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In this paper, we investigate existence of n-tuplet coincidence point theorems in partially ordered probabilistic metric spaces. Also,
we gave uniqueness of n-tuplet fixed point theorems in this space.

1. Introduction

Probabilistic metric spaces were introduced by Menger in
his fundamental paper [1] in 1942. In Menger’s theory, the
notion of distance between two points x and y is replaced
by a distribution function F, ,. The value of F, , at any
point t is represented by Px,y(t). Fx,y(t) is interpreted as
probability that the distance between x and y is less than ¢.
Sehgal first introduced the notion of contraction mapping
on a probabilistic metric space in [2, 3]. In fact the study of
such spaces received an impetus with the pioneering works
of Schewizer and Sklar [4]. Then several authors have studied
probabilistic spaces; see [5-9].

Guo and Lakshmikantham initiated the concept of cou-
pled fixed point [10] in 1987 After that, Bhaskar and Lak-
shmikantham introduced the notion of mixed monotone
property and gave some coupled fixed point theorems in
ordered metric spaces in 2006 [11]. In 2012, the extention of
coupled fixed point theorems to tripled fixed point theorems
for nonlinear mapping in partially ordered metric space was
introduced by Berinde and Borcut [12]. Then, some coupled
and tripled fixed point results were obtained by many authors
[13-19]. In 2013, Ertiirk and Karakaya gave the concept of n-
tuplet fixed point theorems in partially ordered metric spaces
[20]. Alam, Imdad, and Ali unified n-tuplet fixed point results
in ordered metric space in 2016 [21]. Their survey article is
recommended to someone who wants to have details about
this theory.

Hu and Ma studied couple coincidence point theorems in
partially ordered probabilistic metric spaces in [22]. Recently,
Binayak S. et al. [23] gave tripled coincidence point results in
partially ordered probabilistic metric spaces.

Inspired by the above studies, we introduce n-tuplet
fixed point theorems in partially ordered probabilistic metric
spaces. This paper is organized as follows. Section 2 is
devoted to giving some preliminaries. In Section 3, we
obtain existence of n-tuplet fixed point theorems. Finally,
Section 4 concerns the uniqueness of fixed point. These are
the extensions of coupled and tripled fixed points in partially
ordered probabilistic metric spaces.

2. Preliminaries

Definition 1 (see [4]). A triangular norm (shorter A —
norm/t —norm) is a binary operation A on the interval [0, 1],

A:[0,1] x [0,1] — [0,1] 1)
that satisfies the following conditions:
(a) A(a, 1) = a, A(0,0) =0,
(b) A(a,b) = A(b, a),
(c) Alc,d) = Aa,b) forc > a,d = b,
(d) Forall a,b,c € [0,1], A(A(a,b),c) = A(a, A(b,c)).

Principal examples of A — norms are
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(i) A ps(a,b) = min(a, b),
(ii) A p(a,b) = a.b,
(iii) A;(a,b) = max(a+ b - 1,0),

(IV) A D(a’ b) — { min(a,b), if max(a,b)=1

0, otherwise.

Above A — norms have the following relations:
Ap <Ay <Ap <Ay (2)

Definition 2 (see [4]). A function F : R — R" is called a
distribution function if it is nondecreasing, left continuous
with

inf {F(t):t R} =0

(3)
and sup{F (¢t):t € R} =1.

In addition, if F(0) = 0, then F is called a distance distribution
function. We denote the set of all distance distribution
functions by L" and H is a specific distance distribution
function (also known as Heaviside function) defined by

0, t<0
H(t) = (4)
1, t>0.

Definition 3 (see [1]). Let X be a nonempty set, F be a
mapping defined on X x X into L*, and A be a t —norm. If the
following conditions are satisfied, (X, F, A) is called Menger
probabilistic metric spaces:

(1) F,,(t) = H(¢) forallt > O0ifand only if x = y;
(2) F,(t) = F, (1), forallt > 0and x, y € X;
(3) Ey,(t +5) 2 A(F,,(t),F, ,(5),Vt,5 2 0,x, ,2 € X.

Example 4. Let A be an arbitrary t — norm, X = [-1,1], and

e—lx—yl/t’ £>0
F., ()= (5)
0, t=0

for every x, y € X. Then (X, F, A) is a Menger Probabilistic
Metric (for short PM) space given in [24].

Definition 5 (see [4, 25]). Let (X, F, A) be a Menger space.
(i) A sequence (x,,) in X is said to be convergent to a
point x € X if, for every > 0, lim,_,F, ,(t) = 1.

(ii) A sequence (x,) in X is called Cauchy sequence if,
foreach 0 < € < landt > 0, there exists n, €
N F, , (f) >1-e¢foreachn,m>n,.

(iii) A Menger space in which every Cauchy sequence is
convergent is said to be complete.

Lemma 6 (see [26]). If (X, F, A) be a Menger space where A
is continuous t-norm, then for every fixed t > 0, if (x,) —
% (y,) — y» thenlim,_,F, () = F ().
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Lemma 7 (see [23]). If h : R" — R is continuous and
(AyplacisB = 1,2,...,n are such that liminf,  .a,, =
ayy for all y # m for some m and (ay,)q, is
bounded, then, liminf, | h(a,,,a,,,...,4a,,) = h(a,
ay, ..., liminf, ,  ay ..., a,).

LetR" = [0,00)and ® = {¢ : ¢ : R" — R"}. Each¢p € @
satisfies the following conditions:

(1) ¢ is strict increasing,
(2) ¢ is upper semicontinuous from the right,

(3) Vt>0,Y20¢"(t) < co.

Ifp € O,p(t) < tforallt > 0.

Lemma 8 (see [27]). Let (u,) be sequence in a Menger space
(X, F,A), where A is a minimum t-norm. If there exists a
functionp € ® Vt > 0andn > 1,

F, . (¢®)2min{F, ., ®.F ., ®O}. (6

olntl

Then (u,,) is a Cauchy sequence in X.

Lemma 9 (see [27]). Let (X, F, A) be a Menger space. If there
exists a function p € O Vt > 0and x, y € X,
Fx)y((/)(t) +0) > Px,y(t), then x = y.

3. Main Results

Definition 10 (see [20]). Let (X, <) be a partially ordered
set and G : X" — X. G is said to have mixed
monotone property if G is monotone nondecreasing in its
odd arguments and it is monotone nonincreasing in its even
argument. That is, for any x', x*, x°,...,x" € X,

11
y,z €X,
1_ 1
y <z =
12 3 12 3
G(y,x,x,...,x")SG(z,x,x,...,x")
2 2
y5,z0 e X,
V<=

1 2 3 1 2 3
G(x,y,x,...,x”)ZG(x,z,x,...,x”)

y'z" € X,
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ynsZn —

1 2 .3 1 2 3
G(x,x,x,...,y")sG(x,x,x,...,z”)

(if n odd)
V' Z" e X,
V<=
G(xl,yz,x3,...,x") > G(xl,xz,x3,...,z")
(if n even).
(7)

Definition 11 (see [20]). Let (X, <) be a partially ordered set
and G: X" — X, g : X — X. We say that G has the mixed
g-monotone property if G is monotone g-nondecreasing in
its odd arguments and it is monotone g-nonincreasing in its
even argument. That is,

for any x', x*,x°,...,x" € X

L2l e X,
g()sg(e)=
G a") G (a2 )
¥y, 2 e X,
9(»’)s9(') =

123 1 2 .3
G(x,y,x,...,x")zG(x,z,x,...,x")

V' Z"e X,
90" <9 =
G(xl,xz,x3,...,y”) < G(xl,xz,x3,...,z”)
(if n odd)
' Z" e X,
90" <9 =
G(xl,yz,x3,...,x") > G(xl,xz,x3,...,z”)
(if n even).

(8)

If g is taken identity mapping Definition 11 reduces to
Definition 10.

Definition 12 (see [28]). Let X # 0. An element (x!, 2%, 3,
....x") € X" is defined as a n—tuplet fixed point of the
mapping G : X" — X if

)

G (x",xl, P ,x"_l) =x".
Definition 13 (see [28]). Let X # 0. An element (xh, %%, %,

..,x") € X" is defined as a n—tuplet coincidence point of the
mapping G : X" — Xand g: X — Xif

") = g(x')

)= g(+)

1 .2 3
G(x y XX,

G(xz,x3, .
(10)

G(x”,xl,xz,...,xn_l) =g(x").

When g is taken identity mapping Definition 13 reduces
to Definition 12.

Definition 14 (see [20]). Let (X, <) be a partially ordered set

and G : X" — X and g : X — X is called commutative if

forall x', x%, x%,...,x" € X

"))
=G(g(xl),g(xz),g(x3),...,g(x")).

Definition 15. Let (X, F, A) be a Menger space. G : X" — X
and g : X — X are said to be compatible if for all ¢ > 0

g(G(xl,xz,x3,...
an

Jm Fo G, o),6g0ed,.g6qn ) = 1

(12)
M FoGeen ,..0m),600),66),gt) (B) = 1,
whenever (x,lc), (xi), ...» (x}) sequences in X such that
lim G(xLx2,...,x") = lim g(x!) = x,
o (k k k) k_mg( k)
lim G(x3,...,x0,x) = lim g(x7) = 2%,
oo (k k k) k_mg( k)
(13)

. n 1 n—1
khlan (xk, Xps o v s X,

) = klim g(xp) ="

Theorem16. Let (X, <) be a partially ordered set and (X, F, A)
be a complete Menger space, where A is a minimum t-norm. Let
G: X" — X,g: X — X be two mappings such that G has



the mixed g-monotone property. Suppose there exist ¢ € © and
P = 0 such that

FG(xl,x2 ..... x"),G(y1, %0 y™) (¢ (t)) +p (1

— max {Fg(xl),G(yl,yz,m,y") (¢ (t)) s

(14)
Fyiy),6 2y (B (O)}) 2 min {Fygan g1 (1),
Foy a8 g aipt s,y (O}
forallt >0, x', 5% ..., X", y', y*,...,y" € X with
g(x')=g(')
9(x)=9(»)
(15)

9(x")2g(y") (if nis odd)

g(x")<g(y") (if nis even)

Assume that g is continuous, monotonic increasing, compatible
with G such that G(X") € g(X) and suppose either

(a) G is continuous or

(b) X has the following property:

(1) if nondecreasing sequence (x,) — x, then x,, <
x foralln > 0,
(ii) if nondecreasing sequence (y,) — y, then y, <
y foralln > 0.
If there exist x(l),xg, e, xg € X such that
1 12
g (xo) <G (xo,xo, e ,xg)
2 2 3 1
g (xo) >G (xo, Xgs- - v Xgs xo)
(16)
g (x5) < G (x, X0, xg,.. x5 1) (if mis odd)
g(xp) = G(xg,xé,xg,...,xg_l) (if nis even)
then there exist x*, x%, ..., x" € X such that
G(xl,xz,x3,...,x") = g(xl),
G(xz,x3,...,x",xl) = g(xz),
7)

n 1 2
G(x N

.,xn_l) =g(x").

That is, G and g have a n-tuplet coincidence point.
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Proof. Let x},x5,...,x; € X satisfy condition (16). Since
G(X") ¢ g(X), we can define (x,lc), (x,i), ..., (x}) € X sequen-
ces as follows:

fork=1,2,3,..,

9(x) =G (x_p Xy

( 2) —G( 2 3 n 1 )
G\ Xk) = U\ X Xp—1p - 5 Xp1p Xy

n
’xk—l)

(18)
g(x)=G (xz_l,xi_l, .. .,xz:}) )
Next step, we show that, for all k > 1,
9(x1) <9 (1)
9(xi1) 2 9(x)
(19)

g(xi_) <g(xy) (f nis odd)

g(x}_)) > g(xp) (if nis even).

To prove this claim, we will use the inductive method for
mathematics. Because of the inequalities in (16), (19) holds
for k = 1. We have

9(xy) <G (xpo x5, x5) = g (x1),

g(xg) > G(xg,xg,...,xg,xl) = g(xf),

(20)
g(xp) < G(xg,xé,xé,...,xg_l) =g(x)) (if nis odd),
g(xp) = G(xg,xé,xg,...,ngl) =g(x]) (if nis even).
Let us assume that (19) is true for k = m; that is,
9 (%) < 9 (%)
9(x0) 2 9(x,)
(21

g(xl_)<g(xl) (f nis odd)

g(x,_1)=g(x)) (f niseven).

Since G has the mixed g-monotone property and from (21),

( 1)_G( 1 2 n )
I\ Xm) = Xin-1Xm-1> > X1



Journal of Function Spaces 5

Similar way we get Fyet) gt (¢(t)) = min { 9(xt ) (t)
9(x)=G(x0 1 dl o xp ) Fota) gt ) NGI®
> G(xfn, xfnfl,...,x"mfl,x:nfl) (25)

By Lemma 8, we obtain that ( g(x,lc)) is a Cauchy sequence.

Fygtz,) (9 (1))

2G(x x x 1,...,xm 1,xm 1)

1 )(t)a

,...,xzil,xki1

(23) 2 mln {F ( 2 )g(xi) (t) > g(xk l) (xk—l’xlzfl

Fg(xz),G(xi X7 e XI5 (t)}
) <G(xtxh L x ) = g(x”
g( m) ( m> *m m ) g( m+1) -p (1 — max {wai_l)>G<Xi»Xiw-’XQ»Xi> (¢ (t)) ,

(if n is odd)
Fg(xi)’c(xi—l‘xi—l'“"xz—l’xllc—l) (¢ (t))})

9 () 2 G (xp 3, 02,") = 9 (x7,.) .
= min {F 2 )g(xZ) (t) 9(xk . ’g(xi) (t) >

(if n is even). (26)

F 2y 2 (1)
So, inequalities in (19) are true for all k > 1. 9)90xi) }

c2g(x)zg(x,)z 2 g(x)) 2 g(x) ~p(1-max{Fyz e, (9(0),
<g(xg)<g(xi) < <g(x})<g(x) R o))
24 Fyingee, ($(6) 2 min{Fya ) o) (1),
FRob bz o) a() G edd) Fyiygie ) (O} = p(1=1)

<g(xf)<g(xp )< <g(x])<g(xy) (f nis even).

F . 2 t)) > 2 (£),
Now, we will show that (g(x1)),(gG)) ..., (g(x1) are sat, (0) = min {Fya g0 (0

Cauchy sequences. F ¢
Forallt > 0,n>1, 9(x2),g9(x7,,) ( )}'
. 2 .
Fyay gt ) (1)) We ob"tam that (g(x};)) is a Cauchy sequence. )
Using same way we conclude that (g(x;)), ..., (g(x})) are
= Foal o )Gl (@) also Cauchy sequences. Since X is complete metric space,

there exist x', x2, ..., x" € X such that
= min {Pg(" _9(x) (t) 9O )Gl XXy ),

i A
g (o1)
Fyay Gty (O} i 2) _ 2
khm g(x ) =x7,
-p (1 — max {Fg(x}( DGlxhx2,s (¢ (t)) (27)
Pg(x}(),G(x}(il,xii1 ..... X7 ) ((/) (t))})
lim g (x}) = x".
k—o00

= min {Fyea ) g0y 0 Fyeut gty 0
Since g is continuous, we can write
a0 im g (g (<)) - (<)
img(g(x))=g(x),
—p(l—max{F ot ($), koo K
lim g(g(x;)) =g(x*),
Fy(xl).gtxh) (¢(t))}) k—o00 ( (k)) ( ) 08)
Fg(x}(),g(x )(¢ (t)) 2 mln{ g(x ) (xll{) (t)> :
Fyay gty D) = p(1=1) Jim g(g(x)) = g(x").
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As (G, g) is compatible and g is continuous, g( ) = khlan (g( ) g (xi) e g (X)), g (x,lc))
N _ o 1
g(x')= kh_{noog (9 (%)) =G (klinoog (%) , lim g (%) » lim g (x) >
= kh_r)noog (G (x,lc, Xi, [N XZ)) klim g (x,lc))
- kh_r)nooG(g( ) g(xi),...,g(xﬁ)), =G(x2,x3,...,x",x1)

g (xz) = k@mg (9 (xiﬂ))

= Jlim 9(G (w6 ) w () = Jim G(9(), 9 (x1)s- g (<47))
29
- kli_r)nooG (9 (xi),...,g(xZ),g(x,lc)), = G(kl'inoog (xZ),lemoog (x4)>-- hm g(xz 1))
= G(xn,xl,...,xn_l).
(") = lim g(g (x].,)) Gy
Now assume that (b) holds. From (19) and (29), we have for
= khlnoog (G (xz,x}c,...,xz_l)) all k
1 1
=kli_r)nooG(g (xZ),g(x,lc),...,g(xZ_l)). g(xk) =X
g (xi) > x2
We will indicate that
G(xl,xz,...,x”):g(xl), : (32)
G(xz,xs,...,x", xl) = g(xz) , g(xp) <x" (if nis odd)
(30)

g(x}) = x" (if nis even).
Forallt > 0,0 < A < 1, we have
Fy) Gt 2,0y (6 (1))
2 A{ 9(x"),g(g(x (‘l’ ) - ¢ (A1), (33)

Fg(g(x,iﬂ)),G(xl,xZ,...,x") (‘P (Af))} .

G(x",xl,...,x"_l) =g(x").

Suppose that (a) holds. From (27), (28), and (29),

g(x") = Jim G(g(x). 9 (k) g ()

=G(lim g(x}), lim g (7)., lim g () £ g(x") = limy_ oo g(g(ck, ) limg_ oo F H=1.
k—00 k—00 k—00 g - k—o009\g xk+1)) My 00 g(x1),g(g( x1 ( ) -

When we apply limit to both parts of above 1nequallty, we
:G(xl,xz,...,x") get

Fg(xl),G(xl,xz,. X" (¢ (t)) 2 hm lan{ g(xt),g(g(x (¢ (t) ¢(At)) F g(karl))G(xl,x2 ..... x™) ((/)(At))}
{hm Fyteingtotet. (6 6) - ¢(At)),k@1miang . (gb()\t))} :min{l,

......

> lim inf [min {F(

—00

aGgt) (A1), F,

= p (1= max {Fy( gty 6 w2 (9 A0 Fyta ctgtap atatpy (0 AON})] = min{ lim Fy(ga.geet) (A1)

llm lan g(g(x ) (g(xk) (xk) Lg(x (At) F G(x!,x2,..., (/\t)} — p <]. - max{ llm F g(x 1),Gx!, X2, x™) (¢ (At)) 5
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Jm ) 6o g)ngtep) ( W»}) = min {Fyien gty A8 Fyay giaty A0 Fygan,gat .o (A0} = p (1

— max {Pg(xl),G(xl,xz ..... X (¢ (At)) N Fg(x )g(x

= Fg(xl)»G(xl,xz,m,x") (At).

Because A is arbitrary 0 < A < 1, by taking A — 1, and left
continuous property of distribution function F, we have

Fg(xl),G(xl,xz,...,x") (4) (t)) 2 Fg(xl),G(xl,xz,...,x") (t). (35)

¢ is increasing and also is monotone increasing. Accordingly,
d()+0=¢(t) =

(¢ (t) + 0) 2 Fg(xl),G(xl,xz, ,xrx)

2 F (x1),G(xt 2. (t) .

Fyx),Gxt 2,?) (1) (36)

From Lemma 9, g(xl) = G(xt, x%,. .., x™).
By the same way, we can find

g(xz) = G(xz,...,xn,xl) )
(37)

g(x")=G (x",xl, .,x"_l) .
Consequently, g and G have n-tuplet coincidence point in X.
O

Taking p = 0 in Theorem 16, we obtain Corollary 17.

Corollary 17. Let (X,<) be a partially ordered set and
(X, F, A) be a complete Menger space, where A is minimum t-
norm. Let G : X" — X, g : X — X be two mappings such
that G has the mixed g-monotone property. Let ¢ € O exist
such that

o (@ (0) = min {Fya, g0 0

FG(xl,xz ..... x"),G(y',y%0 )

(38)
Fyx),Gtet o2,y ) > Fy1),G000, 02, (t)}
forallt >0, x ,x%,...,x"% y,y5,...,y" € X with
a(x")za(y)
a(x)<a(»)
(39)

9(x")2g(y") (if nis odd)

g(x")<g(y")

Also g is continuous, monotonic increasing, compatible with G
and G(X") € g(X). And suppose either

(if nis even).

b (¢ (AD)}) = min {1, Fya) g o (M)} _

p(1-1)

.....

(34)

(a) G is continuous or

(b) X has the following properties:
(i) if a nondecreasing sequence (x,,) — x, then x,, <
x Vn =0,
(ii) if a nonincreasing sequence (y,) — y, then y, <

y Vn>0.

If there are x}, x¢, ..., x} € X such that

9(+4) <G (xh ... )
9() 2 G (%5305 31)
(40)
g (x4) <G(xp, %0, x0 1) (if nis odd)
g (x5) 2 G(x,x....x5 ") (if nis even),

then g and G have n-tuplet coincidence point in X.
That is, there exist x*', x*,...,x" € X such that

g(x')
9(x’)

1.2 3
G(x L XX ,...,x")

2 3 1
G(x X ,...,x”,x)

(41)

n 1 2
G(x N A

When we take ¢(t) = ct, ¢ € (0,1) in Theorem 16, we
obtain Corollary 18.

Corollary 18. Let (X,<) be a partially ordered set and
(X, F, A) be a complete Menger space, where A is minimum t-
norm. Let G : X" — X, g : X — X be two mappings such
that G has the mixed g-monotone property. Let ¢ € @ and
p = 0 exist such that

FG(.XI,Xz ..... x"),G(yl,yz ..... yn) (Ct) + P (1

— max {Pg(xl),G(yl,yz,m,y") (Ct) s

(42)
Fg(yl)’G(xl’xZ ..... X (Ct)}) > min {Pg(xl),g(yl) (t) 5

F )6ty 05 Fgiy) Gy y20yy (O



XLy vy e X with
9(x')29(')

9(x*)<9(»")

forallt >0, x',x%,...

(43)

9(x")2g(y") (if nis odd)

g(x") <g(y")
Also g is continuous, monotonic increasing, compatible
with G and G(X") € g(X). And suppose either

(a) G is continuous or
(b) X has the following properties:

(if nis even).

(1) if a nondecreasing sequence (x,)) — x, then x,, <
x Vn >0,

(ii) if a nonincreasing sequence (y,) — y, then y, <
y Vn20.

If there are x(l), xé, ..

g(x(l)) < G(x(l),xé,...,xg)

g(xg) > G(xg, xg,...

.» Xy € X such that

X% )
(44)
9(xp) <G (xpxppeenxy™)  (if mis odd)

g(xp) = G(xg,xé,..-,xg_l) (if nis even),

then g and G have n-tuplet coincidence point in X. That is, there
exist x*, X%, ..., X" € X such that

G(xl,xz,x3,...,x") = g(xl)

G(xz,x3,...,x",xl) = g(xz)

(45)
G(x",xl,xz,...,x”_l) =g(x").
4. Uniqueness of n-Tuplet Fixed Point
Forall (x!, x%,...,x"), (x'*, x*, ..., x™) e X",
(xl,xz,...,x”) < (xl*,xz*,...,x"*) =
xl le*’
.X'2 > xZ*’
(46)

x" < x"™  (if nis odd),

n

X" > X

(if n is even).
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(x',x%...,x") is equal to (x'*,x**,...,x™) iff x' =
1%

XUt =X X = X

Theorem 19. In addition to the hypotheses of Theorem 16,
suppose that for all (2%, 6™, (M, X%, LX) e XT
there exist (y', y%,..., y") € X" such that

(G(yl,yz,...,y”),G(yz,...,y",yl),...,
(47)
G()/n,yl)"' ,yn—l))
is comparable to
(G(xl,xz,...,x"),G(xz,...,x",xl),...,
(48)
G(x",xl,...,x"_l))
and
(G(xl*,xz*,...,x"*),G(xz*,...,x"*,xl* e
(49)

1
G(x"*,x L

.’x(n—l)*)).

Then g and G have a unique n-tuplet common fixed point; that
is, there exist (x',x%,...,x") € X" such that

xl=g(x") =G(x', %%, x"),

x* = g(xz) :G(xz,x3,...,x",xl),

(50)
x"=g((x") = G(x",xl,xz,...,x"_l).
Proof. The set of n-tuplet coincidence points is nonempty

due to Theorem 16. We shall show that if (x!, x%,..., x") and
(™, x*, ..., x™) are n-tuplet coincidence points, that is, if

g(xl) =G(x1,x2,...,x"),

g(xz) =G(x2,...,x",xl),

(51)
g(") =G (x" 2" x")
and
G () = G (&),
G(2) = G (a6,
(52)
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then

(53)
g(x") =g(=").
By assumption there is (', y%,..., y") € X" such that
(G(yl,yz,...,y"),G(yz,...,y",yl),...,
(54)
G(yn’yl’“.’yn—l )
is comparable to
(G(xl,xz,...,x"),G(xz,...,x",xl),...,
(55)
G(x",xl,...,x"_l))
and
(G(xl*,x2 ,...,x"*),G(xz*,...,x”*,xl*),...,
(56)

G(x”*,xl*,...,x(”_l)*)).

We can determine sequences (g(y;)), (g(¥P)),---»(g(y1))
such that y' = y3, 3% = y2,...,y" = y/ and

9(7) =G (Ve Yeorr--> Vi)

9(3%) =G (¥t Vi Vir) s
(57)

9O =G Y21

From comparability of (56) and (55) with (54), we suppose
that

(9(x).9(x")s. o9 (")
>(9(»').9(5*)..-.a0") (58)
(9(5)-9(5%)s-- 9 05)).

Using (24), we have

(9(x").9(x*),.... g (=")

>(g(n)-9(3)-g () forall k.

(59)

Also from (46), we get

g(x")=g(y) (f nis odd),
g(x")<g(y) (f niseven).

Forgiy ($0) = Fopa ooyt (60)
> min {Fy(a) g0 (0 F,
Fo(y).Glty2 e (t)} (
= max {Fyee g2, (6 (1),

Fyiy Gty (@ ()}) = min {F iy 0y (8),
Fyange) 0 Foimgin ) O = p (1

— max {Fyien gy (6 ) Fypyn, gy (¢ (9)])
> min {Fy g (0 Fopaig,p O
Fy),902, )(¢(t))

= FG(xZ,x3,...,x”,x1),G(yi,yi,...,y;:,yi) (¢ (t))

G(x!,x2,..,x™) (t)

> min { (t) 9(x2),G(x%,x3,...x" x1) ),

Eyma0m b O = P (1

= max {Fy2) 6oa,.pmom (¢ (),

Fy(52)60 sy (@ ()}) = min {Fya) o) (8),
Fyiyge) O ot giz,) 0} = p (1

= max {Fya 40 (1) Fyp g0 (¢ (0)})

> mln{ ) )5 Fg02), 4002 (t)}

Fyengip,,) (@ ()
= FG(x",xl ..... xn—l))G(y]y;,y]i,_")yZ*I) ((l) (t))
> min {F (x"),g0) (t) g(x™),G(x", X!, x™ 1) ®),

Fyimcirt OF = p (1

= max {Fyiun Gyt (@ (1)
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Fyy 6ttty (@ (0)}) = min {Ey o ) (1),
Pg(x"),g(x") (t) ’Pg(yi’)»g(yi’“) (t)} -p (1
= max {Fyen g (8 (6)), Fygyn, g0 (6 (0)})

> min {Fyim g (1) Fyiy gop,,) O}
(60)

for each k > 1. If we take lower limit when k — oo from
Lemmas 8 and 9, we have

lim g(yg,,)=9(x"),

k—00

lim g(y,,)=g(x*),

k—00

(61)
Jm g (i) = g(x7).
Likewise, one can show that
. 1 1%
Jim g (y0) =g (x"),
. 2 _ 2%
Jim g (ye,) =g (+),
(62)
Jm g (i) = g (x7).
Using (61), (62), and triangle inequality property,
Fg(xl)’g(xl*) (t)
t t
A {Fg(x‘),gu,zﬂ) (5) sFgiyi ),g(e) (5)} — 1
(k — 00),
Fg(xZ)’g(XZ*) (t)
t t
> A {Fg(xZ))g(y,zH) (E) N Fg(y,fﬂ),g(xz*) <§)} — 1
(63)

Fg(x"),g(x"*) (t)

t t
=4 {me"wzﬂ) (5) Foor.096) <5)} — 1

(k — 00).
So, we have
g(x") = g(x"),g(x*) = g(x**),...,g(x") = g(x™).
Thus, we showed (53).

Journal of Function Spaces

Using commutativity of G and g,

o (6() 5 (G ()
=G(g(xl),g(xz),...,g(x")),
g(g(xz)) = g(G(xz,...,x”,xl))

=G(g(x')-a(a(x), (o0

g(g(x") = g(G (x",xl,...,x"_l))

=G(g(x"),g(xl),...,g(x"_l)).

Indicate g(x') = 2/, g(xz) =z2,... ,g(x") = Z". From (64),

g(z)=G(<.2%....7"),
g(%)=G(z%....7"2"),

(65)
g(Z") = G(z",zl,...,z"_l).

Therefore, (z',2%,...,2") is a n-tuplet coincidence point.
Then from the assumption with x'* = z',...,x™ = z" it
follows g(z') = g(xl),g(zz) = g(xz),...,g(z”) = g(x"); that

18,

(') =2,
o() =
(66)
g(Z")=z2".
By (65) and (66),
2 =g(z")=G(2....2"),
Z=g()=G(<....2"2"),
(67)

Z'=g(") = G(z",zl,...,z”_l).

Hence, (2!, 2., z") is a n-tuplet common fixed point of G
and g. To prove the uniqueness, assume that (¢', g% ..., q")
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is another n-tuplet common fixed point. Then by assumption

we have
7 =9(a")=9(z"),
7=9(q)=9(z),
(68)
9 =9(q")=9(").
]
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