
V
O

L
K

A
N

E
S
G

E
L

M
.S

.
T

h
esis

2019

SEMANTIC ROLE LABELING FOR TURKISH PROPBANK

VOLKAN ESGEL

IŞIK UNIVERSITY

2019

SEMANTIC ROLE LABELING FOR TURKISH PROPBANK

VOLKAN ESGEL
B.S., Computer Engineering, IŞIK UNIVERSITY, 2012

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2019

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SEMANTIC ROLE LABELING FOR TURKISH PROPBANK

VOLKAN ESGEL

APPROVED BY:

Prof. Dr. Olcay Taner YILDIZ Işık University

(Thesis Supervisor)

Assist. Prof. İlknur KARADENİZ

EROL

Işık University

Assoc. Prof. Arzucan ÖZGÜR Boğaziçi University

APPROVAL DATE:/..../....

SEMANTIC ROLE LABELING FOR TURKISH

PROPBANK

Abstract

People’s communication with each other takes place through sentences that com-

bine words with different purposes. Words can gain different meanings with the

presence of other words in the sentences in which they take place.

With the rapid development of technology, the studies on understanding of human

language by computational power have gained speed. These studies are generally

referred to Natural Language Processing and their main purpose is to understand

the sentences in human communication.

The words in the sentence fulfill different purposes. Some words describe an event,

while other words indicate details of that event. Defining the semantic roles of

words is possible with different algorithms.

This study first started by contributing to the process of determining the semantic

roles of the word groups in the sentence by manpower. In addition, the semantic

roles in the English sentences were parsed and shared on a web site with the

marked roles in the Turkish sentences for comparison purposes. Finally, it is

tried to measure how the algorithms aiming to find the semantic roles of the

words in the sentence perform automatically for Turkish.

Keywords: Natural Language Processing, PropBank, Semantic Role Label-

ing

ii

TÜRKÇE PROPBANK İÇİN ANLAMSAL ROL

ETİKETLEMESİ

Özet

İnsanların birbirleriyle olan iletişimleri farklı amaçlardaki kelimelerin birleştiği

cümleler aracılığı ile gerçekleşmektedir. Kelimeler, yer aldıkları cümlelerde diğer

kelimelerin de varlığı ile farklı anlamlar kazanabilmektedirler.

Teknolojinin hızla gelişmesiyle birlikte, hesaplamalı güçler tarafından insan dilini

anlama çalışmaları hız kazanmıştır. Bu çalışmalar genel olarak Doğal Dil İşleme

olarak anılmaktadır ve asıl amaçları insan iletişiminde yer alan cümlelerin anlaşıla-

bilmesidir.

Cümle içerisinde yer alan kelimeler farklı amaçları yerine getirmektedirler. Bazı

kelimeler bir olayı anlatırken, diğer kelimeler bu olaya ait detayları belirtmek-

tedirler. Kelimelerin anlamsal rollerinin tanımlanması ise farklı algoritmalar ile

mümkün olabilmektedir.

Bu çalışma ilk olarak cümlede yer alan kelime gruplarına ait anlamsal rollerin

insan gücü ile belirlenmesi işlemine katkı sağlanarak başlamıştır. Ayrıca doğal

dil işleme ile ilgili olarak Türk dilinde yapılacak çalışmalarda karşılaştırma amaçlı

olarak kullanılmak üzere İngilizce cümlelerde yer alan anlamsal roller ayrıştırılmış

ve Türkçe cümlelerdeki işaretlenmiş roller ile birlikte bir web sitesi üzerinden açık

şekilde paylaşılmıştır. Son olarak ise cümledeki kelimelerin anlamsal rollerini

otomatik olarak bulmayı amaçlayan algoritmaların Türkçe için nasıl performans

gösterdiği ölçülmeye çalışılmıştır.

Anahtar kelimeler: Doğal Dil İşleme, PropBank, Anlamsal Rol Etiketleme

iii

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor Prof.

Dr. Olcay Taner YILDIZ for all of his guidance on all stages of this master

thesis. Without his advice and guidance, I do not think this work would have

been possible. I will always remember his patience, understanding and kind

personality.

Finally, my sincere thanks to my family, especially my brother Hakan, for their

endless and peerless support.

iv

To my family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

2 Literature Review 4

2.1 Penn Treebank Project . 4

2.1.1 Tagset for Part-of-Speech 4

2.1.2 Tagging Process for Part-of-Speech 5

2.2 Semantic Role Labeling . 6

2.2.1 Calibrating Features . 7

2.2.2 The PropBank and Semantic Role Labeling 7

2.2.3 Semantic Role Tagging . 9

2.2.4 System Architecture . 9

2.2.5 Pruning Algorithm . 10

3 PropBank Data 11

3.1 Parse of English PropBank Data 11

3.2 Assignment of Predicate and Arguments in Turkish PropBank . . 14

3.2.1 Selection of Predicates in Turkish PropBank Toolkit 14

3.2.2 Selection of Arguments in Turkish PropBank Toolkit . . . 16

4 PropBank Website 18

4.1 Preparation of the PropBank Website 18

4.2 Technologies Used in the Study 21

5 Features 23

5.1 Word-Based Features . 23

5.1.1 Predicate . 23

5.1.2 Phrase Type . 23

5.1.3 Voice . 24

5.1.4 Named Entities in Constituents 24

5.2 Tree-Based Features . 25

5.2.1 Path . 25

5.2.2 Position . 25

5.2.3 Sub-categorization . 26

6 Classifiers 28

6.1 Rocchio . 28

6.2 Naive Bayes . 29

6.3 kNN . 30

6.4 Linear Perceptron . 32

6.5 Multi Layer Perceptron . 33

7 Experiments 34

7.1 Setup . 34

7.2 Prediction of the Predicates . 35

7.3 Prediction of the Arguments . 37

8 Conclusion 42

Reference 43

List of Tables

2.1 List of Part-of-Speech Tagset for The Penn Treebank. 5

3.1 Details of the parsed JSON data format. 14

4.1 Color schema for Semantic Role Labels. 20

4.2 Web Application Paths for AngularJS. 22

7.1 Setup Files with Detailed Predicate Information. 34

7.2 Number of class labels in Turkish PropBank. 34

7.3 Result of first experiment to detect predicates. 36

7.4 Result of second experiment to detect predicates : Reverse all of
the leaf nodes. 37

7.5 Result of third experiment to detect predicates : Added examina-
tion of multiple predicates. 37

7.6 Argument Prediction Results for different window sizes. 38

7.7 Confusion Matrix for the Naive Bayes classifier executed with win-
dow size 3. 40

7.8 Confusion Matrix for the Linear Perceptron classifier executed with
window size 3. 41

viii

List of Figures

2.1 Sample text with POS tags - before the correction step. 6

2.2 Sample text with POS tags - after the correction step. 6

2.3 Pruning. 10

3.1 An example HTML code for the list items with verb and sense ID. 12

3.2 Sentences with labeled arguments in Rochester Data [5]. 12

3.3 Temporary data in JSON format for the parsed data. 13

3.4 A screenshot of the PropBank Predicate Editor Tool. 15

3.5 Selecting Predicates in PropBank Predicate Editor Tool. 15

3.6 A sample screenshot for the PropBank Argument Editor Tool. . . 16

3.7 Selecting Arguments in PropBank Argument Editor Tool. 17

4.1 Homepage - List of Predicates found in Turkish PropBank. 19

4.2 Page - Predicate Details. 19

4.3 Page - Show Tree in Predicate Details. 21

5.1 Lexicalization of phrase type features. 24

5.2 Sample tree for the path feature. 25

5.3 Illustration of the position feature. 26

5.4 Subcategorization example for the predicate open. 27

6.1 Rochhio Classification [9]. 29

7.1 Sample feature data extracted from Turkish PropBank. 39

ix

List of Abbreviations

NLP Natural Language Processing

PropBank The Proposition Bank

SL Semantic Role

SRL Semantic Role Labeling

ARG Argument

NE Named Entity

NER Named Entity Recognition

POS Part of Speech

GUI Graphical User Interface

JSON JavaScript Object Notation

HTML HyperText Markup Language

REST Representational State Transfer

ISO The International Organization for Standardization

ID3 Iterative Dichotomiser 3

kNN k Nearest Neigbors

MLP Multi Layer Perceptron

ANN Artificial Neural Network

LDA Linear Discriminant Analysis

QDA Quadratic Discriminant Analysis

x

Chapter 1

Introduction

Natural Language Processing refers to the capability of understanding nat-

ural human languages, like Turkish and English, using computer systems. To

make this possible, combination of linguistics and current Machine Learning sys-

tems is used. This is simply a process like diagramming sentences in primary

school. Accordingly, there are several stages defined to realize this purpose in-

cluding tokenization, parsing, stemming, part-of-speech tagging, determination

of the language and semantic relationships.

PropBank is a corpus of text annotated with the arguments of each predicate.

Arguments have different semantic relations with each predicate and all of the

arguments are grouped with their semantic roles. PropBank also includes the

related information for different senses of predicates. It is so important because

predicates generally requires different type of arguments due to their senses in

the sentence. For this reason, each meaning of the predicate is labeled with a

sense ID. For each senses of predicates, there are also individual frameset files

that represents the expected structure of arguments.

Semantic Role is defined as a connection between a component and a participant

in a sentence. There are different type of semantic roles like Agent, Patient,

Instrument.

1

Semantic Role Labeling is defined as a computational identification task that

determines the semantic roles of each argument for the each predicate found

in a sentence. In SRL, automated algorithms assign labels to constituents with

semantic roles. In the current approaches, supervised machine learning algorithms

are widely used to accomplish this task. This requires large amounts of manually

generated data for training and test cases. FrameNet and PropBank resources

also have a common usage in the different stages of this task.

Although common methods are used in studies for different languages, differences

in the structures of natural human languages require that all these studies be

performed separately for each language.

In this study, we present the study about Semantic Role Labeling for Turkish

language. In the beginning, we contributed the manual annotation of the required

PropBank dataset for Turkish language [1] which is used to train and test our

SRL study. Then, we tried to measure the success of these methods for Turkish

language by training and testing our system by using different types of features

and classifiers. Additionally, with the automated parsing of English PropBank

data, we prepared a website which includes Turkish and English representations

of the same sentences with the semantically annotated labels.

The key contributions of the study are shown in the order in which they are

located throughout the thesis.

1. Contribution for the manual annotation of a Turkish PropBank [1] data

which consist of the translation of English Penn-TreeBank.

2. Parsing of English PropBank data with semantic roles which is used to test

related works.

3. Development of Turkish PropBank website that shows the English and

Turkish representations of sentences with semantic role labels and anno-

tated tree structures.

2

The parts of the thesis are located as follows.

In Chapter 2, we introduce the general concepts required to know for semantic

role labeling. You can also find the detailed information about the Penn Treebank

Project, PropBank and Semantic Role Labeling in this section.

In Chapter 3, we provide detailed information about the Automatic Semantic

Role Labeling work in Turkish language, which is the main aim of this study. As

we know, this is the first Automatic SRL study for the Turkish.

In Chapter 4, we present the details of our study on Turkish PropBank Website

which is available in public.

In Chapter 5, we give explanations of the features which is used to assign related

semantic role labels to the constituents. They are placed under two sub-sections

according to their word or tree-based structure.

In Chapter 6, we present the classifiers used to automatic prediction of semantic

role labels along with short summaries.

In Chapter 7, we detail the result of our experiments with discussions.

We conclude our work in Chapter 8.

3

Chapter 2

Literature Review

2.1 Penn Treebank Project

With the rapid development of technology, research has been accelerated for the

understanding of human language by computers. Penn Treebank Project [2] pro-

vides the required annotated corpus that the researchers need to study on areas

like natural language processing, recognition of speech, integrated spoken lan-

guage technologies, and theoretical linguistics. During the development of text

and speech understanding systems, automatic extraction of language information

from a very large corpora plays a significant role.

The corpus of the Penn Treebank involves over 4.5 million American English

words. In the early years of the project, most of the skeletal syntactic struc-

ture and Part-of-speech (POS) data is annotated for the corpus. This corpus

data is available and can be accessible for the members of the Linguistic Data

Consortium.

2.1.1 Tagset for Part-of-Speech

The Penn Treebank consist of 48 tags in all. While 36 tags are reserved for the

POS tags, 12 additional tags refers to the currency and punctuation symbols. A

comprehensive explanation of the tagset rules can be found in Santorini (1990) [3].

4

Table 2.1: List of Part-of-Speech Tagset for The Penn Treebank.

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FF Foreign word
IN Preposition/subordinating

participle conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol (mathematical or

scientific)
TO To

UH Interjection
VB Verb, base form
VBD Verb, past tense

VBG
Verb, gerund/present
participle

VBN Verb, past participle

VBP
Verb, non-3rd ps. sing.
present

VBZ
Verb, 3rd ps. sing.
present

WDT wh-determiner
WP wh-pronoun
WP$ Possessive wh-pronoun
WRB wh-adverb
Pound sign
$ Dollar sign

.
Sentence-final punctua-
tion

, Comma
: Colon, semi-colon
(Left bracket character
) Right bracket character
′′ Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Note that one of the best known American English corpuses is Brown University

Standard Corpus. A list of tagset for Penn Treebank is shown in Table 2.1 [2].

2.1.2 Tagging Process for Part-of-Speech

Penn Treebank’s tagged version is created in two phases [2].

In the first phase, an automated stage is used to assign POS tags. In the earlier

times of Penn Treebank Project, a stochastic algorithm which uses an altered

tagset variant of the Brown Corpus predicts POS tagsets with 3-5 percent error

5

Battle-tested/NNP industrial/JJ managers/NNS here/RB always/RB

buck/VB up/IN nervous/JJ newcomers/NNS with/IN the/DT tale/NN

of/IN the/DT first/JJ of/IN their/PP$ countrymen/NNS to/TO

visit/VB Mexico/NNP ,/, a/DT boatload/NN of/IN samurai/NNS

warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB./.

/From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN

with/IN extraordinary/JJ qualities/NNS to/TO succeed/VB in/IN

Mexico/NNP ,/, / says/VBZ Kimihide/NNP Takimura/NNP ,/,

president/NN of/IN Mitsui/NNS group/NN s/POS Kensetsu/NNP

Engineering/NNP Inc./NNP unit/NN ./.

Figure 2.1: Sample text with POS tags - before the correction step.

Battle-tested/NNP*/JJ industrial/JJ managers/NNS here/RB always/RB

buck/VB*/VBP up/IN*/RP nervous/JJ newcomers/NNS with/IN the/DT

tale/NN of/IN the/DT first/JJ of/IN their/PP$ countrymen/NNS to/TO

visit/VB Mexico/NNP ,/, a/DT boatload/NN of/IN samurai/NNS*/FW

warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB./.

/From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN

with/IN extraordinary/JJ qualities/NNS to/TO succeed/VB in/IN

Mexico/NNP ,/, / says/VBZ Kimihide/NNP Takimura/NNP ,/,

president/NN of/IN Mitsui/NNS*/NNP group/NN s/POS Kensetsu/NNP

Engineering/NNP Inc./NNP unit/NN ./.

Figure 2.2: Sample text with POS tags - after the correction step.

rate. More recently, a cascade of stochastic and Penn Treebank tagset based rule-

driven taggers realized the automatic POS assignments with error rate 2-6%. In

Figure 2.1, a sample text with the automatically assigned POS tagsets before

correction is presented.

Then, the results of the automatic POS tagging phase is corrected by the anno-

tators. Figure 2.2 shows the sample text with POS tags after manuel correction

phase.

2.2 Semantic Role Labeling

Automatic, precise, and wide-inclusion methods that can explain normally hap-

pening content with semantic structure can assume a key job in NLP applications,

6

for example, data extraction, question replying, and rundown. One of the meth-

ods to generate such semantic structure is Semantic Role Labeling.

For each predicate found in a sentence, a semantic role labeler should recognize

and label its semantic arguments. This method involves recognition of these

semantic arguments for the word groups and assignment of particular labels to

them.

2.2.1 Calibrating Features

Development of the statistical semantic analyzers has increased with the availabil-

ity of semantically annotated corpora like Proposition Banks and FrameNet. In

these systems, the syntactic components are annotated with semantic role labels

mainly using syntactic information features for the syntactic parse tree. Xue and

Palmer, 2004 [4], obtained a fairly significant improvements in their SRL tasks

using some further features.

2.2.2 The PropBank and Semantic Role Labeling

To take the generalizations which are not sufficiently submitted in the treebank

parse trees, a semantic annotation layer is added to the TreeBank II by the

PropBank [4]. As an example, the following sentences are handled:

(1) John broke the window into a million pieces yesterday.

(2) The window broke into a million pieces yesterday.

In sentences (1) and (2), the window is in the same role related with the verb break

although they are not in the same syntactic positions. In PropBank annotations,

there are a set of fixed roles with separated labels for each verb. These roles are

represented with integers in order starting with 0 and a prefix with ARG. For the

break predicate, an example for the numbered arguments is given as following.

7

ARG0 the breaker

ARG1 thing broken

ARG2 instrument

ARG3 pieces

Note that numbers used to label the semantic roles is specific to the related verb

and same numbers can be used for different predicates. An argument that has

the same number for its label, e.g. ARG1, may have different semantic roles for

different verbs. The numbered elements are known as core elements for the verb.

Besides the core elements, there are also some elements which have weaker relation

with the verb. These elements have labels starting with ARGM prefix and then

including a tag which shows the type of adjunct.

In the above sentences (1) and (2), yesterday does not have a direct relation with

the verb break and it covers a broad range of verbs. For that reason, ARGM label

with a -TMP secondary tag which shows the temporal state of the constituent

will be used for its role in the sentence. In particular, secondary tags are a global

classification of adjunct-like components. In the Proposition Bank, 12 secondary

tags are found for ARGMs: DIR, LOC, MNR, TMP, REC, EXT, PRD, PRP,

DIS, ADV, MOD, NEG2.

Some verbs require different sets of arguments for each meaning. Differentiating

these senses is the first step for exact detection of the semantic roles of their

arguments. Let’s examine the verb “pass” as an example. When it is used in the

meaning of “vote and pass”, it takes three arguments, legislative body, bill and

law. However, if it means “overtake”, it takes only two arguments, entity moving

forward and a falling entity. Each perception of this verb is likely to occur in a

number of different frame sub-categories and is therefore referred to as a frameset.

8

2.2.3 Semantic Role Tagging

Depending on what kind of information you want to learn automatically, there are

various methods for the semantic role labeling task on the basis of the PropBank

annotation. Xue and Palmer [4] attempt to estimate the basic arguments of

ARG[0-5] and the secondary tags for ARGMs. For each predicate found in the

sentence, they determine the core arguments ARG[0-5], and the secondary tags

for ARGMs. Note that semantic argument means both of numbered and ARGM

arguments. They label the elements which have not a semantic relation with the

given verb as NULL.

2.2.4 System Architecture

Although this could be deemed a multi-category classification problem, there are

at all events two reasons why such a fundamental methodology does not function

properly. The first is that the majority of components in a syntactic tree for

a certain verb are not their semantical arguments. Existing machine learning

algorithms will not make any effect on positive samples drowned by NULL tagged

negative samples. The second and more obvious reason is that the information

which succeeds in the seperation of arguments from NULL values does not show

the same success when distinguishing different types of arguments. Xue and

Palmer [4] examine the following 3-stage architecture based on these thoughts:

Step 1: By the usage of a basic algorithm, components that do not have a clear

semantic relationship with the predicate are filtered and training time is reduced.

Step 2: Then, the candidates obtained in the first step should be classified

according to whether they are semantic arguments or not.

Step 3: In the last step, the components selected as arguments should be clas-

sified into one of the existing classes or NULL. This classification task is accom-

plished by the use of various category classifiers.

9

2.2.5 Pruning Algorithm

In the first step, Pruning Algorithm can be used as a simple algorithm to filter out

useless components due to weak relation with the predicate. It is also presented

in Figure 2.3.

Phase 1: Firstly, in a syntactic dependency tree, the predicate is determined

as the current node. Then, all of the components found in the same level with

the predicate are collected until these nodes are coordinated with the predicate.

When a sibling is a PP, gather its instant children as well.

Phase 2: The syntactic head of the current node is identified as the new current

node and this process is repeated until it reaches the root of the tree.

S

S

NP

Strikes
and

mismanagement

VP

VBD

were

VP

VBD

cited

CC

and

S

NP

Premier
Ryzhkov

VP

VBD

warned

PP

of tough measures

Figure 2.3: Pruning.

10

Chapter 3

PropBank Data

3.1 Parse of English PropBank Data

For NLP studies, we have PropBank data in Turkish which consists of the Turk-

ish translations of the original PropBank sentences, which are written in English.

We thought that it would be more useful to compare the studies conducted in

Turkish language with the studies conducted in the original language of Prop-

Bank. Therefore, we extracted the arguments marked in the English language

and translated them into the format of the PropBank data we use in the Turkish

language. Note that the data was converted to JSON format temporarily. Then,

it was converted to the format of PropBank data in Turkish with the study of

another researcher. In this study, we used the Rochester Data [5] as a source to

extract the marked arguments in the original language.

In the main page of the resource data [5], all of the verbs are given as separated list

items and each list item has a link to the related page which contains the labeled

sentences for the selected verb and sense ID. Within each list item with li HTML

tag, there is a link which contains the dot separated verb and its related sense ID,

in a notation like verb.senseID, between the <a> and HTML tags. The

link which refers to the related verb and sense ID page is presented with href

attribute. An example HTML code for the main page is given in Figure 3.1.

11

Figure 3.1: An example HTML code for the list items with verb and sense ID.

After this, the page which contains the example sentences with labeled words is

called as detail page. When the parser is executed, it walks through the all of the

detail pages for each verb and sense, and parse all of the labeled arguments. The

dot separated verb and sense ID is given between <h1> and </h1> HTML tags in

detail pages. All sentences are presented between and HTML tags,

so each sentence is a list item of the unordered list. In each sentence, the labeled

constituents are enclosed in square brackets. The name of the related argument

is presented with sub tag, and the labeled item is placed between and

 tags. An example representation of the detail pages are given in Figure

3.2.

Figure 3.2: Sentences with labeled arguments in Rochester Data [5].

12

Figure 3.3: Temporary data in JSON format for the parsed data.

After the parsing process is completed for each verb and sense, a text file is created

under the target data folder named with the related verb and sense id. Each data

13

Table 3.1: Details of the parsed JSON data format.

rawText Raw text found in the resource data
text Parsed text which is purified from tags, etc.
arguments JSON array that includes argument data
arguments → type Type of the argument like ARG0, ARG1, ARGM-MOD,

etc.
arguments → value Word(s) which is labeled with argument type

file contains a JSON array, and each item in the array consists from the data

for a sentence. In these items, the raw and parsed sentence data is stored. An

example representation of the parsed data is given in Figure 3.3 and the details

of the related data keys are given in Table 3.1.

Finally, parsed data is converted into the type of the Turkish PropBank data by

another researcher for the comparisons and future usages.

3.2 Assignment of Predicate and Arguments in Turkish PropBank

As described in the previous chapters, previous works on other languages were

realized using supervised machine learning algorithms. As with other studies,

we have used supervised computer learning in the research. Therefore, we need

the previously prepared PropBank dataset for Turkish language to train and test

the system. To achieve this purpose and support similar NLP works for Turkish

language, we started to prepare a proposition bank for Turkish [1]. For this

purpose, we use an homemade developed NLP toolkit which makes possible to

realize lots of useful NLP tasks for Turkish PropBank. In this thesis, only the

predicate and argument editor parts of this tool is explained.

3.2.1 Selection of Predicates in Turkish PropBank Toolkit

First of all, we started with annotating the predicate of each sentences using

Propbank Predicate Editor of this NLP toolkit. In Figure 3.4, a sample screenshot

is given for the PropBank Predicate Editor. In this tool, it is possible to assign

14

Figure 3.4: A screenshot of the PropBank Predicate Editor Tool.

predicate label to the related item by clicking over it and selecting as a predicate,

as shown in Figure 3.5.

Figure 3.5: Selecting Predicates in PropBank Predicate Editor Tool.

15

Figure 3.6: A sample screenshot for the PropBank Argument Editor Tool.

3.2.2 Selection of Arguments in Turkish PropBank Toolkit

After the selection of predicates found in sentences, selection of the arguments

related with the each found predicate is completed using PropBank Argument

Editor of the NLP Toolkit. A screenshot of the PropBank Argument Editor is

presented in Figure 3.6. In this tool, when an item is selected, a popup window

is opened with the possible argument list which allows to assign labels to the

constituents. An example for the argument selection windows is given in Figure

3.7.

16

Figure 3.7: Selecting Arguments in PropBank Argument Editor Tool.

17

Chapter 4

PropBank Website

In the study, a website is prepared to present the PropBank data with the an-

notated sentences in public. PropBank website contains English sentences and

their Turkish translations. All of the annotated predicates and their arguments

are also presented with PropBank tree for both of the languages. Thus, it is so

useful to see and compare PropBank for these languages.

PropBank website is publicly available [6] for the researchers who wants to work

on Turkish PropBank data.

4.1 Preparation of the PropBank Website

In Turkish PropBank website [6], sentences have annotated predicates and argu-

ments with their tree structured in both Turkish and English. Turkish data is

generated with manually using the NLP toolking by human taggers, as written in

Section 3.2. For the original sentences in English PropBank, all of the predicates

and their arguments are parsed from the publicly accessable Rochester Data [5]

as written in Section 3.1.

In the home page of the PropBank website, all of the defined Turkish predicates

are listed line by line. The number located after each predicate and among the

brackets shows the number of senses for the given predicate. A search box is also

18

Figure 4.1: Homepage - List of Predicates found in Turkish PropBank.

available at the top of the page to filter the predicates matched with the entered

text. A screenshot of the homepage with the predicates are given in Figure 4.1.

Each of the listed predicates has a link to the details page which shows the details

of the selected predicate. At the details page, the name of the selected predicate

is located at the top of the page with an orange background. In Figure 4.2, a

screenshot is available for the predicate details page.

Figure 4.2: Page - Predicate Details.

19

All of the available sense are available in the details page related with the predicate

queried predicate and each of the sense is separated with a horizontal grey line.

For each sense, there are two light grey boxes located one under the other.

The first box gives information about the predicate and current sense with the

Turkish definition of it, and the sense id is presented at the right upper corner of

the box with a darker grey background.

In the second box of the sense, all of the available sentences are given with both

in Turkish and in English. Each sentences found in the box for the related sense

id is numbered starting with 1 and each number is located at the left side of the

sentences. Even if the sentences are shown in different languages, they are shown

with the same number because they have the same meaning. An ISO two-letter

language code shows the language of the sentence. The name of the sentence

data file is also presented at the right side of each sentence within a darker grey

box. In each sentence, each of the assigned predicates and their arguments are

marked with a subtext like ARG0, ARG1, PREDICATE, etc., and also each type

of argument has a background in a different color. Current schema of available

colors for each argument is given in Table 4.1.

Using the “Show Tree” link found under the sentences, it is possible to show the

tree structure with the semantic role labels of the relevant sentence for both of

the languages, Turkish and English. When a tree view is opened with this link,

Table 4.1: Color schema for Semantic Role Labels.

ARG0
ARG1
ARG2
ARG3
ARG4
ARG5
ARGMADV
ARGMCAU
PREDICATE

ARGMDIR
ARGMDIS
ARGMEXT
ARGMLOC
ARGMMNR
ARGMTMP
ARGMNONE
ARGMPNC

20

Figure 4.3: Page - Show Tree in Predicate Details.

the text will be “Hide Tree” which hides the open tree view. Figure 4.3 shows a

tree view for the selected sentence.

4.2 Technologies Used in the Study

A Java application is developed using Spring Framework to prepare and provide

data model on the backend side. Data model is prepared and provided via REST-

ful APIs and content type of the transferred data is JSON. The developed Java

application works using a Tomcat Application Server.

A web application is developed using AngularJS Framework and CSS to present

data model using a web browser. The AngularJS application calls the RESTful

APIs to get data provided by the Java application and prepares the HTML view.

CSS was used to get a good view on frontend side.

The frontend code is located under “src→main→ resources→ static” package

path. Table 4.2 shows the paths for AngularJS application.

AngularJS codes are localed under “static→ js” package path. “app.js” file is

the main AngularJS file that initializes the frontend application. This file also

includes the route provider that routes requested path to the related controller.

21

Table 4.2: Web Application Paths for AngularJS.

Path Explanation
static→ css CSS code files
static→ js Main AngularJS codes in Javascript
static→ libs Used libraries like AngularJS
static→ views HTML views for AngularJS

22

Chapter 5

Features

In this section, all of the feature used to assign semantic role labels are explained

in two sections as “Word-Based Features” and “Tree-Based Features”.

5.1 Word-Based Features

5.1.1 Predicate

The predicate of the sentence. Note that all of the arguments are being classified

according to this predicate.

Example: The lawyers [went PREDICATE] to work.

5.1.2 Phrase Type

Syntactic category (NP, PP, etc.) of the classified component.

Since different syntax categories tend to be different types of arguments, the

phrase type of the classified component is a useful feature, but when such predi-

cate is known, such trends are even stronger. A sample sentence with the phrase

types of the components is given in Figure 5.1. The phrase type can be assigned

to any number of argument tags in the SBAR itself, but the argument tag is more

precise when the predicate is “ask”.

23

S

NP

We

VP

VBD

got

NP/arg0

NP

calls

PP

from big
block houses

VP

VBG

asking

NP/arg2

us

SBAR/arg1

IN

if

S

we want to
make bids on

anything

Figure 5.1: Lexicalization of phrase type features.

5.1.3 Voice

The recognition of active and passive verbs is very important to predict semantic

roles because active verbs have a correlation of semantic role with the subjects of

passive verbs. For example, a subject NP in an active sentence as ARG0 may be

more probable to being ARG1 in a passive sentence.

Note that this feature is common in parse tree and it is shared by all of the

components.

5.1.4 Named Entities in Constituents

There are infinite number of proper names for the named entities, especially for

the people, organizations and locations. It is possible to identify them using

named entity recognizer for the instances of classes Person, Organization,

Location, Percent, Money, Time, and Date [7].

Note that named entity recognizer uses the entity labels as features to identify

words found in a sentence.

24

5.2 Tree-Based Features

5.2.1 Path

The shortest path from categorized element to the predicate.

S

NP

He

VP

VB

ate

NP

DT

some

NN

pancakes

Figure 5.2: Sample tree for the path feature.

In the given sample Figure 5.2, the predicate of the sentence is “ate” and the

path from predicate to the argument “NN” “pancakes” is VB ↑ VP ↓ NP ↓ NN.

Note that ↑ indicates upward movement and ↓ indicates downward movement in

the parse tree.

According to several researchers (Palmer et al.) [4], path does not perform the

argument classification job well. One of the reasons the path is ineffective is

that children attached to a parse tree at the same level can not be distinguished.

Despite all this, the path is very beneficial as it represents the relation between

predicate and many sorts of grammatical functions.

5.2.2 Position

This feature specifies the relative location (before or after) of the classified com-

ponent according to the predicate. It enables to overcome errors as a result of

incorrect parsing. Gildea and Jurafsky [8] also offered position feature to see

25

how much can be accomplished without tree parsing. Subjects are usually found

before verbs, but after objects. For this reason, the relation of this property to

the grammatical function is expected to be high. An illustration of the position

feature is given in Figure 5.3.

S

NP

The lawyers
before

VP

VBD

went
[predicate]

PP

to
after

NP

work
after

Figure 5.3: Illustration of the position feature.

5.2.3 Sub-categorization

Subcategorization feature is a phase-structure rule which expands the parent node

of the predicate in the parse tree. For the given sentence in Figure 5.4 with the

predicate open [8], the value of the feature is “VP → VB NP”. It is important to

make it clear that this feature is also common in parse tree and it is shared by all

of the components. For this reason, this feature does not differentiate between

components in different syntactic positions.

26

S

NP

PRP

He

VP

VB

opened

NP

DT

the

NN

door

Figure 5.4: Subcategorization example for the predicate open.

27

Chapter 6

Classifiers

In this section, all of the classifiers used to assign semantic role labels are explained

in general.

6.1 Rocchio

By using the centroids, Rocchio constitutes a simple representative for each class.

To compute the centroid of each class:

−→µ (c) =
1

| Dc |
∑
d∈Dc

−→ν (d) (6.1)

where:

Dc : is the set of all documents that belong to class c

v(d) : is the vector space representation of d

In Rocchio classification [10] [9], the set of points with equal distance from the two

distances is the boundary between two classes. To arrange a new item identify

which centroid is nearest to and appoint it to the relating class ci. For example,

in Figure 6.1, |a1| = |a2|, |b1| = |b2|, and |c1| = |c2|.

28

Figure 6.1: Rochhio Classification [9].

6.2 Naive Bayes

Naive Bayes is a predictive and descriptive classification algorithm that analyzes

the relationship between the target variable and independent variables. Naive

Bayes does not work with continuous data. Therefore, dependent or independent

variables that containing continuous values should be made categorical. [11]

Naive Bayes is a probabilistic learning method based on Bayes rule which is given

at Equation 6.2. [12]

P (c | d) =
P (d | c)P (c)

P (d)
(6.2)

29

where:

d : is a document

c : is a class

cmap = argmaxc∈CP (c | d) = argmaxc∈CP (c)
∏

1≤k≤nd

P (tk | c) (6.3)

where:

map : maximum a posteriori (most likely class)

d : is a document

c : is a class

P (tk | c) : is the conditional probability of term tk occurring in a document of

class c

P (c) : is the prior probability of a document occurring in class c

nd : is the number of such tokens in d that are part of the vocabulary

used for classification

The calculation of this formula according to probability values is sometimes com-

plicated. For this purpose, it is recommended that the values to be used are taken

as natural frequencies and not as a percentage of frequency.

When the Naive Bayes algorithm is used in the textual data, the textual data

is first categorized manually and then the algorithm can learn from this training

data and label the next unlabeled data. [11]

6.3 kNN

The kNN algorithm is a classification method. With this method, the sample

data point class and the nearest neighbor class are determined according to the

30

k value. This method is the simple, older, most-known and effective pattern

classification method. Because of these advantages, kNN algorithm is one of the

most common machine learning algorithm. [13] [14] [15] [16] [17]

Object classification is a significant research topic. It is applied in data mining,

statistics, artificial intelligence, cognitive psychology, medicine, pattern recogni-

tion and a wide range of fields. [13]

kNN algorithm is mostly used in classification applications because of the follow-

ing advantages:

1. easy to apply,

2. does not require a training,

3. parallel implementation availability,

4. traceable,

5. noisy training set resistance,

6. easy to adapt to local data,

Even though the advantages, kNN algorithm has some disadvantages listed below:

1. requires a large amount of memory space,

2. the increase in processing load and cost as the data set and attribute size

increase significantly,

3. performance is influenced by parameters and properties like distance mea-

sure, number of neighbor and attributes. [13] [14] [18]

31

6.4 Linear Perceptron

It is assumed that there are p of ~x vectors which have real-valued numerical input

features. In this case, Y is a binary class of the response. There are only two

output categories as 1 and +1. A linear separator divides these two categories in

the feature space. The classification can be defined as:

When p = 2, the space is separated with a line,

When p = 3, the space is separated with a plane,

Generally, the dimension of the hyper plane is (p - 1) in a space with p-dimension.

A vector ~w which is perpendicular to the orientation of a plane can be used to

define the orientation of the plane.

There are infinite number of parallel planes have the same orientation. The closest

plane to the origin is selected. The following formula can be expressed to define

each the class of the points on each side of the plane:

ŷ(~x, b, ~w) = sgn b+ ~x · ~w (6.4)

where:

~x · ~w =

p∑
j=1

xjwj

sgn b =


+1 If its argument is > 0

0 If its argument is = 0

−1 If its argument is < 0

~w is a unit vector and ~x · ~w is the projection of ~x on that direction. [19]

32

6.5 Multi Layer Perceptron

Multi Layer Perceptrons are developed upon the failure of Single Layer Percep-

trons to solve non-linear problems, consist of an input layer in which information

is entered, one or more hidden layers and an output layer. The MLP has tran-

sitions between the layers, called forward and back propagation. In the forward

propagation phase, the output and error value of the network is calculated. In

the back propagation phase, the inter-layer link weight values are updated to

minimize the calculated error value. [20]

33

Chapter 7

Experiments

7.1 Setup

There were a total of 9561 sentences in Turkish PropBank where the experiment

was conducted. 3248 of the sentence files were excluded from the experiment

since the predicates of these sentences are unknown. In experiments, only 6313 of

9561 files were considered because most of the features for semantic role labeling

are related with the predicate of the sentence. Table 7.1 and Table 7.2 presents

the details of predicates and class labels found in Turkish PropBank respectively.

Table 7.1: Setup Files with Detailed Predicate Information.
of Total Files in Turkish PropBank 9561
of Total Files with at least one Predicate Assigned 6313
of Total Files with No Predicate Assigned 3248
of Total Files with Multiple Predicates 307
of All Predicates found in Files with Multiple Predicates 638
of Files Considered in Experiment 6313

Table 7.2: Number of class labels in Turkish PropBank.

NONE 9305
ARG0 8094
ARG1 13377
ARG2 851
ARG3 87

ARG4 117
ARGMPNC 702
ARGMEXT 1210
ARGMLOC 898
ARGMCAU 204

ARGMTMP 1776
ARGMADV 198
ARGMMNR 1048
ARGMDIR 58
ARGMDIS 735

34

7.2 Prediction of the Predicates

Since the predicate must be known for the next stages, the experiment was started

by trying to estimate the predicates. First of all, all of the leaf nodes in Turkish

representation of the sentence were checked if the node has a “VERB” root POS

or POS tag. When a match was found, the node was accepted as a predicate. In

the basic comparison with the manually annotated data, the result was the like

in Table 7.3 and accuracy was 80.9%. For the results of each stage, accuracy was

calculated using the Equation 7.1.

Accuracy =
CP

AP +WP
∗ 100 (7.1)

where:

CP : # of Correct Predictions

AP : # of All Predicates found in Files

WP : # of Wrong Predictions

Additionally, precision and recall values were calculated using the Equation 7.2.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(7.2)

where:

TP : True Positives

FP : False Positives

FN : False Negatives

35

Table 7.3: Result of first experiment to detect predicates.
of All Files Considered 6313
of Files with No Predictions 122
of All Predicates found in Files 6644
of Correct Predictions 5741
of Wrong Predictions 450
Accuracy 80.9%
Precision 0.93
Recall 0.86

When the results were examined, there were some words which the root of the

word is verb but it does not a predicate of the sentence. In Turkish language,

the predicate is usually located in the last part of the sentence. In the example

sentence “Görünüşe göre komisyon gerçekten bu ideale [inanmadı PREDICATE].”,

although the predicate of the sentence is “inanmadı”, “Görünüşe göre” was de-

termined as predicate in the result of the first experiment. The reason for this

error was that the process was done by examining the morphological labels of the

words. Note that the verbs in the roots of the words can be misunderstood. For

the given example, the root of the “Görünüşe” word is “Görün” refers to the verb

“Görünmek” in Turkish PropBank data.

In Turkish language, the predicate is usually located in the last part of the sen-

tence and this was the reason why the predicate was determined wrongly. For

this reason, all of the leaf nodes in Turkish representation of the sentences were

reversed and the experiment was repeated. As can be seen from the results of the

experiment in Table 7.4, the accuracy of the experiment was increased to 92.3%.

When the results were examined, the number of correct predictions are increasing

while the number of incorrect predictions are decreasing.

If there is more than one activity in a sentence, it may be possible to have more

than one predicate. This was also the reason why there were 6644 predicates,

although there were only 6313 sentences in the setup data. For this reason, even

if a predicate is found, the examination process should continue. After this change

was applied, the accuracy was increased to 95.7%, as shown in Table 7.5. When

36

Table 7.4: Result of second experiment to detect predicates : Reverse all of the
leaf nodes.

of All Files Considered 6313
of Files with No Predictions 122
of All Predicates found in Files 6644
of Correct Predictions 6161
of Wrong Predictions 29
Accuracy 92.3%
Precision 0.99
Recall 0.93

the presence of multiple predicates in a sentence was considered, the number of

correct predictions was increased from 6161 to 6396, but only 8 increases seen in

the number of incorrect predictions.

Table 7.5: Result of third experiment to detect predicates : Added examination
of multiple predicates.

of All Files Considered 6313
of Files with No Predictions 122
of All Predicates found in Files 6644
of Correct Predictions 6396
of Wrong Predictions 37
Accuracy 95.7%
Precision 0.99
Recall 0.96

7.3 Prediction of the Arguments

Different type of features were used in the experiment. Firstly, all features were

developed in the toolkit to work on the Turkish language. In all phases of the

experiment, all of the features were used to run different classifiers. All of the

tests were executed using stratified k-Fold cross validation technique. Execution

results with 3 different window sizes were presented in Table 7.6. Note that it is

not meaningful to increase window size too much, because when the size of the

window was increased, it becomes worse for the sentences with only a few words.

First of all, we started our experiments with using window size as 1 to generate

instances. In this stage, the accuracy of the test was 36.1% for Naive Bayes

37

Table 7.6: Argument Prediction Results for different window sizes.

Classifier
Accuracy (for window size: n)
n = 1 n = 2 n = 3

Rocchio 49.2 ±1.7 31.0 ±1.4 39.1 ±2.7
Naive Bayes 36.1 ±1.3 31.1 ±0.6 27.9 ±1.8

kNN 65.0 ±0.7 65.7 ±1.0 68.8 ±0.9
Linear Perceptron 73.1 ±1.6 75.6 ±1.8 77.7 ±2.4

Multi-Layer Perceptron 72.2 ±1.8 73.8 ±2.3 75.1 ±2.3

classifier, which is the worst result in this window size. Then, as we began to use

different classifiers, we found that the results improved. The best result is 73.1%

with Linear Perceptron classifier for window size 1.

In the second stage, we increased the window size to 2 and retried the experiment.

In this stage, Rocchio and Naive Bayes classifiers gave the worst results. We

gain the best result from Linear Perceptron classifier with 75.6% accuracy. The

performance of the Multi-Layer Perceptron was very close to the result of Linear

Perceptron.

In the third stage, the windows size of the instance generator was assigned to

3. When we retried the same experiment, the results were better and Linear

Perceptron classifier performed best with 77.7% accuracy.

In general, Linear Perceptron was the best performing classifier among the clas-

sifiers we used. Performance of the Multi-Layer Perceptron and kNN classifiers

were also close to the performance of Linear Perceptron. The results from the

Rocchio and Naive Bayes classifiers were not satisfactory at all. Even if the results

were not perfect, it was quite satisfactory.

For the window size 3, confusion matrices with average values are given in Table

7.7 and Table 7.8 for the best and worst performing classifiers.

An example representation of the generated feature data set is presented in Figure

7.1.

38

bulandırmıştır;VP -> VP VBZ;DT↑ NP↑ NP-SBJ↑ S↓ VP↓ VP↓ VBN↓
;NP;BEFORE;ACTIVE;NONE;PREDICATE

çalar;S -> NP-SBJ VP .;NNP↑ NP↑ VP↓ VBZ↓
;NP;BEFORE;ACTIVE;NONE;PREDICATE

başlamıştı;VP -> ADVP-TMP VP VBZ;DT↑ NP-SBJ↑ S↓ VP↓ VP↓ VBN↓
;NP-SBJ;BEFORE;ACTIVE;NONE;ARGMTMP

başlamıştı;VP -> ADVP-TMP VP VBZ;NN↑ NP-SBJ↑ S↓ VP↓ VP↓ VBN↓
;NP-SBJ;BEFORE;ACTIVE;NONE;PREDICATE

başlamıştı;VP -> ADVP-TMP VP VBZ;RB↑ ADVP-TMP↑ VP↓ VP↓ VBN↓
;ADVP-TMP;BEFORE;ACTIVE;NONE;NONE

sattı;S -> NP-SBJ NP-TMP VP;NNP↑ NP↑ PP-LOC↑ VP↓ VBD↓
;NP;BEFORE;ACTIVE;LOCATION;PREDICATE

artırdı;S -> NP-SBJ VP .;NNP↑ NP-SBJ↑ S↓ VP↓ VBD↓
;NP-SBJ;BEFORE;ACTIVE;ORGANIZATION;ARG0

artırdı;S -> NP-SBJ VP .;NNP↑ NP-SBJ↑ S↓ VP↓ VBD↓
;NP-SBJ;BEFORE;ACTIVE;ORGANIZATION;ARG0

artırdı;S -> NP-SBJ VP .;NNP↑ NP-SBJ↑ S↓ VP↓ VBD↓
;NP-SBJ;BEFORE;ACTIVE;ORGANIZATION;ARG1

Figure 7.1: Sample feature data extracted from Turkish PropBank.

39

T
ab

le
7.

7:
C

on
fu

si
on

M
at

ri
x

fo
r

th
e

N
ai

ve
B

ay
es

cl
as

si
fi
er

ex
ec

u
te

d
w

it
h

w
in

d
ow

si
ze

3.

NONE

ARG0

ARG1

ARG2

ARG3

ARG4

ARGMPNC

ARGMEXT

ARGMLOC

ARGMCAU

ARGMTMP

ARGMADV

ARGMMNR

ARGMDIR

ARGMDIS

N
O

N
E

11
.0

0.
4

0.
5

0.
3

0.
6

0.
1

1.
3

1.
7

0.
3

0.
2

1.
1

0.
2

0.
5

0.
6

0.
6

A
R

G
0

1.
6

21
.1

1.
6

0.
1

1.
9

0.
0

2.
0

3.
7

0.
7

3.
0

4.
5

3.
1

3.
1

1.
4

4.
9

A
R

G
1

5.
1

21
.0

25
.2

1.
8

12
.2

0.
4

8.
6

16
.2

6.
1

14
.3

25
.6

21
.6

18
.7

8.
5

37
.3

A
R

G
2

0.
0

0.
0

0.
0

1.
1

0.
8

0.
0

0.
1

0.
0

0.
0

0.
0

0.
3

1.
1

0.
0

0.
0

0.
2

A
R

G
3

0.
3

0.
0

0.
2

0.
1

6.
6

0.
0

0.
3

0.
9

0.
1

0.
0

0.
3

0.
1

0.
2

0.
2

0.
0

A
R

G
4

0.
8

0.
0

0.
0

0.
0

0.
1

0.
0

0.
0

0.
8

0.
0

0.
0

0.
0

0.
0

0.
0

1.
6

0.
1

A
R

G
M

P
N

C
0.

4
0.

2
0.

1
0.

1
0.

7
0.

1
5.

6
0.

5
0.

3
0.

2
0.

2
0.

5
0.

4
0.

2
0.

3

A
R

G
M

E
X

T
1.

0
0.

5
0.

3
0.

3
0.

3
0.

1
0.

9
10

.8
0.

9
0.

6
1.

4
0.

6
0.

6
1.

7
0.

8

A
R

G
M

L
O

C
0.

0
0.

5
0.

2
0.

0
0.

0
0.

0
0.

2
0.

3
1.

5
0.

0
0.

4
0.

1
0.

0
0.

2
0.

3

A
R

G
M

C
A

U
0.

2
0.

2
0.

0
0.

0
0.

1
0.

0
0.

0
0.

2
0.

1
1.

2
0.

1
0.

3
0.

1
0.

0
0.

2

A
R

G
M

T
M

P
0.

1
0.

3
0.

2
0.

0
0.

4
0.

1
0.

0
0.

9
0.

6
0.

5
6.

0
0.

7
0.

4
0.

6
1.

0

A
R

G
M

A
D

V
0.

0
0.

4
0.

2
0.

2
0.

3
0.

0
0.

3
0.

7
0.

0
0.

2
1.

2
12

.5
0.

9
1.

4
0.

9

A
R

G
M

M
N

R
0.

6
0.

1
0.

1
0.

1
0.

2
0.

1
0.

3
1.

3
0.

2
0.

9
0.

5
1.

0
6.

4
0.

7
1.

1

A
R

G
M

D
IR

0.
3

0.
7

0.
3

0.
0

0.
2

0.
1

0.
6

1.
0

0.
2

0.
5

0.
2

0.
8

0.
4

13
.8

0.
7

A
R

G
M

D
IS

2.
0

4.
0

5.
5

0.
2

1.
6

0.
0

4.
0

5.
6

0.
8

0.
0

13
.2

1.
8

2.
3

3.
1

9.
6

40

T
ab

le
7.

8:
C

on
fu

si
on

M
at

ri
x

fo
r

th
e

L
in

ea
r

P
er

ce
p
tr

on
cl

as
si

fi
er

ex
ec

u
te

d
w

it
h

w
in

d
ow

si
ze

3.

NONE

ARG0

ARG1

ARG2

ARG3

ARG4

ARGMPNC

ARGMEXT

ARGMLOC

ARGMCAU

ARGMTMP

ARGMADV

ARGMMNR

ARGMDIR

ARGMDIS

N
O

N
E

8.
3

0.
4

2.
7

0.
1

0.
2

0.
1

0.
1

0.
2

0.
0

0.
1

0.
1

0.
1

0.
3

0.
2

2.
9

A
R

G
0

0.
1

24
.0

13
.1

0.
0

0.
0

0.
0

0.
2

0.
3

0.
1

0.
0

0.
2

0.
1

0.
1

0.
0

3.
2

A
R

G
1

0.
2

4.
2

17
2.

7
0.

1
0.

2
0.

0
0.

3
0.

8
0.

0
0.

1
0.

8
1.

9
0.

2
1.

2
1.

0

A
R

G
2

0.
0

0.
1

0.
6

2.
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
0

0.
0

0.
1

A
R

G
3

0.
0

0.
3

0.
7

0.
1

5.
3

0.
0

0.
1

0.
0

0.
0

0.
0

0.
2

0.
2

0.
0

0.
0

1.
3

A
R

G
4

0.
1

0.
1

0.
1

0.
0

0.
1

2.
5

0.
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
4

0.
0

A
R

G
M

P
N

C
0.

1
0.

2
2.

1
0.

0
0.

2
0.

0
4.

3
0.

0
0.

0
0.

0
0.

0
0.

1
0.

1
0.

0
1.

1

A
R

G
M

E
X

T
0.

2
1.

0
4.

4
0.

0
0.

4
0.

0
0.

0
8.

9
0.

0
0.

0
0.

3
0.

2
0.

0
0.

6
1.

3

A
R

G
M

L
O

C
0.

0
0.

0
1.

1
0.

0
0.

0
0.

1
0.

1
0.

3
1.

1
0.

0
0.

0
0.

0
0.

1
0.

0
0.

1

A
R

G
M

C
A

U
0.

1
0.

3
0.

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

3
0.

0
0.

2
0.

0
0.

1
0.

0

A
R

G
M

T
M

P
0.

0
0.

2
3.

9
0.

0
0.

0
0.

0
0.

0
0.

4
0.

1
0.

3
3.

1
0.

5
0.

0
0.

0
0.

5

A
R

G
M

A
D

V
0.

3
0.

5
3.

5
0.

1
0.

1
0.

0
0.

0
0.

2
0.

0
0.

0
0.

1
9.

7
0.

1
0.

6
1.

0

A
R

G
M

M
N

R
0.

3
0.

1
3.

6
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

1
0.

5
5.

6
0.

2
1.

0

A
R

G
M

D
IR

0.
3

0.
5

2.
8

0.
0

0.
0

0.
2

0.
0

0.
3

0.
0

0.
0

0.
0

0.
5

0.
0

10
.4

0.
6

A
R

G
M

D
IS

0.
1

1.
7

2.
7

0.
0

0.
6

0.
0

0.
3

0.
6

0.
0

0.
0

0.
0

0.
2

0.
0

0.
4

43
.5

41

Chapter 8

Conclusion

In this study, we contributed to the generation of Turkish PropBank. First of all,

we started to annnotate Turkish translation of the original PropBank sentences

for semantic role labeling. Annotation of the PropBank data using manpower

was a time-consuming process in general.

Then, semantic role tags in the original language were parsed to add them into

Turkish PropBank. This process provided us to compare works and linguistic dif-

ferences of Turkish and English. Additionally, a PropBank website was developed

and made publicly available. Researchers working on Turkish PropBank started

to use this website.

Finally, we studied on some semantic role labeling features to make process au-

tomatized. Linguistics structure of the Turkish language was also considered

while implementing these features in NLP toolkit. Afterward, these features were

used to train and test a system.

When the results are analyzed, it can be said that errors in the manually marked

data have negative effects on the results. In the future, it may be possible to get

better results by correcting errors in this data. The use of different classifiers and

the addition of new features can further improve the results.

42

References

[1] K. Ak, O. T. Yıldız, V. Esgel, and C. Toprak, “Construction of a Turkish

proposition bank.” Turkish Journal of Electrical Engineering and Computer

Science, no. 26, pp. 570–581, 2018.

[2] M. A. Marcinkiewicz, M. P. Marcus, and B. Santorini, “Building a Large An-

notated Corpus of English: The Penn Treebank.” Computational linguistics,

vol. 19, no. 2, pp. 313–330, 1993.

[3] B. Santorini, “Part-of-Speech Tagging Guidelines for the Penn Treebank

Project.” Technical Report, MS-CIS-90-47, Department of Computer and

Information Science, University of Pennsylvania.

[4] N. Xue and M. Palmer, “Calibrating Features for Semantic Role Labeling.”

pp. 88–94, 2004.

[5] “Propbank Index in English.” https://www.cs.rochester.edu/∼gildea/

PropBank/, accessed: 2016-12-19.

[6] “Propbank Index in Turkish.” http://haydut.isikun.edu.tr/propbank-web/,

accessed: 2016-12-19.

[7] M. Palmer, D. Gildea, and N. Xue, Semantic Role Labeling. Morgan &

Claypool Publishers, pp. 39–42, 2011.

[8] D. Gildea and D. Jurafsky, “Automatic Labeling of Semantic Roles.” Com-

putational Linguistics, vol. 28, no. 3, pp. 245–288, 2002.

[9] “Rocchio classification.” https://nlp.stanford.edu/IR-book/html/

htmledition/rocchio-classification-1.html, accessed: 2019-08-14.

43

https://www.cs.rochester.edu/~gildea/PropBank/
https://www.cs.rochester.edu/~gildea/PropBank/
http://haydut.isikun.edu.tr/propbank-web/
https://nlp.stanford.edu/IR-book/html/htmledition/rocchio-classification-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/rocchio-classification-1.html

[10] “Text classification.” https://cs.uwaterloo.ca/∼mli/TextClassification.pdf,

accessed: 2019-08-14.

[11] A. C. Gülce, “Veri Madenciliğinde Apriori Algoritmasi ve Apriori Algorit-

masının Farklı Veri Kümelerinde Uygulanması.” 2010.

[12] D. Jurafsky, “Text Classification and Näıve Bayes.” Lecture slides, December

2015.

[13] E. Taşcı and A. Onan, “K-En Yakın Komşu Algoritması Parametrelerinin

Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi.” Akademik

Bilişim, 2016.

[14] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification.” IEEE

Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[15] N. Bhatia and Vandana, “Survey of nearest neighbor techniques.” Interna-

tional Journal of Computer Science and Information Security, vol. 8, no. 2,

pp. 302–305, 2010.

[16] X. Y. Qiu, K. Kang, and H. X. Zhang, “Selection of kernel parameters for

k-nn.” IEEE International Joint Conference on Neural Networks, pp. 61–65,

2008.

[17] G. E. A. P. A. Batista and D. F. Silva, “How k-nearest neighbor parameters

affect its performance.” Simposio Argentino de Inteligencia Artificial, pp.

95–106, 2009.

[18] H. Liu and S. Zhang, “Noisy data elimination using mutual k-nearest neigh-

bor for classification mining.” Journal of Systems and Software, vol. 85, no.

5, pp. 1067–1074, 2012.

[19] C. Shalizi, “Linear classifiers and the perceptron algorithm.” November 2009.

[20] A. Arı and M. E. Berberler, “Yapay sinir ağları ile tahmin ve sınıflandırma

problemlerinin çözümü için arayüz tasarımı.” 2017.

44

https://cs.uwaterloo.ca/~mli/TextClassification.pdf

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Literature Review
	2.1 Penn Treebank Project
	2.1.1 Tagset for Part-of-Speech
	2.1.2 Tagging Process for Part-of-Speech

	2.2 Semantic Role Labeling
	2.2.1 Calibrating Features
	2.2.2 The PropBank and Semantic Role Labeling
	2.2.3 Semantic Role Tagging
	2.2.4 System Architecture
	2.2.5 Pruning Algorithm

	3 PropBank Data
	3.1 Parse of English PropBank Data
	3.2 Assignment of Predicate and Arguments in Turkish PropBank
	3.2.1 Selection of Predicates in Turkish PropBank Toolkit
	3.2.2 Selection of Arguments in Turkish PropBank Toolkit

	4 PropBank Website
	4.1 Preparation of the PropBank Website
	4.2 Technologies Used in the Study

	5 Features
	5.1 Word-Based Features
	5.1.1 Predicate
	5.1.2 Phrase Type
	5.1.3 Voice
	5.1.4 Named Entities in Constituents

	5.2 Tree-Based Features
	5.2.1 Path
	5.2.2 Position
	5.2.3 Sub-categorization

	6 Classifiers
	6.1 Rocchio
	6.2 Naive Bayes
	6.3 kNN
	6.4 Linear Perceptron
	6.5 Multi Layer Perceptron

	7 Experiments
	7.1 Setup
	7.2 Prediction of the Predicates
	7.3 Prediction of the Arguments

	8 Conclusion
	Reference

