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EVALUATION OF FEATURE SELECTION AND
ENCODING METHODS FOR SUPERPIXEL IMAGE
PARSING

Abstract

This thesis is about image parsing which is one of the important problems in
computer vision. The goal of image parsing is segmentation of object and labeling

of each object.

Recently, a popular way of image segmentation and classification is superpix-
els. Image is segmented into visually logical small regions by using superpixel
algorithm and then, superpixels are parsed into different classes. Classification
performance is significantly affected by the properties of superpixel algorithm and
parametric settings. SuperParsing is one of the superpixel-based image parsing
algorithm and provides a succesful nonparametric solution for image segmentation
and classification problem without any need for classifier training. SuperParsing
labels each superpixel based on feature matching between the superpixel and a
subset of the training superpixels. The training subset is determined by global
matching between the test image and the training set. For superpixel match-
ing the method makes use of a rich set of superpixel features. Class conditional

log-likelihood is computed based on these matched features.

The main objective of this thesis is to show improvements in labeling accuracy
percentage by using feature encoding and selection methods, including learned
features from Convolutional Neural Network (CNN) models. We perform two dif-
ferent encoding methods to selected features of superpixels and show that feature
encoding improves parsing accuracy. The applied feature encoding methods are
locality-constrained linear encoding (LLC) and kernel codebook encoding (KCB).
LLC encoding method gives us 2.6% improvement on per-pixel accuracy for SIFT
Flow dataset and 6.8% improvement on per-pixel accuracy for 19-class LabelMe
dataset. KCB encoding method gives us 3.6% improvement on per-pixel accuracy
for SIFT Flow dataset and 6.2% improvement on per-pixel accuracy for 19-class
LabelMe dataset. All these results are overall improvement which are computed

over original SuperParsing.
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Most recent studies about image segmentation and classification use CNN #
improve their accuracy percentage. Features extracted from pre-trained networks,
which are trained on large image databases, can be used in addition to hand-
crafted features in image segmentation. Last layer of these CNN models give the
best features for classification. We test learned CNN features together with KCB
or LLC encoding methods. We use CNN features both for global matching and
superpixel matching. These tests give us 7.3% overall improvement over original
SuperParsing on SIFT Flow dataset and 10.3% overall improvement over original

SuperParsing on 19-class LabelMe dataset.

Keywords: image parsing, feature encoding, image segmentation, image

classification, cnn models



SUPERPIKSEL IMGE AYRISTIRMASI ICIN
OZNITELIK SECIMI VE KODLAMA
YONTEMLERININ DEGERLENDIRMESI

(")zet

Bu tez, bilgisayarla goriintin 6nemli problemlerinden olan goriintii ayrstirma ile
ilgilidir. Gortinti ayrigtirmanin amaci nesnenin boliitlenmesi ve her bir nesnenin

etiketlenmesidir.

Son zamanlarda imge boliitleme ve siniflandirmanin popiiler yolu stiperpiksellerdir.
Goriintii, stiperpiksel algoritmasi kullanlarak grsel olarak kiiciik mantiksal bolgele-
re boliiniir. Daha sonra stiperpikseller farkli siniflara ayrilir. Siniflandirma perfor-
mansi siiperpiksel algoritmasinin 6zelliklerinden ve parametre ayarlardan onemli
olciide etkilenmektedir. SuperParsing, siiperpiksel tabanli bir gortintii ayrigtirma
algoritmasidir. Bu algoritma herhangi bir simflandiriciya ihtiyag duymadan basari-
I1 bir parametrik olmayan ¢oziim saglar. SuperParsing her bir siiperpikseli siiper-
piksel ve egitim siiperpiksellerinin altkiimesi arasindaki 6znitelik eglemesine bagh
olarak etiketler. Bu egitim altkiimesi test goriintiisi ve egitim kiimesi arasindaki
global egleme tarafndan belirlenir. Bu yontem stiperpiksel esleme igin siiperpiksel
ozelliklerinin zengin bir kiimesini kullanir. Kosgullu simif olabilirligi bu eglenmis

ozniteliklere baglh olarak hesaplanir.

Bu tezin temel amaci1 Evrigimsel Sinir Ag1 (ESA) modellerinden 6grenilmig 6znite-
likleri iceren Oznitelik kodlama ve secim yontemleri kullanilarak etiketleme dogru-
lugu yiizdesindeki geligmeleri gostermektir. Siiperpiksellerin secilmig 6znitelikleri-
ne iki farkl kodlama yontemi uyguluyoruz ve oznitelik kodlamanin ayrigtirma
dogrulugunu gelistirdigini gosteriyoruz. Yerellik-Kisith Dogrusal (YDK) ve Ker-
nel Kod-tablosu (KKT) gibi 6znitelik kodlama yoéntemleri uygulanmigtir. YDK
kodlama yontemi SIFT Flow veri kiimesinde %2.6 ve 19 smifli LabelMe veri
kiimesinde ise %6.8 artig saglamistir. KKT kodlama yontemi SIFT Flow veri
kiimesinde %3.6 ve 19 simifli LabelMe veri kiimesinde ise %6.2 artig saglamistir.

Tiim bu sonuclar orijinal SuperParsing tizerinden hesaplanan toplam kazanctir.

Son zamanlardaki goriintii boliitleme ve simiflandirma caligmalarin ¢cogunlugu

dogruluk yiizdelerini geligtirmek igin ESA kullanir. Goriinti boliitlemede biiytik

v



gorunti veri tabanlarinda egitilmis olan on egitimli aglardan cikartilan Sznitelikler
el yapimi Ozniteliklere ek olarak kullanilabilir. Bu ESA modellerinin son katman-
lar1 siuflandirma icin en iyi oznitelikleri verir. Ogrenilmis ESA 6zniteliklerini
KKT veya YDK kodlama yontemleri ile birlikte test ettik. ESA oOzniteliklerini
hem global esleme hem de siiperpiksel esleme i¢in kullandik. Bu testler orijinal
SuperParsing tizerine SIFT Flow veri kiimesinde %7.3 ve 19 simfli LabelMe veri

kiimesinde ise %10.3 toplam kazang saglamigtir.

Anahtar kelimeler: imge ayristirma, oznitelik kodlamasi, imge boéliitleme,

imge simiflandirmasi, cnn modelleri



Acknowledgements

The research was supported by The Scientific and Technological Research Council
of Turkey (TfJBiTAK) Grant No: 115E307 and Isik Universtiy BAP project
Grant No: 14A205.

First of all, I thank Prof. Dr. Hasan F. Ates who is my project supervisor to

always support me with his extensive knowledge in the all parts of the project.

Also, I thank to my parents Selguk Siinetci, Berra Siinetci and my brother Berk

Stinetci, who always support me with their love and patient.

Finally, I want to thank my friends, who always make me feel never alona with

their friendship, patience and help during the academic years.

vi



To my family. ..



Table of Contents

Abstract ii
Ozet iv
Acknowledgements vi
List of Tables X
List of Figures xi
List of Abbreviations xii
1 Introduction 1
1.1 Superpixels . . . . . . .. 1
1.2 Neural Network . . . . . . . . . . . . 2
1.3 Feature Encoding . . . . . . . . . ..o 4
1.4 Related Work . . . . . . . .. 5)
1.5 Organization of Thesis . . . . . . . ... ... ... ... ..... 7

2 SuperParsing Algorithm 8
2.1 Superpixels . . ... 10
2.1.1 Retrieval Set . . . . . .. 11

2.1.2  Local Superpixel Labeling . . . . .. ... ... ... ... 12

3 Feature Encoding Methods 14
3.1 Kernel Codebook Encoding . . . . ... ... ... ... .. ... 16
3.2 Locality-Constrained Linear Encoding . . . . . .. ... .. ... 17
3.3 Modifications of Feature Encoding . . . . . . .. ... ... .... 19

4 Convolutional Neural Networks 20
4.1 OVerview . . . . . . 20
4.2 ConvNet Layers . . . . . .. .. ... .o 22
4.2.1 Convolutional Layer . . . . ... ... ... ... ..... 23

4.2.2 Pooling Layer . . . . . . . .. ... o 23

4.2.3 Fully-Connected Layer . . . . . ... .. .. ... ..... 24



4.3 Feature Extraction using ConvNets . . . . . . ... .. ... ...
4.4 Modifications of CNN . . . . . . . . . .. ... ... ...

5 Experimental Work
5.1 SIFT Flow Dataset . . . . . . ... ... .. .. ... .......
5.1.1 Experiments with LLC . . . . . ... ... ... ... ...
5.1.2  Experiments with KCB . . . .. ... ... ... ......
5.1.3  Experiments with CNN . . . . . ... ... ... ... ...
5.2 19-Class LabelMe Dataset . . . . . .. ... ... ... ......
5.2.1 Experiments with LLC . . . . . ... ... ... ... ...
5.2.2  Experiments with KCB . . . .. ... ... ... .. ... ..
5.2.3 Experiments with CNN . . . . . ... ... ... ... ...

6 Conclusion
Reference

Curriculum Vitae

27
30
31
32
34
40
40
42
43

50

52

56



5.1

5.2

2.3

5.4

2.5

5.6

5.7

5.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

List of Tables

K400_5200 with baseline and best MRF on SIFT Flow dataset for
LLC . .
K200_S100 with baseline and best MRF on SIFT Flow dataset for
LLC . . .
K400_5200 with baseline and best MRF on SIFT Flow dataset for
KCB . . .
K200_S100 with baseline and best MRF on SIFT Flow dataset for
KCB . . .
K400_.S200 with baseline and best MRF on SIFT Flow dataset for
CNN .
K200_-S100 with baseline and best MRF on SIFT Flow dataset with
LLC encoded for CNN . . . . . . .. . ... .. .. ... .....
Best results on K400_S200 for SIFT Flow dataset . . . . ... ..
Best results on K200_S100 for SIFT Flow dataset . . . . . . . ..
K400.5200 with baseline and best MRF on 19-class LabelMe dataset
for LLC . . . . . .
K200_S100 with baseline and best MRF on 19-class LabelMe dataset
for LLC . . . . .
K400.5200 with baseline and best MRF on 19-class LabelMe dataset
for KCB . . . . . .
K200_S100 with baseline and best MRF on 19-class LabelMe dataset
for KCB . . . . . .
K400_5200 with baseline and best MRF on 19-class LabelMe dataset
for CNN . . . .
K200_-S100 with baseline and best MRF on 19-class LabelMe dataset
for CNN . . . .
Best results on K400_.S200 for 19-class LabelMe dataset with KCB
encoded . . . . ...
Best results on K200_S100 for 19-class LabelMe dataset . . . . . .

41

41

42

43

44



1.1
1.2

1.3
2.1

3.1
3.2

4.1
4.2
4.3

4.4
4.5
4.6

0.1
5.2

List of Figures

Superpixel Segmentation [3] . . . ... ... L
Deep learning scheme: the supervised fine-tuning stage that is
affecting all layers are following a greedy unsupervised layer-wise
pretraining stage [5] . . . . .. ..o
System of FCN [10] . . . . . . ... o o

System Overview of SuperParsing Algorithm . . . . . . . . .. ..

System Overview of Feature Encoding Methods . . . . . . . . ..
In image classification, spatial pyramid structure’s flowchart for

pooling features (left) Locality-constrained linear coding process
(right) [13] . . . . . o o

System Overview of CNN Models . . . . ... ... ... .....
System Overview of Convolutional Neural Network Layers [27] . .
Pooling layer downsamples the volume spatially, the volume depth
is preserved [26] . . . . ..o
Example of max operation [26] . . . . . . ... ...
Fully-Connected Layer [27] . . . . . . . . ... ... .. ... ...
A 2-Layer Neural Network that consists 3 inputs, 1 hidden layer
with 4 neurons, and 1 output layer with 2 neurons (left) A 3-Layer
Neural Network that consists 3 inputs, 2 hidden layers each with
4 neurons, and 1 output layer with 1 neuron (right) [26] . . . . . .

Visual representation of best results of SIF'T Flow dataset
Visual representation of best results of 19-class LabelMe dataset .

x1

15

17

21
22

23
24
24

38
49



2-D
3-D
SIFT
LLC
KCB
CNN
YDK
KKT
ESA
MRF
MRA
Bata
FCN
BoW

List of Abbreviations

2 Dimension

3 Dimension

Scale-Invariant Feature Transform
Locality-Constrianed Linear Coding
Kernel Codebook Encoding
Convolutional Neural Network

Y erellik-Kisith Dogrusal Kodlama
Kernel Kod-tablosu Kodlama
Evrigimsel Sinir Ag1 Modeli
Markov Random Field

Markov Rasgele Alan
Bhattacharyya

Fully-Connected Network

Bag Of Words

x1i



Chapter 1

Introduction

Object and scene semantic segmentation (i.e. image parsing) are basic problems of
computer vision. The goal of image parsing is segmentation of object and labeling
of each object. In the last few years, complex and difficult classification methods
became usable and accuracies of classification are really improved by helping the
developments in the deep learning and more capacity in computation. Recent
trends in image parsing are using superpixel based segmentation or training deep

CNN architectures. We will explain these developments in the next sections.

1.1 Superpixels

Superpixel-based methods recently have the best performance in image label-
ing/parsing problems. Superpixels refer a limited form of region segmentation
and combination of pixels. Their aim is reducing the complexity of image by
using group of pixel for avoiding undersegmentation. [1] The image is segmented
to atomic regions that are visually meaningful in superpixel-based segmentation
method. These regions are coherent with object boundaries. Then the parsing/la-
beling algorithm applies to all the superpixel’s pixels same semantic label. So, the
process achieves a labeling of the entire image that is spatially consistent. How-

ever, superpixels provide attractive representation for computer vision problem by



Figure 1.1: Superpixel Segmentation [3]

representing redundancy in the image and describing original segment-based de-
scriptors. Superpixels use morphological and geometric features of each segment

beside of standard descriptors such as SIFT. [2]

In superpixel level, features are determined by Bag of Words (BoW) approach.
First of all, feature vector is calculated for each pixel that belongs to superpixel.
Then these features quantized as a vector and quantization indices histograms are

extracted. The computed histogram is used as a feature descriptor for superpixel.

3]

1.2 Neural Network

Deep learning is one of the machine learning class. It uses many layers consec-
utively for extraction of feature. The algorithms are based on the supervised or

unsupervised learning of features [4].

As shown in Figure (1.2) each layer is processed one by one and trained in a
greedy manner consecutively. After the training of previous layers, a new layer
is trained by using the previous layers that are input data of encoding. Then a

supervised fine-tuning level of the entire network can be fulfilled.
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Figure 1.2: Deep learning scheme: the supervised fine-tuning stage that is
affecting all layers are following a greedy unsupervised layer-wise pretraining stage

[5]

Recently, in the image classification problems, deep learning methods such as
convolutional neural network have obtained important popularity [6]. Actually,
artificial neural networks are computational models that they are formed by con-
sidering the neuronal structure of the human brain [6]. There are lots of convo-
lution and pooling layers in the CNN where their parameters are learned during
the process of training [6]. Due to CNN usage, performance of computer vision
tasks are improved such as image recognition [7], scene recognition [8], and video

classification [9].

CNN consist of many layers that they are convolution layer, pooling layer, and
fully-connected layer. In the convolution layer, it extracts features by using convo-
lution operation. Pooling layer reduces feature dimension. In the fully-connected
layer, input pattern is classified with high-level feature extracted from previous

layers.

Generally deep networks compute a general nonlinear function of the whole image
whereas Fully Convolutional Network (FCN) performs a nonlinear filtering of the
image. [10]. The initial works on CNN use sliding window approach for semantic
segmentation, but FCN uses multiple convolution layers to obtain dense pixel

level labeling.
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Figure 1.3: System of FCN [10]

1.3 Feature Encoding

Superpixel features are typically computed by Bag of Words (BoW) method. The
basic approach in BoW is to perform quantization by assigning the feature vectors
to the nearest codewords in the codebook and to use histogram of the quantized
features as a descriptor [3]. Recently, feature encoding is being used instead of

BoW.

Three basic steps can be mentioned in classification problems [11]:

e Extraction of local (pixel-level) features

e Obtaining feature descriptor for image/object/superpixel by using pooling

and encoding of feature vectors

e Classification of image/object/superpixel descriptor

The basic method is to quantized local features for computing a spatial histogram
of visual words. Alternative encoding methods have begun to replace the hard
mapping method. This method keep more information about the original image

features. This work can be done in two ways:

1. by representing features as combinations of visual words that is using by

soft mapping [12] and local linear encoding [13], and



2. by saving the difference between the visual words and the features that is

using by Fisher encoding [14] and super-vector encoding [15].

Recently, in the area of computer vision works are used soft mapping instead of
hard mapping. Some of these works: Locality-Constrained Linear Coding [13],
Fisher-vector Coding [14], Super-Vector Coding [15], Kernel Codebook Encoding
[12]. Instead of hard mapping methods, using these improved coding methods
reduce the loss of information caused by quantization to obtain more diverse

descriptor. As a result, it provides improved classification results.

In this thesis, we focused on two of those encoding methods. One is KCB which
uses soft mapping method instead of hard mapping for vector quantization. This
mapping method assigns more than one codewords instead of assigning only one
codeword [3]. The other one is LLC, which also uses soft mapping but with a

different weighting mechanism.

1.4 Related Work

SuperParsing [16] represents an effective and simple nonparametric approach to
the image segmentation problem. The approach needs no training, and it can
easily set to different datasets that they have tens of thousands of images and
hundreds of labels. The approach works as a scene-level matching by using global
image descriptors, superpixel-level by using local features and MRF optimization

for combining neighborhood context.
David & Fergus [17] proposed a non-parametric solution to scene parsing by
considering the work of [16]. They added two different operation:

e A principled and efficient method to learn per-descriptor weights which is

minimizing classification error,

e Training set’s context driven adaptation that is used for each query to

improve performance on rare classes.



We applied some weights to the different descriptors, but we found these descrip-

tors by testing different alternatives.

In work of George [18], per-pixel accuracy was improved with a nonparametric
scene parsing approach. Firstly, it improves estimation of label likelihood at su-
perpixels by combining scores of likelihood from different probabilistic classifiers.
Secondly, it was combining semantic context in the process of parsing through
global label costs. The approach uses global likelihood cost estimate for each

label, instead of likelihoods estimated from a retrieval set.

In Nguyen’s adaptive [19] work, they present an adaptive nonparametric approach
to the image parsing. For given test images, retrieval set is found from training
images set. Then, each superpixel’s category is assigned by the majority vote
of the k-nearest neighbor superpixels. The method proposes a different adaptive
nonparametric approach that it determines the sample specific k for each test
image instead of fixing the k as same with traditional approaches of nonparametric

methods.

In Nguyen’s exploiting [6] work, they added the application of generic multi-level
CNN approach into the image parsing. They were created the retrieval set by
using global-level CNN feature matching similarities. Then, the similar images
and the input test image are oversegmented into superpixels. Each superpixel’s
category is assigned by the majority vote of the k-nearest neighbor superpixels

based on hand-crafted features and regional-level CNN features matching.

In work of Myeong & Lee [20] presents an original nonparametric approach for
semantic segmentation by using high-order semantic relations. They propose the
semantic relation transfer that is a method to move objects’ high-order semantic

relations from annotated images to unlabeled images.



1.5 Organization of Thesis

This thesis is organized as follows. In Chapter 2 we will explain superpixels and
detailed of superparsing algorithm. Then feature encoding methods will be in
Chapter 3. In Chapter 4 we will see more information about convolutional neural
network. Our experiment details and results will be in Chapter 5 and we conclude

our work and discuss future work in Chapter 6.



Chapter 2

SuperParsing Algorithm

One of the simple and efficient method for problem of image parsing is SuperPars-
ing algorithm. The algorithm uses superpixels for image parsing. SuperParsing
algorithm is based on nonparametric, data-driven approach by using superpixels
for image parsing. It can easily be adapted to larger datasets and sets of label.
The method does not require a classifier training instead it uses a retrieval set
of scenes. The retrieval set is created from similar training image for each new
test image. Retrieval set gives a knowledge for classification. It is found with
matching at the level of scene by using global image features and then image is
labeled with matching at the level of superpixel by using local features. If the
retrieval set images and test images are very similar to each other, the labeling
is transferred to the level of superpixels or coherent image regions generated by
a bottom-up segmentation method. The label transfer works with an algorithm

to find nearest-neighbors.

SuperParsing algorithm uses class conditional likelihood ratios that are computed
by using local probability densities of features that are estimated from the training
set. Generally, this approach gives successful results for datasets with medium
to large sizes. However, estimation accuracy is not successful in the tails of the
feature distribution because there are fewer samples of training for the rare, under-
represented classes of the dataset. This problem can be solved by adding new

training samples for the under-represented classes [17]. However, when setting the
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dataset for improving mean class accuracy in labeling, generally reduces accuracy

of pixel-level.

The system of this method works as shown in Figure (2.1). Firstly, superpixels

are generated from test image. At the same time, retrieval set is created as a



subset of similar images in the training set of test images. Feature extraction
is performed for all the superpixels. Per-class likelihood is calculated by using
feature distributions estimated from the retrieval set. Finally, Markov Random

Field (MRF) optimization is performed on the image to get the final labeling.

2.1 Superpixels

Recently, scene and object classification are basic problems at the working on
computer vision. Superpixels are successfully used for image labeling. Superpix-
els” form is cluster of multiple pixels, so they are more informative than pixels
for scene analysis. Superpixels are obtained by using the fast graph-based seg-
mentation algorithm of [21] and superpixels’ appearance is described by using 20

different superpixel features. There are five features:

e Shape: It extracts the area of superpixel associated with image’s area,
the mask of superpixel through the bounding box of superpixel, and the
bounding box width/height associated with image width /height to represent
the shape [6].

e Location: It extracts the mask of superpixel shape through the image, and

the bounding box’s top height associated with image height [6].

e Texture: One of the important component in scene understanding is tex-
ture. Texton histogram [22], and the quantized SIFT histogram [16] are

used as texture features.

e Color: The other important component is color in the human visual sys-
tem for specifying properties of objects, scene understandings, etc. Su-
perpixels help to extract color information such as RGB color information

(mean,standard deviation), the color histogram (RGB, 11 bins per channel)

6].

10



e Appearance: Overall appearance of the superpixel can be represented by
gist descriptor [23]. The grayscale gist is extracted from the bounding box
of the superpixel [6].

Specially, texton histograms and dense SIFT descriptors are computed both for
the superpixel region and for 10 pixels dilated region. Actually, the SIFT features
are more powerful than texton features. Also, computing the left /right /top/bot-
tom boundary histograms is useful for SIFT features. For each superpixel, all
these features are computed and kept together with their class labels. A training
superpixels is assigned to a class label if more than 50% of the superpixel region

overlaps overlaps with the segment mask for that label.

2.1.1 Retrieval Set

The SuperParsing method is data-driven and nonparametric because of this re-
trieval set is used in the process. The step is important for the parsing method to
find a good and comparatively small retrieval set of training images. Superpixels
of a test image are matched with the training superpixels in this retrieval set only.
This improves computational efficiency and provides scene level context for the
subsequent superpixel matching step. A good retrieval set should iclude images
of a similar scene type of training image together with similar objects and spatial
layouts. To get this type of similarity between test image and training image,

spatial pyramid, gist and color histogram can be used.

e Spatial Pyramid: This technique divides the image into gradually fine
sub-regions and computing local features’ histograms through the resulting
sub-regions [24]. Also, the technique shows that the best results can be

obtained by using combining of multiple resolutions.

e Gist: Observer can describe a meaningful information from a instantaneous

scene that is a gist. The description of gist contains the scene semantic label

11



that are related to the function of scenes, some objects, and their surface

characteristics, together with spatial layout [25].

e Color Histogram: It has a 3-channel RGB and there are 8 bins per each

channel.

Euclidean distance of each feature type is calculated from the query images and all
training images. Then all training images are ranked according to this calculation
in increasing order. After that minimum of the each feature ranks is taken to
obtain a single ranking for each training image. Finally, the top X that depends
on dataset size, images are chosen as a retrieval set. To take the minimum of each
feature ranks amounts gives better results than average of the ranks. Finding
the best scene matches with good global descriptors is important for improving
the success of subsequent superpixel matching. After the global matching, the
retrieval set is ready to be an input for calculation of per-class likelihood for

superpixel features encoded features which are coming from superpixels.

2.1.2 Local Superpixel Labeling

After segmenting the test image and extracting the superpixel features, a likeli-
hood ratio score is computed for all possible class labels and for each feature of
a test superpixel. For the given class, features are independent of each other by
making the Naive Bayes assumption. For superpixel s; and class ¢, the likelihood

ratio is

P(s;
L(s;,c) =log S|C Zlog (2.1)

where ¢ is the set of all classes excluding ¢, and fF is the feature vector of the
k" type for s;. The conditional densities P(f¥|c)/P(fF|¢) are locally estimated
in the neighborhood of fF using labeled feature vectors from the retrieval set [2].

Specifically, if D is the set of all superpixels in the training set and NF is the set

12



of superpixels from the retrieval set within a local neighborhood of f*, then

P(fFlc)  (n(c, NF)+¢€)/n(c,D) n(c, NF)+e n(c D)

PUMD) ~ N +o/m@D) e N+ nieD) 2P
where n(c, S) is the number of superpixels in set S with class label ¢, and € is a
small constant used to smooth likelihood counts [2]. The set N¥ contains retrieval
set feature vectors whose Ly distance from fF is below a fixed threshold [2]. Note
that the whole training set D is used to estimate P(c) and P(¢), instead of just
the retrieval set [2]. At that time, labeling of the image is obtained by simply
assigning to each superpixel the class that maximizes eq. 2.2. After this initial

labeling, contextual inference is performed in superpixel neighborhood using MRF

optimization to smooth out and improve superpixel labels.
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Chapter 3

Feature Encoding Methods

Superpixel features are typically computed by Bag of Words (BoW) method. The
basic approach in BoW is to perform quantizition by assigning the feature vectors
to the nearest codewords in the codebook and to use histogram of the quantized
features as a descriptor [3]. Recently, feature encoding is being used instead of
BoW. The basic method is to quantize local features for computing a spatial
histogram of visual words. In the literature, there are two main types of mapping

methods:

e Hard Mapping: The method matches nearest visual word in the given dic-
tionary with each descriptor vector. However, two different feature vectors
can be assigned same visual word without any distinction. This condition
leads significant loss of information because of the codeword uncertainty
that is not interested with the meaning ambiguity. Codeword uncertainty
scales the contributions to each bin, so that each feature contributes a con-
stant amount across all of the bins. In this method descriptor belongs to
only one nearest word. It occurs lots of quantization fault because of these

two reasons.

As we mentioned on introduction kmeans is a clustering algorithm that is

used to obtain the codewords in the codebook.
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— Kmeans Clustering: Separates the local descriptor space into in-

formative regions [11]. These regions are named as visual words and

gathering of visual words is named as a visual vocabulary.

e Soft Mapping: The method assigns each descriptor vector to more than

one nearest visual word. It sets weighted assignment according to word

centers in local descriptor space. It keeps more information about original

image features than hard mapping. Assigning weighted assignment to all

visual words reduce problems of hard mapping .
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»  FEATURE
EXTRACTION
QUERY
IMAGE
FEATURE y  LLC-KCB
EXTRACTICN ENCODING

SUPERPIXELS

v

RETRIEVAL
SET

Y

PER-CLASS
LIKELIHOCD

Y

MRF
OPTIMIZATION

- —
FINAL
LABELING

Figure 3.1: System Overview of Feature Encoding Methods
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3.1 Kernel Codebook Encoding

KCB is the method that is applied soft mapping. Weights which are assigning to
codewords, calculated by using kernel distance function. In [12], there are more
information about coding of descriptors. The detailed information is like that (x

is feature vector and let a; be a codeword, 1 <t < A) [3]:

 K(xa)
[fren(X)]e = > K(x.a)) (3.1)
when
K(x,a) = exp(—%) (3.2)

To get more efficient results on KCB encoding, the feature vectors should be
recommended be encrypted with nearest 5 visual words. o parameter determines
how homogenous the weights are distributed in KCB. The weights get close each
other when ¢ increases. In summary, shape of kernel directly comes from distance

function, size of kernel depends on data and image descriptor.

Let T be a number of total visual word in codebook. Coefficient of features are
zero except result of KCB encoding fi.(x) = [[fren(X)]1---[ fren(X)]7] length of the

code vector is 7" and A = 5 nearest visual word.

The last step for KCB descriptor is merging of code vectors that they belong
to superpixel. The most preffered methods are average pooling and maximum

pooling.

e Average Pooling: The method decreases the dimension of data. Pooling
is necessary to obtain single descriptor for the whole region. This operator
sums and normalizes coefficients of all local descriptors that belong to the

superpixel.
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1
frep = W Z fkcb(xi) (3-3)

ieSP

where |SP| represents the size of superpixel that is the number of pixel.

Hence, feature histogram is obtained by using average pooling method.

e Maximum Pooling: Also, this method works in the same way as an
average pooling to decrease the dimension. The method choses the biggest
coefficients to get the best classification performance. It represents whether
each visual word exists or not in the image. In the encoding each bin is

assigned to the maximum of SIFT feature encodings in that region.

3.2 Locality-Constrained Linear Encoding

LLC is the simple and effective coding method which is using soft quantization
operation. It uses the locality constraints for projecting each descriptor into its
local-coordinate system [13]. Then the projected coordinates are combined by

using max pooling operation for creating the final representation.

Featre vecior [ {3 @ O O | LLC Coding process
- e Siop 3:
i s an My 1 vecior with K nomezern slemenis
whose values ane the cormesponding c*of
shep 2
input: 5 i —— @ oode g
—

Sep I

Recomsinsct xusing B
£ = angemin || %= "B’
"
2 Eg=1
]

g

cocdebook: Beiby) pe__u
Siop 1:

Find K-Mzarest Neighbors of x, dencted
as By

Figure 3.2: In image classification, spatial pyramid structure’s flowchart for pool-
ing features (left)
Locality-constrained linear coding process (right) [13]
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In LLC, feature vector is expressed as a linear combination of codewords in the
local neighborhood. A different approach is used to determine weights which are
assigned to codewords. Assigned weights to the codewords a = [y, g, ..., aa]T

determines using the solution of following optimization problem:

" = argminira-y|[x — Ba* + Blla]®

when x is a set of visual words closest to the feature vector, B = [ay, as, ..., a 4]
column matrix occurs from the closest codewords, (3 is a small smoothing constant

and sum of the weights is set equal to 1,that is 17a = 1.

If the number of visual word in the codebooks is 1" obtained from LLC and only

the coefficients that correspond to A = 5 closest visual word, different from zero:

[fue(x)]ra, = o, 1<t<A
(Ia; is row number in the vocabulary of a visual word ay)

The last step of LLC is combining of superpixels codevectors. In LLC, it was
observed that the maximum pooling was more successful than the average pooling.

Because of that,
£ = fre(x)];, 1<t<T
1 Izrglglgi[ ) (X )]t St
Finally, superpixel codevector is normalized to be norm 1 as following:

N fiic

e e
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3.3 Modifications of Feature Encoding

We use same global features as SuperParsing, which are SpatialPyramid, Gist of
Color, Color Histograms. We also use the same local descriptors as SuperParsing
except for six SIFT descriptor. These SIFT descriptors are either KCB or LLC
encoded and used in superpixel matching. Therefore the modifications are as

follows:

e We applied the encoding methods (LLC - KCB) instead of Bag of Words
method for SIFT features.

e Nearest R number superpixels from retrieval set are included to N¥ neigh-

borhood.

e [ and Bhattacharyya (dg) metrics are tested for distance computation

between KCB encoded SIFT descriptors

dp(fi, £;) = —In (Z \/ [fz‘]t[fj]t)

e [, distance is used for LLC encoded SIFT descriptors.
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Chapter 4

Convolutional Neural Networks

Convolutional Neural Networks are known as CNNs or ConvNets. Convolutional
Neural Networks and Neural Networks are similar to each other. Neural Networks
consist of neurons which are able to learn weights and biases. Some inputs are
received from each neuron, these neurons perform a dot product on received inputs
and follows it with a non-linearity. The all network refer a single differentiable
score function that is from the pixels of raw image on one end to class scores at
the other. Also, the neural networks have a loss function on the last layer that is

fully-connected. [26]

Convolutional Neural Network architectures make the clear assumption that the
inputs are images, segment descriptors and global descriptors. The ConvNet
architectures let us encode exact properties into the architecture. After that,
these make the forward function more efficient for implementing and reducing

the amount of parameters in the network.

4.1 Overview

Neural Networks receive a single vector as an input, and convert it by using a series
of hidden layers. Each hidden layer consists of a series of neurons. These neurons
are fully-connected to all neurons in the previous layer, they work completely

independently in a single layer function. Also, they do not share any connections.
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Figure 4.1: System Overview of CNN Models

The last layer that is fully-connected layer, is named output layer and it shows

the class scores in classification settings. [26]

Convolutional Neural Networks benefit from the fact that the input is an image.
Especially, the layers of a CNNs have arrangement of neurons in 3 dimensions:

width, height, and depth differently according to Neural Network.
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Figure 4.2: System Overview of Convolutional Neural Network Layers [27]

4.2 ConvNet Layers

A Convolutional Neural Networks consist of layers. Each layer converts an input
volume to an output volume by using a differentiable function. There are three

main types of layers for building ConvNet architectures:

e Convolutional Layer
e Pooling Layer
e Fully-Connected Layer
All these layers can be seen in Figure (4.2) as an example. First of all, we extract

the feature in the convolution layers and then reduce the feature dimension by

using maximum pooling. Finally, we use the last layer for classifying.

22



4.2.1 Convolutional Layer

The convolutional layer is the main part of a ConvNet which is lifting the heavy
computation. In this layer, nodes are grouped on each layer into 2-D planes. Each
plane is connected with more than one input planes. In a small region, weighted

sum of input nodes is computed by each node.

4.2.2 Pooling Layer

Generally, inserting a pooling layer to a successive convolutional layers in a Con-
vNet architecture is used. It is used to reduce the quantity of parameters and
computation in the network by reducing the spatial size of the representation as

shown in Figure (4.3). Because of these, it also controls overfitting.

In the pooling layers that is generally called max-pooling layers, nodes are grouped
on each layer into planes. Differently from convolution layer, each plane is con-
nected with just one input plane. In a small region, each node chooses maximum

from the input nodes. [27]

224x224x64
F 112x112x64

pool y j }

&

Y

- N 112
224 downsampling !
112

224

Figure 4.3: Pooling layer downsamples the volume spatially, the volume depth is
preserved [26]
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The max operation at the pooling layer operates independently on the input’s
each depth slice and changes the slice size spatially, see Figure (4.4). Zero-

padding usage is not common for pooling layers.

Single depth slice

X 11124
max pool with 2x2 filters
56|78 andstide2 6|8
3121110 3|4
112134
y

Figure 4.4: Example of max operation [26]

4.2.3 Fully-Connected Layer

The other most common layer in ConvNet is fully-connected layers is that these
layers are identified as a family of functions. The weights of the network param-
eterize these layers. In this layer, single layer’s neurons don’t share connections,
but between two adjacent layers’ neurons are fully pairwise connected [28]. As
shown in Figure (4.5), all the input nodes are fully connected with each node.

Every nodes compute sum of weighted of all the input nodes.

Figure 4.5: Fully-Connected Layer [27]
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Fully-connected layer’s neurons have connections with all activations in the pre-
vious layer, exactly like in regular Neural Networks. Hence, neurons’ activations
can be calculated by using a matrix multiplication. There are two example of

fully-connected layers for Neural Network:

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

Figure 4.6: A 2-Layer Neural Network that consists 3 inputs, 1 hidden layer with
4 neurons, and 1 output layer with 2 neurons (left)

A 3-Layer Neural Network that consists 3 inputs, 2 hidden layers each with 4
neurons, and 1 output layer with 1 neuron (right) [26]

4.3 Feature Extraction using ConvNets

Deep neural networks learn image features in a hierarchy. Several works have
shown before that these learned features can be used in image classification tasks
instead of hand-crafted features. In deep neural networks, low level features,
such as corners, edges, are learned from lower layers whereas color, shape etc.
are learned by middle layers. Also, higher layers learn high level features which

represent the objects in the image. [29]

Furthermore, CNN can be used as a feature extractor by using the activations
available before network’s last fully connected layer. The activations will be acting
as a feature vector for a general classifier during learning and classification stages.
The pre-trained CNN models such as imagenet-vgg and alexnet could be used as

a feature extractor. [29]
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4.4 Modifications of CNN

SuperParsing uses global descriptors such as Spatial Pyramid, Gist of Color, Color
Histograms for global matching to find the retrieval set, and local descriptors
such as SIF'T, texton etc. Additionally to these descriptors CNN models such as
imagenet-vgg [30] and alexnet [7], which are trained on ILSVRC ImageNet dataset
[31], use both for global and local descriptors. Therefore the modifications are as

follows:

e As an alternative to global descriptors of SuperParsing, we use learned

features from alexnet and vgg for the global matching of the whole image.

e We also use alex and vgg features as local descriptors for superpixels for
this purpose we set the whole image to zero except for the superpixel region

and compute the output of the cnn model for this superpixel only image

e We added global and segment descriptors of CNN models in addition to
LLC or KCB encoded features. Other part of the system remains the same.
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Chapter 5

Experimental Work

In our work, we applied LLC, and KCB encoding methods, and CNN feature
learned from pre-trained models on SIFT Flow and 19-class LabelMe datasets.
Also, we used MRF optimization to improve resulting accuracy. MRF is a joint
probability distribution’s graphical model. It is used to make contextual inference

by using superpixel neighborhoods.

We used the original SuperParsing segment descriptors which represent shape,
location, texture, color, and appearance. In our work, we replaced the six original
SIFT descriptors [16] with their KCB and LLC encoded versions. Also, we used
learned CNN features from pre-trained CNN architectures such as alexnet and

imagenet-vgg to improve pixel accuracy. Descriptors used for:

e Shape

— ’centered_mask_sp’
— 'bb_extent’

— ’pixel_area’
e Location

— ’absolute_mask’

— "top_height’
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e Texture

— ’int_text_hist_mr’

— ’dial_text_hist_mr’

e Color

— "mean_color’

— ’color_std’

"color_hist’

— ’dial_color_hist’
e Appearance

— ’color_thumb’
— ’color_thumb_mask’
— ’gist_int’

e LLC

— 'LLC_Sift’

— 'LLC_Sift_dial’

— 'LLC_Sift_bottom’
— 'LLC_Sift_top’

— 'LLC_Sift right’

— LLC_Sift_left’
e KCB

— 'KCB_Sift’

— 'KCB_Sift_dial’

"KCB_Sift_bottom’

"KCB_Sift_top’
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— 'KCB_Sift_right’

— "KCB_Sift_left’
e CNN

— ’cnn_feat’

— ’cnn_feat_alex’

e Global Descriptors

‘spatialPryScale’
— ’colorGist’

— ’coHist’

— ’cnn_feat’

— ’cnn_feat_alex’

We made our tests with different parameter set as follows. We used two different
retrieval set size as 100 and 200 images. In original SuperParsing [16], they used
200 images for retrieval set. We used 100 images retrieval set for some 19-class
LabelMe dataset experiments. In graph-based segmentation method (GBS) [21],
superpixel color consistency is controlled by K and the minimum superpixel size
is determined by S. The nearest neighbor set size is R. The average number of
samples in the retrieval set and R is proportional to each other. Value of R is 15

and 30 when (K = 400, S = 200) and (K = 200, .S = 100), respectively.

In addition to all, we tested two different alternatives of vocabulary size and (3
parameter for LLC, three different alternatives of o parameter for KCB. Value
of vocabulary sizes are 256, and 512. [ parameters’ values are 0.012, and 0.015.

The o parameters are 75, 100, and 125.

We used Ls-normalization for LLC feature vectors and L;-normalization for KCB
feature vectors [16]. We tested L; and Bhattacharyya metrics dg to compute dis-

tance between KCB encoded SIFT descriptors. L metric is used for LLC, original
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descriptors, and CNN features. In simulations, pixel-level classification accuracy
(i.e. correctly classified pixel percentage) and average of per-class accuracies are

compared.

5.1 SIFT Flow Dataset

The dataset consists of 2,688 images with these 33 classes:

1. Sky 12. Grass 23. Boat

2. Building 13. Window 24. Crosswalk
3. Tree 14. Sidewalk 25. Pole

4. Mountain 15. Rock 26. Bus

5. Road 16. Bridge 27. Balcony
6. Sea 17. Door 28. Streetlight
7. Field 18. Fence 29. Sun

8. Car 19. Person 30. Bird

9. Sand 20. Staircase 31. Cow

10. River 21. Awning 32. Dessert
11. Plant 22. Sign 33. Moon

These images size are 2562256 pixels. Generally, the dataset is divided into 2, 488

images for training and 200 images for test.
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5.1.1 Experiments with LLC

Shape, location, texture, color, appearance, and LLC encoded descriptors are
used for LLC experiments. Original SIF'T descriptors are removed. We used

retrieval set size as 200 in this experiment. LLC tables are organized as follows:
MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, § parameter, distance

metric, respectively.

o M1: 256/0.015/L2 o M2: 512/0.012/L2

Percentage Accuracy (%)

Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M1 76.7/28.6 77.6/24.6
M2 75.8/29.1 76.8/26.7

Table 5.1: K400_S200 with baseline and best MRF on SIFT Flow dataset for LLC

We tested LLC method with two different parameter sets that they are K = 400,
S =200 and K = 200, S = 100.

For the first set that is K = 400, S = 200:

We can see at the Table 5.1, using small vocabulary size (256) and big 5 pa-
rameter (0.015) can improve the per-pixel accuracy approximately %1. However,

average per-class accuracies are dropped down with these parameter settings.

o M3: 256/0.015/L2 o M4: 512/0.015/L2

Percentage Accuracy (%)

Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M3 76.4/33.1 77.9/30.9
M4 76.0/32.7 77.7/31.1

Table 5.2: K200_S100 with baseline and best MRF on SIFT Flow dataset for LL.C
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For the second set that is K = 200, S = 100:

We did the experiment with same § parameter (0.015), distance metric (L), and
using different vocabulary size at the Table 5.2. In these tests, we can see the
smaller vocabulary size (256) results are better than bigger vocabulary size (512)

results. In these tests, per-class accuracies are less affected.

In summary for LLC encoding method, the best result is obtained when K200.5100,
vocabulary size is 256 and (3 is 0.015.

5.1.2 Experiments with KCB

Shape, location, texture, color, appearance, and KCB encoded descriptors are
used for KCB experiments. Original SIFT descriptors are removed. We used

retrieval set size as 200 in this experiment. KCB tables are organized as follows:
MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, ¢ parameter, distance

metric, respectively.

e M5: 256/75/L1 e MT: 256/75/Bata
e M6: 512/75/L1 e MS8: 512/75/Bata
Percentage Accuracy (%)
Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M5 77.1/29.9 77.6/29.0
M6 77.7/30.5 78.2/26.4
M7 77.1/30.1 77.9/27.5
M8 77.1/30.3 77.9/25.5

Table 5.3: K400_.S200 with baseline and best MRF on SIFT Flow dataset for
KCB

32



We tested two different distance metrics that they are L; and Bhattacharyya and
two different parameter sets that they are K = 400, S = 200 and K = 200,
S = 100.

For the first set that is K = 400, S = 200:

We did four experiments at the Table 5.3 with same o parameter (75) and two
different vocabulary sizes that are 256 and 512. If we compare L; results, we
can see that better per-pixel results are obtained when vocabulary size increases
and per-class accuracy is nearly the same for baseline method but lower in MRF
method. If we compare bhattacharyya results, we can see that nearly same results
are obtained for baseline method and for MRF optimization when vocabulary size
increases and per-class accuracy is nearly the same for baseline method but less

in MRF method.

e M9: 256/100/L1 e M11: 256/100/Bata
e M10: 512/100/L1 e M12: 512/100/Bata
Percentage Accuracy (%)
Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M9 77.2/33.2 78.4/29.6
M10 77.3/33.3 78.4/30.2
M11 76.9/33.8 78.3/30.7
M12 76.8/33.1 78.1/30.4

Table 5.4: K200_.S100 with baseline and best MRF on SIFT Flow dataset for
KCB

For the second set that is K = 200, S = 100:

We did four experiments Table 5.4 with same ¢ parameter (100) and two differ-
ent vocabulary sizes that are 256 and 512. If we compare L results, we can see
that nearly same results are obtained for baseline method and for MRF optimiza-
tion when vocabulary size increases and per-class accuracies are also nearly the

same for both methods. If we compare bhattacharyya results, we can see that
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nearly same per-pixel results are obtained for both baseline methods and MRF
optimization when vocabulary size changes and per-class accuracies are nearly

the same for both methods.

In summary for KCB encoding method, the best result is obtained when K200.5100,

vocabulary size is 512 and o is 100 with L, distance metric.

5.1.3 Experiments with CNN

We observed that, when CNN features are used, some of the descriptors of shape,
texture, and color actually decreased the accuracy percentage. These descriptors
such as 'bb_extent’, 'int_text_hist_mr’, ’dial_text_hist_mr’, 'color_std’, are ignored
to improve accuracy. However, we added 'cnn_feat’ and ’cnn_feat_alex’ descrip-
tors. KCB or LLC descriptors are also used instead of original SIFT descriptors
for CNN experiments. We named these reduced set of descriptors as ”limited”.
Also, we tested ”full” version that is using all descriptors including CNN features
and KCB or LLC encoded versions of SIFT descriptors. In these alternatives,
we gave different weights to descriptors. For instance; we assigned weight 3 for
"KCB_Sift_top’, 'KCB_Sift_bottom’, and 'mean_color’, weight 2 for ’cnn_feat’ and
‘enn_feat_alex’, and weight 1 for others. We named this weight set as a ”"ch”.

When all segment descriptors are one, it is called "17.

In addition to all these descriptor sets, we also changed global descriptors. We
tested nearly all combinations between ’spatialPryScaled’ (sps), ‘colorGist’ (cG),
‘coHist” (cH), ’enn_feat’ (vgg), and ’cnn_feat_alex’ (alex). We used retrieval set

size as 200 in this experiment. CNN tables are organized as follows:
MX1: X2/X3

X1, X2, X3 refer to model number, which global descriptors are used, which

segment descriptors are used, respectively.
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e M13: cH alex/limited/1

e M14: sps_alex/limited/1

e M15: sps_vgg/limited/1

e M16: cG_cH alex/full/1

e M17: sps_cG_alex/full/1

Percentage Accuracy (%)

Base MRF
Method || Per-pixel /Per-class || Per-pixel /Per-class
MI3 81.2/34.8 81.1/34.4
M14 81.6/35.7 81.5/35.0
M15 81.4/37.6 81.6/35.8
M16 81.0/32.6 81.1/30.9
M17 81.2/32.9 81.0/30.0

Table 5.5: K400_.S200 with baseline and best MRF on SIFT Flow dataset for
CNN

We tested five different alternatives with K = 400, S = 200 for CNN method. At
the Table 5.5 , we can see that limited experiments are more succesful than full
experiments. It seems that the best global descriptor partner is SpatialPryScaled
and imagenet-vgg or alexnet. Other alternative partners dont give the good re-
sults on per-pixel accuracy but SpatialPryScaled and imagenet-vgg partner gives
best per-class accuracy. In the CNN tests MRF optimization doesn’t achieve

almost any improvement on per-pixel accuracy.

e M18: sps_alex/full/ch e M20: cH_ alex/full/ch

e M19: sps_vgg/full/ch

Percentage Accuracy (%)

Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M18 79.9/36.0 80.4/38.3
M19 80.4/38.9 80.8/33.0
M20 80.1/39.5 80.6/31.3

Table 5.6: K200_.S100 with baseline and best MRF on SIFT Flow dataset with

LLC encoded for CNN
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We tested three different alternatives with K = 200, S = 100 for CNN method.
At the Table 5.6 , we can see that full type of descriptors are the best experi-
ments. It seems that the best global descriptor partner is SpatialPryScaled and
imagenet-vgg. In the CNN tests MRF optimization doesn’t achieve almost any

improvement on per-pixel accuracy.

In summary for CNN models, the best result is obtained when K400.5200, de-

scriptors are limited and global descriptors are SpatialPryScaled and imagenet-

veg.

Percentage Accuracy (%)

Base MRF
Method Per-pixel/Per-class | Per-pixel/Per-class
M1 76.7/28.6 77.6/24.6
MG 77.7/30.5 78.2/26.4
MT15 81.4/37.6 81.5/35.0
SuperParsing [16] 74.1/30.2 76.2/29.1
DavidFergus [17] 76.8/39.2 77.1/32.5
George [18] 78.3/33.2 81.7/50.1

Table 5.7: Best results on K400_S200 for SIFT Flow dataset

At the Table 5.7, we can see the best accuracy results on SIFT Flow dataset for
K400.5200. Pre-trained CNN features are more effective than feature encoding
methods on parsing performance both for per-pixel and per-class accuracies. Our
work is providing really good improvements over the original SuperParsing [16]
and David & Fergus [17] who worked on learning per-descriptor weights and
context driven adaptation. Also, our work gives nearly as good result as George
[18] on per-pixel accuracy but the work of George, which uses classifiers trained

in balanced datasets, is much better in terms of average per-class accuracy.

At the Table 5.8, we can see the best accuracy results on SIFT Flow dataset
for K200.5100. Again pre-trained CNN models are better than feature encod-
ing methods on parsing performance both for per-pixel and per-class accuracies.
K200.5100 and K400.5200 parameters’ results are nearly same for feature en-
coding methods, but K400_.5200 results are better for CNN-based methods.
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Percentage Accuracy (%)

Base MRF
Method Per-pixel /Per-class || Per-pixel /Per-class
M3 76.5/33.1 77.9/30.9
M10 77.3/33.3 78.4/30.2
M20 80.1/39.5 80.6/31.3
SuperParsing [16] 74.1/30.2 76.2/29.1
DavidFergus [17] 76.8/39.2 77.1/32.5
George [18] 78.3/33.2 81.7/50.1

Table 5.8: Best results on K200_S100 for SIFT Flow dataset

In summary, when using LLC encoding method, we saw 2.6% difference with
baseline method on per-pixel accuracy for K400.5200. When we applied for
K200_5100, accuracy is increasing approximately 2.5% over original SuperPars-
ing. When using KCB encoding method, we saw 3.6% difference with baseline
method on per-pixel accuracy for K400.5200. When we applied for K200_.5100,
accuracy is increasing approximately 3.2%. When using CNN model, we saw 7.3%
difference with baseline method on per-pixel accuracy for K400.5200. When we
applied for K200.5100, accuracy is increasing approximately 6%.
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Figure 5.1: Visual representation of best results of SIFT Flow dataset

We applied three best methods to the original images. Also, visual representations

give ground truth and class legends. Information of these methods as follows:
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e Ma3:

— LLC encoding

— Vocabulary size: 256

~ B:0.015

— Distance metric: Lo

— Superpixel color consistency (K): 200
— Minimum superpixel size (S): 100

e MO:

— KCB encoding

Vocabulary size: 256

— o: 100

— Distance metric: L

— Superpixel color consistency (K): 200
— Minimum superpixel size (S): 100

o M14:

— CNN encoding

Used global descriptors: Spatial Pyramid & alexnet

Weights of descriptros: ch

Type of segment descriptors: limited

Superpixel color consistency (K): 400

— Minimum superpixel size (S): 200
For the first original image, method 14 assigns road, building and window most
correctly. For the second original image, method 14 assigns road, building, win-

dow, and door more detailed than others. In summary, generally K = 200,
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S = 100 combination and smaller vocabulary size give better results but when
CNN models are used for segment and global descriptors, they give the best

results.

5.2 19-Class LabelMe Dataset

The dataset consists of 350 images from the LabelMe dataset. These images are

chosen randomly. There are 19 classes:

1. Sky 8. Sand 15. Water
2. Building 9. Grass

16. Ground
3. Tree 10. Sidewalk
4. Mountain 11. Rock 17. Bison
5. Road 12. Person

18. Snow
6. Field 13. Sign
7. Car 14. Boat 19. Airplane

These images size are always 6402480 pixels, some of the images are differently
in pixel size. Generally, the dataset is divided 250 images for training and 100

images for test.

5.2.1 Experiments with LLC

Shape, location, texture, color, appearance, and LLC encoded descriptors are
used for LLC experiments. Original SIF'T descriptors are removed as in SIFT
Flow dataset experiments. We used retrieval set size as 100 in this experiment.

LLC tables are organized as follows:

MX1: X2/X3/X4
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X1, X2, X3, X4 refer to model number, vocabulary size, § parameter, distance

metric, respectively.

o M21: 256/0.015/L2

o M22: 512/0.015/L2

Percentage Accuracy (%)

Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M21 78.9/49.7 79.5/49.9
M22 78.6/49.7 79.8/49.9

Table 5.9: K400_S200 with baseline and best MRF on 19-class LabelMe dataset
for LLC

We tested LLC method with two different parameter sets that are K = 400,
S =200 and K = 200, S = 100.

For the first set that is K = 400, S = 200:

We did the experiment by using same (5 parameter (0.015) We can see at the
Table 5.9, using both vocabulary size (256 and 512) have nearly same per-pixel

and per-class accuracy results.

e M23: 256/0.015/L2 e M24: 512/0.015/L2

Percentage Accuracy (%)

Base MRF
Method || Per-pixel/Per-class || Per-pixel/Per-class
M23 80.7/55.0 82.7/55.0
M24 81.3/55.6 82.9/55.5

Table 5.10: K200_S100 with baseline and best MRF on 19-class LabelMe dataset
for LLC

For the second set that is K = 200, S = 100:

We did the experiment with same /3 parameter (0.015), distance metric (Ls), and
using different vocabulary size at the Table 5.10. In these tests, we can see the
bigger vocabulary (512) size results are better than smaller vocabulary size (256)

results. In these tests, per-class accuracy did not change too much.

41



In summary for LLC encoding method, the best result is obtained when K200_5100,

vocabulary size is 512 and § is 0.015.

5.2.2 Experiments with KCB

Shape, location, texture, color, appearance, and KCB encoded descriptors are
used for KCB experiments. Original SIFT descriptors are removed as in SIFT
Flow dataset experiments. We used retrieval set size as 100 in this experiment.

KCB tables are organized as follows:
MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, vocabulary size, ¢ parameter, distance

metric, respectively.

e M25: 256/100/L1 e M26: 512/100/L1
Percentage Accuracy (%)
Base MRF
Method || Per-pixel /Per-class || Per-pixel /Per-class
M27 78.4/48.7 79.0/48.2
M28 78.5/49.1 79.2/48.8

Table 5.11: K400_S200 with baseline and best MRF on 19-class LabelMe dataset
for KCB

We tested KCB method with L; distance metric and two different parameter sets
that they are K = 400, S = 200 and K = 200, .S = 100.

For the first set that is K = 400, S = 200:

We did two experiments at the Table 5.11 with same o parameter (100) and two
different vocabulary sizes that are 256 and 512. We can see that better per-pixel

and per-class accuracy results are obtained when vocabulary size increases.

o M29: 256/100/L1 e M30: 512/75/L1
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Percentage Accuracy (%)

Base MRF
Method || Per-pixel /Per-class || Per-pixel /Per-class
M29 80.7/55.7 82.5/55.0
M30 80.5/55.8 81.5/53.4

Table 5.12: K200_S100 with baseline and best MRF on 19-class LabelMe dataset
for KCB

For the second set that is K = 200, S = 100:

We did two experiments Table 5.12 with two different o parameter (75 and
100) and two different vocabulary size that they are 256 and 512. We can see
that better per-pixel results are obtained with smaller vocabulary size, bigger o

parameter value.

In summary for KCB encoding method, the best result is obtained when K200.5100,

vocabulary size is 256 and o is 100.

5.2.3 Experiments with CNN

KCB descriptors are used instead of original SIFT descriptors for CNN experi-
ments. We observed that some of the descriptors in shape, texture, and color de-
creased the accuracy percentage. These descriptors such as ’bb_extent’, "int_text_hist_mr’,
"dial_text_hist_mr’, ’color_std’, are ignored to improve accuracy. However, we
added 'cnn_feat’ and 'cnn_feat_alex’ descriptors. We named these type of descrip-
tor set is ”limited”. Also, we tested ”full” version that is used all descriptors
without original SIFT and LLC descriptors. In these alternatives, we gave differ-
ent weights to descriptors. For instance; we assigned weight 3 for "KCB_Sift_top’,
"KCB_Sift_bottom’, and 'mean_color’, weight 2 for ’cnn_feat” and ’cnn_feat_alex’,
and weight 1 for others. We named this weight set as a ”ch”. When all segment

descriptors are one, it is called 71”.

In addition to all these descriptor sets, we also changed global descriptors. We

tested nearly all combinations between ’spatialPryScaled’ (sps), 'colorGist’” (cG),
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‘coHist’ (cH), 'cnn_feat’ (vgg), and ’cnn_feat_alex’ (alex). We used retrieval set

size as 200 in this experiment. CNN tables are organized as follows:
MX1: X2/X3/X4

X1, X2, X3, X4 refer to model number, which global descriptors are used, which

weight is assigned, which segment descriptors are used, respecctively.

e M31: sps_vgg/ch/limited e M34: ¢G_cH alex/1/full
e M32: sps_alex/ch/limited e M35: sps_cG_alex/1/full
e M33: cH_alex/ch/limited e M36: sps_alex/1/full
Percentage Accuracy (%)
Base MRF
Method || Per-pixel /Per-class || Per-pixel/Per-class
M31 80.3/52.9 81.2/53.1
M32 80.7/53.9 81.9/54.4
M33 80.4/53.9 80.7/52.4
M34 79.2/48.2 80.0/48.0
M35 79.3/50.0 80.0/49.9
M36 79.0/48.6 79.4/48.6

Table 5.13: K400_S200 with baseline and best MRF on 19-class LabelMe dataset
for CNN

We tested six different alternatives with K = 400, S = 200 for CNN method.
Three of them are limited version and three of them are full. At the Table 5.13,
we can see that limited version experiments are more successful than full version
experiments. It seems that the best global descriptor partner is SpatialPryScaled
and alex with different weights to the successful descriptors. Other alternative

partners dont give the good results on per-pixel accuracy and per-class accuracy.

e M37: sps_alex/limited e M39: cH_alex/limited

e M38: sps_vgg/limited
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Percentage Accuracy (%)

Base MRF
Method || Per-pixel /Per-class || Per-pixel /Per-class
M37 84.3/61.9 85.5/62.8
M38 84.7/62.8 85.8/62.4
M39 84.8/60.9 86.1/62.0

Table 5.14: K200_S100 with baseline and best MRF on 19-class LabelMe dataset
for CNN

We tested three different alternatives with K = 200, S = 100 for CNN method.
At the Table 5.14, we can see that limited set of descriptors are the best ex-
periments. It seems that the best global descriptor partner is Color Histogram
and alexnet. In the CNN tests for LabelMe MRF optimization achieves some

improvement on both per-pixel and per-class accuracies.

In summary for CNN models, the best result is gained when K200.5100, descrip-

tors are limited and global descriptors are Color Hist and alexnet.

Percentage Accuracy (%)

Base MRF
Method Per-pixel/Per-class || Per-pixel /Per-class
M21 78.6/49.7 79.8/49.9
M28 78.5/49.1 79.2/48.8
M32 80.7/53.9 81.9/54.4
SuperParsing (LM) [16] 74.5/49.7 76.4/49.1
Adaptive [19] 80.3/53.3 82.7/55.1
Nguyen [6] 84.5/62.0 85.5/63.2

Table 5.15: Best results on K400_S200 for 19-class LabelMe dataset with KCB
encoded

At the Table 5.15, we can see the best accuracy results on 19-class LabelMe
dataset for K400.5200. CNN method is more effective than feature encoding
methods on both per-pixel and per-class accuracies. Our works are nearly same
with Nguyen’s Adaptive [19] which uses adaptive nonparametric approach. Other

work of Nguyen [6] which uses trained object detectors, is better than ours.

At the Table 5.16, we can see the best accuracy results on 19-class LabelMe
dataset for K200.5100. Again CNN method provides really good results when
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Percentage Accuracy (%)

Base MRF
Method Per-pixel /Per-class || Per-pixel /Per-class
M24 81.3/55.6 82.9/55.5
M29 80.7/55.7 82.5/55.0
M39 84.8/60.9 86.1/62.0
SuperParsing (LM) [16] 74.5/49.7 76.4/49.1
Adaptive [19] 80.3/53.3 82.7/55.1
Nguyen [6] 81.5/62.0 85.5/63.2

Table 5.16: Best results on K200_.S100 for 19-class LabelMe dataset

compared to feature encoding methods on both per-pixel and per-class accuracies.
This time our CNN results are as good as Nguyen’s [6], which are state-of-the-art

in LabelMe dataset.

In summary, when using LLC encoding method, we saw 4.1% difference with
baseline method on per-pixel accuracy for K400.5200. When we applied for
K200_5100, accuracy is increasing approximately 6.8% over original SuperPars-
ing. When using KCB encoding method, we saw 4% difference with baseline
method on per-pixel accuracy for K400.5200. When we applied for K200_.5100,
accuracy is increasing approximately 6.2%. When using CNN model, we saw 6.2%
difference with baseline method on per-pixel accuracy for K400.5200. When we
applied for K200_.5100, accuracy is increasing approximately 10.3%.
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We applied three best methods to the original images. Also, visual representations

give ground truth and class legends. Information of these methods as follows:

o M24:

— LLC encoding

— Vocabulary size: 512

— [:0.015

— Distance metric: Lo

— Superpixel color consistency (K): 200

— Minimum superpixel size (S): 100
o M29:

— KCB encoding

— Vocabulary size: 256

— o: 100

— Distance metric: Ly

— Superpixel color consistency (K): 200

— Minimum superpixel size (S): 100
o M39:

— CNN model

— Used global descriptors: Color Hist & alexnet
— Weights of descriptros: 1

— Type of segment descriptors: limited

— Superpixel color consistency (K): 200

— Minimum superpixel size (S): 100
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For the first original image, all methods assign road, sideways, building and trees
almost correctly. However, CNN-based method assigns grass more accurately
than feature encoding methods. For the second original image, all methods assign
building, sky and trees almost correctly. Grass in CNN result is more accurate
than in feature encoding outputs. Actually all methods assign road instead of

sideways.
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Figure 5.2: Visual representation of best results of 19-class LabelMe dataset
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Chapter 6

Conclusion

In this project, feature encoding methods and CNN models are evaluated for su-
perpixel image parsing. The main objective of the thesis is to show improvements
in labeling accuracy percentage by using feature encoding methods as opposed to
standard vector quantization method of feature vectors and by applying convolu-
tional neural network models. LLC and KCB are the feature encoding methods
which use soft quantization operation to keep more data about image. We used
CNN models such as imagenet-vgg and alex-net to increase pixel accuracy. In
addition to these methods and models, we added MRF optimization to obtain
last labeling.

We used two different datasets to test our systems which are SIFT Flow and
LabelMe datasets. We showed significant improvement on SIFT Flow dataset
and LabelMe dataset over the original SuperParsing algorithm, in terms of both

per-pixel and per-class accuracies.

The main contribution of this thesis is to show that feature selection is important
both for global matching and superpixel matching. Better global descriptors lead
to an improved retrieval set that contains training images that are more similar
to the test image. An improved retrieval set also improves the superpixel match-
ing and therefore per-pixel and per-class labeling accuracies. Advanced feature

encoding methods and learned CNN features, together with standard superpixel
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features, improves the accuracy of superpixel matching as well. As a conclu-
sion, we manage to improve the labeling accuracy of SuperParsing significantly,

without using any classifier training.

As a future work, we plan to extend the research in this thesis, as follows:

e The feature performances could be analyzed and optimal set of features
could be determined in the trainig set. Then these features could be applied

to the test set.

e Other CNN models such as GoogleNet [32], ResNet [33] can be tested.

e The CNN architectures could be re-trained with the training superpixels

for learning improved features.

e Different feature encoding methods such as Fisher vectors [14] and Super-

Vector Coding [15] can be used.
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