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ON THE THIRD BOUNDARY VALUE PROBLEM FOR PARABOLIC
EQUATIONS IN A NON-REGULAR DOMAIN OF RN+!

AREZKI KHELOUFL!, §

ABSTRACT. In this paper, we look for sufficient conditions on the lateral surface of
the domain and on the coefficients of the boundary conditions of a IN—space dimensional
linear parabolic equation, in order to obtain existence, uniqueness and maximal regularity
of the solution in a Hilbertian anisotropic Sobolev space when the right hand side of the
equation is in a Lebesgue space. This work is an extension of solvability results obtained
for a second order parabolic equation, set in a non-regular domain of R® obtained in [1],
to the case where the domain is cylindrical, not with respect to the time variable, but
with respect to IV space variables, N > 1.
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1. INTRODUCTION
Let Q be an open set of R? defined by
Q={(t,m1) eR*:0<t<Typ1(t) <a1 < 2(t)}

where T is a finite positive number, while ¢; and ¢y are Lipschitz continuous real-valued
functions defined on [0, 7], and such that

p(t):=@a(t) =1 (t) >0
for t € ]0,T]. For fixed positive numbers b;,i = 1,...,N — 1, with N > 1, let @ be the
(N + 1)-dimensional domain defined by
N-1
Q={(tz1) eR*:0<t < Ty (t) <m <2 (t)} x []10,0i[.
i=1
In @, consider the boundary value problem

atu - AU = f € L2(Q)7
Oz, u + Biu\zi =0,i=12, (1)
uloo\(myump) = 0,1 = 1,2,
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where Au = Zi\[zl ngu, dQ is the of boundary of @, 3;, ¢ = 1,2 is the part of 9Q
where x1 = @; (t), i = 1,2, 37 is the part of 9Q where t = T" and with the fundamental
hypothesis ¢ (0) = 0.

The difficulty related to this kind of problems comes from this singular situation for
evolution problems, i.e., ¢ is allowed to coincide with o for ¢ = 0, which prevent the
domain @ to be transformed into a regular domain by means of a smooth transformation,
see for example Sadallah [2]. On the other hand, the semi group generating the solution
cannot be defined since the initial condition is defined on a set measure zero.

We are especially interested in the question of what sufficient conditions, as weak as
possible, the functions @1, s and the coefficients §;, i = 1,2, must verify in order that
Problem (1) has a solution with optimal regularity, that is a solution u belonging to the
anisotropic Sobolev space

H3?(Q) = {U e H'?(Q): Ulgo\(siusy) = Onu+ Biulg, =0, i = 1,2}
with
H"(Q) ={ue L*(Q): 0,00 02..0Nue L*(Q),1 <iy+ipg+..+iy < 2}.

Note that the Robin type condition 0., u + Biu\zi = 0,4 = 1,2 is a perturbation by g;,
1 = 1,2 of the Neumann type one and it is well known that Dirichlet and Neumann type
boundary conditions correspond to two extreme cases, namely 8; = oo and §5; =0, ¢ = 1,2,
respectively. We can find in [3], [4], [5], [6], [7], [8] and [9] solvability results of this kind of
problems with Dirichlet boundary conditions. In Nazarov [10], results for the Neumann
problem in a conical domain were proved. We can find in Savaré [11] an abstract study
for parabolic problems with mixed (Dirichlet-Neumann) lateral boundary conditions. The
case of Robin type conditions in a non-rectangular domain is studied in [12].

The organization of this paper is as follows. In Section 2, we prove that Problem (1)
admits a (unique) solution in the case of a truncated domain. In Section 3 we approximate
@ by a sequence (@) of such domains and we establish (for 7" small enough) a uniform
estimate of the type

Hu”HHlﬂ(Qn) <K ||f||L2(Qn) )

where w, is the solution of Problem (1) in @, and K is a constant independent of n.
Finally, in Section 4 we prove the two main results of this paper.
The main assumptions on the functions ¢1, @2 and on the coefficients 5;, i = 1,2, are

oit)p(t) — 0 ast—0, i=1,2. (2)
The coefficients 3;, ¢ = 1,2 are real numbers such that
b1 <0 and B2 > 0, (3)
. ! (t
(-1 (@ - @’2()) >0 ae t€]0,T[,i=1.2. (4)

2. RESOLUTION OF THE PROBLEM (1) IN TRUNCATED DOMAINS @),

In this section, we replace @ by Q,,n € N* and % <T:

Qn:{(t,a;)eQ:TlL<t<T},

where x = (21, 22, ..., TN).
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Theorem 2.1. Under the assumptions (3) and (4) on the functions of parametrization
w; and on the coefficients B;,i = 1,2, and for each n € N* such that % < T, the following
problem admits a (unique) solution u, € H%? (Qy)

s, — Ay = fr € L2 (Qy) ,
O, Up, + Bi“”b,n =0,i=1,2, (5)

un‘aQn\(Ei,nUET,n) == O, 2 = 1,2

Here
S = { ity er? T <o) [0l i-1.2

and X7, s the part of the boundary of @, wheret =1T.

Proof. The uniqueness of the solution is easy to check, thanks to (4). Let us prove its
existence. The change of variables

O (L) — (ty) = <t, xl;g;(’f),x')

transforms @, into the cylinder P, = |, 7 x]0,1[ x 1Y, 10, b;[. Here and in the sequel
x = (r1,%2,....,xN), ' = (x2,...,2x) and y = (y1, 92, ..., yn ). Putting
wn (t,y) = un (t,2) and g, (t,y) = fu (t,2),

then Problem (5) is transformed, in P, into the variable-coefficient parabolic problem

1
Oywy, + a (t,y1) Oy wy, — Waslwn — 25:2 8§kwn = Gn,
Dyyon + Bip () walg, , =0,i=12, (6)
20, i=12,

wn|apn\(2i,PnUET7Pn)
where 31 p, = 10,T[ x {0} x [Tn5'10,bk[, Bo.p, = 10,7 x/{l} X /,Ij;ll]o, bel, S7.p, =
t t
(T} %10, 1] x TIN110,bl, b (t) = ¢ (1) and a (t, 1) = — 222 B +a @)

(1)
Since the functions a and ¢ are bounded when t € ]%,T [, then the above change of

variables which is (N + 1)-Lipschitz preserves the spaces H%? and L?. In other words
fn € L2 (Qn) & gn € L*(Py), u, € HY(Q,) © w, € HY? (P,).

In the sequel, the variables (¢,y) will be denoted again by (t,z). Consider the simplified
problem

1
Opwy, — Waglwn - Zivzg 8§kwn = Gn,
Orywp + Bip () wnls, , =0,i=12, (7)
wn‘apn\(zi,PnUET,Pn) - 07 7= 172
Lemma 2.1. For each n € N* such that % < T and for every g, € L?(P,), there exists
a unique wy, € HY? (P,) solution of (7).

Proof. Since the coefficient b (¢) is continuous in P,, the optimal regularity result is given
by Ladyzhenskaya-Solonnikov-Ural’tseva [13]. O
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Lemma 2.2. For each n € N* such that % < T, the following operator is compact
a(t,w1) Oy, : HY? (Pn) — L (Pn) .
Here, fori=1,2
H%’Q (Py) = {w, € HY? (P,) : wn|apn\(2i,PnUET,Pn) = Opywn + Bip (1) wn’ziypn = 0}.
Proof. P, has the "horn property” of Besov [14], so

1
Oy, : H$’2 (P,) — H2! (Pn), wy — Oy wn,

is continuous. Since P, is bounded, the canonical injection is compact from H 21 (P,) into
L?(P,), where

. N_1 ) 1 N-1
H (P,) = L2 (n,T;Hl (]0,1[X 11 ]o,@-[)) nH: <n7T3L2 (10’1“ 11 ]0752‘[» '

i=1 =1
For the complete definitions of the H™* Hilbertian Sobolev spaces see for instance [15].
Consider the composition
Oy« HY2 (Py) = H2'(Py) = L2 (Py), wy = Opywy v Oy,

then, 0., is a compact operator from H%’Z (P,) into L?(P,). Since a(.,.) is a bounded
function for 1 <t < T, the operator ad,, is also compact from H%’Z (P,) into L? (P,). O

Lemma 2.1 shows that the operator 0; — 92 — Zivﬂ 8§k is an isomorphism from

1
6% ()
H%’z (P,) into L? (P,). On the other hand, the operator ad;, is compact (see Lemma 2.2).

1
W@% L Z]kVZQ ng is a Fredholm operator

1
from Hy? (P,) into L? (P,) . Thus the invertibility of &;+a (., .) Oy, — maf%l - Z]]gV:Q 0z,

Consequently, the operator 0y + a(.,.) Oz, —

follows from its injectivity.
Let w,, € H%’Q (P,) be a solution of

1
0wy, + a (t, z1) O, wy, — =0

N
aglwn - Z@gkwn =0

k=2
in P,. We perform the inverse change of variable of ®. Thus we set

Up, = Wy, © P.
It turns out that u, € H%’z (Qn), and
Oyupn — Auy, = 0,in Q.

In addition u,, fulfils the boundary conditions

Ouitin + Bitinl, , = tnlog,\(z, uzr,) =0 1=12,

which imply that w, vanishes (see Theorem 4.1); this is the desired injectivity and ends
the proof of Theorem 2.1.

Lemma 2.3. For each n € N* such that % < T, the space

N-1
1 .y .
W = {Un€D<|:naT:|  H (]Ovl[x H]():bz[)) : 8m1un+/8iun|2iﬂpn _072_1;2}7

i=1
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(see [15, p.13]), is dense in
HY?(P,) = {un € H'Y (Po) : Qg + Bitmly, , =0, i= 1,2} .

The above lemma is a particular case of [15, Theorem 2.1], from which, we can derive
the following result in order to justify the calculus of the section 3.

Lemma 2.4. For each n € N* such that % < T, the space

{Un € H' (Pn) : un|8Pn\(E¢,anET7pn) = aﬂmun + ﬁiunk}i’pn =0,1= 172}
is dense in the space
{un €H'Y? (Pn) : un|apn\(zi,PnU2T,Pn) = aaclun + 51’“71’21-’1;” =0,1= 172} .

Remark 2.1. In Lemma 2.4, we can replace P, by Q, with the help of the change of
variables defined above.

3. A UNIFORM ESTIMATE

For each n € N* such that 1 < 7', we denote by u,, € H"?(Q,,) the solution of Problem
(5) in @p. Such a solution u, ex1sts by Theorem 2.1.

Theorem 3.1. For each n € N* such that % < T with T small enough, there exists a
constant K > 0 independent of n such that

lunlirizgg,) < K I falli2g,) < K 1172 -

where

2
2 2
lonllay = |N0unlian + lunlien+ > |

i1,0in=0
1<it+..Hin <2

. . 2
21 TN
Oz} ...0ZN U,

L2(Qn)

In order to prove Theorem 3.1, we need some preliminary results. The proof of the
following Lemma can be found in [1].

Lemma 3.1. Under the assumption (3) on (51-)1-:172, there exists a positive constant Cq
(independent of a and b) such that

e e et

L2(a,b)
for each v € Hg (a,b), with

L2(a, b)

H?{ (a,b) = {v € H? (a,b) : v/ (a) + bﬁ_lav(a) =0,v" (b) + b%av(b) = 0}.

Lemma 3.2. For every ¢ > 0 chosen such that ¢ (t) < €, there exists a constant C' > 0
independent of n, such that

108, unl 12,y < 22— 102,32,y » 4 = 0.1
Proof. Replacing in Lemma 3.1 v by u,, and |a, b[ by |¢1 (), @2 (t)[, for a fixed ¢, we obtain

. 2 9
A () e < Co P 7Y (000)"
2(t ) 2
< Ce( )Lpl()((? ) dxy
where C' is the constant of Lemma 3.1. Integrating with respect to ¢, then with respect to
T9, I3,..., Ty, we obtain the desired estimates. ]
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Proposition 3.1. For each n € N* such that % < T with T small enough, there exists a
constant C > 0 independent of n such that
2

2 i1 A j 2 2
lOunllzogn + D 100 0N unll g < C Sl -
91,12,...,i =0
i14i2+...Fin=2

Then, Theorem 3.1 is a direct consequence of Lemma 3.2 and Proposition 3.1, since €
is independent of n.

Proof. Step 1. First, we estimate the inner products
N

N N
Z(@tun,agkun> and (Z 8§kun, Z&%jun% k#j
k=1 j=1

k=1

in L2 (Q,) making use of the boundary conditions (particulary, of the relation 0, u, +
Biun, = 0 on the parts of the boundary of @Q,, where x1 = ¢; (t), i = 1,2). We use these
estimates (step2) when we develop the expression of || fn||i2 (Qn)-
1) Estimation of —2(0uy,d2 uy): We have

Ound2 tn = Oy, (OptnOpytn) — 30 (Oyyun)”.

Then
—2(Ostin, O3 ) = =2 [, Oy (OpuinOu i) dt dx + [, r (Dryun)” di da
= faQn [((%nun)2 v — 28tun8$1unvml} do,

where vy, vy, ...,z are the components of the unit outward normal vector at 9@, and
dx = dridxs...dxy. We shall rewrite the boundary integral making use of the boundary
conditions. On the parts of the boundary of @, where t = %, =0,k =2,...,N and
xp = br_1,k = 2,..., N we have u,, = 0 and consequently 0,,u, = 0. The corresponding

boundary integral vanishes. On the part of the boundary where t = T', we have v, = 0
and 14 = 1. Accordingly the corresponding boundary integral

by-1 bi pe2(T)
/ / / (8 i )? dax
0 0 Jou(T)

is nonnegative. On the parts of the boundary where x1 = ; (t), ¢ = 1,2, we have
i+1
(=)™ i (1)

D o ) vy —
Y1+ (@) () V3I+ (@) ()

Oy Un (t, wi (t) ,x') + Biuny (t, wi (1) ,m’) =0,i=1,2.
Consequently the corresponding boundary integral is

e = (=D N B T o (0) By (o (6) ) dida!, e = 1,2,

Ingk = (—I)kaObN‘1 é)l ffﬁk (Opun.-un) (t, @ (), 2") dtdx’, k = 1,2,

and

where dz’ = dxs...dx . Then, we have
—2(Byun, 7, un) > = Ina| = [Tna| = [Jni| = [Jnzl. (8)

2) Estimation of —2 Zgz2<8tun,8§kun>: We have
Ound? un = Oy (OitnOuytin) — 504 (Onyun)” .
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Then
—2(Ostin, 02, un) = =2 [ Ouy (OstinOpyun) dt d + [o, Oy (Opyun)” dt d
= Joo., [ 8xkun ) v — 28tun8xkunuxk} do.
On the part of the boundary where t = =, 2, =0,k =2,....,. N and z, = by_1,k = 2,..., N
we have u, = 0 and consequently &ckun = 0. The corresponding boundary integral

vanishes. On the part of the boundary where ¢t =T, we have v, =0, v, =0,k =2,.... N
and v; = 1. The corresponding boundary integral

bn—1 b1
/ / / (%kun dx
e1(T)

is nonnegative. On the parts of the boundary of @, where z; = ¢;(t), i = 1,2, we
i+1
— V7wt '(t) and v;, = 0,k = 2,...,N. Consequently the

\/H-(cp;)Q(t)’ 1 (e

corresponding boundary integral is

M, ; = (—1)*! R () [Ouyin (05 (8), 2') ] dtda’, j = 1,2
nyg — (— o 0 llpj IkUn(,SO‘]()Mr)] xa]_ g L

Then, we have

have v,, =

—2(Optun, 02, Un) = My + Myo, k=2,...,N. (9)
3) Estimation of 22522(8§1un,8§kun>: We have

2 up 0 un = Op, (0nyun-02 p) — Ouy, (O n.On, O tin) + (O, Dy in)? -
Then
2<3§1un, agkun> = 2fQ - (Bxlun 82 un) dt dz — QIQn Oz, (OpyUn. Oy, Og, uy,) dt dx
+2 fQ &Cl&ckun) dt dx
= QfQ 6z18xkun) dt dx

+2 faQ [6$1un8xkunvzl 6x1un.8m18$kunywk] do.

On the part of the boundary where t = =, 2, =0,k =2,..., N and 2 = bp_1,k=2,.... N

we have u, = 0 and consequently 0, un = 0. On the part of the boundary where t =T,

we have v, =0, v, =0,k =2,...,N and vy = 1. The corresponding boundary integral
vanishes. On the parts of the boundary of @, where x1 = ¢; (t), i = 1,2, we have

e ar10) '-(t)

_ —1
T ir@rn i@

Oy tin (L, i (), 2") + Biun (t, i (1) ,2") = 0,0 =1,2.
Consequently, the corresponding boundary integral is

) by_1 br T )
Hpy = (-1) 2/ / /1 B [Bupun (805 (8) ,2")]° dtda’, 5 =1,2.
0 0 =

Then, we have

and v;, =0,k=2,..,.N

and

202, tn, 03 ) = 200, Oupunll72 g,y + Hn + Hp2. (10)
Summing up the estimates (9) and (10) and using the hypothesis ( 4), we obtain
—2(Oyttn, 02 un) + 2(02 U, 02, ) > 2[00y Oy tinll72(g,y K = 2, o N (11)



8 TWMS J. APP. ENG. MATH. V.6, N.1, 2016

Indeed, for k£ =2, ..., N we have

bn_1 b1
ZM,ﬁH,J Z A / (28— ¢ () [t (o (1)) dida,

which is nonnegative, thanks to the hypothesis (4). By a similar argument, we obtain

2<8§2un76§kun> >2 Haxgamkunui2(Qn) k=3,...,N,
2<8§3una8:%kun> Z 2 ”8.7}3adfkunH%2(Qn) 7k — 4, ey N7

....................... (12)
....................... ,
<({)C'%N y Uns 8§Nu”> =2 HaINflaﬂ»‘NUNHLQ(Qn) '
Step 2. Estimation of I, ;, J, 1 : We have
2 N N
”anLQ(Qn) = (Opun — Zk:l (‘ﬁku, Ory, — Zk:l 8§ku>
2 N 2
= 0unllz2(q,) + k=1 |02 “nHm(Q )
-2 Zk 1<8tumaa:kun> + 2Zk 2< “maQ Up,)
+2 Zk 3< un,a LUn) + o+ 2<8§N 1“”783:1\; n)-
It is the reason for which we look for an estimate of the type
2
w2l + T + [Tzl < Ke |07 unll 12,
A. Estimation of I, ;, k =12 ([
Lemma 3.3. There exists a constant K > 0 independent of n such that
2 2 _
Ikl < Ke HaxlunHLz(Qn) . k=1,2.

Proof. We convert the boundary integral I,, 1 into a surface integral by setting

z1=p2(t)

Orstn (6,501 (6), @) = =B Dm0
_ 2(t) pa(t)—x
= @1(03 {2()18unta: }d:zl

= [0 20500,y (1 2) 02 un (1 2) + Sl [0, un]]da.

Then, we have

L = [N jl t) [0z un (8,01 (8), 2] dtda’
= Jo, 28 8w1un) dtda;+2 S, BYUSELG (8) (D, un) (02, un) dtda.
Thanks to Lemma 3.2, we can write
2
;2(9)) O un (t,2))2dzy < Clp ff(g) 02 u,, (t,2)]” day.
Therefore
! 2
29 0w, (b)) Eldn, < Cletle (720 (02,0, () da,
consequently,

| Inq1| < C/Q ‘¢3’¢(8§1un)2dtdx+2/Q ‘90/1’ |0, Un | ‘aiun‘ dtdzx,
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pa(t)—z1

»(t)

since

< 1. Using the inequality

2 2
2 "Pllaﬂclun’ ‘8§1un‘ < € (8%1“11) + % (80/1) (8r1“n)2

for all € > 0, we obtain

’In,l

< C’/ EAEIG) (8%1%)2 dtdz —i—/ G (8%1%)2 + % (tp'l)z (O, un )?)dtda.
Qn

n

Lemma 3.2 yields

L Lo (P02 (O un)dtdz < CL [ ()% 0 ()% (02,un)” dide.

Thus, there exists a constant K > 0 independent of n such that

gl < C Jo, [lehle @) +2 (@0 0 (8] (02,un)” dtda + [, € (02,un)” dtda
Ke [, (02,uy)" dtdz,

IN

because |¢)p ()] < e. The inequality

Lol < Kel[@2ulf}a,) -

can be proved by a similar argument.
B. Estimation of J,;, k = 1,2: We have

Tt = =2 [N T B8 (801 (8) ) g (t, o1 (E) , 2) dida!
= — ObN‘l é)l ffﬁl [0 (t, 01 (t),2)] dtda’.

By setting, for each fixed 2/ in [[Y;1]0, 0], h (t) = u2 (t,¢1 (), 2) , we obtain

Tt = = [N [T B[ () — @ (1) Byt (E) 2] dtda!
= IV B (8) Byl (t o (1), 2 dida! + [PV [ =Bk ()] da.

Since B; is negative and u?2 (%,cpl (%) ,z') = 0, we have fObN* Obl —B1.h (t)[5 da’ > 0.
The last boundary integral in the expression of J,, ; can be treated by a similar argument

used in Lemma 3.3. So, we obtain the existence of a positive constant K independent of
n, such that

bN-1 bt / 2 / / 2 2
/0 /0 /1 B1.07 (t) Oy ui (t, 01 (t),a:)dtdx SKEH@xlunHLZ(Qn),

and consequently,

[l > —Ke |02, 2, (13)

)
By a similar method and using the fact that 3 is positive and u? (%, 2 (%) ,x’) =0, we
obtain the existence of a positive constant K independent of n, such that

|Jn,2| > _KeuaglunHiz(Qn (14)

)
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Summing up the estimates (8), (11), (12), (13), (14) and making use of Lemma 3.2, we
then obtain
2 2 N 2 2
Ifallz2@ny 2 10unllzag,) + Xamr 105, unll 2 ) — 4K € (102, unll12(q,)
N 2 N 2
+2 Zk=2 Haﬂn azkunHLQ(Qn) +2 Zkzg H6332arkunHL2(Qn)
N 2 P!
+2 354 210250 unll T2y + - + 21 Oan—1 Ountin 12,

2 2 2 N 2 2
”at“ﬂJVLQ(Qn) +(1- ‘éKﬂ) Hamun]\lm@n) T Zk:g 192 unll 2,
+2 Zk:Q Haxl aﬁﬁkunHL2(Qn) +2 Zk:g HawgamkunHIp(Qn)

N 2 !
+2 Zk:4 2 |’a$3a$kunHL2(Qn) + ...+ 2 HaﬂCN—laﬂcNu”HLQ(Q") .

Then, it is sufficient to choose € such that (1 —4Ke) > 0, to get a constant Ky > 0
independent of n such that

v

2
i1 ai i 2
fallZoy = Ko | l0wunllzzg+ > 0802 0unl .,

) i1,‘i2,...,iN':0
i1+io+...+iny=2

But ”f”HLQ(Qn) < HfHLz(Q) , then, there exists a constant C' > 0, independent of n satis-
fying
Oinlioon + Do 0RO unll e, < Cllfalta,) < C T2 -

) il,'ig ..... iNZO
i1+io+...+in=2

This ends the proof of Proposition 3.1. O

4. MAIN RESULTS

We are now able to prove the main results of the paper.

4.1. Local in time result.

Theorem 4.1. Assume that the functions of parametrization @;,i = 1,2 and the coeffi-
cients B;,1 = 1,2 fulfil conditions (2), (3) and (4). Then, for T small enough, the heat
operator L = 8y — A is an isomorphism from H? (Q) into L2 (Q).

Proof. 1) Injectivity of the operator L: Let us consider u € H%’Q (Q) a solution of the
problem (1) with a null right-hand side term. So,

Ou— Au=0in Q.
In addition w fulfils the boundary conditions
ulpo\(z,uzy) = 0 and Opu+ Piuly, = 0,4 =1,2.

Using Green formula, we have

N N
1
/ (Opu — Au)u dt dz = / (2 lul? vy — Zaxk%Uka) do +/ Z |0, ul? dt dx

where v, Vg, ..., Uz, are the components of the unit outward normal vector at 9Q. We
shall rewrite the boundary integral making use of the boundary conditions. On the parts
of the boundary of () where t = 0, z = 0,k = 2,..., N and z = byp_1,k = 2,..., N we
have © = 0 and consequently the corresponding boundary integral vanishes. On the part
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of the boundary where t = T', we have v, = v, = ... = V3, = 0 and 14 = 1. Accordingly
the corresponding boundary integral

by—1 b1 pp2(T)
A= / / / \u* (T, ) dz:
01(T)

is nonnegative. On the part of the boundary where 1 = ¢; (t), i = 1,2, we have
_ =™ 901( )

14+ ( goz \/1+ cpz

Onyu (t,0 (8) ") + Byu (£, i (t) ,2") = 0,4 = 1,2.
Consequently the corresponding boundary integral is

122;/0@“ --/Obl /OT(—l)i </8i - 90/2@)) u? (t, i (t),2) dtdz’.

Then, we obtain
) !
Ou — Au)u dtde = 2, bN-1 bl -1y Blf%i(t) u? (t,@; (1), 2') dtda’
Q i=1J0 0 2

g S () d e [y S 0 dida

Consequently fQ (Opu — Au)u dt de = 0 yields the equality fQ SN |0, ul? dtdz = 0,

because
2 by by T , /
Z/o /0 /0 (-1)" (ﬂi - (’0’2@)> u? (t,; (t),2') dtda’ >0
=1

thanks to the hypothesis (4). This implies that Zivzl |0, ul? = 0 and consequently Au =
0. Then, the hypothesis d;u — Au = 0 gives dyu = 0. Thus, u is constant. The boundary
conditions and the fact that 5; # 0, i = 1, 2 imply that u = 0.

2) Surjectivity of the operator L: Choose a sequence @, n = 1,2, ... of reference
domains (see section 2). Then we have Q, — @, as n — oo.

Consider the solution u,, € H'?(Q,,) of the Robin problem (5) in @,. Such a solution
u, exists by Theorem 2.1. Let u,, the 0—extension of u, to Q). Then, in virtue of Theorem
3.1, we know that there exists a constant C such that

2
L + E ‘6z118x22...8$%un
@) i1,i2,..i =0 L2(Qn)
1<iy+ig+...4+in <2

L, =0,k=2 . N

and

2

ITall gy + || et < Cllfllza)

This means that u,, 8/,;\2;”, 8;11(93;228331}(,un for 1 < 41 4+1i9+ ...+ iy < 2 are bounded
functions in L? (Q). So for a suitable increasing sequence of integers ny, k = 1,2, ..., there
exist functions

w, v and vy 4, iy 1 <1+l + iy <2
in L2 (Q) with 1 <y + g + ... + iy < 2 such that

— i1 Qi2 N L .
Upy, — U, Optipy, — v, Oz 0rh .0\ Uny — Vigia, iy,

weakly in L? (Q) as k — oo. Clearly,
V= O, Vi io,...in = 8;11812 8”Vu 1<ii4+ig+...+iy <2
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in the sense of distributions in @ and so in L? (Q). Finally, u € H"? (Q) and dyu — Au =
f in Q. On the other hand, the solution u satisfies the boundary conditions

ulpo\(siusy) = 0 and Op u + Biufy, = 0,0 =1.2,
since
Vn € N, ulg = un.
This proves the existence of solution to Problem (1) and ends the proof of Theorem 4.1. [
4.1.1. Global in time result. In the case where T is not in the neighborhood of zero, we
set @ = Dy U Dy U Xy, (T small enough) where

D ={(t,x) eQ:0<t<Ti},Do={(t,x) eQ :-Th <t<T},
N-1
S = {(T1,21) €R? 1 (Th) < w1 < @2 (T1)} x ] 10,04l
i=1
In the sequel, f stands for an arbitrary fixed element of L?(Q) and f; = f] py 8= 1,2
Theorem 4.1 applied to the non-regular domain Dq, shows that there exists a unique
solution v; € H? (D;) of the problem

Gtvl — AUl = f1 S L2 (Dl) ,
8:161@1 + ﬁivllztl = 07 1= 1727 (15)
Ul‘aD1\(Ei71UET1) = 0; 7= 1727

Y1 are the parts of the boundary of D; where x; = ¢; (¢), i = 1,2.

Lemma 4.1. Ifu € H"? <]O,T[ x 10, 1] x Hij\:ll]o,bio, then ul,_y € H' (o), ul,,_g €
3 3 —
H (y1) and ul,,_y € H1 (y2), where vo = {0} x ]0,1[ x T[1L1"]0,bi[, 7 = 10,7 x {0} x
1510, b3 and 72 =10, T[ x {1} x [0, b].
The above lemma is a particular case of [15, Theorem 2.1, Vol.2]. The transformation

(t,x) — (t,y) = (t,p (t) x1 + 1 (t) ,2"), leads to the following lemma:

Lemma 4.2. If u € HY?(Dy), then u\ZTl € H' (Zq), Ul ity € Hi (Xi2), where

Yi2,1=1,2 are the parts of the boundary of Dy where 1 = ¢; (t).
Hereafter, we denote the trace vllle by 1 which is in the Sobolev space H! (3r,)
because v; € H'2 (D) (see Lemma 4.2). Now, consider the following problem in Dy
Ovr — Avg = fo € L?(Q2),
U2|ZT1 = 1/}7
Oz v2 + Bivaly,, = 0,1 =12,

'U2’3D2\(21.12U2T1) =0,1=12,

(16)

Y2 are the parts of the boundary of Dy where z1 = ¢; (t), i = 1,2. We use the following
result, which is a consequence of [15, Theorem 4.3, Vol.2] to solve Problem (16).
Proposition 4.1. Let R be the cylinder |0, T[ x 10,1[ x [[X;"10,0:, f € L?(R) and
Y € H' (y9). Then, the problem

Ou — Au = f in R,

u”Yo =V,
Oz, U+ Blu\% =0,i=1,2,

ulom (zoums) = 05 7= 1.2,
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where o = {0} x 0,1 x TIX1110, 5[, v = 10, T[ x {0} x [IX5110,0:] and v2 = 0, T x
{1} x TIX110,04], admits a (unique) solution u € H“? (R).

Remark 4.1. In the application of [15, Theorem 4.3, Vol.2], we can observe that there
are not compatibility conditions to satisfy because Oy, is only in L (o).

Thanks to the transformation (¢, ) — (t,y) = (¢, ¢ (t) x1 + ¢1 (t) ,2') , we deduce the
following result:

Proposition 4.2. Problem (16) admits a (unique) solution vo € H%? (Dy).

So, the function u defined by

- (% in Dl,
- V9 in DQ,

is the (unique) solution of Problem (1) for an arbitrary 7. Our second main result is

Theorem 4.2. Under the assumptions (2), (3) and ( 4) on the functions of parametriza-
tion @; and the coefficients B;,i = 1,2, Problem (1) admits a (unique) solution u €

HY2(Q).
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