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EVALUATION OF THE EFFICIENCY OF MAINLINE

AND RAMP METERING IN HIGHWAY TRAFFIC

MANAGEMENT

Abstract

In the study, the effects of the mainline and ramp control theories on the highway

traffic flow are investigate. In order to eliminate to alleviate the traffic congestion

problem, which has become a problem in high-population cities, the mainline and

ramp controls are considered as a solution, and control networks are emphasized.

Examples of applications and results in the world are given. The applicability

of the methods to be used by examining the previous studies was first exam-

ined on a general model and then on a selected highway network. In the models

prepared, vehicle speeds, travel times, flow (volume) concepts, and relationships

between them are mentioned. In addition, general information about highway

management was also provided before. Control models were examined with the

Microscopic Simulation Program, the purpose and types of models applied were

compared. The traffic simulation model of the region between K-8 and K-11 on

the O-2 highway from Asia to Europe has been created and the effects created by

the control have been examined by applying both ramp and mainline metering.

Analysis results; It has been observed that the control of ramp and mainline sce-

narios provides benefits compared to uncontrolled situations. Among the benefits

provided; when the analysis of the basic model and mainline metering is applied,

it is seen that there is an increase of 20.76% in travel times and an increase of

19.78% in vehicle speeds. Nevertheless, the implications of these control scenarios

should be thoroughly investigated. Simulation results show that Ramp Metering

(RM) and Mainline Metering (MM) controls can be an effective method in the

management of highway-highway connections. In this regard, it is recommended

that the control strategies mentioned in intensive highway-to-highway participa-

tions be tested in real life in order to increase efficiency.

Keywords: Ramp Metering, Mainline Metering, Traffic Congestion
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EVALUATION OF THE EFFICIENCY OF MAINLINE

AND RAMP METERING IN HIGHWAY TRAFFIC

MANAGEMENT

Özet

Hazırlanan çalışmada ana yol ve katılım kontrol teorilerinin otoyol trafik akımı

üzerindeki etkileri araştırılmıştır. Yüksek nüfuslu şehirlerde bir problem ha-

line gelen trafik tıkanıklığı sorunu, geçiş sırasında oluşan tıkanıklığın ortadan

kaldırılması ya da hafifletilmesi amacıyla ana yol ve katılım kontrolleri bir çözüm

olarak görülmekte olup kontrol şebekeleri üzerinde durulmuştur. Dünyadaki uygu-

lamalar ve sonuçlarından örnekler verilmiştir. Önceki çalışmalar incelenerek kul-

lanılacak metotların uygulanabilirliği öncelikle genel bir model üzerinde sonrasında

da seçilmiş bir otoyol ağı üzerinden uygulanarak incelenmiştir. Hazırlanan mod-

ellerde yol ağı ile ilgili araç hızlarına, seyahat sürelerine, akım (hacim) kavram-

larına ve aralarındaki ilişkilere değinilmiştir. Ayrıca otoyol yönetimi ile ilgili genel

bilgiler de öncesinde sunulmuştur. Kontrol modelleri Mikroskobik Simülasyon

Programı ile incelenmiş, amacı, uygulanan model çeşitleri kıyaslamalı olarak an-

latılmıştır. Asya Avrupa yönünde O-2 otoyolunda K-8 ile K-11 arasında kalan

bölgenin trafik benzetim modeli oluşturulmuş ve hem katılım hem de ana yol

kontrolü uygulaması yapılarak, kontrolün yarattığı etkiler incelenmiştir. Analiz

sonuçları katılım ve ana yol senaryolarının kontrolünün, kontrolsüz durumlara

göre fayda sağladığı görülmüştür. Sağlanan faydalar arasında temel model ve ana

yol kontrolünün uygulandığı analizler karşılaştırıldığında; ana yol kontrolünün

seyahat sürelerinde % 20,76 kazanç ve araç hızlarında ki % 19,78’lik yükseliş

sağladığı görülmektedir. Bununla birlikte, bahsi geçen kontrol senaryoları uygu-

landığında doğuracağı sonuçlar kapsamlı bir şekilde araştırılmalıdır. Yapılan

simülasyon sonuçları katılım (RM) ve anayol (MM) kontrollerinin Otoyol-otoyol

bağlantılarının yönetiminde etkili bir yöntem olabileceğini göstermektedir. Bu

doğrultuda, verimlilik artışı sağlamak üzere yoğun otoyol-otoyol katılımlarında

bahsi geçen kontrol stratejilerinin etkinliğinin gerçek hayatta da sınanması öneril-

mektedir.

Anahtar kelimeler: Katılım Kontrolü, Ana Yol Kontrolü, Trafik Tıkanıklığı
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my father İrfan, my brother Ph.D. Candidate Mehmet Özgür YARAN and my
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Chapter 1

Introduction

The massive development of human communities, the growth, and crowd of cities

cause a numerical and temporal increase in the daily commute, which means

business and commercial centers from the city’s surroundings to the city center.

There are many metropolises that do not have correct signaling at junctions

or connecting roads. These signaling problems cause many problems such as

high travel times, delayed appointments and time losses, harmful emission gases

emitted to the environment due to psychological disturbances for drivers, noise,

stopping and starting and pause.

NUMBEO publishes statistical reports every year about the quality of life of

cities. According to the research in the global quality of life 2019 report, Bursa,

Izmir, Ankara, and Istanbul are included in this report [1]. The cities subject to

the study are examined in terms of traffic, purchasing power, and cost of life and

air pollution. Istanbul, which ranks 183rd among 226 cities in terms of quality of

life, is the 12th city with the most traffic index.
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Figure 1.1: NUMBEO, Statistical Report Data On The Quality Of Life Of Cities
[1].

Rank Country Traffic
In-
dex

Time
In-
dex

Time
Exp.
Index

Inefficiency
Index

CO2 Emis-
sion Index

1 Nigeria 308,03 61,08 17169,05 521,62 8664,11
2 Sri Lanka 293,36 59,01 14627,68 495,15 8308,2
3 Kenya 274,71 56,65 12039,3 290,75 8332,78
4 Bangladesh 255,21 56,73 12120,25 320,18 4969,07
5 Egypt 240,72 49,78 6207,28 295 9021,61
6 Iran 220,43 48,01 5086,37 240,39 7325,43
7 Peru 214,86 48,33 5274,72 263,59 6032,61
8 India 207,52 46,99 4499,49 243,01 6062,42
9 Philippines 198,84 44,63 3314,83 248,96 6538,48
10 Colombia 198,41 47,49 4781,38 213,61 4509,33
11 Jordan 196,77 42,03 2263,9 222,67 8507,33
12 Turkey 195,21 44,65 3322,85 213,33 6133,12

Table 1.1: NUMBEO, Statistical Report Data On The Quality Of Traffic Index
[1].

In addition, when the travel time between the home and work or school for the

traffic index is calculated by taking into account the surveys made with individ-

uals, the average time for ’one way’ for Istanbul is determined as 52 minutes and

ranks 11th. In this ranking, several main methods have come to the fore in order

2



to be in better places and to improve traffic. Ramp metering is one of these meth-

ods that aim to correct the flow by controlling the ramp with a signal. Another

is speed control, which is widely applied to prevent shock waves in traffic. There

may be some doubts that speed restrictions will not work in Istanbul because

there is a tendency to violate speed restrictions in Istanbul. However, there are

some studies showing that the use of EDS significantly reduces the violation [2].

Traditional traffic solutions such as geometric arrangements and static solutions

based on static counts are among the most important solutions on a daily basis.

On the other hand, computer simulation is the main method used to conduct

scientific research and solve really difficult problems. Traffic simulation is an

important application of computer simulation technology in the field of traffic

engineering. In this thesis, traffic theories are introduced on a macro scale that

is basically the basis of most simulation studies and control strategies.

Then, the relationship between the traffic variables is shown and the flow theories

based on the hydraulic model are analyzed and shock waves, the main cause of

traffic jams, are shown analytically. In addition, in this study, the description

of macro-micro-mesoscopic simulation models has been made and the general

literature summary of the control structure that makes the model prediction

used in the application is summarized. Then, by introducing ramp metering

control approaches, the vehicle combinations that will be entered in the simulation

program for participation and the mainland are tried to be determined.

In order to achieve success in this field, With “AIMSUN” software, I first deter-

mined different joining capacities and service levels and identified 3 different den-

sities and different green time control designs. As a result, alternative solutions

that provide the necessary conditions have revealed methods with an optimum

solution. and the highest applicability, and then I applied it to the O-2 region, a

region I always use and know.

A fact well known to have Turkey has an emerging economy in recent years and

3



in parallel with this situation, there is a rapid increase in the number of vehi-

cles. According to the 2019 data, the number of vehicles registered to traffic

has scaled up to 20 million 456 thousand 556 and this circumstance causes some

important problems especially about local traffic [3]. Istanbul is the 9th most

traffic-congested city of the world and 2nd most traffic-congested city of the Eu-

rope.

Figure 1.2: TomTom Traffic Index, Congestion Level Table [4].

Also, Istanbul’s congestion level is 55% It means people spend the time that half

of the time in travel is the lost time in traffic. This is such an amazing for traffic

data [4]. Considering the fact that almost 250,000 vehicles travel daily from O-2

path on average, the general purpose of this project is to determine the bottleneck

of this corridor, to analyze the current level of service and establish better for a

trip that making ramp metering control design. Although the benefits to be

achieved in this area are limited to a local control zone, I think the proposed

control approach can be applied in other parts of the network.
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Chapter 2

Literature Review

Increasing transportation demand and the traffic problems it brings are among

the most important problems of today’s world metropolises. Even if the solution

to these problems should be used efficiently of the urban roads that will be built in

the first place, how to use the roads in the second phase most efficiently is a much

more prominent solution. When junction areas on highways are associated with

major traffic jams and traffic collapse sources and cause turbulence to increase

due to lane change; starting these problems from the right side of the mainline

causes the ramp vehicles to produce excessive weaving maneuvers and then spread

over the entire lane. After encountering a problem, shock waves and long tails

will appear. This situation will arise in environmental problems. Given all the

problems and tails, it can be considered that a low-cost effective can save a lot of

money.

2.1 Traffic Congestion

Traffic congestion is a severe and growing problem. Traffic congestion is a con-

dition of transport that is characterized by slower speeds, longer trip times, and

increased vehicular queuing. Traffic congestion on urban road networks has be-

come increasingly problematic since the 1950s.

5



In the states of many countries (Ex: Minnesota and California), some exam-

ples of highway to highway ramp metering are examined and the advantages

and disadvantages of highway to highway ramp metering are discussed. To re-

duce increased congestion and improve road safety, state transport departments

have developed some innovative strategies to optimize the efficiency of congested

highway sections. Such strategies are highway-to-highway ramp metering and

mainline metering.

In Sun [5], a new switching traffic sensitive ramp metering controller that adapts

to different features is presented using the multi-rate LQI approach. In addition,

a PI tail length regulator design was used to prevent the queue during ramp from

exceeding storage capacity and to provide improved performance on the ”queue

override” scheme. The proposed strategy has been developed to reduce congestion

space and time coverage using available information. In this context, while total

vehicle delay decreased by 7.7%, total vehicle delay was observed to decrease by

5.7% in-vehicle time in CTM traffic simulator.

The research of Hampton Roads Bridge-Tunnel, one of Southeast Virginia’s most

important facilities, has been conducted, by Stairs [6]. And this tunnel says

that Hampton Roads Port provides the only interstate connection, until July

1983, delays of up to 2 hours is experienced. This means that cars overheat

and increase carbon monoxide (CO) levels in the tunnel. Therefore, in August

1983, a hand-controlled baseline metering was initiated. This type of metering

consists of stopping traffic and is designed by releasing traffic when the tunnel

is cleared from the traffic and when the CO level decreases when the vehicles

in the tunnel slow down to 24.2 km / h (15 mph) or less. In any case, the

detained vehicles were caught on vehicles that were not detained before reaching

the opposite shore. In reality, drivers who were detained 5 to 8 minutes before

entering the tunnel reached the time they had if they were not detained. Various

benefits were obtained from the mainline metering. Such as Lower CO levels and

less ventilation required, lower tunnel temperatures and less downtime caused by

overheated vehicles, free-flow traffic for longer periods and shorter time and length

6



traffic backups with better efficiency. This type of mainline metering considers the

author to be one of the most effective methods of managing bridge-tunnel-bridge

traffic during periods of intense congestion. It was also stated by the author that

the manual metering of the mainline metering could not be continued due to

complaints of the driver stopping before entering the tunnel [6].

2.2 Demand Control

In many countries, traffic emissions have gained great importance due to the in-

creasing number of vehicles over the past two decades. Therefore, traffic emissions

have become the main source of air pollution in urban areas where violations of

European Union (EU) limit values often occur. To reduce these emissions, lo-

cal traffic measures can be implemented to complement regional and national

measures. Measures include traffic demand control, Heavy Duty Vehicles (HDV)

prohibition, speed limitation and Adaptive Cruise Control (ACC). According to

the research conducted by Mahmod [7], it was found that reducing the traffic

demand by 20% caused a decrease of 23% in terms of CO2, NOx and PM10

emissions. Banning HDVs led to a significant reduction in NOx and PM10 emis-

sions. Although the speed restriction reduces CO2 emissions by 7%, both NOx

and PM10 emissions increased, especially from HDVs. ACC reduced both CO2

and NOx by 3%, but it was found to increase PM10 by 3% [7].

Ghiasi [8]; He performed a series of simulation analyzes on a section of the I-

35 highway in Kansas City, KS, using a calibrated VISSIM network to evaluate

algorithm performance under different traffic conditions and parameter settings.

It states that it has developed a dynamic signal control algorithm that can be

applied for an integrated ramp and mainline metering strategy. He talks about the

problems caused by the merger of a highway and how he can solve the traffic jam

in the mainline with the dynamic signal control algorithm. In the main signaling

models, for security reasons, the proposed algorithm argues that signal control

cannot be activated unless the traffic speed on all the main lines falls below a

7



safe speed threshold (set to 10 kilometers/hour in our experiments). As a result

of his analysis, he concluded that there was a maximum 15: 7% improvement in

average speed, a 20: 9% reduction in average delay and a 13: 7% reduction in

CO emissions. Finally, he suggested that with some future improvements in the

Forecast algorithm, better results can be achieved with fewer traffic sensors to

achieve more cost-effective solutions.

2.3 Traffic Control Strategies

2.3.1 Control Logic

Control logic of the approach used in the research:

On Ramp No Mainline 
Control

Is Mainline 
Congested?

Does ramp 
queue reach the 

Max?
On Ramp is Closed

No on Ramp Control                           
Mainline Control                                 

sholder lane is 
closed

Does ramp 
queue reach the 

Max?

No

No

No

Yes

Yes

Figure 2.1: Control Logic of the on Ramp and Mainline [9].

In particular, it starts by evaluating whether the baseline is blocked. For this,

data is collected from the detectors located in the upstream mainline. From

this data, it allows us to see the occupancy rate and travel speed and whether

the queue on the ramp has reached the queue. In addition, these values differ

according to the data collected by the detectors at the end of the ramp.
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While there is a blockage in the mainline, the queue during the ramp may not

reach its maximum value. In this case, it is temporarily closed on the ramp to

eliminate the main blockage. If the tail on the ramp reaches the maximum level,

the shoulder strap of the mainline is closed. This action is considered to have a

larger capacity for storing tails in the mainline, and pouring it over the queue on

the ramp can cause serious problems for ground streets. But this method is done

to eliminate the ramp tail. This process can be repeated if a long tail appears on

the ramp and there is no blockage in the mainline. In this control logic, the time

it takes to repeat processes, that is, the repeated loop is not constant. Cycle time

calculated as a variable. When a cycle has ended, a new cycle will be calculated,

starting a new process, and control action accordingly so that real-time traffic

status and feedback can be received.

The above control logic and algorithm are realized through the AIMSUN pro-

gram. Using simulation, the performance of the highway corridor under two con-

trol strategies is compared to the control approach not only on the ramp but on

both the mainline and the ramp. While performing the ramp control, a local feed-

back ramp metering strategy, ALINEA algorithm, was used. This is an extremely

simple, highly efficient and easily implemented simulation algorithm. While con-

trolling both the mainline and the ramp, the algorithm designed by this study

was applied. AIMSUN data entry instructions and default model parameters are

provided. The data collected includes highway traffic volume, speed, travel time

and congestion, etc. contains data. Finally, the simulation network has been in-

stalled and calibrated. System performance values were obtained after adding the

signal control module. The volume results and movement behavior parameters

calibrated in AIMSUN are examined in the conclusion section, respectively.

2.3.2 Metering

It is observed in studies that a potentially cost-effective solution to the highway

joining bottleneck problem is to develop an effective signal control strategy to
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reduce friction between the mainline and the junction traffic, and one of the well-

known approaches in this category is to use ramp metering using input ramp

traffic [8, 10].

Even if the work is done is successful in reducing the weaving, the friction that

can occur between the mainline and the ramp traffic can be such a measure

that some over-saturated traffic conditions in the mainline may require a more

effective approach to maintain the approach. Improvements that may occur as

soon as traffic flows into the current downstream queue and when the bottleneck

traffic speed is allowed to improve are revealed as a result of many studies [8].

Numerous studies have been conducted to design and implement ramp metering

approaches to mitigate freeway bottlenecks.

Considering that in the research supported by the Chinese National Science Fund

[9], the highway mainline not only has high speed but can also store a large

number of vehicles, this research proposes a new approach to control both the

ramp and the highway on the mainline. This approach is based on the Local

ramp metering strategy ALINEA, using the Traffic simulation software VISSIM.

It controls the vehicles of the ramp and the mainline, thereby aiming to optimize

the vehicle storage capacity of the mainline and also reduce the highways travel

time and ramp sequence. This strategy is particularly useful for situations where

there is no large gap between the ramp and the importance of the mainline. This

is the average travel time of the algorithm proposed by this study, the average

delay of the mainline and ramp vehicles, the average tail length on the ramp and

the number of stops on the ramp on the mainline and ramp (real lines in any

way), network performance, especially ramp vehicles. For its delay and tail, it

was found to be better only when controlled on the ramp (dashed lines in any

way). In simulations, it uses the capacity of the mainline to accommodate a

large number of vehicles to reduce the loss of vehicles on the ramp, therefore it

is concluded that it is particularly suitable for use in situations where the ramp’s

position in the entire traffic network is very important compared to the mainline

[9].
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2.3.2.1 Ramp Metering

Ramp Metering is a control mechanism to optimize traffic downstream of a high-

way with a signal on the ramp. There are three main purposes of using ramp

metering. Controlling the number of vehicles allowed on the highway, reducing

downhill highway demand and reducing congestion by reducing the likelihood of

vehicle weaving.

Local ramp metering is a control system that deals with an isolated highway

section rather than the entire network. Some local ramp metering strategies

are summarized in four types. Demand Capacity In the control system, the

metering speed is determined by upstream volume and downstream capacity.

The difference between band flow volume and downstream capacity determines

the metering rate for the next cycle. In the Upstream Occupancy Control system,

real-time occupancy on the ramp is used to determine the metering rate for the

next cycle. For Gap Acceptance Control; the occupancy metering’s from the

upstream of the ramp are measured to determine the metering rate. For Closed

Circuit Local Control Strategies, the system output is fed back and the input is

changed according to the output [11, 12] .

One of the two lanes at the facility at the location shown in I5-I110 southbound

interchange in Los Angeles had to be closed due to regular rocks. In Los Angeles,

where many typical ramp metering installations were operated during this period

and beyond, a serious bottleneck was avoided despite the fact that there were

highway ramps measured at only a few intersections, and it is obvious that they

played a big role in the absence of long queues and waiting times [5].

The system is a control system that takes into account a network with wide

ramp metering, various consecutive or coordinated ramps. Improving traffic at a

highway junction may not be sufficient for relaxation across the entire network. It

may also be harmful to other consecutive segments. Therefore, the entire network

should be considered when optimizing traffic.
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2.3.2.2 Mainline Metering

Highway mainline metering involves checking the amount of traffic entering a

highway segment to allow better movement downstream of the control area. Gen-

erally, this method appears to have been successfully applied to bridges and tun-

nels. However, there are not many studies that apply this application to a typical

urban highway system. It is being explored whether regulation of major vehi-

cle movements can also improve highway operations without a bottleneck. The

mainline metering evaluation is based on various mainline volume and control

conditions on the ramp. The results will show how mainline metering affects

highway operations downstream of the mainline counter. The main factor will

show how it will affect the total delay for vehicles resulting from the upstream of

the measuring location. The main goal here is that it can be achieved without

increasing. In addition, it is aimed that the vehicles accessing the highway from

the measured ramps downstream of the meter to the mainline do not enter a

congested highway mainline, thus reducing the total travel time [10].
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Chapter 3

Methodology

3.1 Traffic Flow Modelling

In the basic model simulation project that is the subject of my study, ramp and

mainline metering control of the literature related to the microscopic simulation

design of traffic flow control has been done. This study is for the subject area

K-9 and K-10 intersections of the O-2 road. Trying to find a solution to the

problem of congestion, this is the main purpose of the study, by assigning different

scales and different control algorithms to the model during the researches. To

achieve this goal, intensity flow, speed management approaches, different green

time periods, and the tasks assigned to the main route routes with connections

were tried. These control approaches are made dynamically based on traffic data.

Performance indices such as total travel time, flow in one segment, the density of

one segment, the average delay of vehicles, and the number of stops per vehicle

were shown to see the effectiveness of the approaches.

In the 1970s, a project titled ”Traffic Flow Study in a Restricted Facility” was

launched and the Baltimore Harbor Tunnel was used to analyze the concepts of

traffic flow theory. One of the control strategies was the effects of a predeter-

mined baseline measurement system above the entrance to the tunnel and below

the tunnel-through plaza. Traffic signals are positioned above the tunnel portal

and predetermined metering scenarios for 2, 3, and 4-minute cycle lengths are
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evaluated. When measured, the red time ranged from 7 to 10 seconds, and the

amber time ranged from 3 to 5 seconds. And the vehicle speeds when passing

through the measurement point of the Drivers are determined as 32 to 40 km /

h (20 to 25 mph). (Footnote: Signals are always green when no measurement is

taken.) This application has caused the speeds to increase in the tunnel bottle-

neck and also the flow rate in the tunnel to increase. Based on the velocity flow

curves developed before and after the metering process, it was stated that the

study did not continue the baseline metering operation due to the lack of support

for this study, which has been found to have the potential to increase the capacity

per strip of the metering system by approximately 10 percent of the uncontrolled

condition [13].

3.1.1 Traffic Flow- Variables- Density-Flow-Speed

Traffic density is the number of vehicles on the highway per unit distance. They

interact with factors such as traffic variables and driving behavior, weather, and

information technology. A brief description of the traffic variables is required to

explain the traffic flow. Traffic flow can be defined in two main types. Under-

standing what kind of flow occurs in a given situation will help you decide which

analysis methods and descriptions are most relevant.

The first type is a continuous flow and is regulated by vehicle-vehicle interactions

and interactions between vehicles and the road. Vehicles traveling on an interstate

highway are examples of uninterrupted flow. The other type of traffic flow is

intermittent flow. The interrupted flow is regulated in an external way, such as a

traffic signal. Under intermittent flow conditions, vehicle-vehicle interactions and

vehicle-road interactions play a role in defining traffic flow.

Generally, traffic flows vary both by area and time. Therefore, the measurement

of the relevant variables for the traffic flow theory is actually sampling a random

variable. In traffic engineering, these are called the trajectories of vehicles [14].

On the other hand, in LWR Theory, these are the features of the solution of

14



the wave function [15]. These variables are important in defining macroscopic

variables with traffic density, speed, and flow.

The average number of vehicles, expressed by vehicles per mile or kilometer,

occupying one mile or one kilometer road area, defines us the density. Due to the

level of difficulty that may occur during the metering of the density, the fullness

of the detector in a certain area or using this ratio will give better results.

Flow rates are generally expressed in terms of vehicles per hour, although the

actual measuring range is much less. Flow rates are collected directly through

point measurements and, by definition, require metering over time. They cannot

be predicted from the image of the road length taken in a single moment. Flow

rates and time titles are related to each other as in the formula. Flow rate, q, is

obtained by dividing the number of vehicles counted by the elapsed time [16].

3.1.1.1 Traffic Simulation (Macro-Micro-Meso Simulation)

Simulation plays an important role in traffic modeling and planning. Traffic simu-

lations are based on three basic models and classified according to the given input.

If traffic does not change over time, such simulations model the steady-state av-

erage traffic conditions with a statically dispersed state; If traffic changes over

time, it models the variant structure of such traffic and is dynamically expressed.

Another classification of traffic models is defined as statistical perspectives. If

the simulations show the same output on each run, this is called deterministic

modeling of traffic. The last and most important classification of traffic is detail

classification.

Based on two assumptions that no cars were lost or suddenly appeared on a

conservative road. Various models are then proposed, which are similar to gas

dynamics and represent multiple regimes. Simulations based on these theories

are called macroscopic simulations. In these simulations, the level of detail is
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limited, and since the traffic parameters are roughly handled, the need arises for

the separation of time and space [17, 18].

Unlike macro models, microscopic traffic models are related to individual vehicle

movements. In this study, it is necessary to emphasize that a microscopic sim-

ulation environment is used to test macroscopic theories related to traffic flow.

The fact that control algorithms are based on macroscopic theories results from

the field applications of control algorithms on a macro scale. Because there is

no solution for controlling individual vehicles for today. The most known micro-

scopic traffic model is the linear car tracking model. The answer is based on the

basic Newtonian theory of physics law, which is equal to the stimulus. In reality,

however, there is a sense of sensitivity between the stimulus and the response

that makes the word “equal” in this theoretical proposition “proportional” [19].

In meso simulations, vehicles are modeled individually. However, unlike the mi-

croscopic simulation, the overall behavior of the tools is considered on the links.

It is based on the spread of the vehicles shown in Figure 3.1 through the cells.

Figure 3.1: Vehicle Propagation based on Cell Automata Traffic Flow Model [20].

3.1.2 Simulation Model Methodology

Methodologically, simulation is a useful technique to provide an experimental

test-bed to compare alternative system designs, and experiments on the rep-

resentation of a computer in terms of a simulation model are used instead of

experiments in the physical system. The results of the computer experiment

thus provide decision-makers with a basis for quantitative support. The simula-

tion model aims to draw valid conclusions for the real system. And it can give

the impression of a computer lab by experimenting on a system model and can

be used to answer questions. So, assuming that the System model over time
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accurately mimics the evolution of the system model over time, information is

collected about the relevant observational variables that can draw conclusions

about system behavior using statistical analysis techniques. Figure 3.2 illustrates

this methodology conceptually.

Figure 3.2: System Behavior Model [21].

Reliability in the decision-making process depends on the ability to produce a

simulation model that represents system behavior in order to use the model for

experimental purposes for real purposes. It also applies to traffic simulation,

which is valid for simulation analysis. The process of determining whether the

simulation model is close enough to the real system is usually achieved through

an iterative process that involves the calibration of the model parameters and

compares the model with the actual system behavior. To develop the model,

discrepancies between the two and those obtained are used until the accuracy is

considered acceptable.

Validation of a simulation model is a concept that needs to be taken into account

during the model duration created. As a first step, the problem is formulated, and

requirements are determined to find the solution. Necessary controls are made.

When it is assumed that the designed computer program is working properly

and without errors, experimental sampling procedures are determined. Finally,

simulation experiments are carried out and analyses are obtained.

Methodological process diagram;
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Figure 3.3: Methodological Process Diagram [22].

The abstraction of reality, the natural system under study, is the process of ac-

quiring knowledge of the primary system or conceptual model first.
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Figure 3.4: Basic conceptual steps in model building and using process [22].

Thus, creating error-free computer models can be implemented and executed to

provide solutions that will later become the object of the final verification. The

final verification exercise often includes a comparison with the observed reality.

The approved computer model can then be used to perform simulation exper-

iments that will answer questions about system behavior under various design

alternatives that configure experimental scenarios.

3.1.2.1 Simulation Modeling and Software (Calibration)

First, a section is created in the desired model from the toolbar on the left.
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Figure 3.5: The First Stage Creating Model.

While creating detectors; It is necessary to place the detector in the network as

shown in the picture.

Figure 3.6: Creating Detector.
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Press the icon to place a detector and pressed it to the desired place in the desired

section again. Then double click on the detector to set its name and properties

as shown in the next picture.

Figure 3.7: Set Names on Detectors.

When creating the centroids if the traffic demand is given as an OD Matrix, the

first step will be to identify the centroids that the matrix corresponds to. Press

the icon to place a centroid on the network and then click the location that needs

to be placed on the network. After defining a centroid, double click on it to

display the Centroid editor, and its called Centroid under the ”Main” tab. And

finally, a connection from the center to the network and vice versa should be

established. This is done by pressing the new button and selecting the input or

output section. OK, the button is pressed when all connections are ready.
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Figure 3.8: Creating Centroid.

Afterward, Defining, how many km, how many lanes, lane widths, speed and lane

capacity features of the section established. After these processes are completed,

centroids are created to determine the data entry and display points of vehicles.

The detector is then assigned to the parts deemed appropriate in the project and

creates a measurement. These commands are assigned the O / D path and O

/ D matrices respectively, and the data obtained through the search are entered

into the system. As for normal entry centroids, it is possible to define routes

starting at a public transport stop by selecting the linked entry centroid as O / D

route origin centroid. These are mainly road speed limits, number of vehicles per

lane, vehicle lanes, vehicle types, and lane number [23]). After the information is

entered into the system, the settings are made;
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Figure 3.9: Enter Values Centroid.

• Traffic demand: the user can select whether the traffic demand will be

composed of matrices or traffic states. The time interval where this traffic

demand will be applicable can be defined modifying the Initial Time and

Duration.

• Dynamic scenario: The scenarios for the microscopic, mesoscopic and hy-

brid simulators are Dynamic Scenarios, while the scenario for the static

traffic assignment is called Macro Assignment Scenario and the one for the

static demand adjustment is the Macro Adjustment Scenario. A scenario is

composed of several parameters. For the ones mentioned above, the main

parameters are a traffic demand (a group of O/D matrices or traffic states),

and optionally, a public transport plan, and a master control plan (a group

of control plans) for micro, meso and hybrid.

• Control plan: For each possible turn, this interface assigns to it a signal

group, so when a phase contains a turn; automatically it adds the related

signal group, avoiding barred turns [24].

Traffic Demands can be created when OD Matrices and Traffic Status are ready.

Traffic Status is ready. It is created by selecting the Project / New / Demand
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Data / Traffic Demand menu which will cause a new Traffic Demand to appear

in the Project window.

Figure 3.10: Created Since OD Matrices And Traffic Status.

The Demand for Traffic with OD Matrices is renamed to the ’Traffic Demand

Matrix’, by double-clicking and following steps; Type is fixed; Matrices. Click

Add Dem Demand Item and the prepared car matrices are placed. End Press

OK to end.

Figure 3.11: Assign Traffic Demand.
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To test the geometry created so far, it can run initial simulations, although no

control plan or public transport is still specified. To do this, he needs to create

a script and an experiment. A Scenario must be created first. It is created with

the Project / New / Scenarios / Dynamic Scenario menu and will be displayed

in the Project window in its Scenarios folder. It should create an experiment

related to the scenario and to do this, move the mouse over the scenario in the

Project window and press the right mouse button to access the scenario context

menu, New Experiment is selected. Select the type of experiment for Microscopic

Simulator and Stochastic Route Selection. Then the scenario editor can be opened

and the demand to be used for the scenario can be selected. To open the scenario

dialog window, double-click on the scenario and select the previously created

claim item under the Main tab.
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Figure 3.12: Create An Experiment About The Scenario.

Finally, after all the information and analysis methods are processed, simulate

the exercise by clicking the run button (I) in the simulation task box.
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3.1.3 Generic Network Simulation and Scenario Testing

At this stage, the loading of the strips at different densities is determined and

the density that creates the most ideal behavior is determined. The number of

flows from the accession control was 3000 vehicles / s and the number of flows

from the mainline was 8000 vehicles / s. In the model, the ramp is designed as a

1-lane road. The mainline is a 3-lane highway. The lane widths were set at 3.5

m and create a shoulder with a distance of 1.5 m from the right and 0.5 m from

the left. The most ideal results are obtained after basic modeling is created in

the simulation program and by applying various speed and lane changes. Then,

this application scenario is modeled as 3 different scenarios (No Control, Ramp

Metering, Mainline Metering), and analysis results are obtained.

Figure 3.13: Running the Basic Scenario.
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3.1.3.1 Base Case (BC)(No Control)

When implementing the basic scenario, a path is designed as shown in 3.13. The

lane width was initially set to 3 m when designing the road. No changes were

made to the currents assigned, and the assigned speeds, lane widths, and shoulders

were designed as indicated above the Tables ( 3.1-3.4) . In the first stage, a basic

model was designed and operated without any scenario effect. The purpose of

this is to analyze the ordinary data and to see the gains obtained by comparing

the results of the different scenarios applied later.

The speed of 20km / h, which is one of the data accessed at the top of all tables,

is remarkable ( Table 3.3). The reason for setting the speed assignment to 20km /

h for the part of the highway speed after the junction point was made to analyze

the situation that the highway might have reached saturation. Because we are

usually in a city where there is saturation on the parts of the highways above the

ramp. For this reason, it is thought that it can reach more realistic results by

analyzing this stage.

The difference between Table 3.1 and Table 3.2 is that the strip width has changed

and the safety strip has been added. In addition, when compared with the first

model, it can be concluded that all values show a positive acceleration. Although

the IEM Emission - VOC - Intercity - Car value may seem negative at first, it can

be understood that the reason for this is the excess of vehicle passage without a

0.35% improvement in Travel Time.
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Basic Scenario (BS)(Line 3 m)
Performance Measure Value Standart

Deviation
Units

Delay Time 246,42 245,55 sec/km
Density 66,48 N/A veh/km
Flow 6880 N/A veh/h
Fuel Consumption 0 N/A l
Harmonic Speed 28,81 4,46 km/h
IEM Emission - CO2 - Interurban 388979,76 N/A g/km
IEM Emission - CO2 1061555,36 N/A g
IEM Emission - NOx - Interurban 1072,07 N/A g/km
IEM Emission - NOx 2925,76 N/A g
IEM Emission - PM - Interurban 291,72 N/A g/km
IEM Emission - PM 796,12 N/A g
IEM Emission - VOC - Interurban 197,15 N/A g/km
IEM Emission - VOC 538,04 N/A g
Input Count 1127 N/A veh
Input Flow 6776 N/A veh/h
Max Virtual Queue 1243 N/A veh
Mean Queue 16,99 N/A veh
Mean Virtual Queue 829,79 N/A veh
Missed Turns 0 N/A
Number of Stops 1,77 N/A veh

/km
Speed 29,5 4,32 km/h
Stop Time 166,21 256,68 sec/km
Total Travel Time 229,98 N/A h
Total Travelled Distance 3868,68 N/A km
Travel Time 279,61 245,48 sec/km
Vehicles Inside 500 N/A veh
Vehicles Lost Inside 0 N/A veh
Vehicles Lost Outside 0 N/A veh
Vehicles Outside 1720 N/A veh
Vehicles Waiting to Enter 1242 N/A veh

Table 3.1: 1.Base Case (DNS Do Nothing Scenario).
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BS(Line 3,5m - Shoulder right-1,5 left-0,5) Speed All Line 120km/h
Performance Measure Value Standard

Deviation
Units

Delay Time 245,06 235,97 sec/km
Density 66,33 N/A veh/km
Flow 6820 N/A veh/h
Fuel Consumption 0 N/A l
Harmonic Speed 28,79 4,63 km/h
IEM Emission - CO2 - Interurban 382748,05 N/A g/km
IEM Emission - CO2 1044291,98 N/A g
IEM Emission - NOx - Interurban 1046,08 N/A g/km
IEM Emission - NOx 2854,14 N/A g
IEM Emission - PM - Interurban 279,68 N/A g/km
IEM Emission - PM 763,08 N/A g
IEM Emission - VOC - Interurban 200,81 N/A g/km
IEM Emission - VOC 547,9 N/A g
Input Count 1131 N/A veh
Input Flow 6816 N/A veh/h
Max Virtual Queue 1230 N/A veh
Mean Queue 13,66 N/A veh
Mean Virtual Queue 825,2 N/A veh
Missed Turns 0 N/A
Number of Stops 1,82 N/A veh

/km
Speed 29,54 4,51 km/h
Stop Time 163,91 244,66 sec/km
Total Travel Time 227,83 N/A h
Total Travelled Distance 3816,61 N/A km
Travel Time 278,25 235,94 sec/km
Vehicles Inside 518 N/A veh
Vehicles Lost Inside 0 N/A veh
Vehicles Lost Outside 0 N/A veh
Vehicles Outside 1705 N/A veh
Vehicles Waiting to Enter 1230 N/A veh

Table 3.2: 2.Base Case (DNS Do Nothing Scenario).
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BS(Line 3,5m - Shoulder right-1,5 left-0,5) Speed DS-Main Line 20km/h
Performance Measure Value Standard

Deviation
Units

Delay Time 352,53 235,97 sec/km
Density 104,78 N/A veh/km
Flow 4936 N/A veh/h
Fuel Consumption 0 N/A l
Harmonic Speed 14,6 4,63 km/h
IEM Emission - CO2 - Interurban 268446,87 N/A g/km
IEM Emission - CO2 732431,99 N/A g
IEM Emission - NOx - Interurban 544,48 N/A g/km
IEM Emission - NOx 1485,57 N/A g
IEM Emission - PM - Interurban 199,57 N/A g/km
IEM Emission - PM 544,5 N/A g
IEM Emission - VOC - Interurban 325,23 N/A g/km
IEM Emission - VOC 887,36 N/A g
Input Count 823 N/A veh
Input Flow 4916 N/A veh/h
Max Virtual Queue 1951 N/A veh
Mean Queue 210,76 N/A veh
Mean Virtual Queue 1307,16 N/A veh
Missed Turns 0 N/A
Number of Stops 6,42 N/A veh

/km
Speed 15,9 4,51 km/h
Stop Time 236,01 244,66 sec/km
Total Travel Time 256,57 N/A h
Total Travelled Distance 2741,52 N/A km
Travel Time 423,14 235,94 sec/km
Vehicles Inside 809 N/A veh
Vehicles Lost Inside 0 N/A veh
Vehicles Lost Outside 0 N/A veh
Vehicles Outside 1234 N/A veh
Vehicles Waiting to Enter 1951 N/A veh

Table 3.3: 3.Base Case (DNS Do Nothing Scenario).
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Performance Measure Delay
Time
(sec/km)

Density
(ve-
h/km)

Flow (ve-
h/h)

Speed
(km/h)

Travel
Time
(sec/km)

Basic Scenario
(BS)(Line 3 m)

246,42 66,48 6880 29,5 279,61

BS(Line 3,5m -
Shoulder right-1,5
left-0,5/Speed All Line
120km/h)

245,06 66,33 6820 29,54 278,25

BS(Line 3,5m -
Shoulder right-1,5 left-
0,5/Speed DS-Main
Line 20km/h)

352,53 104,78 4936 15,9 423,14

Table 3.4: Comparison of Baseline Scenarios Within Themselves.

All parameters are applied to scenarios in the same way. The important part

of this model is to change the velocity values in the flow direction after ramp

participation. (120 km /h, 20 km/h). These details can be found in Table 3.1 ,

Table 3.2 and Table 3.4. In the scenario run at 2 different speed parameters, it can

be seen that the results get worse. (For 20 km/h). This gives the impression that

the mainline should be intervened to reduce the density of a saturated motorway

downstream.

(Line 3,5m - Shoulder right-1,5 left-0,5) Main-US Ramp Main-DS
All Line Speed 120km/h
Simulated Travel Time 404,8 496 21,3
Simulated Speed 26,3 8,2 86,9
Simulated Flow 5790 1044 6864
Simulated Density 74,7 127,3 26,3
Simulated Delay Time 210 83,3 4,3
Speed Downstream-Main Line 20km/h
Simulated Travel Time 611 656,8 99,1
Simulated Speed 16,4 5,7 18,6
Simulated Flow 4140 798 4932
Simulated Density 108 88,5 142,7
Simulated Delay Time 412,2 121,9 14,7

Table 3.5: Base Case Scenario-Values of Roads As A Result of Analysis.
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As a result of basic modeling, only models that differ in highway speeds were

compared. In the comparative graphs made, total results are shown, not per each

road segment. The values (Simulated Travel Time, Speed, Flow, Density and

Delay Time) shown by the results from the speed differences on the roads in each

road section are shown in Table 3.5. It is also seen that all the values deteriorate

with the decrease in speed on the highway.

3.1.3.2 Ramp Metering Control (RMC)

The goal of the ramp metering scenario is to allow a certain number of vehicles to

enter the meter per hour. The parameters are Tool Length and Traffic Flow. Each

time the counter is opened to release vehicles; the lengths are made so that tools

with the parameter ”Tool Length” can pass. If the control of the measurement is

constant, there will be only one parameter to specify the number of vehicles per

hour to be released. The specific flow measurement applying the ramp metering

strategy is not available in the mesoscopic simulator. The metering flow during

the time interval used in this scenario is calculated as follows:

GTRamp =

(
1−

(
|QMdc − (QM + QR)|

QR

))
(3.1)

Ramp Capacity QR 1200
Mainline Capacity QM 6200 0,00
Downstream Capacity (Main) QDC 800 0,67
Cycle Time CT 15
Green Time GT 10

Table 3.6: Calculation Green Time Equations.
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In formula 3.1, GTRamp represents Green type ramp, QMdc represents Mainline

downstream volume, QR represents ramp volume. Using these calculations, the

scenario was run by setting the control type as Fixed, assigning a 50% red per-

centage, green time 7 seconds and cycle time 15 seconds, and Tables (3.5, 3.7,

3.8) were created with the results.

(RMS)(Line 3,5m -Shoulder right-1,5 left-0,5) Speed All Line 120km/h
Performance Measure Value Standard

Devia-
tion

Units

Delay Time – Car 174,1 325,99 sec/km
Density – Car 45,63 N/A veh/km
Flow – Car 7700 N/A veh/h
Fuel Consumption – Car 0 N/A l
Harmonic Speed – Car 44,19 18,44 km/h
IEM Emission - CO2 - Interurban – Car 359182 N/A g/km
IEM Emission - CO2 – Car 979995 N/A g
IEM Emission - NOx - Interurban – Car 1184,14 N/A g/km
IEM Emission - NOx – Car 3230,82 N/A g
IEM Emission - PM - Interurban – Car 221,39 N/A g/km
IEM Emission - PM – Car 604,04 N/A g
IEM Emission - VOC - Interurban – Car 137,56 N/A g/km
IEM Emission - VOC – Car 375,32 N/A g
Input Count – Car 1291 N/A veh
Input Flow – Car 7736 N/A veh/h
Max Virtual Queue – Car 1020 N/A veh
Mean Queue – Car 25,89 N/A veh
Mean Virtual Queue – Car 727,39 N/A veh
Missed Turns – Car 0 N/A
Number of Stops – Car 1,39 N/A #/veh

/km
Speed - Car 51,89 11,83 km/h
Stop Time - Car 142,24 325,36 sec/km
Total Travel Time - Car 175,76 N/A h
Total Travelled Distance - Car 4523,09 N/A km
Travel Time - Car 207,32 326,08 sec/km
Vehicles Inside - Car 359 N/A veh
Vehicles Lost Inside - Car 0 N/A veh
Vehicles Lost Outside - Car 0 N/A veh
Vehicles Outside - Car 1925 N/A veh
Vehicles Waiting to Enter - Car 1020 N/A veh

Table 3.7: Control Scenario 1.Ramp Metering.

34



(RMS) (Line 3,5m - Shoulder right-1,5 left-0,5) Speed DS-Main Line 20km/h
Performance Measure Value Standard

Devia-
tion

Units

Delay Time – Car 340,49 349,92 sec/km
Density – Car 101,81 N/A veh/km
Flow – Car 4904 N/A veh/h
Fuel Consumption – Car 0 N/A l
Harmonic Speed – Car 14,54 4,74 km/h
IEM Emission - CO2 - Interurban – Car 236718,49 N/A g/km
IEM Emission - CO2 – Car 645864,08 N/A g
IEM Emission - NOx - Interurban – Car 477,85 N/A g/km
IEM Emission - NOx – Car 1303,78 N/A g
IEM Emission - PM - Interurban – Car 166,7 N/A g/km
IEM Emission - PM – Car 454,82 N/A g
IEM Emission - VOC - Interurban – Car 321 N/A g/km
IEM Emission - VOC – Car 875,83 N/A g
Input Count – Car 832 N/A veh
Input Flow – Car 4932 N/A veh/h
Max Virtual Queue – Car 1998 N/A veh
Mean Queue – Car 155,07 N/A veh
Mean Virtual Queue – Car 1352,96 N/A veh
Missed Turns – Car 0 N/A
Number of Stops – Car 4,93 N/A #/veh

/km
Speed - Car 16,09 4,32 km/h
Stop Time - Car 218,53 376,38 sec/km
Total Travel Time - Car 253,12 N/A h
Total Travelled Distance - Car 2815,48 N/A km
Travel Time - Car 408,39 369,27 sec/km
Vehicles Inside - Car 788 N/A veh
Vehicles Lost Inside - Car 0 N/A veh
Vehicles Lost Outside - Car 0 N/A veh
Vehicles Outside - Car 1226 N/A veh
Vehicles Waiting to Enter - Car 1998 N/A veh

Table 3.8: Control Scenario 2.Ramp Metering.
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In all circumstances, it is seen that 20 km / h at mainline speed gives worse

results than 120 km / h. However, the important point here is how much change

the data received when the ramp control was applied according to the scenario

where no control was applied.

(Line 3,5m - Shoulder right-1,5 left-0,5) Main-US Ramp Main-DS
All Line Speed 120km/h
Simulated Travel Time 236,4 772 22
Simulated Speed 51,3 4,7 83,9
Simulated Flow 7020 696 7716
Simulated Density 45,9 151,5 30,8
Simulated Delay Time 73,4 148,4 5

Speed Downstream-Main Line 20km/h
Simulated Travel Time 584 821,6 100,1
Simulated Speed 16,8 3,7 18,4
Simulated Flow 4308 600 4896
Simulated Density 102,9 158,1 88,9
Simulated Delay Time 392,4 192,6 15,8

Table 3.9: Ramp Metering Scenario-Values of Roads As A Result Of Analysis.

3.1.3.3 Main-Line Metering Control (MLC)

According to the design of the road network, the highway mainline can be added

to another highway mainline as a participation arm. Connections from the high-

way to highway when needed can be taken under. The purpose of the mainline

metering scenario is that, depending on the traffic conditions available, to regu-

late current. It is to regulate the demand on the mainline and try to keep this

demand below capacity by controlling the volume of traffic participating in the

mainline. Each time the meter is turned on to release vehicles; if the control of

the metering is constant, there will be only one parameter to specify the number

of vehicles per hour to be released.

The measurement flow during the time interval used in this scenario is calculated

as follows: (Making use of Table 3.6 Calculation Green Time Equations)
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GTMain =

((
|QMdc − (QM + QR)|

QR

))
∗ CCTM

(3.2)

The formulas that are written are calculated by considering the maximum road

capacity as 1800 vehicles per lane in a classical scenario, and the values are

determined by proportioning the volumes given in the direction of the coefficient.

As a result of the calculations, the control types are selected Fixed again for

both the mainline and ramp. Assigned values for main line Cycle = 30 s, Green

Duration = 27 s, Offset = 24s, Red Percentage = %50; values assigned for ramp

Cycle = 30 s, Green Duration = 6 s, Red Percentage=%50. The data from the

simulations modeled with these conditions are listed in Tables (3.10,3.11,3.12).
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(MLC) (Line 3,5m -Shoulder right-1,5 left-0,5) Speed All Line 120km/h
Performance Measure Value Standard

Devia-
tion

Units

Delay Time – Car 171,54 291,09 sec/km
Density – Car 55,65 N/A veh/km
Flow – Car 6648 N/A veh/h
Fuel Consumption – Car 0 N/A l
Harmonic Speed – Car 32,43 16,01 km/h
IEM Emission - CO2 - Interurban – Car 343331,49 N/A g/km
IEM Emission - CO2 – Car 936747,62 N/A g
IEM Emission - NOx - Interurban – Car 1059,92 N/A g/km
IEM Emission - NOx – Car 2891,88 N/A g
IEM Emission - PM - Interurban – Car 229,28 N/A g/km
IEM Emission - PM – Car 625,58 N/A g
IEM Emission - VOC - Interurban – Car 169,5 N/A g/km
IEM Emission - VOC – Car 462,46 N/A g
Input Count – Car 1103 N/A veh
Input Flow – Car 6752 N/A veh/h
Max Virtual Queue – Car 1430 N/A veh
Mean Queue – Car 48,23 N/A veh
Mean Virtual Queue – Car 1014,31 N/A veh
Missed Turns – Car 0 N/A
Number of Stops – Car 1 N/A #/veh

/km
Speed - Car 40,33 7,5 km/h
Stop Time - Car 122,94 298,21 sec/km
Total Travel Time - Car 185,15 N/A h
Total Travelled Distance - Car 4051,49 N/A km
Travel Time - Car 204,79 291,17 sec/km
Vehicles Inside - Car 438 N/A veh
Vehicles Lost Inside - Car 0 N/A veh
Vehicles Lost Outside - Car 0 N/A veh
Vehicles Outside - Car 1662 N/A veh
Vehicles Waiting to Enter - Car 1430 N/A veh

Table 3.10: Control Scenario 1. Mainline Metering.
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(MLC) (Line 3,5m-Shoulder right-1,5 left-0,5) Speed DS-Main Line 20km/h
Performance Measure Value Standard

Devia-
tion

Units

Delay Time – Car 285,01 295,69 sec/km
Density – Car 98,02 N/A veh/km
Flow – Car 4752 N/A veh/h
Fuel Consumption – Car 0 N/A l
Harmonic Speed – Car 14,09 5 km/h
IEM Emission - CO2 - Interurban – Car 283718,61 N/A g/km
IEM Emission - CO2 – Car 774099,49 N/A g
IEM Emission - NOx - Interurban – Car 676,27 N/A g/km
IEM Emission - NOx – Car 1845,14 N/A g
IEM Emission - PM - Interurban – Car 224,61 N/A g/km
IEM Emission - PM – Car 612,84 N/A g
IEM Emission - VOC - Interurban – Car 291,2 N/A g/km
IEM Emission - VOC – Car 794,5 N/A g
Input Count – Car 805 N/A veh
Input Flow – Car 4808 N/A veh/h
Max Virtual Queue – Car 2112 N/A veh
Mean Queue – Car 124,27 N/A veh
Mean Virtual Queue – Car 1450,27 N/A veh
Missed Turns – Car 0 N/A
Number of Stops – Car 4,72 N/A #/veh

/km
Speed - Car 15,86 3,25 km/h
Stop Time - Car 164,79 316,23 sec/km
Total Travel Time - Car 239,51 N/A h
Total Travelled Distance - Car 2871,02 N/A km
Travel Time - Car 348,41 309,26 sec/km
Vehicles Inside - Car 760 N/A veh
Vehicles Lost Inside - Car 0 N/A veh
Vehicles Lost Outside - Car 0 N/A veh
Vehicles Outside - Car 1188 N/A veh
Vehicles Waiting to Enter - Car 2112 N/A veh

Table 3.11: Control Scenario 2. Mainline Metering.
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(Line 3,5m - Shoulder right-1,5 left-0,5) Main-US Ramp Main-DS
All Line Speed 120km/h
Simulated Travel Time 322,1 994,6 20,9
Simulated Speed 36,5 1,5 88,4
Simulated Flow 6348 276 6600
Simulated Density 59,6 184,4 25
Simulated Delay Time 130,4 482,5 3,9

Speed Downstream-Main Line 20km/h
Simulated Travel Time 579,7 1044,2 95,7
Simulated Speed 15,7 1,3 19,3
Simulated Flow 4488 252 4758
Simulated Density 99,1 186,4 81,9
Simulated Delay Time 394,3 548,1 11,4

Table 3.12: 2. Mainline Metering Control-Values Of Roads As A Result Of
Analysis.

3.1.3.4 BC-RMC-MLC Explication and Comparison

When the tables in which the results of the BC and RMC conditions are written

are compared, a few different situations are encountered. One of the encountered

situations is that the values in the table with 120km / h speed and 20km / h

speed are not directly proportional. According to the uncontrolled scenario in

ramp control, some important results are obtained as seen in table 3.13.

For 120 km / h: For 20km / h:
Delay Time %28,95 ↘ Delay Time %3,41 ↘
Density %31,21 ↘ Density %2,83 ↘
Flow %11,43 ↗ Flow %0,58 ↘
Speed %42,74 ↗ Speed %1,18 ↗
Travel Time %25,49 ↘ Travel Time %3,48 ↘

Table 3.13: Proportionality variables.

When comparing the tables in which the results of the RMC and MLC metering

are written, different situations are encountered. The main point in this compar-

ison is that it gives better results than ramp control as seen in table 3.14.
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For 120 km / h: For 20km / h:
Delay Time %1,47 ↘ Delay Time %16,29 ↘
Density %18,01 ↗ Density %3,72 ↘
Flow %13,66 ↘ Flow %3,10 ↘
Speed %22,28 ↘ Speed %1,43 ↘
Stop Time %13,57 ↘ Stop Time %24,59 ↘
Travel Time %1,22 ↘ Travel Time %14,69 ↘

Table 3.14: Proportionality variables of RMC and MLC.

Stop Time, Delay Time, and Travel Times decreasing give impressions that the

work done will provide useful results. For this reason, applying the models made

in line with the results of the analysis to a real highway network is considered as

a way to solve the traffic problems of the countries.
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Figure 3.14: Comparison Of The Delay Time (20km/h).
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Figure 3.16: Comparison Of The Total Travel Time (20km/h).

The graphical results of the analysis are available in Figure 3.14, 3.15, 3.16 and

remarkable results are observed. The biggest visible change is travel times and

drops in delay times. As a result of the scenario in which the mainline control

is applied, the results of analysis supporting the defense that there is a much

more useful control model than the scenario where the ramp control is applied

are found.
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Chapter 4

Traffic Control Simulation

Modeling steps of the simulation program used in this section are explained. As

a result of these steps, a simulation is summarized. Different metering control

methods are designed in the program. Analysis of the data entered at the end of

the design is made. Thus identified the most suitable option for highway access

control arrangements are made necessary analysis and advice.

4.1 Study Area

As a study field, K-9, and K-10 intersections of the O-2 road are determined. The

satellite view of the study area is shown in Figure 4.1.

Figure 4.1: Satellite Image of the Study Field.
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4.2 Network Building

Multiple scenarios can be defined in AIMSUN and multiple attempts can be cre-

ated for each. Each scenario and experiment will have their own values. AIMSUN

will keep all defined scenarios (and thus experiments, replications, and results)

in the network. The workspace was modeled using this infrastructure of the pro-

gram. AIMSUN software is a program that has network connection in itself and

can obtain geometrical modeling data from all over the world using this connec-

tion. For this reason, the design I used in the project was selected from the list of

window templates that appeared on the screen after running the program (Figure

4.2).

Figure 4.2: Template Chooser Window.

The part to be modeled first is selected by selecting the world map. Unrelated

parts are removed from the selected part (buildings, green areas, parking spaces,

lighting, etc.). After that, the intersections of the roads and the weaving lengths

at the joints are measured on any online map and necessary adjustments are

44



made and if there are mistakes, corrections are made. After these processes are

completed, centroids are created to determine the data entry and viewing points

of the vehicles. Then the detector is assigned to the parts that are deemed

appropriate in the project, and create metering. These commands are assigned

O/D route and O/D matrices respectively, and the data obtained by searching

are entered into the system. As for normal entrance centroids, it is possible to

define routes starting in a public transport stop by selecting the linked entrance

centroid as the O/D route origin centroid. These are mainly road speed limits,

the number of vehicles per lane, the lanes of vehicles, vehicle types, and a number

of lanes.

4.3 Scenarios (For Study Area)

Scenarios compared and applied in the general network are applied to the workspace

with the same logic. General details about the scenario applied can be found in

Table 4.1 and Figure 4.3. Table 4.3 shows the number of cars assigned to the cen-

troid point in the system. Figure 4.3 shows the centroid of these points. Model,

take the highway network in the verbatim, get real data it is desired to affect

the analysis results match exactly. In this way, the most accurate results in the

analysis are obtained.

⊗ 37141 37146 37152 37155 37159 Total
37133 7 10 500 30 50 1097
37134 10 65 750 30 70 1875
37140 - - 4750 35 3200 7985
37147 - 3 4500 55 75 4633
37156 - - 8500 - 4500 13000
37160 - - 4500 80 50 4630
37339 15 40 6750 55 90 6950
Total 32 118 31700 285 8035 40170

Table 4.1: O / D Matrix Editor - Assign Tools from One Centroid.
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Figure 4.3: O/D Routes for a Centroid Configuration.
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4.3.1 Base Case (BC)(No Control)

For the applied control scenarios to be comparable, a basic model should be

designed first. Thus, it can be interpreted how successful other scenarios are

to mitigate traffic. The basic case is given as a result of the simulation and the

density map image is as in Figure 4.4. Analysis data in the area where the control

scenario is not applied are presented in tables 4.2 and 4.3. It will then be used

to compare the analysis in the results section.

Performance Measure Value Standard Deviation Units
Delay Time - Car 57,18 56,67 sec/km
Density - Car 1,2 N/A veh/km
Flow - Car 7740 N/A veh/h
Harmonic Speed - Car 57,45 15,55 l
Input Count - Car 3106 N/A km/h
Input Flow - Car 18636 N/A g/km
Max Virtual Queue - Car 35639 N/A g
Mean Queue - Car 325,67 N/A g/km
Mean Virtual Queue - Car 17583,87 N/A g
Missed Turns - Car 12 N/A g/km
Number of Stops - Car 0,81 N/A g
Speed - Car 61,65 15,55 g/km
Stop Time - Car 41,85 52,04 g
Total Travel Time - Car 126,5 N/A veh
Total Travelled Distance - Car 5660,99 N/A veh/h
Travel Time - Car 98,76 61,26 veh
Vehicles Inside - Car 1816 N/A veh
Vehicles Lost Inside - Car 6 N/A veh
Vehicles Lost Outside - Car 6 N/A
Vehicles Outside - Car 1290 N/A #/veh/km
Vehicles Waiting to Enter - Car 35639 N/A km/h

Table 4.2: Analysis Results For Base Case.
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Figure 4.4: Base Case Road Condition (For Density).
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Origin Destination Vehicles
As-
signed

Vehicles
En-
tered

Vehicles
Exited

Volume Distance Travel
Time

37339 37159 86 4 4 90 6780,48 488,272
37339 37155 55 3 3 55 5696,3 410,231
37339 37152 6772 244 244 6750 6613,48 476,17
37339 37146 36 3 3 40 2858,1 205,829
37339 37141 11 3 3 15 2462,93 177,392
37160 37155 64 6 6 80 1604,23 115,504
37160 37152 4489 201 201 4500 2627,68 189,317
37156 37159 4441 153 153 4500 1762,61 126,955
37156 37152 8631 227 227 8500 2064,24 148,687
37147 37159 67 2 2 75 6542,79 471,158
37147 37155 42 2 2 55 5458,61 393,117
37147 37152 4584 113 113 4500 6375,79 459,057
37147 37146 4 1 1 3 2620,41 188,715
37140 37159 3138 74 74 3200 5878,93 423,36
37140 37155 34 1 1 35 4794,75 345,32
37140 37152 4776 94 94 4750 5711,93 411,259
37134 37159 81 5 5 70 6805,35 490,062
37134 37155 37 4 4 30 5721,17 412,022
37134 37152 728 73 73 750 6638,35 477,961
37134 37146 53 10 10 65 2882,97 207,619
37134 37141 7 1 1 10 2487,8 179,182
37133 37159 54 2 2 50 6692,57 481,942
37133 37155 33 8 8 30 5608,39 403,902
37133 37152 503 48 48 500 6525,57 469,841
37133 37146 8 2 2 10 2770,19 199,499
37133 37141 11 0 0 7 2375,03 171,062

Table 4.3: Analysis Table from Point Origin to Destination in The Base Case.
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4.3.2 Ramp Metering Control (RMC)

The implementation of the ramp metering is controlled by a traffic signal that

turns cyclically red and green. The control cycle and green time values for the

metering are displayed in the control editor. In cases other than metering control,

Minimum and Maximum green areas can be accepted. The formulas in table

3.6 are based on on-ramp metering in this study. On the mainline, a rate is

established by accepting the number of vehicles assigned per lane as 1800 and

the number of vehicles coming from the ramp per lane as 1200 and continues

accordingly. There are 4 ramp points in the modeled one-way road network.

The implementation of the ramp controls is controlled by a traffic signal that

turns cyclically red and green. The control cycle and green time values for the

metering are displayed in the control editor. In cases other than metering control,

Minimum and Maximum green areas can be accepted. The formulas in table

3.6 are based on on-ramp metering in this study. On the mainline, a rate is

established by accepting the number of vehicles assigned per lane as 1800 and

the number of vehicles coming from the ramp per lane as 1200 and continues

accordingly. There are 4 ramp participation points in the modeled one-way road

network. Various cycle times and green times are assigned, taking into account

the individual density of each ramp and the vehicle density from the main road.

Various cycle times and green times are assigned, the results of the analysis are

taken over and over and simulation is used, which provides the most ideal image

from the analysis results. Besides, in the comparison made as a result of the

specific time determinations made for each ramp, the best result was determined

by these times were determined as Green Time 8 sec, Cycle Time 12 sec, and

Offset 2 sec. When different time variations are tried, for example, when a specific

value is assigned to each ramp, it is seen that the density in the ramps decreases to

a minimum. But at the same time, total travel time and total flow are significantly

reduced. In this direction, it is concluded that the density in the mainline has

increased significantly and this situation does not give the desired.
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Figure 4.5: Ramp Metering Road Condition (For Density).
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Performance Measure Value Standard
Deviation

Units

Delay Time - Car 53,75 58,55 sec/km
Density - Car 1,39 N/A veh/km
Flow - Car 7218 N/A veh/h
Harmonic Speed - Car 54,93 22,82 km/h
Input Count - Car 3359 N/A veh
Input Flow - Car 20154 N/A veh/h
Max Virtual Queue - Car 35894 N/A veh
Mean Queue - Car 653,73 N/A veh
Mean Virtual Queue - Car 17698,24 N/A veh
Missed Turns - Car 14 N/A
Number of Stops - Car 0,82 N/A #/veh/km
Speed - Car 64,4 20,31 km/h
Stop Time - Car 40,94 55,55 sec/km
Total Travel Time - Car 122,24 N/A h
Total Travelled Distance - Car 5981,78 N/A km
Travel Time - Car 91,66 62,96 sec/km
Vehicles Inside - Car 2156 N/A veh
Vehicles Lost Inside - Car 3 N/A veh
Vehicles Lost Outside - Car 10 N/A veh
Vehicles Outside - Car 1203 N/A veh
Vehicles Waiting to Enter - Car 35894 N/A veh

Table 4.4: Analysis Results For Ramp Control.

52



Origin Destin-
ation

Vehicles
Assigned

Vehicles
Entered

Vehicles
Exited

Volume Distance Travel
Time

37339 37159 86 3 3 90 6780,48 272259
37339 37155 55 3 3 4500 1762,61 115963
37339 37152 6772 343 343 75 6542,79 265194
37339 37146 36 2 2 3200 5878,93 249452
37339 37141 11 1 1 70 6805,35 273005
37160 37155 64 6 6 50 6692,57 269657
37160 37152 4489 140 140 55 5696,3 209,63
37156 37159 4441 171 171 80 1604,23 103911
37156 37152 8631 152 152 55 5458,61 202565
37147 37159 67 1 1 35 4794,75 186823
37147 37155 42 0 0 30 5721,17 210376
37147 37152 4584 84 84 30 5608,39 207028
37147 37146 4 0 0 6750 6613,48 198404
37140 37159 3138 73 73 4500 2627,68 790358
37140 37155 34 1 1 8500 2064,24 630516
37140 37152 4776 129 129 4500 6375,79 191339
37134 37159 67 2 2 4750 5711,93 175598
37134 37155 30 4 4 1000 6638,35 199,15
37134 37152 993 79 79 750 6525,57 195803
37134 37146 70 6 6 40 2858,1 144834
37134 37141 17 2 2 3 2620,41 137769
37133 37159 47 1 1 65 2882,97 145,58
37133 37155 38 2 2 10 2770,19 142232
37133 37152 744 65 65 15 2462,93 146079
37133 37146 9 2 2 10 2487,8 146825
37133 37141 8 0 0 7 2375,03 143477

Table 4.5: Analysis Table from Point Origin to Destination In The Ramp Control.

4.3.3 Main-Line Metering Control (MLC)

Under normal circumstances, the demand to impose restrictions on the mainline

can be reconciled with the decisions made as a result of an erroneous analysis.

However, it is considered that ramp metering will not be sufficient to shorten

long travel times on highways that are above the mainline density capacity. It

is believed that the congestion occurring on the mainline on the highway can be

prevented from forming long queues with the mainline metering. It is believed

that the signaling placed on the mainline can be opened and closed at certain
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time intervals, relieving the obstruction in the downstream direction and then

rapidly discharging the vehicle density in the upstream direction. It is thought

that this form of signaling can be a useful method to open the blockages that

will occur as a result of traffic accidents. Modeling was carried out by accepting

the number of vehicles allocated per lane on the mainline and the number of

vehicles per lane coming from the ramp in this same scenario type. There are

4 mainline participation points in the modeled one-way road network [Figure

4.6]. Various cycle times and green time scenarios have been tried by considering

the individual vehicle densities of each ramp and mainline. By making small

fluctuations in different values assigned, the results of the analysis are taken over

and over and simulation is used that provides the most ideal image from the

analysis results. Therefore, the times assigned to the model; In the mainline,

Green Time is 27 seconds, Cycle Time is 30 seconds, Offset is 24 seconds; In the

ramp Green Time 6 seconds, Cycle Time 30 seconds. The results of the analysis

made in this direction are as follows;
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Figure 4.6: Mainline Metering Road Condition (For Density).

55



Performance Measure Value Standard
Deviation

Units

Delay Time - Car 47,44 55,26 sec/km
Density - Car 1,46 N/A veh/km
Flow - Car 5880 N/A veh/h
Harmonic Speed - Car 63,78 25,35 km/h
Input Count - Car 3267 N/A veh
Input Flow - Car 19602 N/A veh/h
Max Virtual Queue - Car 35478 N/A veh
Mean Queue - Car 871,5 N/A veh
Mean Virtual Queue - Car 17469,02 N/A veh
Missed Turns - Car 9 N/A
Number of Stops - Car 0,33 N/A #/veh/km
Speed - Car 73,85 21,13 km/h
Stop Time - Car 39,34 54 sec/km
Total Travel Time - Car 100,24 N/A h
Total Travelled Distance - Car 5238,79 N/A km
Travel Time - Car 85,96 61,43 sec/km
Vehicles Inside - Car 2287 N/A veh
Vehicles Lost Inside - Car 2 N/A veh
Vehicles Lost Outside - Car 6 N/A veh
Vehicles Outside - Car 980 N/A veh
Vehicles Waiting to Enter - Car 35478 N/A veh

Table 4.6: Analysis Results For Mainline Control.
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Origin Destin-
ation

Vehicles
Assigned

Vehicles
Entered

Vehicles
Exited

Volume Distance Travel
Time

37339 37159 86 5 5 90 6780,48 272,259
37339 37155 55 4 4 55 5696,3 209,63
37339 37152 6772 603 603 6750 6613,48 198,404
37339 37146 36 4 4 40 2858,1 144,834
37339 37141 11 2 2 15 2462,93 146,079
37160 37155 64 6 6 80 1604,23 103,911
37160 37152 4489 28 28 4500 2627,68 790,358
37156 37159 4441 169 169 4500 1762,61 115,963
37156 37152 8631 40 40 8500 2064,24 630,516
37147 37159 67 0 0 75 6542,79 265,194
37147 37155 42 0 0 55 5458,61 202,565
37147 37152 4584 23 23 4500 6375,79 191,339
37147 37146 4 0 0 3 2620,41 137,769
37140 37159 3138 16 16 3200 5878,93 249,452
37140 37155 34 1 1 35 4794,75 186,823
37140 37152 4776 29 29 4750 5711,93 175,598
37134 37159 81 1 1 70 6805,35 273,005
37134 37155 37 1 1 30 5721,17 210,376
37134 37152 728 33 33 750 6638,35 199,15
37134 37146 53 4 4 65 2882,97 145,58
37134 37141 7 1 1 10 2487,8 146,825
37133 37159 54 0 0 50 6692,57 269,657
37133 37155 33 0 0 30 5608,39 207,028
37133 37152 503 4 4 500 6525,57 195,803
37133 37146 8 0 0 10 2770,19 142,232
37133 37141 11 0 0 7 2375,03 143,477

Table 4.7: Analysis Table from Point Origin to Destination In The Mainline
Control.
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4.4 Results and Discussion

Comparative figures of the results from the prepared analyzes are shown in tables

4.8, 4.9 and in figures 4.8 to 4.18.

Performance Measure BC RMC MLC Units
Delay Time - Car 57,18 53,75 47,44 sec/km
Density - Car 1,2 1,39 1,46 veh/km
Flow - Car 7740 7218 5880 veh/h
Harmonic Speed - Car 57,45 54,93 63,78 km/h
Input Count - Car 3106 3359 3267 veh
Input Flow - Car 18636 20154 19602 veh/h
Max Virtual Queue - Car 35639 35894 35478 veh
Mean Queue - Car 325,67 653,73 871,5 veh
Mean Virtual Queue - Car 17583,87 17698,24 17469,02 veh
Missed Turns - Car 12 14 9 -
Number of Stops - Car 0,81 0,82 0,33 #/veh/km
Speed - Car 61,65 64,4 73,85 km/h
Stop Time - Car 41,85 40,94 39,34 sec/km
Total Travel Time - Car 126,5 122,24 100,24 h
Total Travelled Distance - Car 5660,99 5981,78 5238,79 km
Travel Time - Car 98,76 91,66 85,96 sec/km
Vehicles Inside - Car 1816 2156 2287 veh
Vehicles Lost Inside - Car 6 3 2 veh
Vehicles Lost Outside - Car 6 10 6 veh
Vehicles Outside - Car 1290 1203 980 veh
Vehicles Waiting to Enter - Car 35639 35894 35478 veh

Table 4.8: Compare Control Scenarios.

% BC-RMC BC-MLC RMC-MLC Change
Delay Time (sec/km) 6,00 17,03 11,74 ↘
Density (veh/km) 15,83 21,67 5,04 ↗
Flow(veh/h) 6,74 24,03 18,54 ↘
Speed (km/h) 4,46 19,79 14,67 ↗
Stop Time (sec/km) 2,17 6,00 3,91 ↘
Total Travel Time (h) 3,37 20,76 18,00 ↘
Travel Time (sec/km) 7,19 12,96 6,22 ↘

Table 4.9: Compare Control Scenarios (%).
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When the delay times in the analyzes are taken into consideration, it is seen that

the ramp metering decreases this time by 6,00%. But the main thing is the result

of the mainline metering. As a result of the mainline metering applied, the delay

times of 17.03% decreased.

When the ramp metering scenario is applied, the results of the analysis are im-

proved. This level increases exponentially when the mainline metering scenario is

applied. In the scenario where ramp metering was applied, the vehicle speed was

4.46%; In the scenario applied by combining the mainline and ramp metering,

the vehicle speed increases by 19.79%.

Figure 4.7: Comparing Scenario Types For Delay Time.
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Figure 4.8: Comparing Scenario Types For Density.
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Figure 4.9: Comparing Scenario Types For Flow.

Figure 4.10: Comparing Scenario Types For Harmonic Speed.
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Figure 4.11: Comparing Scenario Types For Number Of Stops.

Figure 4.12: Comparing Scenario Types For Speed.
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Figure 4.13: Comparing Scenario Types For Stop Time.

Figure 4.14: Comparing Scenario Types For Total Travel Time.
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Figure 4.15: Comparing Scenario Types For Travel Time.

Figure 4.16: Travel Time Change Between Departure And Arrival Points.
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Origin-Destination Distance (m) Origin-Destination Distance (m)
37134-37159 6805,35 37147-37155 5458,61
37339-37159 6780,48 37140-37155 4794,75
37133-37159 6692,57 37134-37146 2882,97
37134-37152 6638,35 37339-37146 2858,1
37339-37152 6613,48 37133-37146 2770,19
37147-37159 6542,79 37160-37152 2627,68
37133-37152 6525,57 37147-37146 2620,41
37147-37152 6375,79 37134-37141 2487,8
37140-37159 5878,93 37339-37141 2462,93
37134-37155 5721,17 37133-37141 2375,03
37140-37152 5711,93 37156-37152 2064,24
37339-37155 5696,3 37156-37159 1762,61
37133-37155 5608,39 37160-37155 1604,23

Table 4.10: Volume Change Between Departure And Arrival Points.

Figure 4.16 shows the variations in travel times of scenarios resulting from applied

restrictions and not restricted (in OD matrix ranges). Table 4.10 displays the

distances between OD matrices. When these two outputs are examined together,

the results are as follows;

• O: 37160 – D: 37152; These points come from the ramp and join the main

road. At this point, travel time increases when ramp restriction is made,

because the flow of vehicles in this line is limited. However, travel time is

reduced when the main line restriction is applied. This reduces the time by

increasing the vehicle flow here, along with the constraints on the mainline.

• O: 37339- D: 37146; It appears that it does not benefit when the ramp

metering is applied. However, it seems that travel times are reduced when

the mainline metering is applied.

• O: 37160 – D: 37155; In the lowest value rotation of BC, MLC is aligned in

the same way, while RMC shows one of the highest values. There are no

restrictions affecting these points. However, when the ramp restriction is

applied, it is seen that the blockages occurring backward cause the section

that will go to 37152.
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• When the parameters in Figure 4.16 and Table 4.10 are evaluated together,

the effects of RMC and MLC increase as the distance between the OD

pair increases. In short distance OD pairs, it is seen that it has almost no

effect. This brings to mind the effects of traffic control on equality and the

optimum conditions of Pareto.

Figure 4.17: Flow Views Of Scenario Types.
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Figure 4.18: Travel Time Views Of Scenario Types.
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A few observations from the results of the analysis can be listed as follows:

• As the mainline volume increases, it appears that the downstream vehicle

efficiency increases in ramp metering. This result is consistent with current

experience with ramp metering so far.

• Combining mainline metering with ramp metering gives lower downstream

values (Figure 4.15).

• Adding signaling for the mainline provides very advanced highway condi-

tions downstream. These conditions positively affect the travel time up-

stream of the main meter.

• Combining the mainline metering with the ramp metering, the total travel

times for the total network are shown. Figure 4.13 shows that this time

reduction may be as low as 22 s.
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Chapter 5

Conclusion and Further Studies

In this study, the AIMSUN highway simulation module is used and two main dy-

namic traffic control approaches are proposed for the Istanbul Ring Road (E-8)

traffic jam. These approaches are ramp and mainline metering within the scope

of highway traffic management. The aim of the study is to determine whether

the conducted analyzes provide any highway operational benefits. Although the

model is not based on real-time counts, the analysis was carried out using real

simulation techniques. A road network suitable for the geometrical features of the

road has been created and the network has been calibrated. Network calibration

was then arranged for two access control (Ramp Metering, Mainline Metering)

and one uncontrolled network. After all the scenarios were created, firstly, ex-

periments were carried out on the generic network simulation. After obtaining

the desired results, the highway design network prepared for the working network

was started. Simulation times, road speed limits, road widths were selected and

simulation was applied for uncontrolled, ramp metering, and mainline metering.

Simulation results show that the application of ramp metering and mainline me-

tering together increases speeds on the main road and decreases intensities. In

other words, improvement in operating conditions has been achieved. Thus, it

was seen that the desired benefit could be obtained. Ramp metering is 3.37%

decrease reduction in total travel time, 4.46% increase in speeds; mainline me-

tering was observed resulted in a 20.76% decrease and a 19.79% increase in the

same values. Ramp metering or mainline metering applications also have some
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negative effects. Since the purpose of the controls is to ensure the continuous flow

of the main road traffic, it will be to limit the number of vehicles coming from

the participation point. In this case, the length of the tail formed by the vehicles

accumulated in the participation arms and Pareto optimal rule should not be

ignored. It should be noted that while the lines with long travel times save time,

the lines on short travel times do not extend. In the current uncontrolled state,

the queues in these participations extend to urban roads and can block traffic

not related to the highway. It should not be forgotten that if the controls are

applied in these attendances, the possibility that the queues may become longer.

Therefore, a design road with a length that can store the tail to be formed is

a desired feature in the participation to be controlled. Since AIMSUN is not a

program running on a strip basis, the results obtained in the study are considered

as the average of the general road network. It is also mentioned in the resource

research that the analyzes to be made in other programs that can form a more

detailed model can give more detailed results. Simulation practice results sug-

gest that participation control may benefit, but more detailed studies should be

done before field application. After the current situation has been created with

sufficient accuracy in the computer environment, it is thought that more effective

results can be obtained with various improvement strategies and applications in

the field. Especially when more comprehensive data are obtained. There are

situations where the simulation application causes problems. It is experienced

during the preparation of the thesis. One of them is that it is necessary to purify

the system from its initial state effects. Especially in non-terminated models,

the time spent by the system until it reaches a steady-state, i.e. the warming-up

period statistics, should not be included in the calculations in order to eliminate

the biased effects on the performance output values. However, the program used

does not respond to the application of long analysis times. In this context, a

participation control model is a tool that will provide significant benefits in terms

of average delay, operating cost, travel time, travel speed, tail length in vehicles,

and tail length in distance.
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