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M3 76.4/33.1 77.9/30.9
M4 76.0/32.7 77.7/31.1

Table 5.2: K200 S100 with baseline and best MRF on SIFT Flow dataset for LLC
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For the second set that is K = 200, S = 100:

We did the experiment with same β parameter (0.015), distance metric (L2), and

using different vocabulary size at the Table 5.2. In these tests, we can see the

smaller vocabulary size (256) results are better than bigger vocabulary size (512)

results. In these tests, per-class accuracies are less affected.

In summary for LLC encoding method, the best result is obtained whenK200 S100,

vocabulary size is 256 and β is 0.015.

5.1.2 Experiments with KCB

Shape, location, texture, color, appearance, and KCB encoded descriptors are

used for KCB experiments. Original SIFT descriptors are removed. We used

retrieval set size as 200 in this experiment. KCB tables are organized as follows:

MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, σ parameter, distance

metric, respectively.

• M5: 256/75/L1

• M6: 512/75/L1

• M7: 256/75/Bata

• M8: 512/75/Bata

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M5 77.1/29.9 77.6/29.0
M6 77.7/30.5 78.2/26.4
M7 77.1/30.1 77.9/27.5
M8 77.1/30.3 77.9/25.5

Table 5.3: K400 S200 with baseline and best MRF on SIFT Flow dataset for
KCB
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We tested two different distance metrics that they are L1 and Bhattacharyya and

two different parameter sets that they are K = 400, S = 200 and K = 200,

S = 100.

For the first set that is K = 400, S = 200:

We did four experiments at the Table 5.3 with same σ parameter (75) and two

different vocabulary sizes that are 256 and 512. If we compare L1 results, we

can see that better per-pixel results are obtained when vocabulary size increases

and per-class accuracy is nearly the same for baseline method but lower in MRF

method. If we compare bhattacharyya results, we can see that nearly same results

are obtained for baseline method and for MRF optimization when vocabulary size

increases and per-class accuracy is nearly the same for baseline method but less

in MRF method.

• M9: 256/100/L1

• M10: 512/100/L1

• M11: 256/100/Bata

• M12: 512/100/Bata

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M9 77.2/33.2 78.4/29.6
M10 77.3/33.3 78.4/30.2
M11 76.9/33.8 78.3/30.7
M12 76.8/33.1 78.1/30.4

Table 5.4: K200 S100 with baseline and best MRF on SIFT Flow dataset for
KCB

For the second set that is K = 200, S = 100:

We did four experiments Table 5.4 with same σ parameter (100) and two differ-

ent vocabulary sizes that are 256 and 512. If we compare L1 results, we can see

that nearly same results are obtained for baseline method and for MRF optimiza-

tion when vocabulary size increases and per-class accuracies are also nearly the

same for both methods. If we compare bhattacharyya results, we can see that
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nearly same per-pixel results are obtained for both baseline methods and MRF

optimization when vocabulary size changes and per-class accuracies are nearly

the same for both methods.

In summary for KCB encoding method, the best result is obtained whenK200 S100,

vocabulary size is 512 and σ is 100 with L1 distance metric.

5.1.3 Experiments with CNN

We observed that, when CNN features are used, some of the descriptors of shape,

texture, and color actually decreased the accuracy percentage. These descriptors

such as ’bb extent’, ’int text hist mr’, ’dial text hist mr’, ’color std’, are ignored

to improve accuracy. However, we added ’cnn feat’ and ’cnn feat alex’ descrip-

tors. KCB or LLC descriptors are also used instead of original SIFT descriptors

for CNN experiments. We named these reduced set of descriptors as ”limited”.

Also, we tested ”full” version that is using all descriptors including CNN features

and KCB or LLC encoded versions of SIFT descriptors. In these alternatives,

we gave different weights to descriptors. For instance; we assigned weight 3 for

’KCB Sift top’, ’KCB Sift bottom’, and ’mean color’, weight 2 for ’cnn feat’ and

’cnn feat alex’, and weight 1 for others. We named this weight set as a ”ch”.

When all segment descriptors are one, it is called ”1”.

In addition to all these descriptor sets, we also changed global descriptors. We

tested nearly all combinations between ’spatialPryScaled’ (sps), ’colorGist’ (cG),

’coHist’ (cH), ’cnn feat’ (vgg), and ’cnn feat alex’ (alex). We used retrieval set

size as 200 in this experiment. CNN tables are organized as follows:

MX1: X2/X3

X1, X2, X3 refer to model number, which global descriptors are used, which

segment descriptors are used, respectively.
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• M13: cH alex/limited/1

• M14: sps alex/limited/1

• M15: sps vgg/limited/1

• M16: cG cH alex/full/1

• M17: sps cG alex/full/1

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M13 81.2/34.8 81.1/34.4
M14 81.6/35.7 81.5/35.0
M15 81.4/37.6 81.6/35.8
M16 81.0/32.6 81.1/30.9
M17 81.2/32.9 81.0/30.0

Table 5.5: K400 S200 with baseline and best MRF on SIFT Flow dataset for
CNN

We tested five different alternatives with K = 400, S = 200 for CNN method. At

the Table 5.5 , we can see that limited experiments are more succesful than full

experiments. It seems that the best global descriptor partner is SpatialPryScaled

and imagenet-vgg or alexnet. Other alternative partners dont give the good re-

sults on per-pixel accuracy but SpatialPryScaled and imagenet-vgg partner gives

best per-class accuracy. In the CNN tests MRF optimization doesn’t achieve

almost any improvement on per-pixel accuracy.

• M18: sps alex/full/ch

• M19: sps vgg/full/ch

• M20: cH alex/full/ch

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M18 79.9/36.0 80.4/38.3
M19 80.4/38.9 80.8/33.0
M20 80.1/39.5 80.6/31.3

Table 5.6: K200 S100 with baseline and best MRF on SIFT Flow dataset with
LLC encoded for CNN
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We tested three different alternatives with K = 200, S = 100 for CNN method.

At the Table 5.6 , we can see that full type of descriptors are the best experi-

ments. It seems that the best global descriptor partner is SpatialPryScaled and

imagenet-vgg. In the CNN tests MRF optimization doesn’t achieve almost any

improvement on per-pixel accuracy.

In summary for CNN models, the best result is obtained when K400 S200, de-

scriptors are limited and global descriptors are SpatialPryScaled and imagenet-

vgg.

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M1 76.7/28.6 77.6/24.6
M6 77.7/30.5 78.2/26.4
M15 81.4/37.6 81.5/35.0
SuperParsing [16] 74.1/30.2 76.2/29.1
DavidFergus [17] 76.8/39.2 77.1/32.5
George [18] 78.3/33.2 81.7/50.1

Table 5.7: Best results on K400 S200 for SIFT Flow dataset

At the Table 5.7, we can see the best accuracy results on SIFT Flow dataset for

K400 S200. Pre-trained CNN features are more effective than feature encoding

methods on parsing performance both for per-pixel and per-class accuracies. Our

work is providing really good improvements over the original SuperParsing [16]

and David & Fergus [17] who worked on learning per-descriptor weights and

context driven adaptation. Also, our work gives nearly as good result as George

[18] on per-pixel accuracy but the work of George, which uses classifiers trained

in balanced datasets, is much better in terms of average per-class accuracy.

At the Table 5.8, we can see the best accuracy results on SIFT Flow dataset

for K200 S100. Again pre-trained CNN models are better than feature encod-

ing methods on parsing performance both for per-pixel and per-class accuracies.

K200 S100 and K400 S200 parameters’ results are nearly same for feature en-

coding methods, but K400 S200 results are better for CNN-based methods.
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Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M3 76.5/33.1 77.9/30.9
M10 77.3/33.3 78.4/30.2
M20 80.1/39.5 80.6/31.3
SuperParsing [16] 74.1/30.2 76.2/29.1
DavidFergus [17] 76.8/39.2 77.1/32.5
George [18] 78.3/33.2 81.7/50.1

Table 5.8: Best results on K200 S100 for SIFT Flow dataset

In summary, when using LLC encoding method, we saw 2.6% difference with

baseline method on per-pixel accuracy for K400 S200. When we applied for

K200 S100, accuracy is increasing approximately 2.5% over original SuperPars-

ing. When using KCB encoding method, we saw 3.6% difference with baseline

method on per-pixel accuracy for K400 S200. When we applied for K200 S100,

accuracy is increasing approximately 3.2%. When using CNN model, we saw 7.3%

difference with baseline method on per-pixel accuracy for K400 S200. When we

applied for K200 S100, accuracy is increasing approximately 6%.
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Original Image Ground Truth Legend

Method M3 Method M9 Method M14

Original Image Ground Truth Legend

Method M3 Method M9 Method M14

Figure 5.1: Visual representation of best results of SIFT Flow dataset

We applied three best methods to the original images. Also, visual representations

give ground truth and class legends. Information of these methods as follows:
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• M3:

– LLC encoding

– Vocabulary size: 256

– β: 0.015

– Distance metric: L2

– Superpixel color consistency (K): 200

– Minimum superpixel size (S): 100

• M9:

– KCB encoding

– Vocabulary size: 256

– σ: 100

– Distance metric: L1

– Superpixel color consistency (K): 200

– Minimum superpixel size (S): 100

• M14:

– CNN encoding

– Used global descriptors: Spatial Pyramid & alexnet

– Weights of descriptros: ch

– Type of segment descriptors: limited

– Superpixel color consistency (K): 400

– Minimum superpixel size (S): 200

For the first original image, method 14 assigns road, building and window most

correctly. For the second original image, method 14 assigns road, building, win-

dow, and door more detailed than others. In summary, generally K = 200,
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S = 100 combination and smaller vocabulary size give better results but when

CNN models are used for segment and global descriptors, they give the best

results.

5.2 19-Class LabelMe Dataset

The dataset consists of 350 images from the LabelMe dataset. These images are

chosen randomly. There are 19 classes:

1. Sky

2. Building

3. Tree

4. Mountain

5. Road

6. Field

7. Car

8. Sand

9. Grass

10. Sidewalk

11. Rock

12. Person

13. Sign

14. Boat

15. Water

16. Ground

17. Bison

18. Snow

19. Airplane

These images size are always 640x480 pixels, some of the images are differently

in pixel size. Generally, the dataset is divided 250 images for training and 100

images for test.

5.2.1 Experiments with LLC

Shape, location, texture, color, appearance, and LLC encoded descriptors are

used for LLC experiments. Original SIFT descriptors are removed as in SIFT

Flow dataset experiments. We used retrieval set size as 100 in this experiment.

LLC tables are organized as follows:

MX1: X2/X3/X4
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X1, X2, X3, X4 refer to model number, vocabulary size, β parameter, distance

metric, respectively.

• M21: 256/0.015/L2 • M22: 512/0.015/L2

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M21 78.9/49.7 79.5/49.9
M22 78.6/49.7 79.8/49.9

Table 5.9: K400 S200 with baseline and best MRF on 19-class LabelMe dataset
for LLC

We tested LLC method with two different parameter sets that are K = 400,

S = 200 and K = 200, S = 100.

For the first set that is K = 400, S = 200:

We did the experiment by using same β parameter (0.015) We can see at the

Table 5.9, using both vocabulary size (256 and 512) have nearly same per-pixel

and per-class accuracy results.

• M23: 256/0.015/L2 • M24: 512/0.015/L2

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M23 80.7/55.0 82.7/55.0
M24 81.3/55.6 82.9/55.5

Table 5.10: K200 S100 with baseline and best MRF on 19-class LabelMe dataset
for LLC

For the second set that is K = 200, S = 100:

We did the experiment with same β parameter (0.015), distance metric (L2), and

using different vocabulary size at the Table 5.10. In these tests, we can see the

bigger vocabulary (512) size results are better than smaller vocabulary size (256)

results. In these tests, per-class accuracy did not change too much.
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In summary for LLC encoding method, the best result is obtained whenK200 S100,

vocabulary size is 512 and β is 0.015.

5.2.2 Experiments with KCB

Shape, location, texture, color, appearance, and KCB encoded descriptors are

used for KCB experiments. Original SIFT descriptors are removed as in SIFT

Flow dataset experiments. We used retrieval set size as 100 in this experiment.

KCB tables are organized as follows:

MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, σ parameter, distance

metric, respectively.

• M25: 256/100/L1 • M26: 512/100/L1

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M27 78.4/48.7 79.0/48.2
M28 78.5/49.1 79.2/48.8

Table 5.11: K400 S200 with baseline and best MRF on 19-class LabelMe dataset
for KCB

We tested KCB method with L1 distance metric and two different parameter sets

that they are K = 400, S = 200 and K = 200, S = 100.

For the first set that is K = 400, S = 200:

We did two experiments at the Table 5.11 with same σ parameter (100) and two

different vocabulary sizes that are 256 and 512. We can see that better per-pixel

and per-class accuracy results are obtained when vocabulary size increases.

• M29: 256/100/L1 • M30: 512/75/L1
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Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M29 80.7/55.7 82.5/55.0
M30 80.5/55.8 81.5/53.4

Table 5.12: K200 S100 with baseline and best MRF on 19-class LabelMe dataset
for KCB

For the second set that is K = 200, S = 100:

We did two experiments Table 5.12 with two different σ parameter (75 and

100) and two different vocabulary size that they are 256 and 512. We can see

that better per-pixel results are obtained with smaller vocabulary size, bigger σ

parameter value.

In summary for KCB encoding method, the best result is obtained whenK200 S100,

vocabulary size is 256 and σ is 100.

5.2.3 Experiments with CNN

KCB descriptors are used instead of original SIFT descriptors for CNN experi-

ments. We observed that some of the descriptors in shape, texture, and color de-

creased the accuracy percentage. These descriptors such as ’bb extent’, ’int text hist mr’,

’dial text hist mr’, ’color std’, are ignored to improve accuracy. However, we

added ’cnn feat’ and ’cnn feat alex’ descriptors. We named these type of descrip-

tor set is ”limited”. Also, we tested ”full” version that is used all descriptors

without original SIFT and LLC descriptors. In these alternatives, we gave differ-

ent weights to descriptors. For instance; we assigned weight 3 for ’KCB Sift top’,

’KCB Sift bottom’, and ’mean color’, weight 2 for ’cnn feat’ and ’cnn feat alex’,

and weight 1 for others. We named this weight set as a ”ch”. When all segment

descriptors are one, it is called ”1”.

In addition to all these descriptor sets, we also changed global descriptors. We

tested nearly all combinations between ’spatialPryScaled’ (sps), ’colorGist’ (cG),
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’coHist’ (cH), ’cnn feat’ (vgg), and ’cnn feat alex’ (alex). We used retrieval set

size as 200 in this experiment. CNN tables are organized as follows:

MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, which global descriptors are used, which

weight is assigned, which segment descriptors are used, respecctively.

• M31: sps vgg/ch/limited

• M32: sps alex/ch/limited

• M33: cH alex/ch/limited

• M34: cG cH alex/1/full

• M35: sps cG alex/1/full

• M36: sps alex/1/full

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M31 80.3/52.9 81.2/53.1
M32 80.7/53.9 81.9/54.4
M33 80.4/53.9 80.7/52.4
M34 79.2/48.2 80.0/48.0
M35 79.3/50.0 80.0/49.9
M36 79.0/48.6 79.4/48.6

Table 5.13: K400 S200 with baseline and best MRF on 19-class LabelMe dataset
for CNN

We tested six different alternatives with K = 400, S = 200 for CNN method.

Three of them are limited version and three of them are full. At the Table 5.13,

we can see that limited version experiments are more successful than full version

experiments. It seems that the best global descriptor partner is SpatialPryScaled

and alex with different weights to the successful descriptors. Other alternative

partners dont give the good results on per-pixel accuracy and per-class accuracy.

• M37: sps alex/limited

• M38: sps vgg/limited

• M39: cH alex/limited

44



Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M37 84.3/61.9 85.5/62.8
M38 84.7/62.8 85.8/62.4
M39 84.8/60.9 86.1/62.0

Table 5.14: K200 S100 with baseline and best MRF on 19-class LabelMe dataset
for CNN

We tested three different alternatives with K = 200, S = 100 for CNN method.

At the Table 5.14, we can see that limited set of descriptors are the best ex-

periments. It seems that the best global descriptor partner is Color Histogram

and alexnet. In the CNN tests for LabelMe MRF optimization achieves some

improvement on both per-pixel and per-class accuracies.

In summary for CNN models, the best result is gained when K200 S100, descrip-

tors are limited and global descriptors are Color Hist and alexnet.

Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M21 78.6/49.7 79.8/49.9
M28 78.5/49.1 79.2/48.8
M32 80.7/53.9 81.9/54.4
SuperParsing (LM) [16] 74.5/49.7 76.4/49.1
Adaptive [19] 80.3/53.3 82.7/55.1
Nguyen [6] 84.5/62.0 85.5/63.2

Table 5.15: Best results on K400 S200 for 19-class LabelMe dataset with KCB
encoded

At the Table 5.15, we can see the best accuracy results on 19-class LabelMe

dataset for K400 S200. CNN method is more effective than feature encoding

methods on both per-pixel and per-class accuracies. Our works are nearly same

with Nguyen’s Adaptive [19] which uses adaptive nonparametric approach. Other

work of Nguyen [6] which uses trained object detectors, is better than ours.

At the Table 5.16, we can see the best accuracy results on 19-class LabelMe

dataset for K200 S100. Again CNN method provides really good results when
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Percentage Accuracy (%)
Base MRF

Method Per-pixel/Per-class Per-pixel/Per-class

M24 81.3/55.6 82.9/55.5
M29 80.7/55.7 82.5/55.0
M39 84.8/60.9 86.1/62.0
SuperParsing (LM) [16] 74.5/49.7 76.4/49.1
Adaptive [19] 80.3/53.3 82.7/55.1
Nguyen [6] 84.5/62.0 85.5/63.2

Table 5.16: Best results on K200 S100 for 19-class LabelMe dataset

compared to feature encoding methods on both per-pixel and per-class accuracies.

This time our CNN results are as good as Nguyen’s [6], which are state-of-the-art

in LabelMe dataset.

In summary, when using LLC encoding method, we saw 4.1% difference with

baseline method on per-pixel accuracy for K400 S200. When we applied for

K200 S100, accuracy is increasing approximately 6.8% over original SuperPars-

ing. When using KCB encoding method, we saw 4% difference with baseline

method on per-pixel accuracy for K400 S200. When we applied for K200 S100,

accuracy is increasing approximately 6.2%. When using CNN model, we saw 6.2%

difference with baseline method on per-pixel accuracy for K400 S200. When we

applied for K200 S100, accuracy is increasing approximately 10.3%.
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We applied three best methods to the original images. Also, visual representations

give ground truth and class legends. Information of these methods as follows:

• M24:

– LLC encoding

– Vocabulary size: 512

– β: 0.015

– Distance metric: L2

– Superpixel color consistency (K): 200

– Minimum superpixel size (S): 100

• M29:

– KCB encoding

– Vocabulary size: 256

– σ: 100

– Distance metric: L1

– Superpixel color consistency (K): 200

– Minimum superpixel size (S): 100

• M39:

– CNN model

– Used global descriptors: Color Hist & alexnet

– Weights of descriptros: 1

– Type of segment descriptors: limited

– Superpixel color consistency (K): 200

– Minimum superpixel size (S): 100
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For the first original image, all methods assign road, sideways, building and trees

almost correctly. However, CNN-based method assigns grass more accurately

than feature encoding methods. For the second original image, all methods assign

building, sky and trees almost correctly. Grass in CNN result is more accurate

than in feature encoding outputs. Actually all methods assign road instead of

sideways.
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Original Image Ground Truth Legend

Method M24 Method M29 Method M39

Original Image Ground Truth Legend

Method M24 Method M29 Method M39

Figure 5.2: Visual representation of best results of 19-class LabelMe dataset
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Chapter 6

Conclusion

In this project, feature encoding methods and CNN models are evaluated for su-

perpixel image parsing. The main objective of the thesis is to show improvements

in labeling accuracy percentage by using feature encoding methods as opposed to

standard vector quantization method of feature vectors and by applying convolu-

tional neural network models. LLC and KCB are the feature encoding methods

which use soft quantization operation to keep more data about image. We used

CNN models such as imagenet-vgg and alex-net to increase pixel accuracy. In

addition to these methods and models, we added MRF optimization to obtain

last labeling.

We used two different datasets to test our systems which are SIFT Flow and

LabelMe datasets. We showed significant improvement on SIFT Flow dataset

and LabelMe dataset over the original SuperParsing algorithm, in terms of both

per-pixel and per-class accuracies.

The main contribution of this thesis is to show that feature selection is important

both for global matching and superpixel matching. Better global descriptors lead

to an improved retrieval set that contains training images that are more similar

to the test image. An improved retrieval set also improves the superpixel match-

ing and therefore per-pixel and per-class labeling accuracies. Advanced feature

encoding methods and learned CNN features, together with standard superpixel
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features, improves the accuracy of superpixel matching as well. As a conclu-

sion, we manage to improve the labeling accuracy of SuperParsing significantly,

without using any classifier training.

As a future work, we plan to extend the research in this thesis, as follows:

• The feature performances could be analyzed and optimal set of features

could be determined in the trainig set. Then these features could be applied

to the test set.

• Other CNN models such as GoogleNet [32], ResNet [33] can be tested.

• The CNN architectures could be re-trained with the training superpixels

for learning improved features.

• Different feature encoding methods such as Fisher vectors [14] and Super-

Vector Coding [15] can be used.
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