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AN INVERSE SOURCE PROBLEM CONNECTED

THERMOACOUSTIC IMAGING IN MULTI-LAYER

PLANAR MEDIUM

Abstract

In this thesis, we mentioned imaging technics used today, and microwave induced

thermoacoustic procedure and imaging. We made literature survey about solution

of the thermoacoustic equation for homogeneous and inhomogeneous medium. We

modelled the inhomogenity of medium as a multi-layer planar structure and de-

fined initial condition, continuity conditions on the layer boundaries and radiation

conditions at infinity, then we derived analytical forward and inverse solution of

the thermoacoustic wave equation for inhomogeneous medium with the source

distribution existing in all layers. Our solution of inverse source problem is based

on the methods of the Green’s functions for layered planar media. For qualitative

testing and comparison of the point-spread functions associated with the con-

ventional solution for homogeneous medium and our derived layered solutions,

we performed numerical simulations. In numerical simulations first we generated

the measured data by using the derived forward solution for multi-layer planar

medium and then we used conventional inverse solution and our derived inverse

solution to image source distribution. Our simulation results showed that the

conventional inverse solution based on homogeneous medium assumption, as ex-

pected, produced incorrect locations of point sources, whereas our inverse solution

involving the multi-layer planar medium produced point sources at the correct

source locations. Also, we showed that the performance of layered inverse solu-

tion is sensitive to the validity of the layer parameters and medium parameters

used as prior information in the measured data. Our inverse solutions based on

multi-layer planar media are applicable for cross-sectional 2 dimensional imaging

of the organs such as breast, skin, and abdominal structure.

Keywords: Inverse source problem, thermoacoustic imaging, Green’s func-

tions.
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DÜZLEMSEL ÇOK KATMANLI ORTAMDA

TERMOAKUSTİK GÖRÜNTÜLEMEYLE

BAĞLANTILI TERS KAYNAK PROBLEMİ

Özet

Bu tezde, günümüzde kullanılan görüntüleme tekniklerinden ve mikrodalga kay-

naklı termoakustik prosedür ve görüntüleme yöntemlerininden bahsettik. Homo-

jen ve homojen olmayan ortam için termoakustik denklemin çözümü hakkında

literatür taraması yaptık. Ortamın homojen olmayışını çok katmanlı düzlemsel

bir yapı olarak modelledik. Başlangıç koşulu, katman sınırında süreklilik koşulu

ve sonsuzda radyasyon koşulları altında, termoakustik dalga denkleminin homo-

jen olmayan ortam ve kaynak dağılımının her yerde olduğu varsayımıyla, analitik

olarak ileri ve ters çözümlerini elde ettik. Katmanlı düzlemsel olarak modellenmiş

yapı için ters kaynak probleminin çözümünde Green fonksiyonlar yöntemi kul-

landık. Literatürdeki homojen ortam için elde edilen çözüm ve katmanlı ortam

için elde ettiğimiz çözümü karşılaştırdık ve nitel testler için kaynak fonksiyonu

olarak nokta yayılım fonksiyonunu kullanarak sayısal benzetimler yaptık. Sayısal

benzetimde ilk olarak katmanlı ortam için elde ettiğimiz ileri çözümü kullanarak

ölçülen data ürettik ve daha sonra bu ürettiğimiz ölçülen datayı literatürde var

olan ve bizim elde ettiğimiz ters çözümde kullanarak, ortamdaki kaynak dağılımını

görüntüledik. Sayısal benzetimler sonucunda, çok katmanlı düzlemsel ortam

için elde ettiğimiz ters çözümün noktasal kaynak yerlerini tam olarak doğru

gösterdiğini, fakat literatürde var olan homojen ortam varsayımına dayanan ters

çözümün beklendiği gibi noktasal kaynak yerlerini yanlış gösterdiğini gösterdik.

Ayrıca bilgisayar benzetimlerini kullanarak, katmanlı ortam için elde ettiğimiz

ters çözümün performansının ve görüntü kalitesinin, önceki bilgiler olarak kul-

lanılan katman parametrelerinin ve ortam parametrelerinin doğruluğuna duyarlı

olduğunu ve bu parametrelerin termoakustik görüntüleme kalitesini etkilediğini

gösterdik. Çok katmanlı düzlemsel ortam için elde ettiğimiz ters çözüm meme,

deri ve karın bölgesi gibi organların 2 boyutlu kesitsel görüntülenmesi için uygu-

lanabilir.

Anahtar kelimeler: Ters kaynak problemi, termoakustik görüntüleme, Green

fonksiyonları.
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Chapter 1

Introduction

Thermoacoustic imaging is a hybrid biomedical imaging modality, combining the

high contrast, the good tissue penetration of microwave, and the high spatial

resolution of ultrasound imaging without harmful side effects. This technique

is an up-to-date issue that has not yet become a clinical tool with scientific,

technological and commercial potential. Thermoacoustic imaging is quite useful

especially in breast cancer diagnosis and following, imaging of skin and abdominal

structure.

Today, X-Ray Computed Tomography, Magnetic Resonance Imaging and Ultra-

sound are most widely used medical imaging [1]. X-Rays is very cost-effective

technique but it has cancer-triggering harmful side effect. In contrast magnetic

resonans imaging gives good results at diagnosis of malign cancer, but this imag-

ing technique is relatively expensive and has no standart application protocoles.

Ultrasonic imaging is low-cost and has no harmful side-effects [2]. Point resolu-

tion of ultrasonic imaging is high, but contrast resolution is poor; this complicates

the early diagnosis of some cancers and distinguishing the tumour if it is benign

and malign.

In thermoacoustic wave generation, the tissue is irradiated by pulsed microwave

excitation and the microwave energy is selectively absorbed by different tissue

structures with different dielectric parameters. It is converted to heat pulse which

1



causes generation of acoustic waves by thermoelastic expansion and then the ther-

moacoustic signals are detected by the ultrasound transducers to be used for the

image reconstruction of the mediums. Thermoacoustic tomography combines the

high contrast and good tissue penetration of microwave and high spatial resolu-

tion of ultrasound imaging without harmful side effects [3–9]. Only nonionizing

wave is used in this techniques and the relationships between thermoacoustic sig-

nals and the physical parameters of biological tissues are well defined and these

properties makes them ideal in vivo applications.

This thesis is organized as follows. In Chapter 2, we mention the literature

about microwave-induced thermoacoustic imaging. In Chapter 3, we give some

the necessary information for derivation of the solution of the thermoacoustic

problem. In Chapter 4, we introduce briefly the medical imaging modalities. In

Chapter 5, we touch on the principles of microwave - induced thermoacoustic

imaging and identify our problem with boundary conditions, and derive the for-

ward and inverse solution of thermoacoustic equation involving multi-layer planar

medium with source distribution existing in all layers. In Chapter 6, we calculate

the coefficients of the Green’s function for homogeneous and two-layer medium

in two dimensional Cartesian coordinates. In Chapter 7, we present numerical

simulation for qualitative testing and comparison of the point-spread functions

associated with the literature-homogeneous and our derived layered solutions u-

sing the coefficients obtained in Chapter 6. In chapter 8, we mention the differ-

ence between the our derived inverse solution and the solution in literature and

discuss the advantage of the our derived inverse solution. Also, we explain in

what areas the solution we have proven can be used.

2



Chapter 2

Literature Survey

Thermoacoustic tomography is studied by several research groups to increase the

image quality and image depth at the international level [10–12]. Kruger et al. [13]

developed instrumentation for measuring the tissue absorption properties of radio

waves in human body using thermoacoustic interactions. Additionally, the basic

principles of thermoacoustic imaging and different implementations along with a

reference list are given in [14,16–18,20].

Xu and Wang [21,22] solved the inverse problem for homogeneous medium bounded

by two parallel planes, an infinitely long circular cylinder and a sphere. They

used expansions involving exponential, Bessel and Legendre functions, respec-

tively. Idemen and Alkumru [23] gave an exact formula for the inverse source

problem assuming that reflection of the pressure on the boundary of the biolog-

ical medium is negligibly small and medium is homogeneous. Schoonover and

Anastasio [24] have presented a solution of thermoacoutsic wave equation invol-

ving layered media with the source is assumed to be confined to only one-known

layer. In addition to acoustically homogeneous situations, the acoustic inverse

initial value problem with heterogeneous speed of sound studied for thermoa-

coustic and photoacoustic tomography [25–29]. Idemen presented some universal

properties of the Green’s functions associated with the wave equation in bounded

partially-homogeneous domains [30].

3



Chapter 3

Preliminary Information

3.1 Fourier Transform

3.1.1 Time Fourier Transformation

In our reconstruction, the Time - Fourier transform of f(t) ∈ L1(−∞,∞) is

F (ω) =

∫ ∞
−∞

f(t)eiωtdt, ω ∈ (−∞,∞) (3.1)

and, inversely

f(t) =
1

2π

∫ ∞
−∞

f(ω)e−iωtdω, t ∈ (−∞,∞). (3.2)

3.1.2 Spatial Fourier Transform (2 - Dimensional)

In our reconstruction, Spatial - Fourier transform of f(x, y, z) ∈ L1(−∞,∞) is

f̂(kx, ky, z) =

∫∫ ∞
−∞

f(x, y, z)exp(−i(kxx+kyy))dxdy, kx, ky ∈ (−∞,∞) (3.3)

and, inversely

f(x, y, z) =
1

(2π)2

∫∫ ∞
−∞

f̂(kx, ky, z)exp(i(kxx+ kyy))dkxdky, x, y ∈ (−∞,∞).

(3.4)

4



3.2 Dirac Delta Function

Dirac delta function is a generalized function, or distribution that is introduced

for modelling the density of an idealized point mass or point charge.

Properties:

a) This function is equal to 0 ∈ R everywhere except 0.

b) Integral over the entire real line of Dirac delta function is equal to one.

c) Fourier transform of Dirac delta function is

F (δ(t)) = 1, t ∈ (−∞,∞). (3.5)

d) Fourier transform of the time derivative of Dirac delta function is

F (δ(t)′) = −iω, ω ∈ (−∞,∞). (3.6)

e) For any ε > 0 and any function f(r) that is continuous over (r0− ε, r0 + ε), we

have ∫ r0+ε

r0−ε
f(r)δ(r− r0)dr =

∫ ∞
−∞

f(r)δ(r− r0)dr = f(r0). (3.7)

3.3 Kronecker Delta Function

The Kronecker delta δij is defined as a function of two arguments i and j. If i

and j are the same (i.e. i = j) then the function δij is equal to 1. Otherwise (i.e.

i 6= j) the Kronecker delta is equal to 0. Formally, this is written as

δij =

 1 i = j

0 i 6= j
. (3.8)

5



3.4 Divergence Theorem

Let D be a solid in R3, bounded by a piecewise smooth surface S. Let F (x, y, z)

= P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k be a vector field such that P,Q and R

are continuous and have continuous first order partial derivatives in an open set

containing D. Assume n is the unit outward normal to the surface S. Then

∫∫
S

(F.n)ds =

∫∫∫
V

(divF)dV. (3.9)

3.5 Derivation Of The Thermoacoustic Equation

Before we derive the thermoacoustic equation, we derive the acoustic wave equa-

tion.

3.5.1 Derivation Of Acoustic Wave Equation

Here, a longitudinal small-amplitude acoustic plane wave propagation in a ho-

mogeneous medium in the x direction is considered. We explore the motion of a

differential volume element dV = dxdydz at position x:

a) The material equation with the excess pressure p is a function of the mass

density ρ :

p = p(ρ). (3.10)

We can expand this equation to the first order of the Taylor series around the

equilibrium mass density ρ0 as follows:

p− p0 =

(
∂p

∂ρ

)
(ρ− ρ0), (3.11)

ρ0 denotes the equilibrium pressure. The condensation at any point is defined as

s =
ρ− ρ0
ρ0

, (3.12)

6



that is

ρ = ρ0(1 + s). (3.13)

Since the acoustic wave has a small amplitude, the essential restriction conden-

sation must be small, | s |� 1. Substituting (3.13) into (3.11), we obtain

p− p0 = ρ0

(
∂p

∂ρ

)
s. (3.14)

b) We derive the force equation. In the absence of viscosity, the net force F on

the element experienced by the differential volume element in x direction is given

by

F = −
(
∂p

∂x

)
dxdydz. (3.15)

Using Newton’s second law, we have

− ∂p

∂x
= ρ0

∂u

∂t
, (3.16)

where u is the medium velocity and t is the time respectively. Since | s |� 1, we

replace the ρ by ρ0 by using (3.13) and yield

− ∂p

∂x
= ρ0

∂u

∂t
. (3.17)

This equation is called linear inviscid force equation, which can be generalized to

3D space as −∇ = ρ0(
∂~u

∂t
). If we substitute (3.14) into (3.17), we obtain

− ∂s

∂x
=

1

∂p/∂ρ

∂u

∂t
. (3.18)

c) We derive the force equation based on the conservation of mass as follows:

− ∂p

∂t
=
∂(ρu)

∂x
, (3.19)

7



and this equation can be generalized to −(
∂p

∂t
) = ∇.(ρ~u). We expand the right

hand side of (3.19) as
∂(ρu)

∂x
= ρ

∂u

∂x
+
∂ρ

∂x
u. (3.20)

Because of | s |� 1, we rewrite the above equation as follows:

∂(ρu)

∂x
= ρ

∂u

∂x
+
∂ρ

∂x
u. (3.21)

Second term in (3.21) is negligible because of the subsonic medium velocity of a

small amplitude wave. So, (3.19) becomes

− ∂ρ

∂t
= ρ0

∂u

∂x
. (3.22)

If we substitute (3.13) into (3.22), we obtain

− ∂s

∂t
=
∂u

∂x
. (3.23)

d) Finally, differentiating (3.18) with respect to x, differentiating (3.23) with

respect to t, and substracting side by side, we obtain

∂2p

∂x2
=

1

∂p/∂ρ

∂2p

∂t2
. (3.24)

Thus, we have
∂2p

∂x2
=

1

c2
∂2p

∂t2
(3.25)

where c2 =
∂p

∂ρ
is the speed of sound in the medium. So, we can generalize to the

3D case as

∇2p =
1

c2
∂2p

∂t2
. (3.26)

It is the basic acoustic wave equation which describes the propagation of an

acoustic wave in a homogeneous nondissipative medium.

8



3.5.2 Derivation Of The Thermoacoustic Wave Equation

Initial Thermoacoustic Pressure

On microwave or laser excitation, fractional volume expansion dV/V of the heated

tissue at position r can be express as [31],

dV

V
= −κp(r) + βT (r). (3.27)

Here, κ denotes the isothermal compressibility (∼ 5×10−10Pa−1 for water or soft

tissue); β denotes the thermal coefficient of the volume expansion (∼ 4×10−4K−1

for muscle); p and T denote the changes in pressure (in Pascal) and temperature

(in Kelvin), respectively. The isothermal compressibility κ can be expressed as

κ =
Cp

Cvρc2
(3.28)

where ρ denotes the mass density, c denotes the speed of sound, and Cp and Cv

denote the specific heat capacities at constant pressure and volume, respectively.

We suppose that the microwave or laser pulse duration tm is less than the acoustic

confinement time and acoustic confinement time less than the thermal confine-

ment time

tm �
dc
c
� d2c

4αth
(3.29)

where dc is the characteristic length of heat heterogeneity (the dimension of the

optically absorbing target of interest or the decay constant of the optical energy

deposition, whichever is smaller), and αth is the thermal diffusivity (∼ 0.1mm2/s

for tissue.) If we assume that all absorbed optical energy is converted into heat

and nonthermal relaxation such as fluorescence is negligible, the temperature rise

generated by the short laser pulse. And we get

p0 =
β

κcρCv
A (3.30)

9



where A is the specific or volumetric optical absorption (in joules per centimeter

cubed, optical energy deposition density).

When the such a short laser pulse, the fractional volume expansion is negligible

and the local pressure rise p0 immediately after the laser excitation can be derived

from (3.27) as

p0(r) =
βT (r)

κ
. (3.31)

Γ =
β

Cvκρ
(3.32)

is the Grueneisen parameter (dimensionless). Then, we write

p0(r) = ΓA(r) (3.33)

Thermoacoustic Equation

We write the following two equations which are responsible for thermoacoustic

generation (generalized Hooke’s law),

∇.~u(r, t) = κp(r, t) + βT (r, t) (3.34)

and the equation of motion [32]

ρ
∂2u(~r, t)

∂t2
= −∇p(r, t). (3.35)

Here, vector ~u defines the medium displacement. The left hand side of (3.34)

represents the fractional volume expansion, while the right hand side represents

the two factors related to the volume expansion. The left hand side of (3.35)

represents the mass density times the acceleration, and the right hand side rep-

resents the force applied per unit volume. If we take the divergence of (3.35), we

can write

ρ
∂2

∂t2
[∇.~u(r, t)] = −∇2p(r, t). (3.36)

10



If we substitute (3.27) into (3.36), we obtain thermoacoustic wave equation as

follows:

(
∇2 − 1

c2
∂2

∂t2

)
p(r, t) = − β

κc2
∂2T (r, t)

∂t2
(3.37)

where c =
1
√
ρκ

.

11



Chapter 4

Medical Imaging Modalities

4.1 X-ray Computed Tomography (CT)

X-ray computed tomography (CT) invented in 1972 and, it was the first radical

change in the medical use of X- rays since Roentgen’s discovery. Computed

tomography uses the mathematical device of Fourier filtered back-projection. Two

key progressions in diagnostic X-ray imaging followed from the introduction of the

computed tomography. Firstly the CT image is a 2D reconstruction of a cross-

section of the patient anatomy. Secondly, CT provides a good contrast between

bone and all soft tissue. Both make the interpretation of the resulting images

very much easier .

Hospitals routinely use CT for the rapid assessment of structural abnormality

resulting from injury or disease throughout the body. CT has become a standard

tool in the planning of the cancer radiation treatment and it provides a clear

definition of the tumour and tumour’s disposition with respect to the surrounding

healthy tissue. However, the major risk is that the patient is exposed to large

doses of radiation due to the higher doses of radiation delivered with a CT scan.

With the increased radiation amounts also comes the increased risk for cancer.

The CT image platform is shown in Fig. (4.1).

12



Figure 4.1: X-Ray Computed Tomography(http://www.medical-x-ray.com)

4.2 Ultrasound

Ultrasound uses sound waves to look inside a part of the body. The process can

be described as follows: A gel is put on the tissue to be imaged and a hand-held

instrument called a transducer is rubbed with gel and pressed against the skin. It

emits sound waves and picks up the echoes as they bounce off body tissues. The

echoes are converted by a computer into a black and white image on a computer

screen. One is not exposed to radiation with ultrasound. Ultrasound is the only

way to tell if a suspicious area is a cyst without putting a needle into it to take

out fluid. Ultrasound may also be used to help doctors guide a biopsy needle into

an area of concern in the tissue as the cysts cannot be accurately diagnosed by a

physical examination alone. For example, breast ultrasound is used to evaluate

breast problems that are found during a screening or a diagnostic mammogram,

or on physical examination. It may be helpful to use ultrasound along with

a mammogram when screening the women, under high cancer risk, with dense

breast tissue. It is widely available, non-invasive, and less expensive than other

options. Although ultrasound has the advantage of being more available and less

expensive, it is less sensitive compared to Magnetic resonance imaging and CT.

Also, the effectiveness of an ultrasound test depends on the operator’s level of

skill and experience.
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4.3 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is a tomographic technique, but without any harmful

effects since it has no ionising radiation hazard. MRI generates cross-sectional

images of the human body. The process is shown in Fig.(4.2). First, the pro-

cess begins with positioning the imaged body in a strong, uniform magnetic field,

which polarizes the nuclear magnetic moments of water protons by forcing their

spins into one of two possible orientations, and second an appropriately polarized

radio-frequency field, applied at resonant frequency, forces spin transitions be-

tween orientations. Then those transitions create a signal which can be detected

by a receiving coil which is shown in (a), (b), (c) and (d) respectively in Fig.(4.2).

Figure 4.2: Spin Warp [http://cibsr.stanford.edu/participating/AboutMRI.html]

A MRI scanner applies the radio-frequency field as finely crafted pulses, which

excite only protons whose resonant frequencies fall within a fairly narrow range.

Applying magnetic-field gradients during the radio-frequency pulse creates res-

onant conditions for only the protons that are located in a thin, predetermined

slice of the body. Orientation and thickness of this slice can be selected arbitrar-

ily in the imaged body. These signal encodes the positional information across
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the slice using a method known as the spin warp then a two-dimensional Fourier

transform extracts that positional information.

MRI can be used in a person who have already been diagnosed with breast or

brain cancer to determine better the actual size of the cancer, the stage of cancer

and to look for any other cancers in the breast or brain. However, MRI is not gen-

erally recommended as a screening tool by itself. For instance, in breast imaging,

although it is a sensitive test, it may still miss some cancers that mammograms

which use doses of ionizing radiation to create images would detect. Moreover it

is more likely to find something that turns out not to be cancer (called a false

positive). False-positive findings have to be checked out to make sure that the

cancer isn’t present, which results in coming back for further tests or biopsies.

Also, MRI is more expensive than CT and Ultrasound.
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Chapter 5

Microwave - Induced Thermoacoustic Imaging

Thermoacoustic tomography is a hybrid biomedical imaging modality, combin-

ing the high contrast and good tissue penetration of microwave and high spatial

resolution of ultrasound imaging without harmful side effects. Firstly, it does

not break, or change the properties of the biological tissue under study. Se-

condly, only nonionizing radiation is used. The non-destructive (non-invasive)

and non-ionizing nature of thermoacoustic techniques makes them ideal for in

vivo applications. Thirdly, the relationships between thermoacoustic signals and

the physical parameters of biological tissues are well defined. The thermoacoustic

wave generation is illustrated in Fig.5.1. In thermoacoustic wave generation, the

Figure 5.1: Schematic representation of thermoacoustic effect on tissue.

tissue is irradiated by pulsed microwave excitation; the microwave energy is selec-

tively absorbed by different tissue structures with different dielectric parameters.
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Then it is converted to heat pulse which causes generation of acoustic waves by

thermoelastic expansion; the thermoacoustic signals are detected by ultrasound

transducers to be used for image reconstruction of the mediums.

5.1 Solution Of The Thermoacoustic Wave Equation For Multi-Layer

Planar Medium

The thermoacoustic wave equation is given as

(
∇2 − 1

c2
∂2

∂t2

)
p(r, t) = − β

Cp

∂H(r, t)

∂t
, (5.1)

which is called as inhomogeneous differential equation where r = (x, y, z) is

the source location in the Cartesian coordinates, c is the propagation velocity

of the wave (positive constant), p(r, t) is the acoustic wave function (p(r, t) ∈

C2(R3 ×R)). H(r, t) is the heat function given by
β

κc2
∂T (r, t)

∂t
. T is the temper-

ature rise, and β is the thermal coefficient of volume expansion (isobaric volume

expansion coefficient). Here, we have the isothermal compressibility using the

equation κc2 =
Cp
Cvρ

where Cp and Cv specific heat capacities at constant pressure

and volume, respectively and ρ is the density of medium. The thermal energy

converted per unit volume and per unit time and given by H(r, t) = A(r)I(t)

where A(r) spatial absorption function and I(t) is a nonnegative function under

the condition of thermal confinement which is given in Chapter 3. I(t)’s integra-

tion over time equals the pulse energy, I(t) = δ(t) where δ(.) is the Dirac delta

function. Also p0(r) = ΓA(r) where Γ = β/(κρCv) is the Grueneisen parameter.

Using these, we can rewrite (5.1) as

(
∇2 − 1

c2
∂2

∂t2

)
p(r, t) = −p0(r)

∂δ(t)

∂t
. (5.2)

The left-hand side of (5.2) describes the wave propagation, whereas the right-hand

side represents the source term.
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5.1.1 Multi-Layer Tissue Model

Figure 5.2: Geometrical representation of N−layer planar medium.

The y cross-section of multi-layer (N -layer) planar medium defined in R3 are

shown in Fig. 5.2, where the acoustic detection is performed on the outer surface

of the first layer.

In Fig. 5.2, we consider that the velocity cm and the density ρm indicate the

values of cm(r) and ρm(r) between the mth and (m − 1)th layers. Density and

velocity in each layer are constants, while the layer thickness can be different

(m ≤ N). Sm is the mth layer boundary surface. We assume that there is

another line S ′m(parallel to Sm) at infinity and also that the combination of S ′m

and Sm encloses the source inside (m = 1, ..., N). For convenience, we define

S = S ′m + Sm. The y cross-section of the planar medium modelled by N -parallel

layers with different acoustic properties is given in Fig. 5.2, where the acoustic

detection is performed on the outer surface of the first layer. Note that the N -

th layer extents from zN−1 to ∞. For the multi-layer planar model, the inverse

source problem is to obtain the source distribution in all of the layers using the

acoustic data measured by the transducers. Thermoacoustic imaging is based

on the inverse solution of the inhomogeneous acoustic wave equation with initial

condition, boundary conditions at layers, and radiation conditions at infinity. The
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solution to thermoacoustic problem can be used for any layered biological tissue

as breast model in Fig. 5.3.

Figure 5.3: Layered breast model

Also the solution to thermoacoustic problem can be used for biological tissue as

skin model in Fig. 5.4.

Figure 5.4: Layered skin model

Since the Fourier transformation provides a great deal of convenience for deriving

the solution of the (5.2), we take the temporal Fourier transform of both sides of

(5.2) in the first step as follows:

∇2P (r, ω) + k2mP (r, ω) = iwp
(m)
0 (r). (5.3)
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We obtain Helmholtz equation after taking the temporal Fourier transform of

(5.2). Here, ω is the temporal frequency coordinate, km = ω/cm is the wave num-

ber in the mth layer where m indicates the source location, and p
(m)
0 represents

the source function in the mth layer. First, we derive the forward solution of

(5.3), and then we derive the inverse solution of (5.3).

In next section, we shall define the radiation conditions, continuity conditions on

the boundary surface, and the initial condition for (5.3).

5.1.2 Radiation Conditions, Continuity Conditions And Initial Con-

dition

The radiation conditions:

The radiation condition for P (r, ω) are defined as

P (r, ω) = O(1/ | r |) as | r |→ ∞ (5.4)

and

∂P

∂ | r |
(r, ω)− ikP (r, ω) = o(1/ | r |) as | r |→ ∞. (5.5)

We use the Green’s function which is a type of function used to solve inhomo-

geneous differential equations in (5.3) subject to boundary conditions. Green’s

function, which is represented as G(r, r
′
), is the response function at r due to a

concentrated source at r′.

Because of the important roles in the forward and inverse solution derivation of

(5.2), we define the outcoming Green’s function in which the wave propagates in

the direction r
′ → r and incoming Green’s function in which the wave propagates

in the direction r → r
′
. Outcoming and incoming waves are represented by the

superscripts “out” and “in” for Green’s function respectively. These functions

also satisfies radiation conditions as follows:
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Gout(R,ω) = O(1/R) as R→∞, R =| r− r
′ | (5.6)

and

∂Gout

∂R
+ ikGout = o(1/R2) as R→∞, (5.7)

Gin(R,ω) = O(1/R) as R→∞, R =| r− r
′ | (5.8)

and

∂Gin

∂R
− ikGin = o(1/R2) as R→∞. (5.9)

Continuity conditions:

The boundary conditions for layered medium outlined below are based on well-

known conditions used for solutions of wave equations. These conditions are

named continuity conditions. The continuity at each layer boundary surface Sm

is defined by the following for acoustic wave function.

lim
r→S−m

P (r, ω) = lim
r→S+

m

P (r, ω), (5.10)

and

lim
r→S−m

1

ρm−1

∂P (r, ω)

∂n
= lim

r→S+
m

1

ρm

∂P (r, ω)

∂n
, (5.11)

where, P is the acoustic waves which is generated by the source in the mth layer.

Here, ρm−1 and ρm are the densities for the layers (m − 1) and m, respectively

and n is the normal of the layer surface and detection surface.
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G(r
′
, r, ω) also satisfies the continuity conditions on the layer boundaries. We

represent it as follows:

lim
r→S−m

G(r
′
, r, ω) = lim

r→S+
m

G(r
′
, r, ω), (5.12)

and

lim
r→S−m

1

ρm−1

∂G(r
′
, r, ω)

∂n
= lim

r→S+
m

1

ρm

∂G(r
′
, r, ω)

∂n
. (5.13)

Also, continuity conditions at layer boundaries are satisfied by the outcoming and

incoming Green’s function.

Initial Condition at t = 0 :

The inhomogeneous thermoacoustic wave equation (5.2) must also satisfy the

following initial condition

p(r, t = 0) = p0(r). (5.14)

5.1.3 Forward Solution

In forward solution of (5.3), we find the pressure field at the measurement surface

assuming that we know the source function p
(m)
0 (r) in (5.3). For an arbitrary layer,

say mth layer, given the source density p
(m)
0 (r), we need to find the acoustic wave

function P (r, ω) for all r ∈ R3 in frequency domain. Some functional relations

are valid between incoming with outcoming waves with negative and positive

frequencies for Gout(r′, r, ω) and Gin(r
′
, r, ω) as follows:

Gout(r
′
, r, ω) = Gin(r

′
, r,−ω) (5.15)

Gout(r
′
, r,−ω) = (Gout(r

′
, r, ω))∗ (5.16)

where ∗ denotes the complex conjugate.
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We call Gout(r
′
, r, ω) ≡ Gout(r

′
, r) for simplicity, and

∇2G(r
′
, r) + k2G(r

′
, r) = −δ(r− r

′
), (5.17)

which is written in terms of Green’s function [33]. Here, r and r
′

denote the

observation (measurement) and source locations for N layer planar medium, res-

pectively.

Noticing that the Dirac delta function is even,

δ(−r) = δ(r), (5.18)

The equation (5.17) is satisfied for the incoming and outcoming Green’s functions

for any mth layer. As such,

∇2Gout(r
′
, r) + k2mG

out(r
′
, r) = −δ(m)(r− r

′
). (5.19)

We know the following from the equation (5.3).

∇2P + k2mP = iwp0(r
′). (5.20)

If we multiply P and Gout and by (5.19) and (5.20) respectively, and substract

side by side, we obtain

Gout∇2P − P∇2Gout = Pδ(r− r′) + iwp0(r
′)Gout, (5.21)
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which is valid in R3. If we integrate (5.21) in a very large circle of radius R′,

which involves the source inside, then we write,

∫
|r’|≤R′

{
Gout(r′, r)∇2P (r′, ω)− P (r′, ω)∇2Gout(r′, r)

}
dr′

=

∫
V

(m)
0

P (r′, ω)δ(r− r′)dr′ + iw

∫
V

(m)
0

p0(r
′)Gout(r′, r)dr′. (5.22)

By applying the classical Green’s formula to equation (5.22), we get

∫
R′

{
Gout(r′, r)

∂

∂n
P (r′, ω)− P (r′, ω)

∂

∂n
Gout(r′, r)

}
dS

= iw

∫
V

(m)
0

p0(r
′)Gout(r′, r)dr′ + P (r, ω). (5.23)

Now let us make R′ →∞, consider the radiation conditions satisfied by P and

Gout. Due to the factor R′2 existing in the surface element dS, the left hand side

tends to zero and yields,

P (r, ω) = −iw
∫
V

(m)
0

p0(r
′)Gout(r′, r)dr′. (5.24)

Let us call V
(m)
0 = V (m) for simplicity. Here, V (m) represents the volume which

encloses the source in the mth layer. The first and the second subscripts of

Gout
ms(r

′
, r) denote the source layer and measurement surface respectively. In phy-

sically, Gout
ms(r

′
, r) refers to the pressure field on the measurement surface which is

coming from the layer where the source is. In our derivations, we consider w > 0

and P (r, w) corresponding to the outcoming wave. If we assume that the source

is in the all layers, we represent the forward solution as follows:

P (r, ω) = −iω
N∑
m=1

∫
V (m)

p
(m)
0 (r

′
)Gout

ms(r
′
, r)dr′. (5.25)
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5.1.4 Coefficients Of The Green’s Functions

When we write r′ = (x′, y′, z′) and r = (x, y, z) in (5.17), we obtain

∇2Gout
m (x′, y′, z′;x, y, z) + k2mG

out
m (x′, y′, z′;x, y, z)

= −δ(m)(x− x′)δ(m)(y − y′)δ(m)(z − z′). (5.26)

Here, we denote by Ĝout the two dimensional spatial Fourier transform of Gout:

Ĝout(kx, ky, z;x
′, y′, z′) =

∫∫ ∞
−∞

Gout(r, r′)exp(−i(kxx+ kyy))dxdy (5.27)

Gout(x, y, z;x′, y′, z′) =
1

(2π)2

∫∫ ∞
−∞

Ĝout(kx, ky, z; r
′) exp(i(kxx+ kyy))dkxdky

(5.28)

where kx and ky are spatial frequency, and, r = (x, y, z) and r′ = (x′, y′, z′) are

the measurement and the source coordinates respectively. When we take the

two-dimensional spatial Fourier transform in x and y directions of the equation

(5.26), we get

∫∫ ∞
−∞

(
∇2Gout

m + k2mG
out
m

)
exp(−i(kx + ky))dxdy

= −
∫∫ ∞
−∞

δ(m)(x− x′)δ(m)(y − y′)δ(m)(z − z′) exp(i(kxx+ kyy))dxdy. (5.29)

As a result,

∂2Ĝout
m

∂z2
+ k2mĜ

out
m − (k2x + k2y)Ĝ

out
m = − exp(−i(kxx′ + kyy

′))δ(m)(z − z′). (5.30)

We can write the equation (5.30) as in the following form

∂2Ĝout
m

∂z2
− k2(m)

z Ĝout
m = − exp(−i(kxx′ + kyy

′))δ(m)(z − z′). (5.31)
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Here, kx, ky and k
(m)
z are the spatial frequency components of the wave vector for

the mth layer, and k
(m)
z is expressed as

k(m)
z =


−i
√(

ω
cm

)2
− (k2x + k2y),

∣∣∣ ωcm ∣∣∣ >√k2x + k2y√
(k2x + k2y)−

(
ω
cm

)2
,

√
k2x + k2y >

∣∣∣ ωcm ∣∣∣ . (5.32)

The first term of the right hand side of (5.31) is derived from the jump disconti-

nuity at the source location which is given step by step as the follows.

Jump Discontinuities At Source Location

Snce the right hand side of (5.31) has impulsive source at z′ = z, both Ĝout(r′, r)

and Ĝin(r′, r) have jump discontinuities at r′ = r (i.e. z′ = z) which is in the

mth layer. The Green’s function Ĝout
m (r′, r) is continuous at z = z′. However,

∂Ĝout
m

∂z
is not continuous at z = z′, and it has a jump discontinuity obtained by

integrating the differential equation (5.31) from z = z′ − ε to z = z′ + ε, the

amount of discontinuities equal to −e−i(kxx′+kyy′). If we integrate from z′ − ε to

z′ + ε, we obtain

lim
ε→0

∫ z′+ε

z′−ε

∂2Ĝout
m

∂z2
dz = lim

ε→0
k2(m)
z

∫ z′+ε

z′−ε
Ĝout
m dz − e−i(kxx′+kyy′) lim

ε→0

∫ z′+ε

z′−ε
δ(z − z′)dz.

(5.33)

Since the Green’s function is continuous at z = z′, the first term of right hand

side of (5.33) is equal to

lim
ε→0

k2(m)
z

∫ z′+ε

z′−ε
Ĝout
m dz = 0. (5.34)

Then, (5.33) may also be given by

lim
ε→0

[
∂Ĝout

m

∂z
|z=z′+ε −

∂Ĝout
m

∂z
|z=z′−ε

]
= −e−i(kxx′+kyy′). (5.35)

The differential equation (5.31) is reduced to the homogeneous form
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∂2Ĝout
m

∂z2
− k2(m)

z Ĝout
m = 0 (5.36)

which is separable differential equation except the case when the source is at

z′ = z. We express the Green’s function in (5.36) for mth layer as the following.

Ĝout
m =



C1e
k
(1)
z z + C2e

−k(1)z z, 0 ≤ z ≤ z1

C3e
k
(2)
z z + C4e

−k(2)z z, z1 ≤ z ≤ z2

. .

. .

. .

C2m−1e
k
(m)
z z + C2me

−k(m)
z z, zm−1 ≤ z′ ≤ z ≤ zm

C2m+1e
k
(m)
z z + C2m+2e

−k(m)
z z, zm−1 ≤ z ≤ z′ ≤ zm

. .

. .

. .

C2N+1e
k
(N)
z z + C2N+2e

−k(N)
z z, zN−1 ≤ z <∞.

(5.37)

We may find the coefficients by solving the differential equations for the N− layer

planar geometry assuming the source is in the m−th layer by using continuity

conditions on the layer boundaries, radiation conditions at infinity and the jump

discontinuity at source location. We write the system of linear equations for (5.31)
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as follows:

A0

A11 A12

A21 A22

. . . . . . 0′s
A

j1 A
j2

. . . . . .

0′s
AN



×


C1

...

C2N+2

 =



0
...

−e−i(kxx′+kyy′)

0
...


.

(5.38)

Here, the matrix on the left is a (2N + 2)× (2N + 2) square matrix. By using

the radiation conditions, we write the following elements

A0 = AN = [1].

Using the continuity conditions on the layer boundaries, we obtain

A
j1 =

 a
j1 a

j2

ρj+1

ρj
b
j1

ρj+1

ρj
b
j2

 and A
j2 =

aj3 a
j4

b
j3 b

j4

 . (5.39)

where ρj indicates the density of the medium in the jth layer (j = 1, ..., N − 1).

We can write the explicit expressions of the elements of the matrices A
j1 and A

j2

as follows:

aj1 =ek
(j)
z lj bj1 =k(j)z ek

(j)
z lj (5.40)

aj2 =e−k
(j)
z lj bj2 =− k(j)z e−k

(j)
z lj (5.41)

aj3 =− ek
(j+1)
z lj bj3 =− k(j+1)

z ek
(j+1)
z lj (5.42)

aj4 =− e−k
(j+1)
z lj bj4 =k(j+1)

z e−k
(j+1)
z lj (5.43)
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where

k(j)z =

√(
ω

cj

)2

− (k2x + k2y). (5.44)

Here, cj (positive constant) is the propagation velocity of the wave which is in the

jth medium, lj is the layer coordinate which gives the layer information, ω is the

temporal frequency,and kx and ky are the spatial frequency at x and y direction,

respectively. Also, we have the following which includes 2mth and (2m + 1)th

row elements supposing the source is in the mth layer:

Am1 =

 l1 l2

d1 d2

 , Am2 =

−l1 −l2
−d1 −d2

 . (5.45)

Because of the jump discontinuity at the source location, l1, l2, d1, d2 are written

as follows:

l1 =ek
(m)
z z′ , l2 =e−k

(m)
z z′

d1 =k(m)
z ek

(m)
z z′ , d2 =− k(m)

z e−k
(m)
z z′

where z′ is the source location on the axis of z.

The coefficent matrix of the linear system of equation’s in (5.38) is written as the

following which is called C:

C =


C1

...

C2N+2

 . (5.46)

Here, elements of the matrix C represent the coefficients of the Green’s function

generated by the source in the mth layer associated with the boundary conditions,

jump discontinuities at source locations, and the radiation conditions at infinity.

29



We denote the matrix in the right hand side of the linear system of equation’s in

(5.38) by B:

B =



0
...

−e−i(kxx′+kyy′)

0
...


, (5.47)

Dimension of the matrix B is (2N + 2)× 1. Because of the jump discontinuities

in the source location, the only nonzero element is −e−i(kxx′+kyy′), located at the

(2m+ 1)th row in (5.47).

The determinant of the first matrix in (5.38) is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0

A11 A12

A21 A22

. . . . . . 0′s
A

j1 A
j2

. . . . . .

0′s
AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.48)
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By means of the row operations in (5.48), we obtain

= −2k(m)
z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0

A11 A12

A21 A22

. . . . . . 0′s
A

j1 A
j2

. . . . . .

0′s
AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.49)

We can find the coefficients by solving the differential equations for the N− layer

planar geometry assuming the source is in the mth layer. The system of linear

equations may be given by [A]. ~C = ~B. If we write | A |= −2k
(m)
z | a |, and apply

the cofactor expansion along the (2m+ 1)th row and column the determinant of

a depends only layer informations, spatial frequency and the temporal frequency,

not where the source is. ~C is a vector whose elements are the coefficients of the

Green’s functions described by C = [C1, C2, · · · , C2N+2] in (5.46). ~B is a vector

which includes 2N + 2 elements and these elements are zero except only one

element. The nonzero element is -e−i(kxx
′+kyy′) in (5.47). Also, ~B depends on the

layer which includes the source location. When we write the explicit form of these

matrices, because of definition of the kz, the coefficients of Green’s functions will

be even functions of temporal frequency . In order to specify the Green’s function

the unknown coefficients C2N+1 must be determined, which can be done by using

the Cramer’s Rule.

After solving the equation (5.36) for the N -layer planar geometry and taking the

inverse Fourier transform of the Green’s function at x and y direction, respec-

tively, we derive the outgoing Green’s function Gout
m (r′, r) = Gout

m (x′, y′, z′;x, y, z)

in Fourier domain which is generated by the source in the mth layer as follows:
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Gout
m =

1

(2π)2



∞∫
−∞

∞∫
−∞

eikx(x−x
′)+iky(y−y′)(C1e

k
(1)
z z + C2e

−k(1)z z)dkxdky,

0 ≤ z ≤ z1
∞∫

−∞

∞∫
−∞

eikx(x−x
′)+iky(y−y′)(C3e

k
(2)
z z + C4e

−k(2)z z)dkxdky,

z1 ≤ z ≤ z2

.

.

.
∞∫

−∞

∞∫
−∞

eikx(x−x
′)+iky(y−y′)(C2m−1e

k
(m)
z z + C2me

−k(m)
z z)dkxdky,

zm−1 ≤ z′ ≤ z ≤ zm
∞∫

−∞

∞∫
−∞

eikx(x−x
′)+iky(y−y′)(C2m+1e

k
(m)
z z + C2m+2e

−k(m)
z z)dkxdky,

zm−1 ≤ z ≤ z′ ≤ zm

.

.

.
∞∫

−∞

∞∫
−∞

eikx(x−x
′)+iky(y−y′)(C2N+1e

k
(N)
z z + C2N+2e

−k(N)
z z)dkxdky,

zN−1 ≤ z <∞.

(5.50)

The coefficients Ck (1 ≤ k ≤ 2N+2) are determined by solving (2N+2) equations

associated to the boundary conditions on the layer boundary, jump discontinuities

at the source locations and radiation conditions at infinity. Gout
ms(r

′
, r) (outcoming

Green’s function) which comes from the source to surface is represented by

1

(2π)2

∫∫ ∞
−∞

C2N+1e
kszzeikx(x−x

′)+iky(y−y′)dkxdky, (5.51)
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where s and m indicate the measurement surface and the source location, respec-

tively.

5.1.5 Inverse Solution

Thermoacoustic image reconstruction based on inverse solution of thermoacous-

tic wave equation with homogeneous medium parameters have been studied by

different researchers as mentioned in chapter 2.

The source distribution inside the medium has been determined by the following

integral equation for the homogeneous medium [23]:

q(r) =
1

π

∫
S

∫ ∞
−∞

P (rs, ω)
∂Gin

h (r, rs)

∂n
dωdS, (5.52)

where S is a measurement surface and Gin
h is a free space Green’s function rep-

resented as Gin
h =

1

4π

e−ikR

R
, R =| r− r′ | and n is the normal along z-axis . rs

and r are the measurement and the source coordinate, respectively. P (rs, ω) is

the measured pressure from the measurement surface defined as:

P (rs, ω) = −iω
∫
V0

p0(r)Gout(r, rs)dV0. (5.53)

By using the inverse solution for the homogeneous medium, we derive the solu-

tion of the inverse source problem for N -layer planar medium with existing the

source distribution in all layers where we use spatially continuous layered Green’s

function with parameters associated to the layers. Gin(r, rs) and Gout(r′, rs) are

symmetric with respect to the source and the measurement location parameters,

and satisfy the Helmholtz equation. So we get

∇2
sG

in
ij(ri, rs) + k2iG

in
ij(ri, rs) = −δijδ(ri − rs), (5.54)

∇2
sG

out
ij (r′i, rs) + k2iG

out
ij (r′i, rs) = −δijδ(r′i − rs), (5.55)
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where δij is Kronecker delta and i, j = 1, ..., N . If we multiply (5.54) and (5.55)

by Gout
ij and Gin

ij respectively, we obtain

Gout
ij (r′i, rs)∇2

sG
in
ij(ri, rs)

= Gin
ij(ri, rs)∇2

sG
out
ij (r′i, rs) + δijG

in
ij(ri, rs)δ(r

′
i − rs)

− δijGout
ij (r′i, rs)δ(ri − rs) (5.56)

after substraction. If we add the term

Gout
ij (r′i, rs)∇2

sG
in
ij(ri, rs) + 2∇sG

out
ij (r′i, rs)∇sG

in
ij(ri, rs) (5.57)

to the both sides of (5.56), we get

2Gout
ij (r′i, rs)∇2

sG
in
ij(ri, rs) + 2∇sG

out
ij (r′i, rs)∇sG

in
ij(ri, rs)

= Gin
ij(ri, rs)∇2

sG
out
ij (r′i, rs) +Gout

ij (r′i, rs)∇2
sG

in
ij(ri, rs)

+ 2∇sG
out
ij (r′i, rs)∇sG

in
ij(ri, rs)

+ δijG
in
ij(ri, rs)δ(r

′
i − rs)− δijGout

ij (r′i, rs)δ(ri − rs)

= ∇s.
(
∇s

(
Gout
ij (r′i, rs)G

in
ij(ri, rs)

))
+ δijG

in
ij(ri, rs)δ(r

′
i − rs)− δijGout

ij (r′i, rs)δ(ri − rs). (5.58)

Assuming that the source distribution is in all layers, we find the source in mth

layer and these relations make easy to derive the inverse solution.

We claim that the following integral equation is valid as the inverse solution of

the thermoacoustic wave equation for the N− layer planar medium to find the

source in the mth layer (m ≤ N)

q(r) =
1

π

ρm
ρs

∫
S

∫ ∞
−∞

P (rs, ω)
∂Gin

ms(r, rs)

∂n
dωdS (5.59)

where r′ and rs are the source and the measurement locations respectively, ρ is

the medium density, and the subscripts m and s indicate the layer which include

the source and the measurement surface respectively. For the proof of (5.59),
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using (5.25), we write

q(r) = −ρm
ρs

i

π

∫ ∞
−∞

ω

∫
S

(
N∑
k=1

∫
V (k)

p
(k)
0 (r

′
)Gout

ks (r′, rs)dr
′

)

.
∂Gin

ms(r, rs)

∂n
dωdS

= −ρm
ρs

i

π

N∑
k=1

∫
V (k)

p
(k)
0 (r

′
)

.

(∫ ∞
−∞

ω

∫
S

Gout
ks (r′, rs)∇sG

in
ms(r, rs)ndSdω

)
dr′, (5.60)

where V (k) is the volume which includes the source. If we call the terms with

integrations over ω as K(r′, r) and substitute K(r′, r) in (5.60), we get

q(r) = −ρm
ρs

1

π

N∑
k=1

[∫
V (k)

p
(k)
0 (r′)Kk(r

′, r)dr′
]
. (5.61)

For the mth layer, we take

Km(r′, r) = K
(1)
m (r′, r) +K

(2)
m (r′, r), where

K(1)
m (r, r′) =

∫ ∞
−∞

iω

∫
S

Gout
ms(r

′, rs)∇sG
in
ms(r, rs)ndSdω (5.62)

K(2)
m (r, r′) =

∫ ∞
−∞

iω

∫
S

Gout
ks (r′, rs)∇sG

in
ms(r, rs)ndSdω, (5.63)

k 6= m and m, k ≤ N. We can rewrite the equation (5.62) by adding and sub-

tracting the layer surfaces parallel to the measurement surface as follows:

K(1)
m (r, r′) =

∫ ∞
−∞

iω

(∫
S

Gout
ms(r

′, rs)∇sG
in
ms(r, rs)ndS

+
N∑
k=1

(∫
Sk

Gout
ms(r

′, rs)∇sG
in
ms(r, rs)

−
∫
Sk

Gout
ms(r

′, rs)∇sG
in
mS(r, rs)

))
ndSkdω. (5.64)
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Using the Divergence theorem and continuity conditions on the layer boundary,

we get

K(1)
m (r, r′) =∫ ∞
−∞

iω

N∑
k=1

ρk

[∫
Vk

∇s(G
out
mk(r

′, rs)∇sG
in
mk(r, rs))dVk

]
dω (5.65)

Here, ρk =
ρs
ρ(k)

, k = 1, ..., N, where ρs is the density of the measurement

surface and ρ(k) is the density of the medium k, we obtain these terms by using

continuity conditions on the layer boundary. Both Gout(r′, rs) and Gin(r, rs) are

scalar functions and we have the identity

∇s

(
Gout(r′, rs)∇sG

in(r, rs)
)

= ∇sG
out(r′, rs)∇sG

in(r, rs) +Gout∇2
sG

in(r, rs).

(5.66)
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Now using (5.58), (5.65), and (5.66), we have

K(1)
m (r, r′) =

∫ ∞
−∞

iω
ρs
ρm

∫
V (m)

(
∇sG

out
mm(r′, rs)∇sG

in
mm(r, rs)

+ Gout
mm(r′, rs)∇2

sG
in
mm(r, rs)

)
dVmdω

+

∫ ∞
−∞

iω

N∑
k=1,k 6=m

ρk

∫
V (k)

(
∇sG

out
mk(r

′, rs)∇sG
in
mk(r, rs)

+ Gout
mk(r

′, rs)∇2
sG

in
mk(r, rs)

)
dVkdω

=
ρs

2ρm

∫ ∞
−∞

iω

∫
V(m)

(
δmmδ(r

′ − rs)G
in
mm(r, rs)

− δmmδ(r− rs)G
out
mm(r′, rs)

)
dVmdω

+
ρs

2ρm

∫ ∞
−∞

iω

∫
V (m)

∇s.
(
∇s

(
Gout
mm(r′, rs)G

in
mm(r, rs)

))
dVmdω

+
ρs

2ρm

∫ ∞
−∞

iω

∫
V (m)

N∑
k=1,k 6=m

(
δmkδ(r

′ − rs)G
in
mk(r, rs)

− δmkδ(r− rs)G
out
mk(r

′, rs)
)
dVkdω

+

∫ ∞
−∞

iω
N∑

k=1,k 6=m

ρk
2

∫
V (k)

∇s.
(
∇s

(
Gout
mk(r

′, rs)G
in
mk(r, rs)

))
dVkdω.

(5.67)
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In view of the definition of Kronecker delta, we can rewrite the equation (5.67)

as

K(1)
m (r, r′) =

∫ ∞
−∞

iω
ρs
ρm

∫
V (m)

(
∇sG

out
mm(r′, rs)∇sG

in
mm(r, rs)

+ Gout
mm(r′, rs)∇2

sG
in
mm(r, rs)

)
dVmdω

+

∫ ∞
−∞

iω
N∑

k=1,k 6=m

ρk

∫
V (k)

(
∇sG

out
mk(r

′, rs)∇sG
in
mk(r, rs)

+ Gout
mk(r

′, rs)∇2
sG

in
mk(r, rs)

)
dVkdω

=
ρs

2ρm

∫ ∞
−∞

iω

∫
V (m)

(
δ(r′ − rs)G

in
mm(r, rs)

− δ(r− rs)G
out
mm(r′, rs)

)
dVmdω

+
ρs

2ρm

∫ ∞
−∞

iω

∫
V (m)

∇s.
(
∇s

(
Gout
mm(r′, rs)G

in
mm(r, rs)

))
dVmdω

+

∫ ∞
−∞

iω
N∑

k=1,k 6=m

ρk
2

∫
V (k)

∇s.
(
∇s

(
Gout
mk(r

′, rs)G
in
mk(r, rs)

))
dVkdω.

(5.68)

Let us take the fifth and the sixth line of (5.68)

ρs
2ρm

∫ ∞
−∞

iω

∫
V (m)

(
δ(r′ − rs)G

in
mm(r, rs) − δ(r− rs)G

out
mm(r′, rs)

)
dVmdω

=
ρs

2ρm

∫ ∞
−∞

iω(Gin
mm(r, r′)−Gout

mm(r′, r))dω (5.69)

and use the forward solution, and the initial condition (t = 0). Now, if we

demonstrate the ∫ ∞
−∞

ωGout(r, r′)dω = 2πiδ(r− r′), (5.70)

for Green’s function, by using initial condition, we may simplify the proof of

(5.59). Next, taking the inverse Fourier transform of both sides of (5.25), we get

p(r, t) =
−i
2π

(∫ ∞
−∞

∫
V (m)

ωp
(m)
0 (r′)Gout

ms(r
′
, r)dr′

)
e−iωtdω.

(5.71)
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When t = 0, for arbitrary m, the acoustic wave will be equal to the source

function, i.e. p(r, 0) = p0(r). Then we write

p0(r) =
−i
2π

∫
V

p0(r
′)

(∫ ∞
−∞

ωGout(r, r′)dω

)
dr′ (5.72)

where V includes the source. Since (5.72) holds for arbitrary r and the former

integral is valid over R3 , we may write it more generally as follows:

p0(r) =
−i
2π

∫
R3

p0(r
′)

(∫ ∞
−∞

ωGout(r, r′)dω

)
dr′. (5.73)

So, we obtain the following equation for the Green’s function.

∫ ∞
−∞

ωGout(r, r′)dω = 2πiδ(r− r′). (5.74)

Using (5.74) and the relations (5.15) and (5.16), we can rewrite the integrals in

(5.68) over the surface ;

K(1)
m (r, r′) = − ρs

ρm
πδ(r− r′)

+
ρs

2ρm

∫ ∞
−∞

iω

∫
Sm

∂
(
Gout
mm(r′, rs)G

in
mm(r, rs)

)
∂nsm

dSmdω

+

∫ ∞
−∞

iω
N∑

k=1,k 6=m

ρ(k)

2

∫
Sk

∂(Gout
mk(r

′, rs)G
in
mk(r, rs))

∂nsk
dSkdω, (5.75)

with k 6= m. Since the planar boundaries of the layers are assumed to be parallel

to the measurement plane S,
∂

∂nsk
=

∂

∂zk
(5.76)
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holds. So, we have

K(1)
m (r, r′) = − ρs

ρm
πδ(r− r′)

+
ρs

2ρm

∫ ∞
−∞

iω

∫
Sm

∂
(
Gout
mm(r′, rs)G

in
mm(r, rs)

)
∂zm

dSmdω

+

∫ ∞
−∞

iω

N∑
k=1

ρ(k)

2

∫
Sk

∂(Gout
mk(r

′, rs)G
in
mk(r, rs))

∂zk
dSkdω. (5.77)

On the boundary surfaces, subject to rs > r and rs > r′, the imaginary parts

of the multiplication of the Green’s functions in (5.75) are independent of zs.

Therefore the derivative of the imaginary part of Gout
mkG

in
mk with respect to zs,

where m = k and m 6= k, is zero. The real part of the integration of Gout
mkG

in
mk

over ω is taken from −∞ to∞ equals to zero because of the fact that the Green’s

functions are even functions respect to the temporal frequency (by the definition

of kz). Then,

K(1)
m (r, r′) = − ρs

ρm
πδ(r− r′). (5.78)

Now, K(2)(r, r′) includes the integration over ω of the multiplication of the Green’s

functions by ω which have different subscripts as follows:

K(2)
m (r, r′) =

∫ ∞
−∞

iω

∫
S

Gout
ms(r

′, rs)∇sG
in
ks(r, rs)ndSdω, (5.79)

k 6= m and m, k ≤ N. Using (5.58), we rewrite the above equation as

K(2)
m (r, r′) =

∫ ∞
−∞

iω

∫
S

[
∇s

(
Gout
ms(r

′, rs)

(
∇s

N∑
k=1,k 6=m

ρ(k)Gin
ks(r, rs)

))

+
N∑

k=1,k 6=m

(
δksG

in
ks(r, rs)δ(r

′ − rs)− δmsGout
ms(r

′, rs)δ(r− rs)
)]
.ndSdω.

(5.80)
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From the definition of the Kronecker delta, the second part of (5.80) equals to

zero. So, we write

K(2)
m (r, r′) =

∫ ∞
−∞

iω

∫
S

[
∇s

(
Gout
ms(r

′, rs)

(
∇s

N∑
k=1,k 6=m

ρ(k)Gin
ks(r, rs)

))]
ndSdω.

(5.81)

By using similar calculation and definition as (5.77), we see at once that K(2)(r, r′)

is zero. In view of this fact, and substituting Km(r′, r) into (5.61), we obtain

q(r) = p0(r).

Here r′ and r are both in the mth layer. Then we derive, analytically, the inverse

solution in the frequency domain for the multi-layer planar medium as follows:

q(r) =
1

π

ρm
ρs

∫
S

∫ ∞
−∞

P (rs, ω)
∂Gin

ms(r, rs)

∂n
dωdS, for r, rs ∈ R3 (5.82)
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Chapter 6

Explicit Expression Of The Green’s Functions For

Homogeneous and Two Layer Medium In Two

Dimensional Cartesian Geometry

6.1 Green’s Function For Homogeneous Medium (N = 1) In Two

Dimensional Cartesian Coordinates

We solve the forward and the inverse problem for homogeneous medium in two

dimensional Cartesian coordinates subject to radiation conditions and jump dis-

continuity. Homogeneous medium is shown in the following Fig.(6.2).

Figure 6.1: Homogenous medium.

Here, acoustic velocity and density of medium are same in medium. We assume

that measurement surface is bottom of the medium with the source distribution
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existing in all medium. Also, we assume that there is another line S ′1 (parallel to

S1) at infinity and the combination of S ′1 and S1 encloses the source inside. For

convenience, we define S = S ′1 + S1. We know from the equation (5.2) that the

thermoacoustic wave equation is expressed as follows:

(
∇2 − 1

c2
∂2

∂t2

)
p(r, t) = −p0(r)

∂δ(t)

∂t
(6.1)

where r = (x, z) ∈ R2. In the forward problem we assume that p0(r) is known

and find the wave function p(r, t) for all r ∈ R2 and t ∈ R. In the inverse problem

the acoustic wave function p(r, t) is known (by measurements) during a certain

time interval on a surface S, and we try to determine the source function p0(r).

By using (5.59), we express the inverse solution of the thermoacoustic problem.

Since the medium is homogeneous, N = 1, and the density rate equal to 1. Then

inverse solution for homogeneous medium is as follows:

q(r) =
1

π

∫
S

∫ ∞
−∞

P (rs, ω)
Gin

h (r′, rs)

∂n
dωdS. (6.2)

where S is the measurement surface (assumed that bottom of the medium), rs =

(x, z) and r′ = (x′, z′) are measurement and source location, respectively. Gh

denotes the homogeneous Green’s function.

To solve the forward problem, subject to the given source function, we find the

acoustic wave function p(r, t) for all r ∈ R2 in frequency domain. By taking the

Fourier transform of the equation (6.1), we obtain

∇2P + k2P = iωp0(r), (6.3)

which is known as Helmholtz equation. Assuming r = (x, z) and r′ = (x′, z′)

are the measurement and the source locations respectively, we write the following

equations by using homogeneous Green’s functions.

∇2Gh(r, r
′) + k2Gh(r, r

′) = −δ(r− r′). (6.4)
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where k =
ω

c
is the wave number and δ(r− r′) = δ(x− x′)δ(z − z′) is the Dirac

delta function. Outgoing Green’s function also satisfies the following equation:

∇2Gout
h (r, r′) + k2Gout

h (r, r′) = −δ(r− r′). (6.5)

By using (5.25) with N = 1, we write the forward solution (acoustic wave func-

tion) using the superposition of the Green’s function and the source function as

follows:

P (r, ω) = −iω
∫
V0

p0(r
′)Gout

h (r, r′)dr′. (6.6)

Now, we obtain the explicit expression of the Green’s function for homogeneous

medium. When we take the spatial Fourier transform in the x direction of equa-

tion (6.5), we obtain

∫ ∞
−∞

(∇2Gout
h + k2Gout

h ) exp(−ikx)dx = −
∫ ∞
−∞

δ(x− x′)δ(z − z′) exp(−ikxx)dx

(6.7)

where k =
ω

c
is the wave vector, and kx is the spatial frequency in the x direction.

Now, we investigate the left hand side of the equation (6.7)

∫ ∞
−∞

(
∂Gout

h

∂x2
+
∂Gout

h

∂y2
+ k21G

out
h

)
exp(−ikxx)dx

=

∫ ∞
−∞

∂2Gout
h

∂x2
exp(−ikxx)dx︸ ︷︷ ︸
(1a)

+

∫ ∞
−∞

∂2Gout
h

∂y2
exp(−ikxx)dx︸ ︷︷ ︸
(2a)

+ k21

∫ ∞
−∞

Gout
h exp(−ikxx)dx︸ ︷︷ ︸

(3a)

. (6.8)

We take each part of (6.8) separately.

(1a) =

∫ ∞
−∞

∂2Gout
h

∂x2
exp(−ikxx)dx

= lim
a→−∞

∫ d

a

∂2Gout
h

∂x2
exp(−ikxx)dx+ lim

b→∞

∫ b

d

∂2Gout
h

∂x2
exp(−ikxx)dx (6.9)
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where d ∈ (−∞,∞).

If we apply the integration by parts to (6.9), we obtain

(1a) = lim
a→−∞

(
∂Gout

h

∂x
exp(−ikxx)

) ∣∣d
a
+ lim

b→∞

(
∂Gout

h

∂x
exp(−ikxx)

) ∣∣b
d

−
(

lim
a→−∞

(−ikx)
∫ d

a

∂Gout
h

∂x
exp(−ikxx)dx

+ lim
b→∞

(−ikx)
∫ b

d

∂Gout
h

∂x
exp(−ikxx)dx

)
. (6.10)

Again, if we apply the integration by parts to the third and the fourth part of

(6.10), we get

(1a) = lim
a→−∞

(
∂Gout

h

∂x
exp(−ikxx)

) ∣∣d
a
+ lim

b→∞

(
∂Gout

h

∂x
exp(−ikxx)

) ∣∣b
d

+

(
lim

a→−∞
(ikx)G

out
h exp(−ikxx)

) ∣∣d
a
+
(

lim
b→∞

(ikx)G
out
h exp(−ikxx)

) ∣∣b
d

+ lim
a→−∞

(
ikx

∫ d

a

Gout
h exp(−ikxx)dx

)
+ lim

b→∞

(
ikx

∫ b

d

Gout
h exp(−ikxx)dx

)

= lim
a→−∞

exp(−ikxx)

(
∂Gout

h

∂x
+ ikxG

out
h

) ∣∣d
a︸ ︷︷ ︸

1AA



+ lim
b→∞

exp(−ikxx)

(
∂Gout

h

∂x
+ ikxG

out
h

) ∣∣b
d︸ ︷︷ ︸

1AB

− k2xĜout
h (6.11)

Subject to the radiation condition (5.7), the parts (1AA) and (1AB) goes to zero,

as a→ −∞ and b→∞. So,

(1a) = −k2xĜout
h (6.12)
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We also calculate (2a) and (3a) of equation (6.8) as follow:

(2a) =

∫ ∞
−∞

∂2Gout
h

∂z2
exp(−ikxx)dx =

∫ ∞
−∞

∂2

∂z2
Gout
h exp(−ikxx)dx

=
∂2

∂z2
Ĝh. (6.13)

(3a) = k2
∫ ∞
−∞

Gout
h exp(−ikxx)dx

= k2Ĝh. (6.14)

Then, the left hand side of (6.8) will be equal to

∂2 ˆGout
h

∂z2
− k2x ˆGout

h + k2Ĝh. (6.15)

We write the equation (6.7) as the following using (6.15):

∂2 ˆGout
h

∂z2
− k2x ˆGout

h + k2 ˆGout
h = − exp(−ikxx′)δ(z − z′). (6.16)

We define k2x − k2 = k2z . So, we can write the following equation.

∂2Ĝout
h

∂z2
− k2zĜout

h = − exp(−ikxx′)δ(z − z′) (6.17)

where kz is given by

kz =


√
k2x − (ω

c
)2, | kx |>| ωc |

−i
√

(ω
c
)2 − k2x, | kx |<| ωc |

. (6.18)

When the z 6= z′, the differential equation (6.17) is reduced the homogeneous

linear equation
∂z2Ĝout

h

∂y2
− k2zĜout

h = 0. (6.19)
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The solution of (6.19) is written as

Ĝout
h =

 C1e
ikzz + C2e

−ikzz 0 < z′ < z

C3e
ikzz + C4e

−ikzz z < z′ < 0
. (6.20)

We have to calculate the coefficients Ci (i = 1, 2, 3, 4) to express the Green’s

function for homogeneous medium. To calculate the coefficients, we use radiation

condition and the jump discontinuity as follows:

1) As z →∞, the coefficient C1 equals zero from the radiation condition.

2) Green’s function is continuous at y = y′, so

C1e
ikzz′ + C2e

−ikzz′ = C3e
ikzz′ + C4e

−ikzz′

C1e
ikzz′ + C2e

−ikzz′ − C3e
ikzz′ − C4e

−ikzz′ = 0. (6.21)

3) At z = z′, we write as the following equation by using (5.45)

∂(C1e
ikzz + C2e

−ikzz)

∂z
− ∂(C3e

ikzz + C4e
−ikzz)

∂z
= −e−ikxx′ . (6.22)

and we get

ikzC1e
ikzz′ − ikzC2e

−ikzz′ − ikzC3e
ikzz′ + ikzC4e

−ikzz′ . (6.23)

4) As z → −∞, the coefficient C4 is 0 because of the radiation conditions.

Subject to the above conditions, we write (6.17) as the following system of linear

equations:
1 0 0 0

eikzz
′

e−ikzz
′ −eikzz′ −e−ikzz′

ikze
ikzz′ −ikze−ikzz

′ −ikzeikzz
′
ikze

−ikzz′

0 0 0 1

×

C1

C2

C3

C4

 =


0

0

−e−ikxx′

0

 . (6.24)
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We can use the Cramer’s rule to calculate the coefficients of the Green’s function.

Now we write the following determinant which is called Ah:

Ah =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

eikzz
′

e−ikzz
′ −eikzz′ −e−ikzz′

ikze
ikzz′ −ikze−ikzz

′ −ikzeikzz
′
ikze

−ikzz′

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.25)

Since the measurement surface is the bottom of the medium according to our

assumption, we must only find C3 and to this end 43:

43 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

eikzz
′

e−ikzz
′

0 −e−ikzz′

ikze
ikzz′ −ikze−ikzz

′ −e−ikxx′ ikze
−ikzz′

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (6.26)

and we write

C3 =
43

Ah
=
e−ikxx

′e−ikzz
′

2ikz
(6.27)

using Cramer’s rule.

If we use (6.20) and then take the inverse Fourier transform, we obtain the out-

going Green’s function for the homogeneous medium as

Gout
h =

1

2π

∫ ∞
−∞

e−ikz |z−z
′|eikx(x−x

′)

2ikz
dkx. (6.28)

6.2 Green’s Functions For Two-Layer (N=2) Medium In Two Dimen-

sional Cartesian Coordinates

We solve the forward problem and the inverse problem assuming the source dis-

tribution is in all layers for two-layer medium in two dimensional Cartesian co-

ordinates subject to the continuity conditions on the boundary surface, jump
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discontinuity at the source location and the radiation conditions at infinity. Two

layer medium geometry is shown in Fig. (6.2)

Figure 6.2: Two-layered medium.

where z = l is the layer boundary coordinates, ρ1 and ρ2 are densities, and c1 and

c2 are the acoustic velocities of the medium 1 and medium 2, respectively.

Using (5.82), inverse solution of the thermoacoustic problem for two layers (N =

2) in two dimensions is expressed as the following Case 1 and Case 2.

Case 1: The source is in the medium 1 i.e. m = 1:

q(r′) =
1

π

ρ1
ρs

∫
S

∫ ∞
−∞

P (r, ω)
∂Gin

1s(r, r
′)

∂n
dωdS. (6.29)

Case 2: The source is in the medium 2, i.e. m = 2:

q(r′) =
1

π

ρ2
ρs

∫
S

∫ ∞
−∞

P (r, ω)
∂Gin

2s(r, r
′)

∂n
dωdS. (6.30)
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Using (5.25), the forward solution of the thermoacoustic problem for two layers

(N = 2) in two dimensions is expressed as

P (r, ω) = −iω
2∑

m=1

∫
V (m)

p
(m)
0 (r

′
)Gout

ms(r
′
, r)dr′

= −iω
∫
V (1)

p
(1)
0 (r

′
)Gout

1s (r
′
, r)dr′ + (−iω)

∫
V (2)

p
(2)
0 (r

′
)Gout

2s (r
′
, r)dr′.

(6.31)

Here, r = (x, z) and r′ = (x′, z′) are measurement and source coordinates, respec-

tively. V (1) and V (2) denote the volumes which enclose the source p
(1)
0 in medium

1 and the source p
(2)
0 in medium 2, respectively. And we assume that S is the

measurement surface (bottom of the layers, and parallel to the x axis) as we show

in Fig.(6.2) and assume that there is another line S ′1 (parallel to S1) at infinity

and the combination of S ′1 and S1 encloses the source inside. For convenience, we

define S = S ′1 + S1.

To solve the inverse solution, we need to calculate Gout
1s (r

′
, r) and Gout

2s (r
′
, r), as

well as the conjugates of these functions.

i) Firstly, we suppose that the source is in the first layer. For two layer medium

in two dimensional geometry, we write the following wave equation by using (5.2):

(
∇2 − 1

c2
∂2

∂t2

)
p(r, t) = −p0(r)

∂δ(t)

∂t
, (6.32)

where r = (x, z). If we take the Time Fourier transform of (6.32), we obtain the

Helmholtz equation as follows:

∇2P + k21P = iωp0(r), (6.33)
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where k1 is the wave number in the first layer. We can write the following equation

by using Green’s function from (5.17):

∇2Gout
1s (r

′
, r) + k21G

out
1s (r

′
, r) = −δ(1)(r− r

′
). (6.34)

where r′ = (x′, z′) and r = (x, z) are the source and the measurement locations

respectively. When we take the spatial Fourier transform in the x direction of

(6.34), we get

∫ ∞
−∞

(∇2Gout
1s + k21G

out
1s ) exp(−ikxx)dx

= −
∫ ∞
−∞

δ(1)(x− x′)δ(1)(z − z′) exp(−ikxx)dx. (6.35)

Here k1 =
ω

c1
is wave vector, and kx is the spatial frequency.

Let’s examine the left hand side of (6.35):

∫ ∞
−∞

(
∂Gout

1s

∂x2
+
∂Gout

1s

∂z2
+ k21G

out
1s

)
exp(−ikxx)dx

=

∫ ∞
−∞

∂2Gout
1s

∂x2
exp(−ikxx)dx︸ ︷︷ ︸
(1b)

+

∫ ∞
−∞

∂2Gout
1s

∂z2
exp(−ikxx)dx︸ ︷︷ ︸
(2b)

+ k21

∫ ∞
−∞

Gout
1s exp(−ikxx)dx︸ ︷︷ ︸

(3b)

. (6.36)

We also examine each part of (6.36), separately.

(1b) =

∫ ∞
−∞

∂2Gout
1s

∂x2
exp(−ikxx)dx. (6.37)
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Applying the integration by parts to (6.37), we obtain

(1b) = lim
a→−∞

(
∂Gout

1s

∂x
exp(−ikxx)

∣∣d
a

)
+ lim

b→∞

(
∂Gout

1s

∂x
exp(−ikxx)

∣∣b
d

)
− (−ikx)

∫ ∞
−∞

∂Gout
1s

∂x
exp(−ikxx)dx. (6.38)

Next, if we apply the integration by parts to (6.38) oncemore, to the second part

of (1b), we get

(1b) = lim
a→−∞

(
∂Gout

1s

∂x
exp(−ikxx) |da

)
+ lim

b→∞

(
∂Gout

1s

∂x
exp(−ikxx)

∣∣b
d

)
+ lim

a→−∞

(
ikx

(
Gout

1s exp(−ikxx)
∣∣d
a

))
+ lim

b→∞

(
ikx

(
Gout

1s exp(−ikxx)
∣∣b
d

))
+ lim

a→−∞

(
ikx

∫ d

a

Gout
1s exp(−ikxx)dx

)
+ lim

b→∞

(
ikx

∫ b

d

Gout
1s exp(−ikxx)dx

)

= lim
a→−∞

exp(−ikxx)

(
∂Gout

1s

∂x
+ ikxG

out
1s

) ∣∣d
a︸ ︷︷ ︸

(1BA)



+ lim
b→∞

exp(−ikxx)

(
∂Gout

1s

∂x
+ ikxG

out
1s

) ∣∣b
d︸ ︷︷ ︸

(1BB)

− k2xĜout
1s . (6.39)

Subject to the radiation condition (5.7), the part (1BA) and (1BB) vanish as

a→ −∞ and b→∞, respectively. So,

(1b) = −k2xĜout
1s . (6.40)
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We also calculate the parts (2b) and (3b) of the equation (6.36) as

(2b) =

∫ ∞
−∞

∂2Gout
1s

∂z2
exp(−ikxx)dx =

∫ ∞
−∞

∂2

∂z2
Gout

1s exp(−ikxx)dx

=
∂2

∂z2
Ĝout

1s . (6.41)

(3b) = k21

∫ ∞
−∞

Gout
1s exp(−ikxx)dx

= k21Ĝ
out
1s . (6.42)

Then, the left hand side of (6.35) equals to

∂2 ˆGout
1s

∂z2
− k2x ˆGout

1s + k21Ĝ
out. (6.43)

By using (6.43), we write the Fourier transform of (6.35) as follows:

∂2 ˆGout
1s

∂z2
− k2x ˆGout

1s + k21
ˆGout
1s = − exp(−ikxx′)δ(z − z′). (6.44)

Let us call k2x − k21 = k2z1. So, we can write the following equation.

∂2Ĝout
1s

∂z2
− k2z1Ĝout

1s = − exp(−ikxx′)δ(z − z′). (6.45)

where kz1 is defined as follows:

kz1 =


√
k2x − ( ω

c1
)2, | kx |>| ωc1 |

−i
√

( ω
c1

)2 − k2x, | kx |<| ωc1 |
. (6.46)

Excluding the case z = z′, (6.45) is reduced to the homogeneous linear differential

equation
∂2Ĝout

1s

∂z2
− k2z1Ĝout

1s = 0. (6.47)

Using (5.50), we represent the solution of (6.47) by
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Ĝout
1 =


C1e

kz2z + C2e
−kz2z 0 < z

C3e
kz1z + C4e

−kz1z z′ < z < 0

C5e
kz1z + C6e

−kz1z z < z′

. (6.48)

Here, Ĝout
1 stands for the wave propagation when the source is in the medium 1,

and

kz2 =


√
k2x − ( ω

c2
)2, | kx |>| ωc2 |

−i
√

( ω
c2

)2 − k2x, | kx |<| ωc2 |
. (6.49)

We need to find the pressure wave on the surface for finding the measured pressure.

Therefore we must calculate the coefficient C5 for Ĝout
1s . Here the first index of

Ĝout
1s indicates the medium which includes the source and the second index of

the Green’s function indicates the measurement surface. After we calculate the

coefficient C5, we take the inverse Fourier transform of Ĝout
1s to be able to write the

explicit expression of Gout
1s . The Green’s function satisfies continuity conditions

on the layer boundary, jump discontinuity and continuity at the source location

and the radiation condition as z goes to −∞ and z goes to ∞. Now, let us write

these conditions provided by the Green’s function step by step.

1) Using radiation condition as z →∞, we say that C1 = 0.

2) From the continuity condition on the layer boundary at z = l we get

C1e
kz2l + C2e

−kz2l = C3e
kz1l + C4e

−kz1l. (6.50)
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3) Also, we write the following equation from the continuity condition on the

layer boundary at y = l,

1

ρ1

∂(C1e
kz2z + C2e

−kz2z)

∂z
=

1

ρ2

∂(C3e
kz1z + C4e

−kz1z)

∂z
ρ2
ρ1
kz2C1e

kz2l − ρ2
ρ1
kz2C2e

−kz2l = kz1C3e
kz1l − kz1C4e

−kz1l. (6.51)

4) Green’s function is continuous at z = z′, so we write

C3e
kz1z′ + C4e

−kz1z′ − C5e
kz1z′ − C6e

−kz1z′ = 0. (6.52)

5) We write the following equation at y = y′ using the jump discontinuity

(5.45):

∂(C3e
kz1z + C4e

−kz1z)

∂z
− ∂(C5e

kz1z + C6e
−kz1z)

∂z
= −e−ikxx′ . (6.53)

If we take the partial derivatives and we write z′ instead of z in (6.53), we

obtain

ky1e
kz1z′C3 − kz1e−kz1z

′
C4 − kz1ekz1z

′
C5 + kz1e

−kz1z′C6 = −e−ikxx′ . (6.54)

6) We see that C6 vanishes using the radiation condition as z → −∞.

Using (6.50), (6.51), (6.52), (6.54), and the radiation conditions, we write the

following system of linear equations:
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

1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1



×



C1

C2

C3

C4

C5

C6


=



0

0

0

0

−e−ikxx′

0


. (6.55)

The coefficient C5 is calculated by using the Cramer’s Rule. Let us call

A as



1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1


,

(6.56)
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C as 

C1

C2

C3

C4

C5

C6


, (6.57)

B as 

0

0

0

0

−e−ikxx′

0


. (6.58)
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and finally, ∆5 as



1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′

0 −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −e−ikxx′ kz1e
−kz1z′

0 0 0 0 0 1


.

(6.59)

Using Cramer’s Rule, we write C5 =
| ∆5 |
| A |

. At first, we calculate | A | which is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(6.60)

If we add the third and the fourth columns to the fifth and sixth columns in

(6.60), we obtain the following determinant.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l −ekz1l −e−kz1l

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l −kz1ekz1l kz1e

−kz1l

0 0 ekz1z
′

e−kz1z
′

0 0

0 0 kz1e
kz1z′ −kz1e−kz1z

′
0 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.61)

Using the cofactor expansion along the third row and then the fourth column in

(6.61), we obtain

ekz1z
′

∣∣∣∣∣∣∣∣∣
e−kz2l −e−kz1l −ekz1l

−ρ2
ρ1
kz2e

−kz2l kz1e
−kz1l −kz1ekz1l

0 −kz1ekz1z
′

0

∣∣∣∣∣∣∣∣∣

− e−kz1z′

∣∣∣∣∣∣∣∣∣
e−kz2l −ekz1l −ekz1l

−ρ2
ρ1
kz2e

−kz2l −kz1ekz1l −kz1ekz1l

0 kz1e
kz1z′ 0

∣∣∣∣∣∣∣∣∣ (6.62)

= kz1

∣∣∣∣∣∣ e−kz2l −e−kz1l

−ρ2
ρ1
kz2e

−kz2l −kz1ekz1l

∣∣∣∣∣∣
+kz1

∣∣∣∣∣∣ e−kz2l −ekz1l

−ρ2
ρ1
kz2e

−kz2l −kz1ekz1l

∣∣∣∣∣∣
= 2kz1

(
−kz1el(kz1−kz2) −

ρ2
ρ1
kz2e

−l(kz1+kz2)
)

(6.63)

Then,

| A |= −2kz1

(
kz1e

l(kz1−kz2) +
ρ2
ρ1
kz2e

−l(kz1+kz2)
)
. (6.64)
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We must also calculate | ∆5 | which is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′

0 −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −e−ikxx′ kz1e
−kz1z′

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.65)

Using the cofactor expansion along the fifth column, we get

− e−ikxx′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0

0 0 ekz1z
′

e−kz1z
′ −e−kz1z′

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and along the second column

− e−ikxx′e−kz2l

∣∣∣∣∣∣∣∣∣
−kz1ekz1l kz1e

−kz1l 0

ekz1z
′

e−kz1z
′ −e−kz1z′

0 0 1

∣∣∣∣∣∣∣∣∣

− e−ikxx′ ρ2
ρ1
kz2e

−kz2l

∣∣∣∣∣∣∣∣∣
−ekz1l −e−kz1l 0

ekz1z
′

e−kz1z
′ −e−ky1z′

0 0 1

∣∣∣∣∣∣∣∣∣
= e−ikxx

′
kz1

(
e−kz1z

′
el(kz1−kz2) + ekz1z

′
e−l(kz1+kz2)

)
+ e−ikxx

′ ρ2
ρ1
kz2

(
e−kz1z

′
el(kz1−kz2) − ekz1z′e−l(kz1+kz2)

)
. (6.66)
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So, we write

| ∆5 | = e−ikxx
′
e−kz1z

′
el(kz1−kz2)

(
kz1 +

ρ2
ρ1
kz2

)
+ e−ikxx

′
ekz1z

′
e−l(kz1+kz2)

(
kz1 −

ρ2
ρ1
kz2

)
. (6.67)

Using (6.64), (6.67) and the Cramer’s Rule, we obtain

C5 =
| ∆5 |
| A |

=
e−ikxx

′
e−kz1z

′
el(kz1−kz2)

(
kz1 + ρ2

ρ1
kz2

)
+ e−ikxx

′
ekz1z

′
e−l(kz1+kz2)

(
kz1 − ρ2

ρ1
kz2

)
−2kz1

(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

) .

(6.68)

Then by using (6.68), we can write the explicit expression of Ĝout
1s as

e−ikxx
′

ekz1(z−z′)el(kz1−kz2)
(
kz1 + ρ2

ρ1
kz2

)
+ ekz1(z+z

′)e−l(kz1+kz2)
(
kz1 − ρ2

ρ1
kz2

)
−2kz1

(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

)
 .

(6.69)

If we take the spatial Fourier transformation of (6.69) in the x direction, we get

the outgoing Green’s function in the frequency domain:

Gout
1s = − 1

2π

∫ ∞
−∞

eikx(x−x
′)

 ekz1(z−z
′)el(kz1−kz2)

(
kz1 + ρ2

ρ1
kz2

)
2kz1

(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

)
+

ekz1(z+z
′)e−l(kz1+kz2)

(
kz1 − ρ2

ρ1
kz2

)
2kz1

(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

)
 dkx. (6.70)
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ii) Secondly, we suppose that the source is in the second layer for two layer

medium in two dimensional geometry. We shall state the explicit expression of

Gout
2s which stands for the wave propagation from the source point to measure-

ment surface subject to the continuity conditions on the layer boundaries, jump

discontinuity and continuity at the source location and the radiation conditions.

We represent Ĝout
2 as

Ĝout
2 =


C1e

kz2z + C2e
−kz2z 0 < z

C3e
kz1z + C4e

−kz1z z′ < z < 0

C5e
kz1z + C6e

−kz1z z < z′

. (6.71)

using similar calculations. Here Ĝout
2 denotes the wave propagation when the

source is in medium 2. We must find C2 for the explicit expression of Gout
2s . Using

(6.50), (6.51), (6.52), (6.54) and the radiation conditions, we obtain the following

system of linear equations.



1 0 0 0 0 0

ekz2l e−kz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −ρ2
ρ1
kz2e

−kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 0 kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1



×



C1

C2

C3

C4

C5

C6


=



0

0

0

0

−e−ikxx′

0


. (6.72)
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Let us take

∆2 =



1 0 0 0 0 0

ekz2l 0 −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l 0 −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 −e−ikxx′ kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1


.

(6.73)

Since C2 =
| ∆2 |
| A |

, we must calculate the determinants of ∆2 and A which was

given by (6.56). We have,

| ∆2 |=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

ekz2l 0 −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l 0 −kz1ekz1l kz1e
−kz1l 0 0

0 0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 −e−ikxx′ kz1e
kz1z′ −kz1e−kz1z

′ −kz1ekz1z
′
kz1e

−kz1z′

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(6.74)

and using the cofactor expansion along the second column, (6.74) as

e−ikxx
′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

ekz2l −ekz1l −e−kz1l 0 0

ρ2
ρ1
kz2e

kz2l −kz1ekz1l kz1e
−kz1l 0 0

0 ekz1z
′

e−kz1z
′ −ekz1z′ −e−kz1z′

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.75)
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also using the cofactor expansion along the first and fifth column in (6.75), we

get

= e−ikxx
′

∣∣∣∣∣∣∣∣∣
−ekz1l −e−kz1l 0

−kz1ekz1l kz1e
−kz1l 0

ekz1z
′

e−kz1z
′ −ekz1z′

∣∣∣∣∣∣∣∣∣
= −e−ikxx′ekz1z′

∣∣∣∣∣∣ −e
kz1l −e−kz1l

−kz1ekz1l kz1e
−kz1l

∣∣∣∣∣∣
= e−ikxx

′
ekz1z

′
(2kz1). (6.76)

Next, using (6.64) and (6.76), we get

C2 =
e−ikxx

′
ekz1z

′
(2kz1)

−2kz1

(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

)
= − e−ikxx

′
ekz1z

′(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

) . (6.77)

Then, it follows from (6.71), that we get

Ĝout
2s = − e−ikxx

′
ekz1z

′
e−kz2z(

kz1el(kz1−kz2) + ρ2
ρ1
kz2e−l(kz1+kz2)

) , (6.78)

whose inverse spatial Fourier transform of is

Gout
2s =

∫ ∞
−∞

−ekz1z′e−kz2zeikx(x−x′)(
kz1el(kz1−kz2) + ρ2

ρ1
kz2e−l(kz1+kz2)

)dkx. (6.79)

By assuming the source distribution in all layer, to calculate the coefficients of

Green’s function for any N layer similar calculations calculations yield as using

Cramer’s Rule. The dimension of the matrix will increase as the number of the

layers increase.
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Chapter 7

Numerical Simulation

Figure 7.1: Schematic representation of the numerical simulation.

For qualitative testing and the comparison of the point-spread functions associ-

ated with the homogeneous and our layered solutions, we performed numerical

simulations for two-layer (skin and fat) and three-layer (skin, fat and muscle)

test phantom. In the numerical simulations, we considered a two-dimensional y-

cross sectional geometry assuming that each layer extents to infinity in the third
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dimension. We implemented our numerical simulations in Matlab running on

workstation computers. The array of the acoustic detectors (transducers), which

is relatively smaller than the medium sizes in lateral dimension, placed the outer

of the first layer that is matched to the skin layer a distance of 5 mm away from

the skin in the figures of simulations.

Figure 7.2: Numerical planar test fantom in two layer consists of two point sources
in each layer.

Figure 7.3: (a) Numerical simulation obtained by using the free space Green’s
function in the inversion algorithm (5.52) (result: incorrect source locations).(b)
Numerical simulation obtained by using the layered Green’s functions in the in-
version algorithm (5.82) (result: correct source location) The display is in a linear
scale.

We generated the measured data using the forward solution (5.25) with the layered

outgoing Green’s functions in the simulations. We take numerical planar test
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Figure 7.4: (a) Numerical simulation obtained by using the free space Green’s
function in the inversion algorithm (5.82) (with incorrect source locations).(b)
Numerical simulation obtained by using the layered Green’s functions in the in-
version algorithm (5.82) (with correct source location) The display dynamic range
is 20 dB (logarithmic scale).

phantom with two layers in Fig. 7.2 which has a size of 10 mm× 20 mm, consisting

of two point sources in each layer for the skin and the fat layers which have

0.95 g/cm3 and 1.15 g/cm3 densities respectively, and the acoustic velocities are

1450 m/s and 1730 m/s, respectively. For comparison with the conventional

solution and our layered solution, we used the free space Green’s function where

the ultrasound velocity and the density of medium were taken as the averages of

the corresponding parameters of the layers in Fig.7.3 (a) and in Fig. 7.4 (a), also

we used the layer Green’s function where the velocity and the density of medium

were taken as correct parameters of the layers in the inversion algorithm (5.82)

in Fig. 7.3 (b) and in Fig. 7.4 (b) . In our computations, we have considered a 5

MHz temporal frequency band between 2.5 MHz and 7.5 MHz, which corresponds

to a 5 MHz transducer with a 100% fractional bandwidth (f0 = 5 MHz, FBW =

100). We sampled the temporal frequency band by ∆f = 70 kHz steps in Fig.7.4,

Fig. 7.5, and Fig. 7.6. In Fig. 7.2, the correct (x, z) coordinates of sources in

Layer 1 are (5 mm, 4 mm) and (5 mm, 7 mm) respectively, and in Layer 2 are

(5 mm, 14 mm) and (5 mm, 17 mm) respectively. For detection of the acoustic

field, 32 point-like transducers with λ0/2 an inter-element separation were placed

at the bottom of the phantom. Transducer size is 5 mm. One can see that while
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Fig. (7.3) (a) and Fig. (7.4) (a) have distorted and poor PSFs with incorrect

locations (in z direction) of the point sources, (x, z) = (5 mm, 3 mm) and (5 mm,

5.5 mm) respectively, and the point sources’s coordinates are (x, z) = (5 mm, 13

mm) and (5 mm, 16 mm), respectively in Layer 2 whereas Fig. 7.3 (b) and Fig.

(7.4) (b) have exactly correct source locations.

Figure 7.5: a)Image of the point spread function distribution with correct medium
parameters by use of the inversion algorithm (5.82) (point source coordinates are
(x, z) =(5 mm, 12.5 mm) and (x, z) =(5 mm,15 mm) respectively, in the first
(upper) medium. (b) Image of the point spread function distribution when the
speed of sound in the first (upper) layer is incorrectly estimated (10% incorrectly
estimated). The point source coordinates are (x, z) =(5 mm, 13.12 mm) and
(x, z) =(5 mm,16 mm) respectively, in (b). The display dynamic range is 20 dB
(logarithmic scale).

68



In Fig. 7.5, the ultrasound velocity is assumed to be different from the actual

value in the first layer only in the inversion algorithm (5.82). As the medium

parameters may not be correctly known in practice, the robustness tests were

performed to determine how well the algorithm performs with respect to the

imprecise knowledge of various system parameters, e.g, ultrasound velocity. Es-

pecially, the ultrasound velocity assumed by the inversion algorithm is 1595 m/s

(10 % larger than the actual value of 1450 m/s) and the display dynamic range is

20 dB. 32 point-like transducers with λ0/2 an inter-element separation are placed

at the bottom of the phantom (f0 = 5 MHz, FBW = 100) for fat and skin. Trans-

ducer size is 5 mm. One can see that the location of reconstructed point source is

incorrect in the z direction. Under the assumption of misestimation of ultrasound

velocity c in any layer, the values set of kz is erroneous. As a result error occurs

in the estimated Fourier components of the source p0(r) which causes the shifting

of the source location in the z direction.
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Figure 7.6: Numerical test fantom.

Figure 7.7: Numerical simulation results for the three-layered planar medium
with the correct source locations using (5.82). (a) Source distribution in linear
scale. (b) Source distribution in logarithmic scale (Dynamic range is 20 dB).

In Fig.7.6, we took three layered numerical test phantom. For the detection of

the acoustic field, 32 point-like transducers with λ0/4 an inter-element separation

were placed at the bottom of the phantom (f0 = 5 MHz, FBW = 100) for muscle,

fat and skin. Transducer size is 2.4 mm. We performed the numerical simula-

tions using Green’s function for three layer medium. We obtained the explicit

expression of Green’s function by making similar calculations to the Chapter 6

and verified our inverse algorithm also for three-layer medium with the correct

location of point source in all layers in Fig. 7.7.
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Chapter 8

Conclusion

We derived analytical forward and inverse solution of the thermoacoustic wave

equation in frequency domain for the planar multi-layer media with the sources

existing in all layers by using continuity conditions on boundary surfaces, initial

condition and radiation condition at infinity. As we were proving the forward and

inverse solution for multi-layer media, we used method of Green’s function. We

performed numerical simulations for qualitative testing and comparison of the

point-spread functions associated with the conventional solution and our layered

inverse solution for N = 1, N = 2 and N = 3. We indicated the differences

between the homogeneous and the layered solutions using numerical simulations

and their results show that the conventional inverse solution based on a homoge-

neous medium assumption, as expected, produced incorrect locations of the point

sources, whereas our inverse solution involving the multi-layer planar medium

produces point sources at the correct locations. Performance of layered inverse is

sensitive to the validity of the layer parameters and medium parameters used as

prior information in the measured data. This means that the accurate estimation

of the layer parameters is critically important for the effectiveness of the solu-

tion. Hence, computer simulation studies are conducted to investigate and then

demonstrate the proposed solution. Our inverse solution based on multi-layer

planar media applicable for a cross-sectional 2 dimensional imaging of the tissue

structures such as breast, skin and abdominal where transducer size relatively

smaller than the medium size.
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