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VARIATION FORMULAS OF SOLUTION FOR A CONTROLLED
FUNCTIONAL-DIFFERENTIAL EQUATION CONSIDERING DELAY

PERTURBATION

T. TADUMADZE1, A. NACHAOUI2 §

Abstract. Variation formulas of solution are proved for a controlled non-linear functional-

differential equation with constant delay and the continuous initial condition. In this pa-

per, the essential novelty is the effect of delay perturbation in the variation formulas.The

continuity of the initial condition means that the values of the initial function and the

trajectory always coincide at the initial moment.
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1. Introduction

Linear representation of the main part of the increment of a solution of an equation with
respect to perturbations is called the variation formula of solution (variation formula).The
variation formula allows one to construct an approximate solution of the perturbed equa-
tion in an analytical form on the one hand, and in the theory of optimal control plays the
basic role in proving the necessary conditions of optimality [1-3,6,7,10], on the other. Vari-
ation formulas for various classes of functional-differential equations without perturbation
of delay are given in [2-5,7,8,10,11]. Here we are interested in the variation formulas for
the controlled delay functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ0), u0(t))

with the continuous initial condition

x(t) = ϕ0(t), t ∈ [t00 − τ0, t00]

under perturbations of initial moment t00, delay parameter τ0, initial function ϕ0(t) and
control function u0(t). In this paper, the essential novelty is the effect of perturbation of
delay τ0 in the variation formulas (see c2). The variation formula in a neighborhood of
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the right end of the main interval (so called local variation formula) for the differential
equation

ẋ(t) = f0(t, x(t), x(t− τ0)) (1.1)

with the initial condition

x(t) = ϕ0(t), t ∈ [t00 − τ0, t00), x(t00) = x00,

when perturbation of initial data, delay and right-hand side of the equation (1.1) occurs
is proved in [12]. It is important to note that the variation formula which is proved in the
present work doesn’t follows from the formula proved in [12] (see c6).

2. Notation and auxiliary assertions

Let Rn
x be the n-dimensional vector space of points x = (x1, ..., xn)T , where T means

transpose; suppose that O ⊂ Rn
x and V ⊂ Rr

u are open sets. Let the n-dimensional function
f(t, x, y, u) satisfies the following conditions: for almost all t ∈ J = [a, b], the function
f(t, ·) : O2×V → Rn

x is continuously differentiable; for any (x, y, u) ∈ O2×V, the functions
f(t, x, y, u), fx(·), fy(·), fu(·) are measurable on J ; for arbitrary compacts K ⊂ O,U ⊂ V

there exists a function mK,U (·) ∈ L(J, [0,∞)), such that for any (x, y, u) ∈ K2 × U and
for almost all t ∈ J the following inequality is fulfilled

| f(t, x, y, u) | + | fx(·) | + | fy(·) | + | fu(·) |≤ mK,U (t).

Further, let 0 < τ1 < τ2 be given numbers; Eϕ be the space of continuous functions
ϕ : J1 → Rn

x , where J1 = [τ̂ , b], τ̂ = a − τ2; Φ = {ϕ ∈ Eϕ : ϕ(t) ∈ O, t ∈ J1} be a set of
initial functions; let Eu be the space of bounded measurable functions u : J → Rr

u and
Ω = {u ∈ Eu : clu(J) ⊂ V } be a set of control functions, where u(J) = {u(t) : t ∈ J} and
clu(J) is the closer of the set u(J).

To each element µ = (t0, τ, ϕ, u) ∈ Λ = (a, b)× (τ1, τ2)×Φ×Ω we assign the controlled
delay functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t)) (2.1)

with the initial condition
x(t) = ϕ(t), t ∈ [τ̂ , t0]. (2.2)

The condition (2.2) is said to be continuous initial condition since always x(t0) = ϕ(t0).
Definition 2.1. Let µ = (t0, τ, ϕ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈
(t0, b), is called a solution of equation (2.1) with the initial condition (2.2) or a solution
corresponding to µ and defined on the interval [τ̂ , t1] if it satisfies condition (2.2) and is
absolutely continuous on the interval [t0, t1] and satisfies equation (2.1) almost everywhere
on [t0, t1].

Let µ0 = (t00, τ0, ϕ0, u0) ∈ Λ be a fixed element. In the space Eµ = R1
t0 ×R1

τ ×Eϕ×Eu

we introduce the set of variations:

V = {δµ = (δt0, δτ, δϕ, δu) ∈ Eµ − µ0 : | δt0 |≤ α, | δτ |≤ α,

δϕ =
k∑

i=1

λiδϕi, δu =
k∑

i=1

λiδui, | λi |≤ α, i = 1, k}, (2.3)

where δϕi ∈ Eϕ −ϕ0, δui ∈ Eu − u0, i = 1, k are fixed functions ; α > 0 is a fixed number.
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Lemma 2.1. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, ϕ0, u0) ∈ Λ and
defined on [τ̂ , t10], t10 ∈ (t00, b) and let K0 ⊂ O and U0 ⊂ V be compact sets containing
neighborhoods of sets ϕ0(J1) ∪ x0([t00, t10]) and clu0(J), respectively. Then there exist
numbers ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ [0, ε1]× V, we have µ0 + εδµ ∈ Λ.

In addition, a solution x(t; µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ J1 corresponds
to this element. Moreover,

{
x(t; µ0 + εδµ) ∈ K0, t ∈ [τ̂ , t10 + δ1],

u0(t) + εδu(t) ∈ U0, t ∈ J.
(2.4)

This lemma is a result of Theorem 5.3 in [9, p.111].
Remark 2.1. Due to the uniqueness, the solution x(t; µ0) is a continuation of the solution
x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, in the sequel the solution x0(t) is assumed to
be defined on the interval [τ̂ , t10 + δ1].

Lemma 2.1 allows one to define the increment of the solution x0(t) = x(t; µ0) :
{

∆x(t) = ∆x(t; εδµ) = x(t; µ0 + εδµ)− x0(t),

(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.
(2.5)

Lemma 2.2. Let the following conditions hold:
2.1. the function ϕ0(t), t ∈ J1 is absolutely continuous and the function ϕ̇0(t) is bounded;
2.2. there exist compact sets K0 ⊂ O and U0 ⊂ V containing neighborhoods of sets

ϕ0(J1)∪x0([t00, t10]) and clu0(J), respectively, such that the function f(t, x, y, u) is bounded
on the set J ×K2

0 × U0;
2.3. there exist the limits

lim
t→t00−

ϕ̇0(t) = ϕ̇−0 , lim
w→w0

f(w, u0(t)) = f−,

where w = (t, x, y) ∈ (a, t00]×O2, w0 = (t00, ϕ0(t00), ϕ0(t00−τ0)). Then there exist numbers
ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

max
t∈[τ̂ ,t10+δ2]

| ∆x(t) |≤ O(εδµ)1 (2.6)

for arbitrary (ε, δµ) ∈ [0, ε2]× V −, where V − = {δµ ∈ V : δt0 ≤ 0, δτ ≤ 0}. Moreover,

∆x(t00) = ε
[
δϕ(t00) + {ϕ̇−0 − f−}δt0

]
+ o(εδµ). (2.7)

Lemma 2.3. Let the conditions 2.1 and 2.2 of Lemma 2.2 hold, and there exist the limits

lim
t→t00+

ϕ̇0(t) = ϕ̇+
0 , lim

w→w0

f(w, u0(t)) = f+, w ∈ [t00, b)×O2.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that the inequality (2.6) is valid
for arbitrary (ε, δµ) ∈ [0, ε2]× V +, where V + = {δµ ∈ V : δt0 ≥ 0, δτ ≥ 0}. Moreover,

∆x(t00 + εδt0) = ε
[
δϕ(t00) + {ϕ̇+

0 − f+}δt0
]

+ o(εδµ). (2.8)

Lemmas 2.2 and 2.3 can be proved in analogy to Lemma 2.4 (see [11]).

1Here and throughout the following, the symbols O(t; εδµ), o(t; εδµ) stand for quantities (scalar or

vector) that have the corresponding order of smallness with respect to ε uniformly with respect to t and

δµ.
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3. Formulation of main results

Theorem 3.1. Let the conditions of Lemma 2.2 hold. Then there exist numbers ε2 ∈
(0, ε1] and δ2 ∈ (0, δ1] such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3.1)

for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2]× [0, ε2]× V − and

δx(t; δµ) = Y (t00; t){ϕ̇−0 − f−}δt0 + β(t; δµ), (3.2)

where

β(t; δµ) = Y (t00; t)δϕ(t00) +
∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

−
{∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
}

δτ +
∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ. (3.3)

Here Y (ξ; t) is the n× n-matrix function satisfying the linear functional-differential equa-
tion with advanced argument

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]− Y (ξ + τ0; t)fy[ξ + τ0], ξ ∈ [t00, t], (3.4)

and the condition

Y (ξ; t) =

{
I for ξ = t,

Θ for ξ > t,
(3.5)

fx =
∂

∂x
f, fx[ξ] = fx(ξ, x0(ξ), x0(ξ − τ0), u0(ξ));

I is the identity matrix and Θ is the zero matrix.

Some comments.The expression (3.2) is called the variation formula.
c1. Theorem 3.1 corresponds to the case when the variations at the points t00 and τ0 are
performed simultaneously on the left.
c2. The summand

−
{∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
}

δτ

in formula (3.3) is the effect of perturbation of the delay τ0.
c3. The expression

Y (t00; t){ϕ̇−0 − f−}δt0
is the effect of continuous initial condition (2.2) and perturbation of the initial moment
t00.

c4. The expression

Y (t00; t)δϕ(t00) +
∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ +
∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ

in formula (3.3) is the effect of perturbations of initial ϕ0(t) and control u0(t) functions.
c5. The variation formula allow one to obtain an approximate solution of the perturbed
functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ0 − εδτ), u0(t) + εδu(t))
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with the perturbed initial condition x(t) = ϕ0(t) + εδϕ(t), t ∈ [τ̂ , t00 + εδt0]. In fact, for a
sufficiently small ε ∈ (0, ε2] from (3.1) it follows x(t) ≈ x0(t) + εδx(t; δµ) (see (2.5)).
c6. In the variation formula proved in [12], for the equation (1.1) instead of the expression

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ

(see (3.3)), we have ∫ t

t00

Y (ξ; t)δf(ξ, x0(ξ), x0(ξ − τ0)dξ,

where δf is a perturbation of the right-hand side of the equation (1.1). The local version
of the formula (3.2) follows from the formula obtained in [12] if the function f additionally
satisfies the conditions : the function fu(t, x, y, u0(t)) is continuously differentiable with
respect to x and y; there exists the limit

lim
w→w01

f(w, u0(t)), w = (t, x, y) ∈ (a, t00 + τ0]×O2

where w01 = (t00 + τ0, x0(t00 + τ0), ϕ0(t00)), with t00 + τ0 < t10. In the present work vari-
ation formulas are proved without of these conditions.

Theorem 3.2. Let the conditions of Lemma 2.3 hold. Then for each t̂0 ∈ (t00, t10) there
exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2]×
[0, ε2]× V +, formula (3.1) holds and

δx(t; δµ) = Y (t00; t){ϕ̇+
0 − f+}δt0 + β(t; δµ). (3.6)

Theorem 3.2 corresponds to the case when the variations at the points t00 and τ0 are
performed simultaneously on the right. Theorems 3.1 and 3.2 are proved by a scheme
given in [3]. The following assertion is a corollary to Theorems 3.1 and 3.2.

Theorem 3.3. Let the assumptions of Theorems 3.1 and 3.2 be fulfilled. Moreover,
ϕ̇−0 − f− = ϕ̇+

0 − f+ =: f̂ .Then for each t̂0 ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1] and
δ2 ∈ (0, δ1] such that for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2]× [0, ε2]×V, formula (3.1) holds,
where

δx(t; δµ) = Y (t00; t)f̂ δt0 + β(t; δµ).

Theorem 3.3 corresponds to the case when at the points t00 and τ0 two-sided varia-
tions are simultaneously performed. All assumptions of Theorem 2.3 are satisfied if the
function f(t, x, y, u) is continuous, the function ϕ0(t) is continuously differentiable and
the function u0(t) is continuous at the point t00. Clearly, in this case f̂ = ϕ̇0(t00) −
f(t00, ϕ0(t00), ϕ0(t00 − τ0), u0(t00)).

4. Proof of theorem 3.1

Here and in what follows we shall assume that t0 = t00 + εδt0, τ = τ0 + εδτ, ϕ(t) =
ϕ0(t) + εδϕ(t), u(t) = u0(t) + εδu(t). Let ε2 ∈ (0, ε1] be so small (see Lemma 2.2) that for
arbitrary (ε, δµ) ∈ (0, ε2] × V − the following inequalities hold t00 − τ ≤ t0, t0 + τ ≥ t00.

The function ∆x(t) (see (2.5)) satisfies the equation

∆̇x(t) = f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u(t))− f [t]
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= fx[t]∆x(t) + fy[t]∆x(t− τ0) + εfu[t]δu(t) + r(t; εδµ) (4.1)

on the interval [t00, t10 + δ2], where

r(t; εδµ) = f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u(t))− f [t]

−fx[t]∆x(t)− fy[t]∆x(t− τ0)− εfu[t]δu(t), (4.2)

f [t] = f(t, x0(t), x0(t− τ0), u0(t)).

By using the Cauchy formula ([3],p.21), one can represent the solution of equation (4.1)
in the form

∆x(t) = Y (t00; t)∆x(t00) + ε

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ

+
1∑

i=0

Ri(t; t00, εδµ), t ∈ [t00, t10 + δ2], (4.3)

where 



R0(t; t00, εδµ) =
∫ t00
t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ,

R1(t; t00, εδµ) =
∫ t
t00

Y (ξ; t)r(ξ; εδµ)dξ

(4.4)

and Y (ξ; t) is the matrix function satisfying equation (3.4) and condition (3.5). The
function Y (ξ; t) is continuous on the set Π = {(ξ, t) : a ≤ ξ ≤ t, t ∈ J} ([3], Lemma 2.1.7).
Therefore,

Y (t00; t)∆x(t00) = εY (t00; t)
[
δϕ(t00) + {ϕ̇−0 − f−}δt0

]
+ o(t; εδµ) (4.5)

(see (2.7)). One can readily see that

R0(t; t00, εδµ) = ε

∫ t0

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+
∫ t00

t0

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ = ε

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+o(t; εδµ) (4.6)

(see (2.5) and (2.6)). We introduce the notations:

f [t; s, εδµ] = f(t, x0(t) + s∆x(t), x0(t− τ0) + s{x0(t− τ)− x0(t− τ0)

+∆x(t− τ)}, u0(t) + sεδu(t)), σ(t; s, εδµ) = fx[t; s, εδµ]− fx[t],

ρ(t; s, εδµ) = fy[t; s, εδµ]− fy[t], θ(t; s, εδµ) = fu[t; s, εδµ]− fu[t].

It is easy to see that

f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u0(t) + εδu(t))− f [t]
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=
∫ 1

0

d

ds
f [t; s, εδµ]ds =

∫ 1

0

{
fx[t; s, εδµ]∆x(t) + fy[t; s, εδµ]{x0(t− τ)

−x0(t− τ0) + ∆x(t− τ)}+ εfu[t; s, εδµ]δu(t)
}

ds

=
[ ∫ 1

0
σ(t; s, εδµ)ds

]
∆x(t) +

[ ∫ 1

0
ρ(t; s, εδµ)ds

]
{x0(t− τ)

−x0(t− τ0) + ∆x(t− τ)}+ ε
[ ∫ 1

0
θ(t; s, εδµ)ds

]
δu(t)

+fx[t]∆x(t) + fy[t]{x0(t− τ)− x0(t− τ0) + ∆x(t− τ)}+ εfu[t]δu(t).

By taking account of last relation for t ∈ [t00, t10 + δ2] we have

R1(t; t00, εδµ) =
6∑

i=2

Ri(t; t00, εδµ),

where

R2(t; t00, εδµ) =
∫ t

t00

Y (ξ; t)σ1(ξ; εδµ)∆x(ξ)dξ,

σ1(ξ; εδµ) =
∫ 1

0
σ(ξ; s, εδµ)ds, R3(t; t00, εδµ)

=
∫ t

t00

Y (ξ; t)ρ1(ξ; εδµ){x0(ξ − τ)− x0(ξ − τ0) + ∆x(ξ − τ)}dξ,

ρ1(ξ; εδµ) =
∫ 1

0
ρ(ξ; s, εδµ)ds,R4(t; t00, εδµ)

= ε

∫ t

t00

Y (ξ; t)θ1(ξ; εδµ)δu(ξ)dξ, θ1(ξ; εδµ)

=
∫ 1

0
θ(ξ; s, εδµ)ds, R5(t; t00, εδµ) =

∫ t

t00

Y (ξ; t)fy[ξ]{x0(ξ − τ)

−x0(ξ − τ0)}dξ, R6(t; t00, εδµ) =
∫ t

t00

Y (ξ; t)fy[ξ]{∆x(ξ − τ)

−∆x(ξ − τ0)}dξ

(see (4.2)). The function x0(t), t ∈ [τ̂ , t10 +δ2] is absolutely continuous, then for each fixed
Lebesgue point ξ ∈ (t00, t10 + δ2) of function ẋ0(ξ − τ0) we get

x0(ξ − τ)− x0(ξ − τ0) =
∫ ξ−εδτ

ξ
ẋ0(s− τ0)ds

= −εẋ0(ξ − τ0)δτ + γ(ξ; εδµ), (4.7)

with

lim
ε→0

γ(ξ; εδµ)
ε

= 0 uniformly for δµ ∈ V −. (4.8)
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Thus, (4.8) is valid for almost all points of the interval (t00, t10 + δ2). From (4.7) taking
into account boundedness of the function

ẋ0(t) =

{
ϕ̇0(t), t ∈ [τ̂ , t00],

f [t], t ∈ (t00, t10 + δ2]

it follows

| x0(ξ − τ)− x0(ξ − τ0) |≤ O(εδµ) and
∣∣∣γ(ξ; εδµ)

ε

∣∣∣ ≤ const. (4.9)

It is clear that

| ∆x(ξ − τ)−∆x(ξ − τ0) |=
{

o(ξ; εδµ) for ξ ∈ [t00, t0 + τ ],

O(ξ; εδµ) for ξ ∈ [t0 + τ, t00 + τ0]
(4.10)

(see (2.6)). We note that there exists L(·) ∈ L(J, [0,∞)) such that

| f(t, x1, y1, u1)− f(t, x2, y2, u2) |≤ L(t)(| x1 − x2 | + | y1 − y2 | + | u1 − u2 |),
t ∈ J, (xi, yi, ui) ∈ K2

0 × U0, i = 1, 2 ([3], Lemma 2.1.2).

Let ξ ∈ [t00 + τ0, t10 + δ2] then ξ − τ ≥ t00, ξ − τ0 ≥ t00, therefore

| ∆x(ξ − τ)−∆x(ξ − τ0) |≤
∫ ξ−τ

ξ−τ0

| ∆̇x(s) | ds

≤
∫ ξ−τ

ξ−τ0

L(s)
{
| ∆x(s) | + | x0(s− τ)− x0(s− τ0) |

+ | ∆x(s− τ) | +ε | δu(s) |
}

ds = o(ξ; εδµ) (4.11)

(see (4.1),(2.4),(2.6) and (4.9)). It is not difficult to see that for the expressions Ri(t; t00, εδµ), i =
2, 6 we get

| R2(t; t00, εδµ) |≤‖ Y ‖ O(εδµ)σ2(εδµ), | R3(t; t00, εδµ) |

≤‖ Y ‖ O(εδµ)ρ2(εδµ), | R4(t; t00, εδµ) |≤ εα ‖ Y ‖ θ2(εδµ), R5(t; t00, εδµ)

= −ε
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + γ1(t; εδµ), | R6(t; t00, εδµ) |

≤‖ Y ‖
∫ t10+δ2

t00

| fy[ξ] || ∆x(ξ − τ)−∆x(ξ − τ0) | dξ = o(εδµ) (4.12)

(see (2.6),(2.3),(4.7) and (4.9)-(4.11)). Here

‖ Y ‖= sup
{
| Y (ξ; t) |: (ξ, t) ∈ Π

}
, γ1(t; εδµ) =

∫ t

t00

Y (ξ; t)fy[ξ]γ(ξ; εδµ)dξ

σ2(εδµ) =
∫ t10+δ2

t00

| σ1(ξ; εδµ) | dξ, ρ2(εδµ) =
∫ t10+δ2

t00

| ρ1(ξ; εδµ) |,
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θ2(εδµ) =
∫ t10+δ2

t00

{ k∑

i=1

| δui(ξ) |
}
| θ1(ξ; εδµ) | dξ,

Obviously, ∣∣∣γ1(t; εδµ)
ε

∣∣∣ ≤‖ Y ‖
∫ t10+δ2

t00

| fy[ξ] |
∣∣∣γ(ξ; εδµ)

ε

∣∣∣dξ.

By the Lebesguer theorem on passing to the limit under the integral sign, we have

lim
ε→0

σ2(εδµ) = 0, lim
ε→0

ρ2(εδµ) = 0, lim
ε→0

θ2(εδµ) = 0, lim
ε→0

∣∣∣γ1(t; εδµ)
ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V − (see(4.9)). Thus,

Ri(t; t00, εδµ) = o(t; εδµ), i = 2, 3, 4; (4.13)

and

R5(t; t00, εδµ) = −ε
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (4.14)

On the basis of (4.12)-(4.14) we obtain

R1(t; t00, εδµ) = −ε
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (4.15)

From (4.3) by virtue of (4.5),(4.6) and (4.15) we obtain (3.1), where δx(t; δµ) has form
(3.2).

5. Proof of theorem 3.2

Let t̂0 ∈ (t00, t10) be a fixed point, and let ε2 ∈ (0, ε1] be so small (see Lemma 2.3) that
t0 < t̂0 and t0 − τ0 < t00, for arbitrary (ε, δµ) ∈ (0, ε1]× V +. The function ∆x(t) satisfies
equation (4.1) on the interval [t0, t10 + δ2]. By using the Cauchy formula, we can represent
it in the form

∆x(t) = Y (t0; t)∆x(t0) + ε

∫ t

t0

Y (ξ; t)fu[ξ]δu(ξ)dξ +
1∑

i=0

Ri(t; t0, εδµ), (5.1)

(see (4.4)). The matrix function Y (ξ; t) is continuous on [t00, t̂0] × [t̂0, t10 + δ2] ⊂ Π,

therefore
Y (t0; t)∆x(t0) = εY (t00; t)[δϕ(t00) + (ϕ̇+

0 − f+)]δt0 + o(εδµ) (5.2)

(see (2.8)). Now let us transform R0(t; t0, εδµ). It is not difficult to see that

R0(t; t0, εδµ) = ε

∫ t00

t0−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+
∫ t0

t00

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ

= ε

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ + o(t; εδµ). (5.3)

In a similar way, for t ∈ [t̂0, t10 + δ2] one can prove

R1(t; t0, εδµ) = −ε
[ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (5.4)
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Finally, we note that

ε

∫ t

t0

Y (ξ; t)fu[ξ]δu(ξ)dξ = ε

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ + o(t; εδµ). (5.5)

for t ∈ [t̂0, t10 + δ2]. By taking account of (5.2)-(5.5), from (5.1), we obtain (3.1), where
δx(t; εδµ) has form (3.6).
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