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Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electronics Engineering
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DEEP LEARNING TECHNIQUES FOR BUILDING

DENSITY ESTIMATION FROM REMOTELY SENSED

IMAGERY

Abstract

This thesis is about point-wise estimation of building density on the remote sens-

ing optical imageries by applying deep learning methods. The goal of the project

is to reduce mean square error of the estimated density by applying architectural

modifications on the deep learning network and using augmented training data.

Recently, deep learning is one of popular field of science and convolutional neural

networks (CNNs) are well-known deep neural network. Recent studies indicate

that some of the convolutional neural networks are highly effective in large scale

image works such as recognition, semantic segmentation. There has been limited

research in using deep networks to learn urbanization characteristics from remote

sensing images. Remote sensing images could be used for regression problems

and building density estimation is one of them. Building density information

provides knowledge for real estate agents and urban planners, estimating disaster

risk areas, environment protection and resource allocation. Our method provides

a cheap and fast solution to these needs when there is no cadastral information.

The main objective of this thesis is to achieve fast and accurate local building

density estimation using high resolution remote sensing images. Deep learning

methods based on CNN are applied in this project. Pre-trained visual geometry

group (VGG-16) and fully convolutional network (FCN) are tested as convolu-

tional neural network. We tested three different modified networks and then ap-

plied data augmentation in the train data to reduce mean square error value. The

networks that we have performed simplified original VGG-16 network for regres-

sion, VGG-16 network with sigmoid layer added and simplified VGG-16 network

with sigmoid layer. The best result (lowest mean square error) is obtained from

sigmoid layer added VGG-16 network with data augmentation. Sigmoid layer

added VGG-16 network gives us (∼0,084) RMSE on building density estima-

tion with the augmented train dataset. Original VGG-16 network gives (∼0,105)

RMSE, sigmoid layer added VGG-16 network gives (∼0,095) RMSE and sigmoid
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layer added simplified VGG-16 network gives (∼0,090) RMSE on building den-

sity estimation with the small train dataset. FCN is one of the ideal network for

classification tasks so we have also applied fully convolutional network result to

compare our results with its result. We have modified the network to perform

building density estimation in addition to semantic segmentation. The root mean

square error of FCN is (∼0,084) and our best result (lowest mean square error)

is also (∼0,084) RMSE at the same iteration number.

Our results show that fast and accurate building density estimation is possible

by using vanilla CNNs. Sigmoid layer addition, simplification of the network for

small dataset and data augmentation improves accuracy in the regression. Data

augmentation is the most effective method to reduce RMSE in this thesis.

Keywords: mean square error, data augmentation, deep learning, image

regression, cnn models



UZAKTAN ALGILANAN GÖRÜNTÜLERDE BİNA

YOĞUNLUĞU TAHMİNİ İÇİN DERİN ÖĞRENME

TEKNİKLERİ

Özet

Bu tez, derin öğrenme yöntemlerini uygulayarak uzaktan algılamalı optik görüntü-

lerde bina yoğunluğunun noktasal olarak tahmin edilmesi ile ilgilidir. Projenin

amacı, derin öğrenme ağına mimari değişiklikler uygulayarak ve artırılmış eğitim

verilerini kullanarak tahmini yoğunluğun ortalama kare hatasını azaltmaktır.

Son zamanlarda, derin öğrenme popüler bilim alanlarından biridir ve evrişimli

sinir ağları (CNN) iyi bilinen derin sinir ağlarındandır. Son çalışmalar, evrişimli

sinir ağlarının bazılarının tanıma, anlamsal bölümleme gibi büyük ölçekli görüntü

çalışmalarında oldukça etkili olduğunu göstermektedir. Uzaktan algılama görün-

tülerinden kentleşme özelliklerini öğrenmek için derin ağları kullanma konusunda

sınırlı araştırma yapılmıştır. Regresyon problemleri için uzaktan algılama görün-

tüleri kullanılabilir ve bina yoğunluğu tahmini bunlardan biridir. Bina yoğunluğu

bilgisi, emlakçılar ve şehir plancıları için bilgi sağlar, afet risk alanlarını, çevre

koruma alanlarını ve kaynak tahsisini tahmin eder. Metodumuz kadastro bilgisi

olmadığında bu ihtiyaçlara ucuz ve hızlı bir çözüm sunar.

Bu tezin temel amacı, yüksek çözünürlüklü uzaktan algılama görüntüleri kul-

lanarak hızlı ve doğru yerel bina yoğunluğu tahmini elde etmektir. Evrişimsel

sinir ağına (CNN) dayalı derin öğrenme yöntemleri bu projede uygulanmaktadır.

Önceden eğitilmiş görsel geometri grubu (VGG-16) ve tamamen evrişimsel sinir

ağı (FCN) ile testler uygulanmıştır.

Biz üç farklı değiştirilmiş ağı test ettik ve ardından ortalama kare hata değerini

azaltmak için veri artırma yöntemine başvurduk. Uyguladığımız ağlar, regresyon

için basitleştirilmiş orjinal VGG-16 ağı, sigmoid katmanı ekli VGG-16 ağı ve sig-

moid katmanı ekli basitleştirilmiş VGG-16 ağıdır. En iyi sonuç ise (en düşük

ortalama kare hatası) eğitim veri kümesi arttırılmış ve sigmoid katmanı eklenmiş

VGG-16 ağından elde edilir. Sigmoid katmanı eklenmiş VGG-16 ağı, artırılmış

eğitim veri setiyle bina yoğunluğu tahmininde (∼0,084) kök ortalama kare hatası
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verir. Orjinal VGG-16 ağı bize (∼0,105) kök ortalama kare hatası, sigmoid

katmanı eklenmiş VGG-16 ağı bize (∼0,095) kök ortalama kare hatası ve sig-

moid katmanı eklenmiş - basitleştirilmiş VGG-16 ağı, küçük eğitim veri kümesi

ile bina yoğunluğu tahmininde bize (∼0,090) kök ortalama kare hatası verir.

Tamamen evrişimsel sinir ağı (FCN), sınıflandırma görevleri için ideal ağlardan

biridir. Bu yüzden tamamen evrişimsel sinir ağı (FCN) sonucunu, sonuçlarımız ile

karşılaştırma amacıyla projemize ekledik. Anlamsal bölümlendirmeye ek olarak,

ağı bina yoğunluğu tahmini yapması için değiştirdik. Aynı yineleme sayısında,

tamamen evrişimsel sinir ağın (FCN) kök ortalama kare hatası (∼0,084) tür ve

bizim en iyi sonucumuz da (∼0,084) kök ortalama kare hatasına eşittir.

Sonuçlarımız, hızlı ve doğru bina yoğunluğu tahmininin vanilya evrişimsel sinir

ağılarını (CNN) kullanarak mümkün olduğunu göstermektedir. Sigmoid kat-

manının eklenmesi, ağın küçük veri kümesi ve veri büyütme için basitleştirilmesi,

regresyondaki doğruluğu arttırır. Veri büyütme, bu tez çalışmasında kök orta-

lama kare hatasını azaltmada en etkili yöntemdir.

Anahtar kelimeler: ortalama karesel hata, veri büyütme, derin öğrenme,

görüntü regresyonu, cnn modelleri
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Chapter 1

Introduction

World population and economy have been growing day by day and it causes high

rate of urbanization. Fast urbanization brings with it great urban expansion that

causes problems such as urban congestion, air pollution and urban heat island

[1]. Therefore, urban extent, human settlements and urban building density have

become more crucial for urban planning and environmental management. In

addition, buildings are the places that all humans live and conduct their activities.

It means that buildings are also significant indicator of population distribution

[2].

The ratio of the coverage of the buildings which is called building density is a

fundamental urban environmental parameter and it is more effectual at estimat-

ing disaster risk than building/non-building dichotomy [1]. Several studies show

that building density effects the wind conditions, the access of sunlight and solar

radiation, the interior temperatures of buildings, surface of thermal conditions

etc. Thus, building density is essential information for empirical and scientific

exploration and social problems [3]. In addition, building density has great in-

terest from many stakeholders such as real estate agents and urban planners.It

plays a guiding role in many aspects such as city planning, land management,

environment protection and resource allocation [1], [4].

In developing countries, the information of building density is often unavailable

or incomplete; also field investigation and manual depiction is time consuming,
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and not suitable for data updating. For these necessities, building density infor-

mation is needed for the related research community and high resolution remote

sensing data provide an efficient way to collect the information of buildings [1],

[5]. Fortunately, high resolution remote sensing data is the information source

which is economically and commercially accessible.

This thesis is about pointwise estimation of building density on the remote sensing

optical imagery by applying deep learning methods. A well-known Convolutional

Neural Network architecture is used to train and then test the dataset. Every

test image is assigned a building density value that is estimated from regression

result of the deep network. We have divided our original data into train and test

sets. After that, network learned building density information from train data

then computed pointwise estimation for every test data. In the end of the test, we

have combined pointwise estimates of a region together to see the regional density

in the form of a heat-map representation. General overview of the experiments

is shown in the Figure 1.1. We have used pre-trained network and applied fine-

tuning methods on the network to reach lowest mean square error.

The main objective of this thesis is to show improvements in mean square er-

ror by applying deep learning methods. This thesis presents data augmentation

method and sigmoid activation function layer to reduce root mean square error.

The proposed method achieves satisfactory results for building density estima-

tion in terms of the low root mean square error (∼0,084). We have tested how

different modifications to network architecture and augmenting train data affects

the regression performance. We have also compared our results to the results ob-

tained by building segmentation using a well-known deep semantic segmentation

network.
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Figure 1.1: General Overview of the Experiments

1.1 Remote Sensing

Remote sensing refers to the technology of getting information about the surface

of earth (land and ocean) and remote sensing images have form of the digital

images [6]. Surface altitude samples that are taken from airborne scanning are

much more reliable and accurate in the estimation problems when it is compared

the traditional photogrammetric techniques [3]. In data collection tasks, remote

sensing techniques are becoming more important and these data are used by

governments, researchers etc [7]. Some of the techniques of remote sensing are

Synthetic Aperture Radar (SAR), The Light Detection and Ranging (LiDAR)

and Optical Very High Resolution (VHR).

Synthetic Aperture Radar (SAR) can be defined as a powerful earth observation

tool for large scale application and the images that are taken from it can be used

to estimate building density [1] [4]. Their polarization information or textural

features help to estimate building density but complex scattering mechanism in

urban areas could be reason of reducing the estimation accuracy [1]. The Light

Detection and Ranging (LiDAR) remote sensing technology is an invention for
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surveying and mapping buildings in urban environments. This technique also

allows for an accurate delineation of the footprints of buildings [3]. However,

with the improvement of remote sensors, Optical Very High Resolution (VHR)

remotely sensed imagery contributes rich geospatial details.

In this respect VHR aerial and satellite images are useful in detecting buildings [8]

and rich geospatial details provide new possibility for building density estimation

[3]. One of the basic method for building density estimation is based on building

detection. The features that are procured from the VHR imagery can supply a

sophisticated description of buildings and building clusters, which provides more

accurate building density information [1].

1.2 Deep Learning

In recent years, many domains of science, business and government use deep learn-

ing technology in the world. Deep learning is the field of artificial intelligence and

computers can learn many things by using large amounts of data without human

involvement. The algorithms of deep learning inspired by the human brain, hu-

man brain learns from experience, deep learning algorithm would perform a task

repeatedly and each time evolves the outcome by using given data [9].

Deep learning is characterized by neural networks (NNs) and it usually has more

than two hidden layers, so they are called ’deep’ [10]. Basic neural network

is shown in the Figure 1.2 and each connection between neurons is associated

with a weight such as wij , wjk , wkl. Each neuron performs dot product with

its input matrices that contain all pixels of the images and its weight matrices.

Then neuron sums all dot product results and adds bias. After that, each neuron

applies the non-linearity which is also called activation function [11]. For our

case activation function is ReLu which will be explained. Figure 1.3 shows the

mathematical model of neuron.
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Figure 1.2: Neural Networks: They are organized in layers with set of nodes [12]

Figure 1.3: Mathematical Model of Neuron [11]

Deep Neural Networks make use of feature representations which are learned

from data instead of handcrafting features which are designed domain-specific

knowledge [10].

Deep learning methods are used in target recognition and it can be divided

into two main categories: supervised and unsupervised methods. Unsupervised

method learns features from the input data but it does not know any correlated la-

bel or information [7]. Supervised method has prior knowledge, uses given sample

data to make best approximates that between input and output data. Supervised

method or learning is also divided into two categories that are classification and
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regression. Classification predicts the class the data belongs to and regression

predicts the numeric value based on the observed data which is trained data [13].

Deep learning has won remarkable success and its neural networks are powerful

learning machines. It generalizes to different domains, for example, semantic

segmentation model performs classifying pixels, the same model that is trained

on different data can be used to predict oil fault lines and detect cars etc [14].

High resolution satellite images are one of the resources and they have been

an active research topic in the last decades. Increasing availability of data and

computational resources provide the use of deep learning in remote sensing [10].

Deep learning is being used to solve problems in the field of urban planning

and computational sustainability. For instance, popular deep neural network

which is convolutional neural network (CNN) has been used to estimate spatial

distribution of poverty. CNN, which will be explained in next chapters, shows

that it is effective at the problem of remote sensing image scenes classification

[15].

In this thesis, The Visual Geometry Group (VGG)- convolutional neural network

which is well-known deep learning neural network architecture is used in regression

for building density estimation in the test data with our modifications on the

network.

1.3 Related Work

Remote sensing is the technology that has large bulk of images of the earth

is accessible nowadays and can be applied for building detection, segmentation

and density estimation. Learned features from deep convolutional networks are

successfully applied for building segmentation [16]. However, there has been

limited research in using deep networks to learn urbanization characteristics such

as building density, from remote sensing images [16].
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Yu [3] proposed a new object based method that extract automatically building

objects and it computes building density with the dataset that is taken from air-

borne LiDAR. Their object based method and software tool applies three different

scales to extract building objects and calculates building density:

• First, some geometric and volumetric features are calculated to describe

shape and size of the buildings

• Second, Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are

computed and mapped at land lot scale by associating with land lots through

topological operation

• Third, to describe 3-dimension quantitative definition of urban district, den-

sity attributes are calculated at urban district scale.

This approach-software tool can be used for urban planning and management [3]

because BCR map shows planimetric and horizontal density of buildings, FAR

map shows 3D density of building.

In work of Qiong Wu [4], urban building density is estimated by using high reso-

lution Synthetic Aperture Radar (SAR) images. The applied building detection

algorithm methods are empirical threshold method and ffmax-filter algorithm [4].

Empirical threshold estimates threshold values to the experimental data and it

based on the concept of a permutation test [17]. Ffmax-filter algorithm character-

izes urban and non-urban areas using its local histogram [4]. They compare the

differences between two methods to detect effective method for urban building

density information.

In work of Yi Zhou [2], building density is estimated by applying CART algorithm

and integration of SAR and optical data. CART is the classification and regression

tree based approach and it can handle both classification and regression tasks.

If the land has spectral signatures with the building areas, separation of them

is tough task when only using optical data. Thus, they have applied integration
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of two types of data. In the result of this study proposed that the data which

are taken from different sensors and satellites have potential to improve building

density estimation performance.

Tao Zhang [1] proposed building density estimation by using multiple features

and support vector regression that is the algorithm for regression tasks. Optical

very high-resolution (VHR) remotely sensed images are used as dataset. Three

categories of features (hand-crafted) are taken into to compute the estimate build-

ing density and best regression performance (lowest root mean square (RMSE) is

obtained when three categories of features are applied at the same time:

• Spectral feature belongs to remote sensing imagery as a fundamental prop-

erty. It exploits from spectral differences between building and vegetation

(non-building).

• If the buildings have suitable conditions, morphological features have the

ability of describe the spectral-structural characteristics of buildings such

as size, contrast.

• In high resolution images, spectral features have been found to be insuf-

ficient for the distinction of spectrally similar classes. Therefore, textural

features used as a third category of feature and it is effective in describing

building clusters to estimate building density.

We have applied Optical very high-resolution (VHR) remotely sensed images to

compute best regression performance (lowest root mean square error (RMSE)) as

in the previous related work. While Zhang [4] applied support vector regression

algorithm, we have applied convolutional neural network to obtain the density

estimation. In addition, we have computed pointwise density estimates in local

regional windows while the last related work used the whole image as input to

the classifier in order to obtain a density heat-map at the output.
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1.4 Organization of Thesis

This thesis is organized as following steps; In Chapter 2 we will explain Con-

volutional Neural Network, its history and layer patterns, gradient descent and

hyperparameters of the network. Then implementation details, dataset, VGG-16

network architecture and fully convolutional network will be explained with de-

tails in Chapter 3. Our experiment results and their details will be in Chapter 4.

We conclude our work and discuss the future works in the Chapter 5.
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Chapter 2

Convolutional Neural Network

There are some models of deep neural networks and one of the commonly used

model is Convolutional Neural Networks also known as CNN or ConvNet. CNN

made up of neurons as neural network and these neurons have learnable biases

and weights that are used to get less error in the result [18].

In addition, there are several popular state-of-the-art CNN architectures and they

are made of a key set of basic layers. These layers include convolution layers,

soft-max or Euclidean loss layer, fully connected layers, etc. Every different ar-

chitecture has its different combination and some of the popular architectures are

LeNet, AlexNet, VGGNet. Their state-of-the-art performances are more efficient

on different benchmarks. [19]

• LeNet (1998) algorithm is proposed in the 1990s but in those days there

were limited computation and memory. Therefore, it is implemented around

2010 with proposed CNN and back-propagation algorithm [19]. Also known

as LeNet-5 is experimented on handwritten digits dataset and its basic

configuration is shown Figure 2.1
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Figure 2.1: Architecture of LeNet [19]

• AlexNet is the deeper and wider CNN model compared to LeNet. It is pro-

posed by Alex Krizhevesky in 2012 and AlexNet won the most difficult Im-

ageNet challenge for visual object recognition which is called the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) in 2012. AlexNet was

a significant breakthrough for visual recognition and classification tasks and

it achieved state-of-the-art recognition. There are two main new concepts

which is different from LeNet,: Local Response Normalization (LRN) and

dropout layers [19]. Its basic configuration is shown Figure 2.2.

Figure 2.2: Architecture of AlexNet [19]

• The Visual Geometry Group (VGG) Network: This group is the runner

up of 2014 ILSVRC and they showed that to achieve better recognition or

classification, accuracy depends on the depth of a network. VGG-Net in-

cludes convolutional layers, activation function layers that are called ReLu,
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max pooling layers, several fully-connected layers and the final layer which

is softmax or euclidean loss layer. VGG-Net has, VGG-11, VGG-16 which

we have used and VGG-19 models. They have same three fully connected

layers but their convolution layer numbers are different. VGG-16 has 13,

VGG-19 has 16 convolutional layers and VGG-19 is most computational ex-

pensive model [19]. Its basic building blocks configuration is shown Figure

2.3.

Figure 2.3: Architecture of VGG-Network [19]

ConvNet architectures are more effective when images are using as their inputs

because it allows to encode certain properties into the architecture. Ordinary

neural network receives a single vector as an input then series of hidden layers

are transformed. All neurons of the previous layer are fully connected to next

each neuron. The last layer that is called output layer is fully connected layer

and class scores is represented with it. Full image is not scaled by using regular

neural networks.

CIFAR-10 is the computer vision dataset used for object recognition. According

to previous experiences in this dataset, the images that have the size 32× 32× 3

(wide, high, 3 color channels) has 32 ∗ 32 ∗ 3 = 3072 weights in the its single fully

connected neuron in a first hidden layer. Networks have several such neurons and

this size seems manageable. However, if the image has the size 200× 200× 3, it

means that 200× 200× 3 = 120, 000 weights. These weights with several neurons

make these full connections wasteful in the fully connected structure. As a result
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of this, overfitting occurs with huge number of parameters [18]. This is why CNN

is chosen as a neural network when image is chosen as an input.

The process of CNN starts off with an input image then applies filters (also known

as weights or feature detector) to the image. This is called convolutional layer

process and then feature maps are created as shown in the Figure 2.4. After

every convolutional layer, to break up the linearity, activation function is used for

every feature maps [20]. We have applied ReLu as an activation function which

will be explained in the next section. The image becomes ready for pooling step

and its aim is providing spatial invariance to the convolutional neural network.

As a pooling, we have used max-pooling that will be also explained in the next

section. Then, pooled feature map goes for flattening step that is input layer for

the artificial neural network [20].

Figure 2.4: Process of Convolutional Neural Network [20]

After the flattening step, it ends up with a long vector of data then pass through

the artificial neural network to process further. As shown in the Figure 2.5, the

full connection step has three layers;

1. Input Layer

2. Fully Connected Layer
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3. Output Layer

The role of this network is that taking data and combining the features into a

wider diversity of attributes. By applying this step, convolutional neural network

will have the ability to classify images, that is the aim of convolutional neural

network [20].

Figure 2.5: Fully Connected Network [20]

There are two main process in fully connected networks : forward pass and back-

ward pass. Forward pass is a set of operations that transform network input into

output area. Every neuron uses ReLu as an activation function that brings non

linearity into the process [21]. The output depends on the last layer of network,

for example, softmax layer is for classification and euclidean loss layer is for re-

gression. Softmax assigns the probabilities for each class in the multi class tasks

and euclidean loss assigns the square root of euclidean distance.

After all of the calculations, it end up with an output. However, the result

can be improved by updating weights and biases of the neuron. This is called

backpropagation and it is an algorithm that computes error gradients with respect

to the neuron weights and biases. Before calculating error gradients, error should

be computed and it is called loss function.
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The loss function could be any differentiable mathematical expression such as

cross entropy, root mean square error. Updating weights and biases in the op-

posite direction of the gradient reduces the error, so gradient descent algorithm

is used in the network. To sum up, running gradient descent algorithm multiple

times improves the result/s [21].

There are some gradient descent hyper-parameters that affect the loss function

such as batch size and learning rate. They do not have specific values and their

values are determined from earlier experiences. Their values are selected by con-

sidering system properties and time.

2.1 Batch Size and Learning Rate

Network has the parameters that can be changed or modified such as batch size

and learning rate. They determine some behaviors of the convolutional neural

network and they have not exact value to reduce error.

In the deep learning applications, it is hard to learn all the data which are in the

training dataset at the same time. The reason of it is that learning all data at the

same time needs more time and memory. Batch size is one of the hyper-parameter

and determines that how many data are being process at the same time in the

training. There are three ways to choose batch size of the network:

• Gradient Descent: batch size equals to number of train dataset (n)

• Stochastic Gradient Descent: batch size equals to 1

• Mini Batch Gradient Descent: Batch size has a value that between 1 and n

Mini batch gradient descent causes the oscillations on the error values as in the

shown in the Figure 2.6. The reason of it is that different data processes in every

iteration. It causes while the given parameters appropriate for chosen data, same

given parameters could not be appropriate for different data [22].
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Figure 2.6: Batch and Mini Batch: According to batch and mini batch imple-
mentations, the variation of error value [22]

Learning rate is a hyper-parameter and controls the weight of our network ac-

cording to the lost gradient. It effects gradient descent as shown in the Formula

(2.1). It determines how quickly a network updates its parameters. If learning

rate has a too small value, the gradient descent can be slow but if has a too large

value, the gradient descent can overshoot the minimum. This means that it may

not convergence [23] as shown in the Figure 2.7. In addition, small learning rate

value causes longer training process.

Figure 2.7: Learning Rate Effect On the Gradient Descent [23]

The solver orchestrates model optimization by using running gradient descent

algorithm. CAFFE which is the deep learning framework has caffe solvers such

as Stochastic Gradient Descent (type: SGD), Adam (type Adam), AdaDelta

(type: AdaDelta). We have applied SGD in our project .

16



2.1.1 Stochastic Gradient Descent (SGD)

Gradient is the slope of the error curve at the computed point and stochastic

gradient descent is an algorithm that repeatedly run through the training set.

The parameters are updated according to the gradient of the error with respect

to single training example [24]. SGD updates the weights W and it uses a linear

combination of the gradient ∇ with loss function L (Wt−1). The gradient has

a weight that is called learning rate, α [25] and b refers to bias. The overall

cost function depends on the mean cost function that calculated on all of the N

training samples.

• The update weight Wt for SGD is computed by using the Formula 2.1 and

Formula 2.2;

Wt = Wt−1 − α ∇ L (Wt−1, b) (2.1)

L(Wt−1) =
1

N

N∑
z=1

L(Wt−1, b, X
(z), Y (z)) (2.2)

Where X(z), Y (z) are each training sample pairs, ∇ L (Wt−1) is slope of the

cost function (mse) [26].

• For mini batch, loss function is computed by using the Formula 2.3;

L(Wt−1) =
1

bs

bs∑
z=1

L(Wt−1, b, X(z), Y (z)) (2.3)

“ bs ” represents batch size of the network.

2.2 Convolutional Neural Network Layer Patterns Structure of CNN

As mention in previous chapter, convolutional neural network architecture gener-

ally stacks a few CONVOLUTION, RELU, DROP OUT, MAX-POOLING layers.

CNN layers also have layer sizing patterns which are STRIDE, KERNEL SIZE
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and ZERO-PADDING. The last layer is fully-connected layer and it holds the

output score of classification or regression [18].

• STRIDE is a value for sliding the filter. The filter moves the one pixel at a

time when it is given 1 or two pixels at a time when it is given 2 which is

shown in Figure 2.8. It is commonly chosen 1 or 2 and rarely 3 because at a

time jumping more pixels produce smaller output that is not recommended

[18].

• KERNEL SIZE is the filter size of the convolution. Generally, it is chosen

3x3 with the padding is 1 which retain the original size of input. The

Formula 2.4 shows the relationship between kernel size and padding [18];

P =
(F − 1)

2
(2.4)

Where P is padding size and F is Kernel size

Figure 2.8: Stride of 2 Pixels and Kernel Size (filter) 3x3 Pixels [27]

• MAX-POOLING is one of the function that is used in our network be-

cause network needs to obtain a property that is known as spatial variance.

The network has capable of detecting the object in the image by using

this property [20] and POOLING layer down samples the volume spatially.

Generally, its size is chosen 2x2 with a stride and kernel size of 2. It covers

2x2 matrix of the input then takes maximum value of the pixels that are
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covered with it. Max pooling helps to extract to sharpest features of the

image [18].

• ZERO-PADDING keeps the spatial sizes constant after every convolutional

layer and padding size depends on the convolutional filter size [18]. Its aim

is that protects information after applying filter on the image (convolutional

layer). According to given value of the pad, it covers the input volume with

zeros around the border.

• ReLu (rectified linear unit) is the nonlinear function or activation function

which helps to become zero for negative values. It is used to provide the

output is not simply a linear transformation of the input [28]. The virtual

effect of ReLu is shown in the Figure 2.9 and function of it is shown in the

Figure 2.10.

Figure 2.9: Virtual Effect of ReLu [29]

Figure 2.10: Rectified Linear Unit Function [30]
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Figure 2.11: Dropout [31]

• DROPOUT is one of the technique to reduce overfitting. Dropout sets

the output to zero according to dropout rate. For example, the rate of

dropout 0.5 means that half of the neurons are randomly chosen and their

outputs set to zero. A neuron cannot rely on the presence of other neurons,

so it reduces co-adaptions between neurons and this is the how to reduce

overfitting [28]. Those dropped neurons are not contributing forward pass

and also backpropagation is not updated because of the same reason. By

using dropped out, network is forced to learn more representative features

[28].

• SIGMOID is one of the activation function that has the range (0,1). It

makes binary predictions [23] and it can represent the probability of binary

class. In addition, it provides stability in the network.

Figure 2.12: Sigmoid Activation Function [23]
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Chapter 3

Network Architecture and Implementation Details

In this thesis, the aim is pointwise estimation of building density on the remote

sensing optical imagery by applying deep learning methods. There are two stages

to reach estimation result which are train and test. VGG-16 is a well-known

convolutional neural network and we have used it in these two stages. However,

we have fine-tuned on this network to improve our estimation result. Improving

estimation result means that reducing mean square error in this work. Firstly,

we have got original network result then added sigmoid layer on the network.

Then we have simplified our network by reducing neuron number in the fully

connected layers. Lastly, we have applied data augmentation on the data and

applied our modified networks. Totally 16 different size high resolution images

are used as dataset. They are from Vaihingen, Germany and 12 of them is used

for training dataset, 4 of them is used for test dataset. Each satellite image is

divided into sub-regions, building density is estimated locally in each sub-region,

density estimates are combined and interpolated to form a density heat map for

the whole region.

As in the mentioned above, the implementations that we have applied for exper-

imental work are data augmentation and modifying / simplifying architecture.

Experimental work steps are shown in the Figure 3.1.
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Figure 3.1: Steps of Experimental Work

3.1 Dataset

In this project, we have used remote sensing data which is very high resolution

Vaihingen in Germany dataset and they are provided by German Association

of Photogrammetry and Remote Sensing (DGPF) for International Society for

Photogrammetry and Remote Sensing Organization (ISPRS). Area covers urban

scenes and has relatively small village with many detached buildings and small

multi story buildings [32]. This data is provided to us from ISPRS with their se-

mantic segmentation files. Generally, this dataset has been used for classification

in ISPRS, so their semantic segmentation has five classes that are surface, build-

ing, vegetation, tree and car. However, we are interested in only building class

so we have adjusted the segmentation map that is able to show only buildings in

the images.
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We have sixteen original images and they are divided into two main parts; four

of them as test data, twelve of them as train data. According to the pointwise

estimation, we have cropped the original train and test images like in the Figure

3.4 and Figure 3.5.

In addition, we see the images with different from RGB color bands because RGB

bands of the TIFF files correspond to near infrared, red and green bands delivered

by the camera [32].

Figure 3.2: Example of Original
Training Data

Figure 3.3: Example of Original Test
Data

Figure 3.4: Example of Training Data Which Is Cropped and Its Building Labels
(226x226)
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Figure 3.5: Example of Test Data Which Is Cropped and Its Building Labels
(226x226)

Building density is also called building coverage ratio (BCR) refers to the ratio

of the total standing area of buildings to the total area of the interest area. The

way of the computing building density is calculating in a pixel unit with the idea

of local processing [5]. It is actualized for every test data and calculated by using

the Formula 3.1;

Real building density is calculated from semantic segmented images that are

obtained from ISPRS with the same way;

Realbuildingdensity =
Real building area(pixel)

Real region Area (pixel)
(3.1)

3.2 The Architecture: VGG-16 Convolutional Neural Network

The Visual Geometry Group (VGG) Network, this group runner up of the 2014

ILSVRC and we have applied VGG-16 CNN which is one of the network that has

small error rate in classification tasks. In this thesis, our approach is that using

this network for regression and test how successful in the regression task on the

remote sensing images.

There are two network in our project and one of them is train network, other one

is test network. They have all same network layers and our VGG-16 convolutional

neural network structure is;

3.1;
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data (8L, 3L, 224L, 224L)

sem (8L,)

conv1 1 (8L, 64L, 224L, 224L)

conv1 2 (8L, 64L, 224L, 224L)

pool1 (8L, 64L, 112L, 112L)

conv2 1 (8L, 128L, 112L, 112L)

conv2 2 (8L, 128L, 112L, 112L)

pool2 (8L, 128L, 56L, 56L)

conv3 1 (8L, 256L, 56L, 56L)

conv3 2 (8L, 256L, 56L, 56L)

conv3 3 (8L, 256L, 56L, 56L)

pool3 (8L, 256L, 28L, 28L)

conv4 1 (8L, 512L, 28L, 28L)

conv4 2 (8L, 512L, 28L, 28L)

conv4 3 (8L, 512L, 28L, 28L)

pool4 (8L, 512L, 14L, 14L)

conv5 1 (8L, 512L, 14L, 14L)

conv5 2 (8L, 512L, 14L, 14L)

conv5 3 (8L, 512L, 14L, 14L)

pool5 (8L, 512L, 7L, 7L)

fc6 (8L, 4096L)

fc7 (8L, 4096L)

fcB (8L, 1L)

loss ()

Table 3.1: Layers of Our VGG-16 Network

• The first row represents the data which has 3 dimensions (NearInfraRed-

Red-Green), 224x224 image size and 8 batch size

• The first convolution layer has 64 filters, 8 batch size and 224x224 image

size
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• After every convolutional layer, ReLu layer follows it to turn the negative

values to zero to adding non-linearity in the network.

• In the pooling (max-pooling) layer, image size reduces by the ratio 1/2 that

depends on the kernel size and stride. Therefore, pooling layers always have

image data that has half size of the image in the convolution layer which

comes before it.

• The layers that are represented by “ fc6 ” and “ fc7 ” are called fully con-

nected layers. The input layer of the fully connected layer has neurons and

all of them is connected to every neuron that belong next fully connected

layer. First fully connected layer which is shown as “ fc6 ” takes a stack of

feature maps then they are flattened to a vector and this vector transformed

to the output space. These two fully connected layer has 4096 neurons in

this network.

• After the last layer which represented by “ fcB ”, we have added sigmoid

layer to have binary predictions.

• Euclidean loss is represented as “ fcB ” in our network and it is computed

by using given Formula 3.2. Instead of softmax layer that is used for clas-

sification tasks, we have used euclidean loss because we wanted to compute

regression result.

Euclidean Loss =
1

2N

N∑
n=1

(m(predicted)−m(real))2 (3.2)

• m(predicted): Predicted building density estimation rate

• m(real): Real building density rate

• N : number of samples
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Original VGG-16 neural network is shown in the Figure 3.6. The modifications

that we have implemented on the network are shown in the Figure 3.7, Figure 3.8

and Figure 3.9.

Figure 3.6: Original VGG-16 Network [33]

Figure 3.7: Modified
VGG-16 Network For
Regression

Figure 3.8: Sigmoid
Layer Added VGG-16
Network

Figure 3.9: Simplified
VGG-16 Network
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3.3 Fully Convolutional Network (FCN)

Fully convolutional network classifies each pixel on the image and then creates

a map of all noticed object areas on the image [34]. It can efficiently learn

to make density estimation for per-pixel tasks such as semantic segmentation

[35]. Basically, it detects class and location of every pixel in the image. It

uses convolutional neural networks so fully connected layers of the network are

converted to 1x1 convolutional layers. After that, deconvolutional or transposed

convolutional layer is used to recover the activation positions. This is important

for gaining some form of localization. Deconvolutional layer is also provide to scale

up to the same image size with the input. Figure 3.10 shows fully convolutional

neural network flow [34].

Figure 3.10: Fully Convolutional Neural Network Flow [34]

As in the mention above, FCN classifies each pixel on the image. Therefore, it can

be said that it is one of the efficient-ideal network for per-pixel tasks. This is why

we wanted to compare our results with its result and modified neural network as

in the Table (4.9).
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Figure 3.11: The Modification On the FCN

Classification loss is computed in FCN then we have added average pooling layer

and fully connected layer to have building density calculation. Result of the fully

connected layer gave us MSE and then we have computed total loss:

Total Loss = Classification loss+ 107mse (3.3)

3.4 Data Augmentation

Data augmentation means that creating new ‘train data’ by applying some meth-

ods such as rotating, flipping, translating etc, In the result of previous researches

show that data augmentation can act as a regularizer in preventing overfitting

in neural networks and improve performance [36]. Therefore, we have provided

more data to our train data by using random cropping algorithm. The algorithm

crops original train data randomly and it obtains 2375 images from every original

train data. We have added 28500 new images which have different sizes. Totally

augmented dataset has 34280 small size images at the end of the augmentation.

Before they enter the VGG-16 neural network, their sizes are reduced to 224x224

because network fits to 224x224 image size.
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3.5 Simplifying The Architecture

Our pre-trained network is trained with large databases containing millions of

images. Therefore, we thought that the network architecture could be complex

for our data. In this way, we have tried to adapt this complex architecture to our

smaller and more specialized domains remote sensing images. The original VGG-

16 convolutional neural network has 1000 neurons in the last layer. However, we

have reduced it to “ 1 ” because our network makes regression. Therefore, we have

also reduced neuron sizes in the fully connected layers which are named as “ fc6

” and “ fc7 ” in our network. They have 4096 neurons then we modified/reduced

them to 1024 neurons.
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Chapter 4

Experimental Work

In our work, we applied VGG-16 convolutional neural network and CAFFE (Con-

volutional Architecture for Fast Feature Embedding) as a deep learning frame-

work. VGG-16 is the pre-trained network and it means that network features

have been learned from other dataset. This dataset has 14 million images and it

is called ImageNet dataset. Pre-trained network is used to train and then test our

test data, but we have applied fine-tuning/modification on the network. Fine-

tuning is one of the transfer learning method to reduce the error and we have

applied it by changing the network layers. As a weight file, we used the file that

is obtained from ImageNet dataset.

We have computed the estimations pointwise-locally by dividing our original train

and test data into specific numbers. 12 original train data and 4 original test data

are divided into small images.

We have divided train data into 5780 small size images then to perform data

augmentation, we divided train data into 34280 small size images. They are

obtained by cropping randomly in specific sizes. In addition, 4 original test data

is also divided into 481 small images. We have focused on regression for building

density estimation and originally our data has 5 classes in the image. Table 4.1

shows the classes:
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1. Surface 2. Building 3. Vegetation 4. Tree 5. Car

Table 4.1: Classes of the Data

Standard deviation shows that how data spreads out according to arithmetic

mean of the total data. Therefore, it can be said that the worst result is obtained

from standard deviation calculation in these types of experiments. In the end of

the experiments, we have computed our root of the mean square error (RMSE) in

terms of standard deviation (σ). According to our test dataset, we have evaluated

standard deviation (σ) as 0.224. Results are interpreted according to this value.

In addition, we have semantic segmented images of original train and test dataset.

They are provided to us from ImageNet Large Scale Visual Recognition Compe-

tition (ILSVRC) and we have used them to compute our error rate. Real values

represent real building densities of the original test images that are calculated by

using semantic segmented images. We computed them pointwise-locally as we

have computed predicted values in the test.

4.1 Experiment with Original VGG-16 Network

Original VGG-16 network has 4096 neurons in the fully connected layers. The

layers of the original network that used in this experiment is shown in Table 4.2.

We initialized to train with the original network that has 13 convolutional layer.

Our network is trained by using stochastic gradient descent and small dataset is

used to train network. Test result which is obtained by applying test dataset is

shown in Table 4.3.

• Small train dataset = 5780 images

• Test dataset = 481 images
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data (8L, 3L, 224L, 224L)

sem (8L,)

conv1 1 (8L, 64L, 224L, 224L)

conv1 2 (8L, 64L, 224L, 224L)

pool1 (8L, 64L, 112L, 112L)

conv2 1 (8L, 128L, 112L, 112L)

conv2 2 (8L, 128L, 112L, 112L)

pool2 (8L, 128L, 56L, 56L)

conv3 1 (8L, 256L, 56L, 56L)

conv3 2 (8L, 256L, 56L, 56L)

conv3 3 (8L, 256L, 56L, 56L)

pool3 (8L, 256L, 28L, 28L)

conv4 1 (8L, 512L, 28L, 28L)

conv4 2 (8L, 512L, 28L, 28L)

conv4 3 (8L, 512L, 28L, 28L)

pool4 (8L, 512L, 14L, 14L)

conv5 1 (8L, 512L, 14L, 14L)

conv5 2 (8L, 512L, 14L, 14L)

conv5 3 (8L, 512L, 14L, 14L)

pool5 (8L, 512L, 7L, 7L)

fc6 (8L, 4096L)

fc7 (8L, 4096L)

fcB (8L, 1L)

loss ()

Table 4.2: Layers of VGG-16 Network

Number Number Iteration Mean Square RMSE

of Test of Trained Image Number Error (MSE) (%) /Standard Deviation

E1 5780 20000 0.011 0.49 σ

Table 4.3: Result of Original Network
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According to experiment results, iteration number versus root mean square error

is shown in the Figure 4.1.

Figure 4.1: Iteration Number vs RMSE

As a result, we obtained (∼0,105) RMSE from experiment 1 in 20000th iteration.

Although its general trend has oscillations but at the end of the experiment,

oscillation is very small. Therefore, we stopped at the 20000th iteration because

we can say that RMSE values almost converged in that iteration number.

According to every test images, pointwise real values and predicted probabilities

are shown in Figure 4.2.

Figure 4.2: Predicted and Real Values vs Test Data Numbers with Original Net-
work
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4.2 Experiment with Sigmoid Layer

The last five layers of the network that used in this experiment is shown in Table

4.4. The only difference between previous network is that sigmoid layer is added

before the loss layer. We initialized train with the original network that has 13

convolutional layer. Our network is trained by using stochastic gradient descent

and train is performed with small train dataset. Test result which is obtained by

applying test dataset is shown in Table 4.5.

• Small train dataset = 5780 images

• Test dataset = 481 images

fc6 (8L, 4096L)

fc7 (8L, 4096L)

fcB (8L, 1L)

Sigmoid (8L, 1L)

loss ()

Table 4.4: Last Layers of the Network

Number Number Iteration Mean Square RMSE

of Test of Trained Image Number Error (MSE) (%) /Standard Deviation

E1 5780 20000 0.009 0.42 σ

Table 4.5: Result of Sigmoid Layer + Original Network

According to experiment results, iteration number versus root mean square error

is shown in the Figure 4.3.
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Figure 4.3: Iteration Number vs RMSE

As a result, we obtained (∼0,095) RMSE from experiment 2 in 20000th iteration.

Its general trend has small oscillations in the beginning of the experiment but

after the 8000th iteration, it converged. We stopped at the 20000th iteration

because we can say that RMSE values almost converged.

According to every test images, pointwise real values and predicted probabilities

are shown in Figure 4.4.

Figure 4.4: Predicted and Real Values vs Test Data Numbers with Sigmoid Layer
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4.2.1 Experiment with Sigmoid Layer and Data Augmentation

Sigmoid layer implemented network is used as shown in the Table 4.4. We initial-

ized train with the original network that has 13 convolutional layer. Our network

is trained by using stochastic gradient descent and train is performed with aug-

mented dataset. Test result which is obtained by applying test dataset is shown

in Table 4.6.

• Augmented train dataset = 34280 images

• Test dataset = 481 images

Number Number Iteration Mean Square RMSE

of Test of Trained Image Number Error (MSE) (%) /Standard Deviation

E1 34280 20000 0.007 0.35 σ

Table 4.6: Result of Sigmoid Layer + Data Augmentation

According to experiment results, iteration number versus root mean square error

is shown in the Figure 4.5.

Figure 4.5: Iteration Number vs RMSE

As a result, we obtained (∼0,084) RMSE from experiment 3 in 20000th iteration.

Its general trend has small oscillations in the beginning of the experiment but
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after the 12000th iteration, its convergence has very small differences. Therefore,

we stopped at the 20000th iteration because we can say that RMSE values almost

converged. The difference between experiment 2 and experiment 3 is that data

augmentation. Network needs to adapt to the larger dataset, this is why in this

experiment oscillations are more than experiment 2.

According to every test images, pointwise real values and predicted probabilities

are shown in Figure 4.6.

Figure 4.6: Predicted and Real Values vs Test Data Numbers with Sigmoid Layer
and Augmented Dataset

4.3 Experiment with Simplified Architecture and Sigmoid Layer

Original VGG-16 network has 4096 neurons in the fully connected layers. How-

ever, we have fine-tuned on the network by reducing the neuron number of the

fully connected layers. We have reduced them to 1024 neurons. The layers of the

simplified network that used in this experiment is shown in Table 4.8. We ini-

tialized to train with the simplified network that has 13 convolutional layer. Our

network is trained by using stochastic gradient descent and small train dataset is

used to train network. Test result which is obtained by applying test dataset is

shown in Table 4.8.

• Small train dataset = 5780 images
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• Test dataset = 481 images

data (8L, 3L, 224L, 224L)

sem (8L,)

conv1 1 (8L, 64L, 224L, 224L)

conv1 2 (8L, 64L, 224L, 224L)

pool1 (8L, 64L, 112L, 112L)

conv2 1 (8L, 128L, 112L, 112L)

conv2 2 (8L, 128L, 112L, 112L)

pool2 (8L, 128L, 56L, 56L)

conv3 1 (8L, 256L, 56L, 56L)

conv3 2 (8L, 256L, 56L, 56L)

conv3 3 (8L, 256L, 56L, 56L)

pool3 (8L, 256L, 28L, 28L)

conv4 1 (8L, 512L, 28L, 28L)

conv4 2 (8L, 512L, 28L, 28L)

conv4 3 (8L, 512L, 28L, 28L)

pool4 (8L, 512L, 14L, 14L)

conv5 1 (8L, 512L, 14L, 14L)

conv5 2 (8L, 512L, 14L, 14L)

conv5 3 (8L, 512L, 14L, 14L)

pool5 (8L, 512L, 7L, 7L)

fc6 (8L, 1024L)

fc7 (8L, 1024L)

fcBa (8L, 1L)

loss ()

Table 4.7: Layers of Simplified VGG-16 Network
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Number Number Iteration Mean Square RMSE

of Test of Trained Image Number Error (MSE) (%) /Standard Deviation

E1 5780 20000 0.008 0.40 σ

Table 4.8: Result of Simplified Network + Sigmoid Layer

According to experiment results, iteration number versus root mean square error

is shown in the Figure 4.7.

Figure 4.7: Iteration Number vs RMSE

As a result, we obtained (∼0,090) RMSE from experiment 4 in 20000th iteration.

Its general trend has small oscillations in the beginning of the experiment but

after the 15000th iteration, its convergence has very small differences. Therefore,

we stopped at the 20000th iteration because we can say that RMSE values almost

converged.

According to every test images, pointwise real values and predicted probabilities

are shown in Figure 4.8.
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Figure 4.8: Predicted and Real Values vs Test Data Numbers of Simplified Net-
work with Sigmoid Layer

4.4 Comparing the Results

As we mentioned in the section 3.3, the result of FCN is added in the Table 4.9

just for comparing between its result and our results. According to all results of

experiments, Table 4.9 is listed and Figure 4.9 is shown as in the below:

Number of Test RMSE /Standard Deviation

Fully Convolutional Network (E0) 0.35 σ

Orjinal Network (E1) 0.47 σ

Sigmoid Layer (E2) 0.42 σ

Sigmoid Layer + Data Augmentation (E3) 0.35 σ

Simplified Network + Sigmoid Layer (E4) 0.40 σ

Table 4.9: All Experiment Results
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Figure 4.9: All Experiments Iteration Number vs RMSE

As in the Figure 4.9, we obtained best trend at the iteration number vs RMSE

by using sigmoid layer added network and augmented data. This is obtained

from experiment 3. Sigmoid layer provides true probability estimation and data

augmentation for train data provides better learning for network. Therefore,

experiment 3 gave us lowest RMSE in the 20000th iteration. In addition, we

obtained the same MSE result (0.007) from the FCN network which has a more

complex structure than the VGG-16 network.

As we mentioned in the previous section, fully convolutional network (FCN) is

one of the ideal network. This network gave the same RMSE value with our

lowest RMSE value in the same iteration. However, while the time spent by

FCN during the testing phase is 1.66 seconds/image, the time spent by VGG-

16 network during the test phase is 0.48 seconds/image. This shows that our

network produces estimation results faster than FCN. In addition, VGG-16 net-

work gives the numeric value as output and does not need any other information

to estimate density. However, FCN needs ground truth segmentation maps for

training. Therefore, it can be said that FCN is harder to train and deploy in

real-life applications of building density estimation.

After that, we brought all pointwise predicted results of test data (0005) together

to visualize predicted images of the experiments. Then heat-maps are obtained

from them to compare results of the experiments. Illustrations of the test data
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(0005) are shown in Figure 4.10. The original image and its semantic segmentation

map is also shown in the Figure 4.11 and its real heat map is shown in the Figure

4.12.

Figure 4.10: All Experiment Heat-Map Results For Test Data (0005) : E1, E2,
E3, E4, respectively

Firstly, there is something that we need to consider when comparing the heat

maps of experiments and real heat map. Color differences between the heat maps

highlight the differences in estimated and true building densities. Therefore, when

we are comparing the experiment results, we considered these color differences.
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Some differences between heat maps of experiments and real heat map are desig-

nated in the Figure 4.12.

As shown in the Figure 4.10, all of the heat maps look like similar but they have

small differences that affect their results. In addition, the difference heat maps

are obtained by using absolute differences between predicted and real values for

test data (0005). They are shown in Figure 4.13. Dark blue color represents small

differences, red color represents big differences between predicted and real values

in difference heat maps.

Figure 4.11: Original Test Image and Its Semantic Segmentation Map

Figure 4.12: Real Heat Map (0005)
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Figure 4.13: Difference Heat-Maps of Test Data (0005) : E1, E2, E3, E4, respec-
tively

In addition, RMSE values of heat maps of E1, E2, E3, E4 (test data 0005) are

0.163, 0.150, 0.144, 0.143, respectively.

The experiment 3 and experiment 4 have closest RMSE values but experiment 4

gives the lowest RMSE value. It means that experiment 4 has predicted values

that are nearest to the real values. In general, experiment 3 has darkest blue but
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experiment 4 has smallest red area. This can be the reason that experiment 4

has lowest individual RMSE value.

According to difference heat maps, experiment 3 gives the best density estimate

for the area indicated by number 1. Experiment 3 and 4 gives the best density

estimate for the area indicated by number 2. All experiments missed the building

that is located in the left corner. This area is indicated by the number 3 and shown

in the Figure 4.12. However, experiment 3 and 4 gives better estimate results for

that building when we compare to them with experiment 1 and experiment 2.

Lastly, experiment 2,3 and 4 give better estimate for the area indicated by number

4, compared to experiment 1. According to these illustrations and comments, we

can say that experiment 3 and 4 give better estimation results for test data (0005)

compared to experiment 1 and 2.

Predicted and real values are shown in the Table 4.10, Table 4.11, Table 4.12 and

Table 4.13. We chose image patches from the test data (0005) that have either

small or large estimation errors as shown in the Table 4.15. The difference values

between predicted and real values for these images are shown in the Table 4.14.

Result (E1) Image Number and Name Predicted Value Real Value

Small difference
0005 4 33 0.626 0.702

0005 12 29 0.670 0.694

Big difference
0005 11 5 0.052 0.994

0005 12 33 0.664 0.477

Table 4.10: Predicted and Real Values of Experiment 1(E1)

Result (E2) Image Number and Name Predicted Value Real Value

Small difference
0005 4 33 0.710 0.702

0005 12 29 0.695 0.694

Big difference
0005 11 5 0.072 0.994

0005 12 33 0.685 0.477

Table 4.11: Predicted and Real Values of Experiment 2(E2)
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Result (E3) Image Number and Name Predicted Value Real Value

Small difference
0005 4 33 0.714 0.702

0005 12 29 0.692 0.694

Big difference
0005 11 5 0.072 0.994

0005 12 33 0.624 0.477

Table 4.12: Predicted and Real Values of Experiment 3(E3)

Result (E4) Image Number and Name Predicted Value Real Value

Small difference
0005 4 33 0.729 0.702

0005 12 29 0.734 0.694

Big difference
0005 11 5 0.083 0.994

0005 12 33 0.648 0.477

Table 4.13: Predicted and Real Values of Experiment 4(E4)

Result Image Number E1 Difference E2 Difference E3 Difference E4 Difference

and Name (Real-Predicted) (Real-Predicted) (Real-Predicted) (Real-Predicted)

Small difference
0005 4 33 0.076 -0.008 -0.012 -0.027

0005 12 29 0.024 -0.001 0.002 -0.040

Big difference
0005 11 5 0.942 0.922 0.922 0.911

0005 12 33 -0.187 -0.208 -0.147 -0.171

Table 4.14: Differences between Predicted and Real Values

Test Images with Small

Estimation Errors

Test Images with Big

Estimation Errors

0005 4 33 0005 12 29 0005 11 5 0005 12 33

Table 4.15: Image Patches That Have Either Small or Large Estimation Errors
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Images with small estimation errors have noticeable building colors and shapes

as shown in the Table 4.15. However, first image (0005 11 5) with big estimation

error has not noticeable building colors or shapes even if it has building density of

99%. The second image (0005 12 33) has building color and shape but building

color is similar to shadow color of the building. These reasons cause the best and

worst estimated results. According to them, experiment 4 and experiment 3 gave

us the smallest difference for the images with big estimation errors. Experiment

2 gave us the smallest difference for the images with small estimation errors.

After that, we brought all pointwise predicted results of test data (0030) together

to visualize building density heat maps. Illustrations of the test data (0030) are

shown in Figure 4.14. The original image and its semantic segmentation map are

also shown in the Figure 4.15 and its real heat map is shown in the Figure 4.16.

Figure 4.14: All Experiment Heat-Map Results For Test Data (0030): E1, E2,
E3, E4, respectively
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As we mentioned for the test data (0005) heat maps, we also need to consider color

differences between the heat maps higlight the differences in estimated and true

building densities for test data (0030). When we are comparing the experiment

results, we considered these color differences again. Some differences between

heat maps of experiments and real heat map are designated in the Figure 4.16.

As shown in the Figure 4.14, all of the heat maps have small differences that affect

their results. In addition, the difference heat maps are also obtained by using

absolute differences between predicted and real values for test data (0030).They

are shown in Figure 4.17. Dark blue color represents small differences, red color

represents big differences between predicted and real values in difference heat

maps.

Figure 4.15: Original Test Image and Its Semantic Segmentation Map
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Figure 4.16: Real Heat Map (0030)

Figure 4.17: Difference Heat-Maps of Test Data (0030): E1, E2, E3, E4, respec-
tively
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In addition, RMSE values of heat maps of E1, E2, E3, E4 (test data 0030) are

0.066, 0.069, 0.059, 0.077, respectively.

The experiment 3 gives the lowest RMSE value and we can say that it has more

dark blue color in its difference heat map. It means that experiment 3 has pre-

dicted values that are nearest to the real values.

According to difference heat maps, experiment 4 gives the nearest probability for

the density of the area indicated by number 1. Experiment 1 and 3 give better

estimation compared to experiment 2 and 4 for the area indicated by number

2. For the area indicated by number 3, experiment 3 has the best estimation

value and experiment 1 has the worst estimation value. Experiment 4 gives the

darkest blue that means nearest probability for the area indicated by number

4 compared to other experiments. Lastly, for the area indicated by number 5,

experiment 3 has better estimation values than other experiments. According to

these illustrations and comments , we can say that experiment 3 and experiment

4 give better estimation results for test data (0030).

Predicted and real values are shown in the Table 4.16, Table 4.17, Table 4.18 and

Table 4.19. We chose images from the test data (0030) that have small and big

differences between predicted and real values as shown in the Table 4.21. The

difference values between predicted and real values for these images are shown in

the Table 4.20.

Result (E1) Image Number and Name Predicted Value Real Value

Small difference
0030 6 29 0.285 0.286

0030 12 17 0.049 0.048

Big difference
0030 1 1 0.357 0.560

0030 12 25 0.197 0.403

Table 4.16: Predicted and Real Values of Experiment 1(E1)
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Result (E2) Image Number and Name Predicted Value Real Value

Small difference
0030 6 29 0.323 0.286

0030 12 17 0.033 0.048

Big difference
0030 1 1 0.337 0.560

0030 12 25 0.319 0.403

Table 4.17: Predicted and Real Values of Experiment 2(E2)

Result (E3) Image Number and Name Predicted Value Real Value

Small difference
0030 6 29 0.327 0.286

0030 12 17 0.038 0.048

Big difference
0030 1 1 0.290 0.560

0030 12 25 0.290 0.403

Table 4.18: Predicted and Real Values of Experiment 3(E3)

Result (E4) Image Number and Name Predicted Value Real Value

Small difference
0030 6 29 0.301 0.286

0030 12 17 0.053 0.048

Big difference
0030 1 1 0.478 0.560

0030 12 25 0.341 0.403

Table 4.19: Predicted and Real Values of Experiment 4(E4)

Result Image Number E1 Difference E2 Difference E3 Difference E4 Difference

and Name (Real-Predicted) (Real-Predicted) (Real-Predicted) (Real-Predicted)

Small difference
0030 6 29 0.001 -0.037 -0.041 -0.015

0030 12 17 -0.001 0.015 0.010 -0.005

Big difference
0030 1 1 0.203 0.223 0.270 0.082

0030 12 25 0.206 0.084 0.113 0.062

Table 4.20: Differences between Predicted and Real Values
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Test Images with Small

Estimation Errors

Test Images with Big

Estimation Errors

0030 6 29 0030 12 17 0030 1 1 0030 12 25

Table 4.21: Image Patches That Have Either Small or Large Estimation Errors

Images with small estimation errors have noticeable building colors and shapes

as shown in the Table 4.21. However, first image (0030 1 1) with big estimation

error has not noticeable building colors or shapes even if it has building density of

40%. The second image (0030 12 25) has building color and shape but building

color is similar to shadow color of the building and shadow color of the roof.

These reasons cause the best and worst estimated results.

According to them, experiment 4 gave us the smallest difference for the images

with big estimation errors. Experiment 1 gave us the smallest difference for the

images with small estimation errors.

As a result, our RMSE results have small differences between them. Therefore,

considering all differences in heat maps or numerical values, it can be said that

the best experiment does not always have the best value. Generally, experiment

3 has best trend and result so we can say that data augmentation with sigmoid

layer in the network provides us best result.
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Chapter 5

Conclusion

In this project, pointwise estimation of building density on the remote sensing

optical imageries by applying deep learning method is performed. The main

objective of the thesis is to reduce mean square error of the estimated density

by applying architectural modifications on the deep learning network and using

augmented training data. We improved accuracy of the estimation by applying

sigmoid layer addition in the network, simplifying the network for small sized

training dataset and using data augmentation.

Data augmentation provided considerable improvement in density estimation per-

formance. In addition, we showed that sigmoid layer is effective network layer for

regression task and simplifying network has marginal contribution to regression

results.

The main contribution of this thesis is to show that some network modifications

and data augmentation provide better learning in deep neural networks. Bet-

ter learning brings low RMSE and data augmentation provides it. More data

for train dataset provides more information for neural network and more infor-

mation increased accuracy of the estimation. Regression is performed by using

VGG-16 network and adding sigmoid layer has also improved accuracy. Sigmoid

layer as a final activation function avoids the estimated probability being too

large or too small and this provides true probability estimation and stability of

network. Simplifying network is the other modification method to reduce RMSE.
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Simplified network has also sigmoid layer in the network and provides better re-

sult than original network and only sigmoid layer added network in small sized

train dataset. Although only sigmoid layer added network and simplified network

reduced RMSE, the lowest RMSE is obtained from sigmoid layer added network

by using data augmentation.

As a conclusion, we managed to reduce RMSE in the pointwise density estimation

by modifying the network and augmenting the training dataset. We compared

the performance of our modified network with that of FCN which is adapted to

density estimation. Applying FCN is computationally expensive compared with

VGG-16 network and it needs segmentation maps to train. We have proven the

network (VGG-16) that we have used can have same RMSE by applying network

modification with less information and less time compared to FCN.

As a future work, the research in this thesis can be improved, as follows:

• Other gradient descent methods such as Adam, AdaDelta could be tested.

• Bigger patch sizes could be tried to provide more contextual information

from surrounding regions in the image

• Digital elevation maps could be used in addition to the multispectral infor-

mation.
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