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SINGULAR PERTURBATIONS FOR ABSTRACT ELLIPTIC

OPERATORS AND APPLICATIONS

V. B. SHAKHMUROV1 §

Abstract. Dirichlet problem for parameter depended elliptic differential-operator equa-
tion with variable coefficients in smooth domains is studied. The uniform maximal reg-
ularity, Fredholmness and the positivity of this problem in vector-valued Lp-spaces are
obtained. It is proven that the corresponding differential operator is positive and is a
generator of an analytic semigroup. In application, the maximal regularity properties of
Cauchy problem for abstract parabolic equation and anisotropic elliptic equations with
small parameters are established.
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1. Introduction, notations and background

In last years, the maximal regularity properties of boundary value problems (BVPs)
for differential-operator equations (DOEs) have found many applications in PDE, psedo
DE and in the different physical process (see for references [1− 4], [8], [10], [12− 23],
[26− 27] ). The main objective of the present paper is to discuss the maximal Lp regularity
properties of BVP for elliptic variable coefficient DOE with small parameter

(Lε + λ)u =

n∑
i,j=1

εaij (x)
∂2u (x)

∂xi∂xj
− (A (x) + λ)u (x) +

n∑
k=1

ε
1
2Ak (x)

∂u (x)

∂xk
(1)

= f (x) , x ∈ G, u |Γ= 0,

where Γ is a boundary of region G ⊂ Rn, ε is a positive small parameter and λ is a
spectral parameter, aij are complex-valued functions, A and Ak are possible unbounded
linear operators in a Banach space E.

Maximal regularity of partial DOE in Lp spaces was studied in [1], [4], [7], [18− 23] .
The results in [4] and [18− 23] are restricted to rectangular domains and equations do not
contain mixed derivatives in leading part. Moreover problems investigated in [1] and [8]
involves only bounded operator coefficients.
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In contrast to all above we study elliptic problems with unbounded operator coefficients
in general domains with smooth boundaries.

We say that the problem (1) is uniform maximal Lp-regular (or separable in Lp) if:
(1) for all f ∈ Lp (G;E) there exists a unique solution uε = u ∈ W 2

p (G;E (A) , E)
satisfying (1) a.e. on G;

(2) there exists a positive constant C independent of f and ε such that

n∑
i,j=1

ε

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
Lp(G;E)

+ ∥Au∥Lp(G;E) ≤ C ∥f∥Lp(G;E) .

Let O be an operator generated by the problem (1) i.e.

D (Oε) = W 2
p (G;E (A) , E, LΓ)

=
{
u : u ∈ W 2

p (G;E) ∩ Lp (G;E (A)) , u |Γ= 0
}
, Oεu = Lεu.

We show that the problem (1) is maximal Lp regular, which implies that there is a
bounded inverse of O from Lp to W 2

p (G;E (A) , E). Moreover, we prove that the operator
O is positive and generator of analytic semigroup in Lp.

Since (1) involves unbounded operator coefficients, it becomes difficult to obtain global
estimates for solutions of (1). Therefore to show O has a left inverse and that its range
coincides with Lp, we use covering and flattening arguments, representation formulas,
operator-valued Fourier multiplier results, abstract embedding theorems ( Theorems A1,A2

) and the separability properties of local differential operators with constant coefficients
(both on plane and half plane). Then by using these results along with qualitative proper-
ties of some embedding operators we prove discreetness of spectrum and completeness of
roots elements of O. In applications well posedness of abstract parabolic Cauchy problem
and optimal regularity of anisotropic elliptic equations in Lp, p =(p1, p) (i.e. Lebesgue
spaces with mixed norm) and maximal regularity for infinite systems of elliptic equations
are derived.

The paper is organized as follows: Section 2 collects definitions and background ma-
terials, embedding theorems of Sobolev-Lions spaces, maximal regularity properties for
elliptic DOE in line and halfline and estimates of approximation numbers. In Section3,
the Lp-separability and Fredholmness results for (1) are presented. Finally Section 4-5 are
devoted abstract parabolic Cauchy problem and to some applications, respectively.

A Banach space E is called UMD-space if the Hilbert operator

(Hf) (x) = lim
ε→0

∫
|x−y|>ε

f (y)

x− y
dy

is bounded in Lp (R,E) , p ∈ (1,∞) (see. e.g. [6]). UMD spaces include e.g. Lp, lp spaces
and Lorentz spaces Lpq, p, q ∈ (1,∞).

Let C be the set of complex numbers and

Sφ = { λ ∈ C, |arg λ| ≤ φ} ∪ {0} , 0 ≤ φ < π.

A linear operator A is said to be a positive in a Banach space E with bound M > 0 if
D (A) is dense on E and ∥∥∥(A+ λI)−1

∥∥∥
L(E)

≤ M (1 + |λ|)−1

with λ ∈ Sφ, φ ∈ (0, π], where I is an identity operator in E and L (E) is the space of all
bounded linear operators in E. Sometimes instead of A + λI will be written A + λ and
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denoted by Aλ. It is known that ([24, §1.15.1]) there exist fractional powers Aθ of positive
operator A. Let E

(
Aθ
)
denote the space D

(
Aθ
)
with graphical norm

∥u∥E(Aθ) =
(
∥u∥p +

∥∥∥Aθu
∥∥∥p) 1

p
, 1 ≤ p < ∞, −∞ < θ < ∞.

Let E1 and E2 be two Banach spaces. (E1, E2)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞ will denote

the interpolation spaces defined by K method [24, §1.3.1].
A set W ⊂ B (E1, E2) is called R-bounded (see [7] , [24]) if there is a constant C > 0

such that for all T1, T2, ..., Tm ∈ W and u1,u2, ..., um ∈ E1,m ∈ N

1∫
0

∥∥∥∥∥∥
m∑
j=1

rj (y)Tjuj

∥∥∥∥∥∥
E2

dy ≤ C

1∫
0

∥∥∥∥∥∥
m∑
j=1

rj (y)uj

∥∥∥∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1, 1}-valued random variables on
[0, 1].

Let S (Rn;E) denote the Schwartz class, i.e. the space of all E-valued rapidly decreasing
smooth functions on Rn. Let F denote the Fourier transformation. A function Ψ ∈
C (Rn;B (E1, E2)) is called a Fourier multiplier from Lp (R

n;E1) to Lp (R
n;E2) if the

map u → Λu = F−1Ψ(ξ)Fu, u ∈ S (Rn;E1) is well defined and extends to a bounded
linear operator

Λ : Lp (R
n;E1) → Lp (R

n;E2) .

The set of all multipliers from Lp (R
n;E1) to Lp (R

n;E2) will be denoted by Mp
p (E1, E2) .

For E1 = E2 = E it denotes by Mp
p (E) .

Let

ξ = (ξ1, ξ2, ..., ξn) , ξ ∈ Rn, β = (β1, β2, ..., βn) ,

ξβ = ξβ1
1 ξβ2

2 ...ξβn
n , Un = {β = (β1, β2, ..., βn) , βk ∈ {0, 1}} .

Definition 1.1. A Banach space E is said to be a space satisfying a multiplier condition if

for any Ψ ∈ C(n) (Rn;B (E)) the R-boundedness of the set
{
ξβDβ

ξΨ(ξ) : ξ ∈ Rn\0, β ∈ Un

}
implies that Ψ is a Fourier multiplier in Lp (R

n;E), i.e. Ψ ∈ Mp
p (E) for any p ∈ (1,∞).

Definition 1.2. The φ-positive operator A is said to be an R-positive in a Banach space
E if there exists φ ∈ [0 π) such that the set

LA =
{
A (A+ ξ)−1 : ξ ∈ Sφ

}
is R-bounded.

A linear operator A (x) is said to be positive in E uniformly in x if D (A (x)) is inde-
pendent of x, D (A (x)) is dense in E and∥∥∥(A (x) + λI)−1

∥∥∥ ≤ M

1 + |λ|

for all λ ∈ S (φ), φ ∈ [0 π).
Let σ∞ (E1, E2) denote the space of all compact operators from E1 to E2. For E1 =

E2 = E it is denoted by σ∞ (E) .
Let E0 and E be two Banach spaces and E0 continuously and densely embedded into

E. Let m be a natural number.
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Let Wm
p (G;E0, E) denote a function space of all functions u ∈ Lp (G;E0) possess the

generalized derivatives Dm
k u = ∂mu

∂xm
k

such that Dm
k u ∈ Lp (G;E) with the norm

∥u∥Wm
p (G;E0,E) = ∥u∥Lp(G;E0)

+

n∑
k=1

∥Dm
k u∥Lp(G;E) < ∞.

We will called it Sobolev-Lions type space. For E0 = E the space Wm
p (G;E0, E) will

denoted by Wm
p (G;E) . It is clear to see that

Wm
p (G;E0, E) = Wm

p (G;E) ∩ Lp (G;E0) .

Let we define the following parametrized norm

∥u∥Wm
p,ε

(G;E0,E) = ∥u∥Lp(G;E0)
+

n∑
k=1

ε ∥Dm
k u∥Lp(G;E) < ∞.

LetG be a domain inRn with the sufficiently smooth boundary Γ. The spaceW s
p (Γ;E0, E)

is defined as the trace space of Wm
p (G;E0, E) as in a scalar case (see [15, § 1.7.3] or

[24, § 3.6.1]) i.e. for E0 = E = C replacing the space Lp

(
Rn−1

)
by Lp

(
Rn−1;E

)
.

From [22] it follows the following theorem.

Theorem 1.1. Suppose the following conditions are satisfied:
(1) E is a Banach space satisfying the multiplier condition with respect to p ∈ (1,∞)

and A is an R-positive operator in E;
(2) α = (α1, α2, ..., αn) are n tuples of nonnegative integer numbers such that

|α| =
n∑

k=1

αk, κ = |α|
m ≤ 1 and 0 < h ≤ h0 < ∞, 0 < µ ≤ 1− κ;

(3) Ω ∈ Rn is a region such that there exists a bounded linear extension operator from
Wm

p (G;E (A) , E) to Wm
p (Rn;E (A) , E).

Then an embedding

DαWm
p (G;E (A) , E) ⊂ Lp

(
G;E

(
A1−κ−µ

))
is continuous and there exists a positive constant Cµ such that

ε
|α|
m ∥Dαu∥Lp(G;E(A1−κ−µ)) ≤ Cµ

[
hµ ∥u∥Wm

p (G;E(A),E) + h−(1−µ) ∥u∥Lp(G;E)

]
for all u ∈ Wm

p (G;E (A) , E) .

Theorem 1.2. Suppose all conditions of the Theorem 1.1 are satisfied and suppose G is
a bounded region in Rn, A−1 ∈ σ∞ (E) . Then for 0 < µ ≤ 1− κ an embedding

DαWm
p (G;E (A) , E) ⊂ Lp

(
G;E

(
A1−κ−µ

))
is compact.

Consider at first, the following DOE in all space Rn

(L+ λ)u =
n∑

k=1

εak
∂mu (x)

∂xmk
+ (A+ λ)u = f (x) , x ∈ Rn, (2)

where ε is a positive small parameter and ak are complex numbers.

We set L (ξ) =
n∑

k=1

akξ
m
k , for ξ = (ξ1, ξ2, ..., ξn) ∈ Rn. From [15, § 1.7.3] or [24, § 3.6.1]

it follows the following theorem.
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Theorem 1.3. The maps u → u(j)
(
x1, 0

)
are bounded linear and surjective from

Wm
p

(
Rn

+;E (A) , E
)
to Fj .

Then, by [4], we get

Theorem 1.4. Let E be a Banach space satisfying the multiplier condition with respect
to p ∈ (1,∞) and A is a R-positive operator in E for a φ ∈ [0 π) . Moreover

|L (ξ)| ≥ M
n∑

k=1

|ξk|m , L (ξ) ∈ S (φ) .

Then the problem (2) has a unique solution u ∈ Wm
p (Rn;E (A) , E) for f ∈ Lp (R

n;E),
|arg λ| ≤ φ and the uniform coercive estimate holds

n∑
k=1

m∑
i=0

|λ|1−
i
m ε

i
m

∥∥Di
ku
∥∥
Lp(Rn;E)

+ ∥Au∥Lp(Rn;E) ≤ M ∥f∥Lp(Rn;E) .

Considering BVPs for DOE

(L+ λ)u =

n∑
k=1

εakD
m
k u (x) +Aλu = f (x) , x ∈ Rn

+, (3)

Lju =

mj∑
i=0

εσiαjiu
(i)
(
x1, 0

)
= fj , j = 1, 2, ...m

where σi = 1
m

(
i+ 1

p

)
, mj ∈ {0, 1, ...,m− 1}, a, αji are complex numbers and Aλ =

A + λ, A is a possible unbounded operator in E. Let ωj , j = 1, 2, ...,m be roots of an
equation

anω
m + 1 = 0.

Let

Fj =
(
Wm

p

(
Rn−1;E (A) , E

)
, Lp

(
Rn−1;E

))
θj ,p

, θj =
pmj + 1

mp
, j = 1, 2, ...,m,

L0 (ξ) =

n−1∑
j=1

ajξ
m
j .

By virtue of [5] and trace Theorem 1.3 we obtain

Theorem 1.5. Let E be a Banach space satisfying the multiplier condition with respect to
p ∈ (1,∞) and A is a R-positive operator in E for a φ ∈

(
0, π2

)
.Let |arg ωj − π| ≤ π

2 −φ,
j = 1, 2, ..., d, |arg ωj | ≤ π

2 − φ, j = d+ 1, d+ 2, ...,m, 0 < d < m,αkmk
̸= 0 and

|L0 (ξ)| ≥ M

n−1∑
k=1

|ξk|m , L0 (ξ) ∈ S (φ) .

Then the operator u → {[L+ λ]u, L1u, L2u, ...Lm} is an isomorphism ( algebraic and

topological) from Wm
p

(
Rn

+;E (A) , E
)
onto Lp

(
Rn

+;E
)
×

m∏
j=1

Fj . Moreover, for λ ∈ S (φ)

and sufficiently large |λ| the uniform coercive estimate holds

n∑
k=1

m∑
i=0

ε
i
m |λ|1−

i
m
∥∥Di

ku
∥∥
Lp(Rn

+;E) + ∥Au∥Lp(Rn
+;E) ≤
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M

∥f∥Lp(Rn
+;E) +

m∑
j=1

(
∥fj∥Fj

+ |λ|1−θk ∥fk∥E
) .

Proof. Since Lp

(
Rn

+;E
)
= Lp

(
R+;Lp

(
Rn−1;E

))
, the problem (3) can be express as

Lu = εanD
m
xn
u (xn) + (B + λ)u = fk (y) , Lku = fk, k = 1, 2,

where B is a differential operator in Lp

(
Rn−1;E

)
generated by problem (2) . By virtue

of [4,Theorem 3.1] the operator B is R positive in Lp

(
Rn−1;E

)
. By [1, Theorem 4.5.2],

Lp

(
Rn−1;E

)
∈ UMD provided E ∈ UMD, p ∈ (1,∞). Then by virtue [25], Lp

(
Rn−1;E

)
is the space satisfying the multiplier condition. Then by virtue of [2, Theorem 2] we get
the assertion. �

2. Partial DOE with variable coefficients

Consider the inhomogenous problem (1), i.e.

(Lε + λ)u =
n∑

i,j=1

εaij (x)
∂2u (x)

∂xi∂xj
− (A (x) + λ)u (x) +

n∑
k=1

ε
1
2Ak (x)

∂u (x)

∂xk
(4)

= f (x) , x ∈ G, LΓεu = ε
1
2pu |Γ= g,

where the second equality is in the trace sense.
First we obtain coercive estimate for strong solutions of the problem (4) .

Condition 1. Suppose the following conditions are satisfied:
(1) aij = aji and there is µ > 0 such that

µ−1 |ξ|2 ≤ L0 (x, ξ) ≤ µ |ξ|2 for x ∈ G, L0 (x, ξ) =

n∑
i,j=1

aij (x) ξiξj ;

(2) Γ ∈ C(2) [10, § 6.2] .
Let

F =
(
W 2

p (Γ;E (A) , E) , Lp (Γ;E)
)

1
2p

,p
.

Theorem 2.1. Let the Condition 1 be satisfied and:
(1) E is a Banach space satisfying the multiplier condition with respect to p ∈ (1,∞) ;
(2) A (x) is a R-positive in E uniformly with respect to x ∈ Ḡ, A (x)A−1

(
x0
)

∈
C
(
Ḡ;B (E)

)
;

(3) for any δ > 0 there is C (δ) > 0 such that for a.e. x ∈ G and for u ∈ (E (A) , E) 1
2
,∞

∥Ak (x)u∥ ≤ δ ∥u∥(E(A),E) 1
2 ,∞

+ C (δ) ∥u∥ .

Then for u ∈ W 2
p (G;E (A) , E) and for λ ∈ S (φ) and sufficiently large |λ| we have

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

ku
∥∥
Lp(G;E)

≤ M
[
∥(Lε + λ)u∥Lp(G;E) + ∥LΓεu∥F

]
. (5)

Proof. Let G1,G2, ..., GN be regions in Rn and φ1, φ2, ..., φN be a corresponding partition

of unity that functions φj are smooth on R, σj =suppφj ⊂ Gj and
N∑
j=1

φj (x) = 1.Then
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for u ∈ W 2
p (G;E (A) , E) we have u (x) =

N∑
j=1

uj (x) , where uj (x) = u (x)φj (x) . Let

u ∈ W 2
p (G;E (A) , E) then, from the equation (4) we obtain

( Lε + λ)uj =

n∑
k,i=1

εakiD
2
kiuj (x)− (A (x) + λ)uj (x) = fj (x) , (6)

LΓεuj = gj , j = 1, 2, ..., N. (7)

where

fj = fφj +

n∑
k,i=1

εaki
[
φjD

2
kiu+DkuDkφj + φjDiu+ uD2

kiφj

]
− (8)

n∑
k=1

ε
1
2φjAk (x)

∂u (x)

∂xk
, j = 1, 2, ..., N.

Let Gj ∩G = Gj . Since the boundary Γ is sufficient smooth, then ( see e.g. [15,§ 1.7.3]

there are differentiable diffeomorphism Ψj on neighborhood of Gj transform Gj to G̃j

with plain boundary and such that LΓuj are transformed to L̃Γũj = ũj (y) |yn=0 ,
where υ̃ (y) = υ (Ψj (y)) for υ ∈ W 2

p (Gj ;E (A) , E) . For these transformations the space

W 2
p (Gj ;E (A) , E) are isomorphically mapped to spaces W 2

p

(
G̃j ;E (A) , E

)
and under

these maps the equation (6) is transforms to

( L+ λ) ũj =

n∑
k,,i=1

εãkijD
2
kiũj (y)− Ãjλ (y) ũj (y) = f̃j (y) .

Moreover by virtue of condition (1), there is a linear mapping which transforms the

expression
n∑

k,,i=1

ãkiD
2
kij ũj (y) + Ãjλ (y) ũj (y) to

n∑
k

εãkjD
2
kũj (y)− Ãjλ (y) ũj (y) , ãkj > 0 .

After redenoting y by x, G̃ by Gj , ãkj (y) by akj (x) , Ãjλ (y) by Aλ (x) and ũj (y) by
uj (x) et.c, and freezing coefficients in transformed equation (6) we obtain that

n∑
k

εakj (xj0)D
2
kuj (x) + (A (xj0) + λ)uj (x) = Fj (x) , (9)

LΓεuj = Vj

(
x1
)
, (10)

where

Fj = fj + [A (xj0)−A (x)]uj +
n∑
k

ε [ak (x)− aki (xj0)]D
2
kuj (x) , (11)

By Theorem 1.4 we obtain that the problem (9) − (10) has a unique solution uj ∈
W 2

p (Gj ;E (A) , E) and for λ ∈ S (φ) and for sufficiently large |λ| the following coercive
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estimate holds
n∑

k=1

2∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

kuj
∥∥
Gj ,p

+ ∥Auj∥Gj ,p
≤ C ∥Fj∥Gj ,p

+ ∥Φj∥F (12)

In a similar way, by virtue of Theorem 1.3 we obtain estimates of type (12) for regions
Gj ⊂ G. Whence, using properties of the smoothness of coefficients of equation (11) and
by virtue of Theorem 1.1 and Theorem 1.3 choosing diameters of σj sufficiently small, we
get that

∥Fj∥Gj ,p
≤ δ ∥uj∥W 2

p (Gj ;E(A),E) + C (δ) ∥uj∥Gj ,p
, (13)

∥Vj∥F ≤ C ∥gj∥F + δ ∥uj∥W 2
p (Gj ;E(A),E) + C (δ) ∥uj∥Gj ,p

, (14)

where δ is a sufficiently small and C (δ) is a continuous function. From (12)- (14) we get

n∑
k=1

1∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

kuj
∥∥
Gj ,p

+ ∥Auj∥Gj ,p

≤ C ∥f∥Gj ,p
+ ∥gj∥F + ε ∥uj∥W 2

p
+ C (ε) ∥uj∥Gj ,p

.

Choosing ε < 1 from the above inequality we have

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

kuj
∥∥
Gj ,p

+ ∥Auj∥Gj ,p
≤ C

[
∥f∥Gj ,p

+ ∥uj∥Gj ,p
+ ∥gj∥F

]
. (15)

By a similar manner we also obtain estimates (15) for regions Gj entirely belonging to G.
Then by virtue of the estimate (15) for u ∈ W 2

p (G;E (A) , E) we have

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

ku
∥∥
p
+ ∥Au∥p ≤ C

[
∥(Lε + λ)u∥p + ∥u∥p + ∥gj∥F

]
. (16)

Let u ∈ W 2
p (G;E (A) , E) be the solution of the problem (4) . Then for λ ∈ S (φ) we get

∥u∥p = ∥(Lε + λ)u− Lεu∥p ≤
1

λ

[
∥(Lε + λ)u∥p + ∥u∥W 2

p

]
. (17)

Then by Theorem 1.1, by virtue of (16) , (17) for sufficiently large |λ| and for u ∈
W 2

p (G;E (A) , E) we get the estimate (5) . �

Consider now the BVP (1).

Theorem 2.2. Let all conditions of Theorem 2.1 are satisfied. Then for all f ∈ Lp (G;E) ,
for λ ∈ S (φ) and sufficiently large |λ| there is a unique solution of the problem (1) and
the following uniform coercive estimate holds

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2
∥∥Di

kuj
∥∥
Lp(G;E)

+ C (ε) ∥uj∥Gj ,p
,≤ M ∥f∥Lp(G;E) . (18)

Proof. From Theorem we obtain the estimate (18) . The estimate (18) implies that the
problem (1) has only a unique solution and the operator Oε+λ has an invertible operator
in its rank space. We need to show that this rank space coincide with the space Lp (G;E) .
We consider the smooth functions gj = gj (x) with respect to the partition of the unique
φj = φj (y) on the regionG that equal one on supp φj , where supp gj ⊂ Gj and |gj (x)| < 1.
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Let us construct for all j the function uj , that are defined on the regions Ωj = G∩Gj and
satisfying the problem (1) . Consider first when Gj adjoin to the boundary points. The
problem (1) can be express in the form

n∑
k,i=1

εaki (xj)D
2
kiuj (x) +Aλ (xj)uj (x) = (19)

gj

f + [A (xj)−A (x)]uj

n∑
k,i=1

ε [aki (xj)− aki (x)]D
2
kiuj −

n∑
k=1

ε
1
2Ak (x)

∂uj (x)

∂xk

 ,

LΓuj = 0, j = 1, 2, .., N.

Consider operators Oj (ε) + λ in Lp (Gj ;E) generated by BVPs (19) when Gj partially
belong to G. By virtue of Theorem 1.4 for all f ∈ Lp (Gj ;E), for λ ∈ S (φ) and sufficiently
large |λ| we have

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥Di
k [Oj (ε) + λ]−1 f

∥∥∥
p
+
∥∥∥A [Oj (ε) + λ]−1 f

∥∥∥
p
≤ C ∥f∥p . (20)

Extending uj zero on the outside of supp φj and passing substitutions uj = [Oj (ε) + λ]−1 υj
we obtain from (19) operator equations;

υj = Kjλευj + gjf , j = 1, 2, ..., N, (21)

where

Kjλε = gj

{
f + [A (x0j)−A (x)] [Oj (ε) + λ]−1 +

n∑
i,j=1

ε [aij (x)− aij (x0j)]
∂2

∂xi∂xj
[Oj (ε) + λ]−1 −

n∑
k=1

ε
1
2Ak (x)

∂

∂xk
[Oj (ε) + λ]−1

}
.

By virtue of Theorem 1.1 and the estimate (20) , in view of the smoothness of the coef-
ficients of the expression Kjλε, and in view of condition (4) for λ ∈ S (φ) and sufficiently
large |λ| we have ∥Kjλε∥ < δ, where δ is sufficiently small. Consequently, equations (21)

have unique solutions υj = [I −Kjλε]
−1 gjf and

∥υj∥p =
∥∥∥[I −Kjλε]

−1 gjf
∥∥∥
p
≤ ∥f∥p .

Whence, [I −Kjλε]
−1 gj are bounded linear operators from Lp (G;E) to Lp (Gj ;E) . Thus,

we obtain that the functions

uj = Ujλεf = [Oj (ε) + λ]−1 [I −Kjλε]
−1 gjf

are solutions of the problem (19). In a similar way, by using Theorem 1.4 we can construct
the solutions uj for problems (19) with respect to regions entirely belonging to G. Consider
a linear operator (Uε + λ) in Lp (G;E) such that

(Uε + λ) f =
N∑
j=1

φj (y)Ujλεf.

It is clear from the constructions Uj and the estimate (20) that operators Ujλ are bounded
linear from Lp (G;E) to W 2

p (G;E (A) , E) and for λ ∈ S (φ) and sufficiently large |λ| we
have
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n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥Di
kU

−1
jλ f

∥∥∥
p
+
∥∥∥AU−1

jλ f
∥∥∥
p
≤ C ∥f∥p . (22)

Therefore (U + λ) is a bounded linear operator from Lp to Lp. Then act of Oε + λ to

u =
N∑
j=1

φjUjλεf gives Oλu = f +
N∑
j=1

Φjλεf, where Φjλε are linear operators defined by

Φjλε =


N∑
j=1

n∑
i,k=1

∂2φj

∂xi∂xk
Ujλε +

∂φj

∂xk

∂

∂xi
Ujλε +

∂φj

∂xi

∂

∂xk
Ujλε

n∑
i

ε
1
2Ai

∂φj

∂xi
Ujλε

 .

By virtue of embedding Theorem 1.1 and the estimate (22) from the expression Φjλε we
obtain that operators Φjλε are bounded linear from Lp (G;E) to Lp (Gj ;E) and ∥Φjλε∥ <
1. Therefore, there exists a bounded linear invertible operatorI +

N∑
j=1

Φjλε

−1

.

Whence, we obtain that for all f ∈ Lp (G;E) BVP (1) have a unique solution

u (x) = O−1
λ f =

N∑
j=1

φjO
−1
jλ [I −Kjλ]

−1 gj

I +

N∑
j=1

Φjλ

−1

f

i.e. we obtain the assertion. �

Result 1. Theorem 2.1 implies that the operatorO has a resolvent (O + λ)−1 for λ ∈ S (φ)
and the following estimate holds

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥Di
k (Oε+λ)−1

∥∥∥
B(Lp(G;E))

+
∥∥∥A (Oε + λ)−1

∥∥∥
B(Lp(G;E))

≤ C. (23)

Remark 1. The estimate (18) and the embedding Theorem 1.1 implies that under
conditions of Theorem 2.2 the following estimate

n∑
i,j=1

ε

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
Lp(G;E)

+ ∥Au∥Lp(G;E) ≤ C ∥f∥Lp(G;E)

holds for the solution of the problem (1) . I.e the problem (1) is separable in Lp (G;E) .
Remark 2. Result 1 implies that the operator O is positive in Lp (G;E) . Moreover in
view of (22) and by virtue of [24, § 1.14.5] the operator O generates an analytic semigroup
when φ ∈

(
π
2 , π

)
.

Theorem 2.3. Let all conditions of Theorem 2.1 hold and A−1 ∈ σ∞ (E) . Then the
operator O is Fredholm from W 2

p (G;E (A) , E) into Lp (G;E) .

Proof. Theorem 2.2 implies that the operatorOε+λ for sufficiently large |λ| have a bounded
inverse (Oε+λ)−1 from Lp (G;E) to W 2

p (G;E (A) , E) , that is the operator Oε+λ is Fred-

holm from W 2
p (G;E (A) , E) into Lp (G;E). By virtue of Theorem 1.2 the embedding

W 2
p (G;E (A) , E) ⊂ Lp (G;E) is compact. Then by perturbation theory of linear opera-

tors we obtain that the operator O is Fredholm from W 2
p (G;E (A) , E) into Lp (G;E). �
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Result 2. If we put aij (x) = 1, A (x) = q (x) , Ak (x) = 0, k = 1, 2, .., n in (1) then we
obtain from Theorem 2.3 that the following operator with small parameter

Sεu = −
n∑

i,j=1

ε
∂2u (x)

∂xi∂xj
+ q (x)u (x) , u |Γ= 0

is positive and is a generator of analytic semigroup in Lp (G) .

3. Abstract Cauchy problem for degenerate parabolic equation

Consider now the following abstract parobolic problem with small parameter

∂u

∂t
+ ε

n∑
i,j=1

aij (x)
∂2u

∂xi∂xj
−A (x)u + (24)

ε
1
2

n∑
k=1

Ak (x)
∂u

∂xk
− au = f (t, x) , x ∈ G, t ∈ R+

u (t, x) |Γ= 0, u (0, x) = 0,

where Γ is a boundary of region G ⊂ Rn, ε is a positive small parameter, aij are complex-
valued functions, a > 0, A and Ak are possible unbounded linear operators in a Banach
space E.

In this section we obtaın the well-posedness of problem (23) .
If G+ = R+ × G, p =(p, p1), Lp (G+;E) will be denote the space of all p-summable

scalar-valued functions with mixed norm (see e.g. [7, §1] for E = C), i.e. the space of all
measurable functions f defined on G, for which

∥f∥Lp(G+) =

∫
R+

∫
G

∥f (x, y)∥pE dx


p1
p

dy


1
p1

< ∞.

Analogously, Wm
p (G+;E) denotes the E-valued Sobolev space with corresponding mixed

norm for (see e.g. [7, §10] for E = C).
First, let us show that the operator Oε is R-positive in Lp (G;E) .

Theorem 3.1. Let all conditions of Theorem 2.1 are hold. Then, the operator Oε is an
R-positive in Lp (G;E) .

Proof. Really, by virtue of Theorem 2.2 we obtain that for f ∈ Lp (G;E) the BVP (1)
have a unique solution exspressing in the form

u (x) = (Oε + λ)−1 f =
N∑
j=1

φj (Oj (ε) + λ)−1 [I −Kjλε]
−1 gj

I +
N∑
j=1

Φjλε

−1

f,

where Oj (ε) are local operators generated by BVPs with small parameter of type (9) −
(10) for Vj = 0 and Kjλε,Φjλε are uniformly bounded operators in Lp (G;E) defined in
Theorem 2.2. By virtue of [4] the operators Oj (ε) are R-positive. Then by using the
above representation and by virtue Theorem 2.2 we obtain the assertions. �
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Theorem 3.2. Let all conditions of Theorem 2.1 hold. Then for all f ∈ Lp (G+;E) and
sufficiently large a > 0 the problem (23) has a unique solution belonging to

W 1,2
p (G+;E (A) , E) and the estimate holds∥∥∥∥∂u∂t

∥∥∥∥
Lp(G+;E)

+

n∑
i,j=1

ε

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
Lp(G+;E)

+ ∥Au∥Lp(G+;E) ≤ C ∥f∥Lp(G+;E) .

Proof. The problem (23) can be express as the following Cauchy problem

du

dt
+ (Oε + a)u (t) = f (t) , u (0) = 0. (25)

The Theorem 2.3 implies that the operator Oε is R-positive and generator of analytic
semigroup in E0 = Lp (G;E) . Then by virtue of [25, Theorem 4.2] we obtain that for all
f ∈ Lp1 (R+;E0) the problem (24) has a unique solution belonging toW 1

p1 (R+;D (Oε) , E0)
and the uniform estimate holds∥∥∥∥dudt

∥∥∥∥
Lp1 (R+;E0)

+ ∥Oεu∥Lp1 (R+;E0)
≤ C ∥f∥Lp1 (R+;E0)

.

Since Lp1 (R+;E0) = Lp (G+;E) , by Theorem 2.2 we have ∥(Oε + a)u∥Lp1 (R+;F ) =

D (Oε) . These relations and the above estimate implies the assertion. �

4. Boundary value problems for anisotropic elliptic equations with
parameters

The Fredholm property of BVPs for elliptic equations with parameters in smooth do-
mains were studied in e.g. [5] , [8] also for non smooth domains these questions were
investigated e.g. in [12].

Let Ω ⊂ Rn be an open connected set with compact C2m-boundary ∂Ω. Let us consider
the boundary value problems on cylindrical domain Ω̃ = G×Ω for the following anisotropic
elliptic equation

Lεu =

n∑
i,j=1

εaij (x)
∂2u (x, y)

∂xi∂xj
+

n∑
k=1

dk
∂u (x, y)

∂xk
+
∑

|α|≤2m

aα (y)D
α
y u (x, y) (26)

= f (x, y) , x ∈ G y ∈ Ω,

u (x, y) |Γ= 0 (27)

Bju =
∑

|β|≤mj

bjβ (y)D
β
yu (x, y) = 0, x ∈ G, y ∈ ∂Ω, j = 1, 2, ...,m. (28)

where Γ is the boundary of the region G ∈ Rn and aij are complex-valued function on G.

Dj = −i ∂
∂yj

, mk ∈ {0, 1} , y = (y1, ..., yn) .

If Ω̃ = G × Ω, p =(p1, p), Lp

(
Ω̃
)
will be denote the space of all p-summable scalar-

valued functions with mixed norm i.e. the space of all measurable functions f defined on
Ω̃, for which

∥f∥Lp(Ω̃) =

∫
G

∫
Ω

|f (x, y)|p1 dy


p
p1

dx


1
p

< ∞.
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Analogously, W 2,2m
p

(
Ω̃
)
denotes the anisotropic Sobolev space with corresponding mixed

norm.

Theorem 4.1. Let the following conditions be satisfied;
(1) The Condition 1 holds;
(2) aα ∈ C

(
Ω̄
)
for each |α| = 2m and aα ∈ [L∞ + Lrk ] (Ω) for each |α| = k < 2m with

rk ≥ q and 2m− k > l
rk
;

(3) bjβ ∈ C2m−mj (∂Ω) for each j, β and mj < 2m,
m∑
j=1

bjβ

(
y
p
)
σj ̸= 0, for |β| = mj ,

y
p ∈ ∂G, where σ = (σ1, σ2, ..., σn) ∈ Rn is a normal to ∂Ω ;
(4) for y ∈ Ω̄, ξ ∈ Rn, λ ∈ S (φ), φ ∈ (0, π), |ξ|+ |λ| ̸= 0 let λ+

∑
|α|=2m

aα (y) ξ
α ̸= 0;

(5) for each y0 ∈ ∂Ω local BVP in local coordinates corresponding to y0

λ+
∑

|α|=2m

aα (y0)D
αϑ (y) = 0,

Bj0ϑ =
∑

|β|=mj

bjβ (y0)D
βu (y) = hj, j = 1, 2, ...,m

has a unique solution ϑ ∈ C0 (R+) for all h = (h1, h2, ..., hm) ∈ Rm, and for ξp ∈ Rn−1

with |ξ p|+ |λ| ̸= 0.
Then:
a) Then for all f ∈ Lp

(
Ω̃
)
, |arg λ| ≤ φ and sufficiently large |λ| problem (25) − (27)

has a unique solution u that belongs to W 2,2m
p

(
Ω̃
)
and the coercive uniform estimate hold

n∑
k=1

2∑
i=0

ε
i
2 |λ|1−

i
2

∥∥∥∥ ∂iu

∂xk

∥∥∥∥
Lp(Ω̃)

+
∑

|β|=2m

∥∥∥Dβ
yu
∥∥∥
Lp(Ω̃)

≤ C ∥f∥Lp(Ω̃) ;

b) the problem (25)− (27) is Fredholm in Lp

(
Ω̃
)
.

Proof. Let E = Lp1 (Ω). Then by virtue of [25, Theorem 3.6] the (1) part of Theorem 2.2
is satisfied. Consider the operator A defined by

D (A) = W 2m
p1 (Ω;Bju = 0) , Au =

∑
|α|≤2m

aα (y)D
αu (y) .

For x ∈ Ω also consider operators

Ak (x)u = dk (x, y)u (y) , k = 1, 2, ..., n.

The problem (25)− (27) can be rewritten in the form (1), where u (x) = u (x, .) , f (x) =
f (x, .) are functions with values in E = Lp1 (Ω) . By virtue of [5] the problem

λu (y) +
∑

|α|≤2m

aα (y)D
α
y u (y) = f (y) ,

Bju =
∑

|β|≤mj

bjβ (y)D
β
yu (y) = 0, j = 1, 2, ...,m

has a unique solution for f ∈ Lp1 (Ω) and arg λ ∈ S (φ0) , |λ| → ∞. Moreover, in view
of [8, Theorem 8.2] the differential operator A is R-positive in Lp1 . It is known that
the embedding W 2m

p1 (Ω) ⊂ Lp1 (Ω) is compact ( see e.g. [24, Theorem 3.2.5] ). Then by
using interpolation properties of Sobolev spaces (see e.g. [24, § 4] ) it is clear to see that
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condition (3) of the Theorem 2.2 is fulfilled too. Then from Theorems 2.2 and 2.3 the
assertions are obtained. �

5. BVPs for infinite systems of elliptic equations with small parameter

Consider the following infinity systems of boundary value problem

n∑
i,j=1

εaij (x)
∂2um (x)

∂xi∂xj
+ (dm (x) + λ)um (x) + (29)

n∑
k=1

∞∑
j=1

ε
1
2dkjm (x)

∂um (x)

∂xk
= fm (x) , x ∈ G, m = 1, 2, ...,∞,

um (x) |Γ= 0, (30)

where Γ is the boundary of the region G ∈ Rn and aij are complex-valued function on
G.

Let

d (x) = {dm (x)} , dm > 0, u = {um} , Du = {dmum} , m = 1, 2, ...∞,

lq (D) =

u : u ∈ lq, ∥u∥lq(d) = ∥Du∥lq =

( ∞∑
m=1

|dmum|q
) 1

q

< ∞

 ,

x ∈ G, 1 < q < ∞.

Let Qε denote a differential operator in Lp (G; lq) generated by problem (28)− (29). Let

B = B (Lp (G; lq)) .

Theorem 5.1. Let the following condition hold:

(1) The Condition1 holds;
(2) dj ∈ C

(
Ḡ
)
, dkmj ∈ L∞ (G) and

max
k

sup
m

∞∑
j=1

dkmj (x) d
−( 1

2
−µ)

j < M for all x ∈ G and 0 < µ <
1

2
.

a.e. for x ∈ G and 1 < p < ∞.
Then:
(a) for all f (x) = {fm (x)}∞1 ∈ Lp (G; lq) , for λ ∈ S (φ), φ ∈ (0, π) and for suffi-

ciently large |λ| the problem (28)− (29) has a unique solution u = {um (x)}∞1 belonging to
W 2

p (G, lq (D) , lq) and the coercive estimate holds

n∑
k=1

ε

∫
G

( ∞∑
m=1

∣∣D2
kum (x)

∣∣q) p
q

dx

 1
p

+

∫
G

( ∞∑
m=1

|dmum (x)|q
)
dx

 1
p

(31)

≤ C

∫
G

( ∞∑
m=1

|fm (x)|q
) p

q

dx

 1
p

.
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(b) For sufficiently large |λ| > 0 there exists a resolvent (Qε + λ)−1 of operator Qε and

n∑
k=1

2∑
j=0

ε
i
2 |λ|1−

j
2

∥∥∥Dj
k (Qε + λ)−1

∥∥∥
B
+
∥∥∥A (Qε + λ)−1

∥∥∥
B
≤ M ; (32)

Proof. Really, let E = lq, A and Ak (x) be infinite matrices, such that

A = [dm (x) δjm] , Ak (x) = [dkjm (x)] , m, j = 1, 2, ...∞.

It is clear to see that this operator A is R-positive in lq. Therefore, by virtue of
Theorem 3.1 we obtain that the problem (28) − (29) for all f ∈ Lp (G; lq), for λ ∈ S (φ)
and sufficiently large |λ| has a unique solution u that belongs to space W 2

p (G; lq (D) , lq)
and

n∑
k=1

ε
∥∥D2

ku
∥∥
Lp(G;lq)

+ ∥Du∥Lp(G;lq)
≤ C ∥f∥Lp(G;lq)

.

From the above we obtain (30) . The estimate (31) is obtained from Result 1. �

Remark 4. There are many positive operators in the different concrete Banach spaces.
Therefore, putting concrete Banach spaces and concrete positive operators (i.e. pseudo-
differential operators or finite or infinite matrices for instance) instead of E and A, respec-
tively, by virtue of Theorem 2.2 - 3.1 we can obtain different class of maximal regular BVPs
for partial differential or pseudo-differential equations or its finite and infinite systems with
parameters.
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