
TWMS J. App. Eng. Math. V.2, N.2, 2012, pp. 210-218

CONTRIBUTION OF HIGHER ORDER TERMS TO THE NONLINEAR

SHALLOW WATER WAVES

H. DEMIRAY1 §

Abstract. In this work, by utilizing the scaled multiple-space expansion method, we
studied the propagation of weakly nonlinear waves in shallow water and obtained the gov-
erning evolution equations of various order terms in the perturbation expansion. Seeking
a progressive wave solution to these evolution equations we obtained the speed correction
terms so as to remove some possible secularities. The result obtained here is exactly the
same with that of obtained by the modified reductive perturbation method [12]. We
also proposed a method for the evolution equation governing the n th order term in the
perturbation expansion. By defining a single time parameter we showed the connection
of the modified reductive perturbation method to the scaled multiple-space expansion
method.
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1. Introduction

The studies of nonlinear waves of various fields in physics and engineering, by use of
the reductive perturbation method in the long-wave approximation, lead to the Korteweg-
deVries equation as the evolution equation ( Davidson [1], Antar and Demiray [2]). The
examination of the higher order terms in the perturbation expansion by use of the reduc-
tive perturbation method gives some secularities( Ichikawa et al. [3], Aoyama and Ichikawa
[4]). To remove such secularities Sugimoto and Kakutani [5] introduced additional slow
variables both in space and time in reductive perturbation theory, Kodama and Taniuti [6]
presented the renormalization procedure of the velocity of the KdV soliton. Nevertheless,
the latter approach remains somewhat obscure, since there is no reasonable connection
between the smallness parameters of the stretched variables and the one used in the per-
turbation expansion of the field variables. Another attempt to remove such secularities
was made by Kraenkel and Manna [7] for long water waves by use of multiple-time scale
expansion method but they could not obtain explicitly the speed correction terms. In
order to remove this uncertainty, Malfielt and Wieers [8] presented a dressed solitary wave
approach, which is based on the assumption that the field variables admit localized travel-
ling wave solution. Then, for the long-wave limit, they expanded the field quantities into
a power series of the wave number, which is assumed to be the only smallness parameter,
and obtained the explicit solution for various order terms in the perturbation expansion.
However, this approach is successful when one studies the progressive wave solution to
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the original nonlinear field equations and it does not give any idea about the form of the
evolution equations governing various order terms in the perturbation expansion. The
result obtained here is completely different from that of [4]. Another method, so called
the ” modified reductive perturbation method” is presented by Demiray [9-11] in which
a scaling parameter, that assumes a perturbation expansion, is presented to balance the
higher order nonlinearities with higher order dispersive effects so as to remove some possi-
ble secularities in the solution. The result obtained in this work is exactly the same with
that of Malfliet and Wieers [8], but different from that of [4].

In this work, by utilizing the scaled multiple-space expansion method, we studied the
propagation of weakly nonlinear waves in shallow water and obtained a set of Korteweg-
de Vries equations as the evolution equations. By seeking a progressive wave solution to
these evolution equations we obtained the speed correction terms so as to remove some
possible secularities. The result obtained here is exactly the same with that of given by the
modified reductive perturbation method [12].We also proposed a method for the evolution
equation governing the n th order term in the perturbation expansion. By defining a single
time parameter we showed the connection between the modified reductive perturbation
method and the multiple-time scale expansion method.

2. MULTIPLE-TIME SCALE FORMALISM FOR WATER WAVES

We consider two dimensional incompressible inviscid fluid in a constant gravitational
field g acting in the negative z∗ - direction. The space coordinates are denoted by (x∗, z∗)
and the corresponding velocity components by (u∗, w∗). The equations of motion describ-
ing such a fluid are:

∂u∗

∂x∗
+

∂w∗

∂z∗
= 0, (incompressibility), (1)

∂u∗

∂t∗
+ u∗

∂u∗

∂∂x∗
+ w∗∂u

∗

∂z∗
+

1

ρ

∂P ∗

∂x∗
= 0, (2)

∂w∗

∂t∗
+ u∗

∂w∗

∂∂x∗
+ w∗∂w

∗

∂z∗
+

1

ρ

∂P ∗

∂z∗
+ g = 0, (3)

where t∗ is the time parameter, ρ is the mass density and P ∗ is the fluid pressure function.
Assuming that the flow is ir-rotational, the velocity components can be expressed in terms
of scalar potential ϕ∗ as

u∗ =
∂ϕ∗

∂x∗
, w∗ =

∂ϕ∗

∂z∗
. (4)

Then, the incompressibility condition becomes

∂2ϕ∗

∂x∗2
+

∂2ϕ∗

∂z∗2
= 0, (5)

and the Euler equation reads

P ∗ − P ∗
0

ρ
+

∂ϕ∗

∂t∗
+

1

2
[(
∂ϕ∗

∂x∗
)2 + (

∂ϕ∗

∂z∗
)2] + gz∗ = 0, (6)

where P ∗
0 is the atmospheric pressure.

We consider the case of fluid of height h0 , bounded above by a steady atmospheric
pressure P ∗

0 . Let the upper surface be described by z∗ = η∗(x∗, t∗). The kinematical
boundary condition on this surface can be expressed as:

∂ϕ∗

∂z∗
=

∂η∗

∂t∗
+

∂ϕ∗

∂x∗
∂η∗

∂x∗
= 0, on z∗ = η∗. (7)
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From the equation (6), the dynamical boundary condition on this surface reads

∂ϕ∗

∂t∗
+

1

2
[(
∂ϕ∗

∂x∗
)2 + (

∂ϕ∗

∂z∗
)2] + gη∗ = 0, on z∗ = η∗. (8)

Finally, the lower boundary is supposed to be rigid horizontal plane. Therefore, at z∗ =
−h0, the normal component of the velocity must vanish, i.e.,

∂ϕ∗

∂z∗
= 0, at z∗ = −h0. (9)

At this stage it is convenient to introduce the following non-dimensional quantities:

x∗ = h0x, z∗ = h0z, t∗ =
h0
c0

t, ϕ∗ = c0h0ϕ̂, η∗ = h0η̂,

P ∗ = ρc20p, P ∗
0 = ρc20p0, c0 = (gh0)

1/2. (10)

Introducing (10) into equations (5)-(9) the following non-dimensional equations are ob-
tained:

∂2ϕ̂

∂x2
+

∂2ϕ̂

∂z2
= 0, (11)

∂ϕ̂

∂z
=

∂η̂

∂t
+

∂ϕ̂

∂x

∂η̂

∂x
= 0, at z = η̂, (12)

∂ϕ̂

∂t
+

1

2
[(
∂ϕ̂

∂x
)2 + (

∂ϕ̂

∂z
)2] + η̂ = 0, at z = η̂, (13)

∂ϕ̂

∂z
= 0, at z = −1. (14)

Now, we shall consider the long-wave in shallow water approximation to the above equa-
tions by applying the scaled multiple- space expansion formalism. For that purpose we
shall propose the following slow variables:

ξ = ϵ1/2(t− x), τn = en+3/2x, (n = 0, 1, 2, 3, ...) (15)

where ϵ is a small parameter characterizing the smallness of certain physical entities. For
our future purposes, we introduce the following new variables:

ϕ̂ = ϵ1/2ϕ, η̂ = ϵη. (16)

Introducing (15) and (16) into (11)-(14) we have

∂2ϕ

∂z2
+ ϵ

∂2ϕ

∂ξ2
− 2ϵ2

∂2ϕ

∂ξ∂τ0
+ ϵ3(

∂2ϕ

∂τ20
− 2

∂2ϕ

∂ξ∂τ1
) +O(ϵ4) = 0, (17)

∂ϕ

∂z
= ϵ

∂η

∂ξ
+ ϵ2(−∂ϕ

∂ξ
+

∞∑
n=0

ϵn+1 ∂ϕ

∂τn
)(−∂η

∂ξ
+

∞∑
n=0

ϵn+1 ∂η

∂τn
) = 0, at z = ϵη, (18)

∂ϕ

∂ξ
+

ϵ

2
(−∂ϕ

∂ξ
+

∞∑
n=0

ϵn+1 ∂ϕ

∂τn
)2 +

1

2
(
∂ϕ

∂z
)2 + η = 0, at z = ϵη, (19)

∂ϕ

∂z
= 0, at z = −1. (20)

Now, we expand the functions ϕ and η into a suitable power series in the parameter ϵ as:

ϕ = ϕ0 + ϵϕ1 + ϵ2ϕ2 + .....,

η = η0 + ϵη1 + ϵ2η2 + ..... . (21)

Introducing the expansion (21) into the equations (17)-(20) and setting the coefficients of
alike powers of ϵ equal to zero, the following sets of differential equations are obtained:
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O(1) equations:

∂ϕ0

∂z2
= 0. (22)

and the boundary conditions

∂ϕ0

∂z
= 0 at z = −1,

∂ϕ0

∂z
|z=0 = 0, [

∂ϕ0

∂ξ
+

1

2
(
∂ϕ0

∂z
)2]|z=0 + η0 = 0. (23)

O(ϵ) equations:

∂2ϕ1

∂z2
+

∂2ϕ0

∂ξ2
= 0, (24)

and the boundary conditions

∂ϕ1

∂z
= 0, at z = −1,

∂ϕ1

∂z
|z=0 −

∂η0
∂ξ

= 0,

[
∂ϕ1

∂ξ
+

1

2
(
∂ϕ0

∂ξ
)2 +

∂ϕ0

∂z

∂ϕ1

∂z
]|z=0 + η1 = 0. (25)

O(ϵ2) equations:

∂2ϕ2

∂z2
+

∂2ϕ1

∂ξ2
− 2

∂2ϕ0

∂ξ∂τ0
= 0, (26)

and the boundary conditions

∂ϕ2

∂z
= 0, at z = −1, [

∂ϕ2

∂z
+ η0

∂2ϕ1

∂z2
]|z=0 −

∂η1
∂ξ

− ∂ϕ0

∂z
|z=0

∂η0
∂ξ

= 0,

[
∂ϕ2

∂ξ
+ η0

∂2ϕ1

∂z∂ξ
+

1

2
(
∂ϕ1

∂z
)2 +

∂ϕ0

∂z

∂ϕ2

∂z
+

∂ϕ0

∂ξ
(
∂ϕ1

∂ξ
− ∂ϕ0

∂τ0
]|z=0 + η2 = 0. (27)

O(ϵ3) equations:

∂2ϕ3

∂z2
+

∂2ϕ2

∂ξ2
− 2

∂2ϕ1

∂ξτ0
+

∂2ϕ0

∂τ20
− 2

∂2ϕ0

∂ξ∂τ1
= 0, (28)

and the boundary conditions:

∂ϕ3

∂z
= 0, at z = −1,

[
∂ϕ3

∂z
+ η0

∂2ϕ2

∂z2
+ η1

∂2ϕ1

∂z2
]|z=0 −

∂η2
∂ξ

− ∂ϕ0

∂ξ
(
∂η1
∂ξ

− ∂η0
∂τ0

)− ∂η0
∂ξ

(
∂ϕ1

∂ξ
− ∂ϕ0

∂τ0
)|z=0 = 0,

[
∂ϕ3

∂ξ
+ η0

∂2ϕ2

∂ξ∂z
+ η1

∂2ϕ1

∂ξ∂z
+

1

2
η20

∂3ϕ1

∂z2∂ξ
]|z=0 + [

∂ϕ1

∂z
(
∂ϕ2

∂z
+ η0

∂2ϕ1

∂z2
]|z=0

+
1

2
(
∂ϕ1

∂ξ
− ∂ϕ0

∂τ0
)2|z=0 +

∂ϕ0

∂ξ
(η0

∂2ϕ1

∂ξ∂z
+

∂ϕ2

∂ξ
− ∂ϕ1

∂τ0
− ∂ϕ0

∂τ1
)|z=0 + η3 = 0. (29)
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2.1. Solution of the field equations. From the solution of the sets (22) and (23) one
obtains

ϕ0 = φ0(ξ, τn), η0 = −∂φ0

∂ξ
(n = 0, 1, 2, 3, .....), (30)

where φ0(ξ, τn) is an unknown function of its argument whose evolution equation will be
obtained later.

Introducing (30) into (24) and (25), the solution of O(ϵ) equations gives the following
result

ϕ1 = −1

2

∂2φ0

∂ξ2
(z2 + 2z) + φ1(ξ, τn), η1 = −∂φ1

∂ξ
− 1

2
(
∂φ0

∂ξ
)2, (31)

where φ1(ξ, τn) (n = 0, 1, 2, 3, ..) is another unknown function whose governing evolution
equation will be obtained from the higher order perturbation expansion.

Introducing (30) and (31) into equations (26) and (27), the solution of O(ϵ2) equations
may be obtained as

ϕ2 =
1

24

∂4φ0

∂ξ4
(z4 + 4z3) + (

∂2φ0

∂ξ∂τ0
− 1

2

∂2φ1

∂ξ2]
)z2

+(−1

3

∂4φ0

∂ξ4
− ∂2φ1

∂ξ2
+ 2

∂2φ0

∂ξ∂τ0
)z + φ2(ξ, τn),

η2 = −∂φ2

∂ξ
− ∂φ0

∂ξ

∂3φ0

∂ξ3
− 1

2
(
∂φ0

∂ξ
)2 − ∂φ0

∂ξ

∂φ1

∂ξ
+

φ0

∂ξ

∂φ0

∂τ0
, (32)

where φ2(ξ, τn) is another unknown function whose evolution equation will be obtained
from the higher order perturbation expansion. The use of the second boundary condition
in (31) yields

∂2φ0

∂ξ∂τ0
+

3

2

∂φ0

∂ξ

∂2φ0

∂ξ2
− 1

6

∂4φ0

∂ξ4
= 0. (33)

Noting the relation ∂φ0/∂ξ = −η0, the equation (33) reduces to the following Korteweg-de
Vries (KdV) equation

∂η0
∂τ0

− 3

2
η0

∂η0
∂ξ

− 1

6

∂3η0
∂ξ3

= 0. (34)

The equation (34) gives the evolution of η0 with τ0 and ξ. The remaining spatial variables
remain as some parameters. The evolution of η0 with τn (n = 1, 2, 3, ....) should be obtained
from the higher order perturbation expansion.

To obtain the solution for O(ϵ3) equations we introduce (30), (31) and (32) into (28)
and (29), which results in

∂2ϕ3

∂z2
+

1

24

∂6φ0

∂ξ6
(z4 + 4z3) + (2

∂4φ0

∂ξ3∂τ0
− 1

2

∂4φ1

∂ξ4
)z2

+(−1

3

∂6φ0

∂ξ6
− ∂4φ1

∂ξ4
+ 4

∂4φ0

∂ξ3∂τ0
)z +

∂2φ2

∂ξ2
− 2

∂2φ1

∂ξ∂τ0
+

∂2φ0

∂τ20
− 2

∂2φ0

∂ξ∂τ1
= 0, (35)

and the boundary conditions

∂φ3

∂z
= 0 at z = −1,

∂ϕ3

∂z
|z=0 − 4

∂φ0

∂ξ

∂2φ0

∂ξ∂τ0
− 2

∂2φ0

∂ξ2
∂φ0

∂τ0

+3
∂

∂ξ
(
∂φ0

∂ξ

∂φ1

∂ξ
) +

3

2
(
∂φ0

∂ξ
)2
∂2φ0

∂ξ2
+

∂φ0

∂ξ

∂4φ0

∂ξ4
+ 2

∂2φ0

∂ξ2
∂3φ0

∂ξ3
+

∂2φ2

∂ξ2
= 0. (36)
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The solution of (35) after the use of the first boundary condition in (36) gives

ϕ3 = − 1

720

∂6φ0

∂ξ6
(z6 + 6z5)− 1

12
(2

∂4φ0

∂ξ3∂τ0
− 1

2

∂4φ1

∂ξ4
)z4

+(
1

18

∂6φ0

∂ξ6
+

1

6

∂4φ1

∂ξ4
− 2

3

∂4φ0

∂ξ3∂τ0
)z3 − 1

2
(
∂2φ2

∂ξ2
− 2

∂2φ1

∂ξ∂τ0
− 2

∂2φ0

∂ξ∂τ1
+

∂2φ0

∂τ20
)z2

+(− 2

15

∂6φ0

∂ξ6
− 1

3

∂4φ1

∂ξ4
+

4

3

∂4φ0

∂ξ3∂τ0
+ 2

∂2φ1

∂ξ∂τ0
+ 2

∂2φ0

∂ξ∂τ1
− ∂2φ0

∂τ20
− ∂2φ2

∂ξ2
)z + φ3, (37)

where φ3(ξ, τn) is another unknown function whose evolution equation will be obtained
from the higher order perturbation expansion. Employing the last boundary condition in
(36) the following evolution equation is obtained

∂2φ1

∂ξ∂τ0
+

3

2

∂

∂ξ
(
∂φ0

∂ξ

∂φ1

∂ξ
)− 1

6

∂4φ1

∂ξ4
= S(φ0), (38)

where the function S(φ0) is defined by

S(φ0) =
1

15

∂6φ0

∂ξ6
− 2

3

∂4φ0

∂ξ3∂τ0
− ∂2φ0

∂ξ2
∂3φ0

∂ξ3
− 1

2

∂φ0

∂ξ

∂4φ0

∂ξ4

+2
∂φ0

∂ξ

∂2φ0

∂ξ∂τ0
+

∂2φ0

∂ξ2
∂φ0

∂τ0
− 3

4
(
∂φ0

∂ξ
)2
∂2φ0

∂ξ2
+

1

2

∂2φ0

∂τ20
− ∂2φ0

∂ξ∂τ1
. (39)

Setting ∂φ0/∂ξ = −η0, ∂φ1/∂ξ = −η1 − η20/2, the equations (38) and (39) takes the
following form

∂η1
∂τ0

− 3

2

∂

∂ξ
(η0η1)−

1

6

∂3η1
∂ξ3

= T (η0), (40)

where T (η0) is defined by

T (η0) =
1

15

∂5η0
∂ξ5

− 7

12

∂3η0
∂ξ2∂τ0

+
4

3

∂η0
∂ξ

∂2η0
∂ξ2

+
2

3
η0

∂3η0
∂ξ3

+
3

4
η20

∂η0
∂ξ

− 9

4
η0

∂η0
τ0

− ∂η0
∂τ1

. (41)

The equation (40) is the degenerate (linearized) KdV equation with the non-homogeneous
term T (η0) . The left side of (40) gives the evolution of η1 with respect to τ0 and ξ, whereas
the right side is the evolution of η0 with respect to τ1, τ0 and ξ . These evolutions
are related to each other through the equation (40). For this order, the slow variables
τn (n = 2, 3, ...) remain as some parameters.

2.2. Solitary waves. In this sub-section we shall study the localized travelling wave
solution to the evolution equations (34) and (40). For that purpose we introduce

ηi = ηi(ζ, τn), ζ = α(τn)[ξ + g(τ0, τn)], (i = 0, 1), (n = 1, 2, ...), (42)

where the parameters α(τn) and g(τ0, τn) (n = 1, 2, 3, ...) are to be determined from the
solution. As far as the equation (34) is concerned, only the variables are ξ and τ0 ; and
τn (n = 1, 2, 3, ..) appears to be some parameters.

Introducing (42) for i = 0 into the evolution equation (34) we have

∂g

∂τ0
η′0 −

3

2
η0η

′
0 −

α2

6
η′′′0 = 0, (43)

where the prime denotes the differentiation of the corresponding quantity with respect to
ζ . Integrating (43) with respect to ζ and utilizing the localization condition, i.e., η0 and
its various order derivatives vanish as ζ → ±∞, we obtain

∂c

∂τ0
η0 −

3

4
η20 −

α2

6
η′′0 = 0. (44)
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The equation (44) admits the solitary wave solution of the form

η0 = a sech2ζ, (45)

where a is the amplitude of the solitary wave, and, in general, it is a function of the
parameters τn. Inserting (45) into (44) and setting the coefficients of various powers of
sechζ equal to zero we obtain

α = (
3a

4
)1/2, g =

a

2
τ0 + θ(τn), (n = 1, 2, 3, ...). (46)

To obtain the solution for the evolution equation (40) we introduce (42) for i = 1 into
(40), which results in

αa

2
η′1 −

3α

2
(η0η1)

′ − α3

6
η′′′1 = −1

a

∂a

∂τ1
η0 −

1

α

∂α

∂τ1
ζη′0 − α

∂g

∂τ1
η′0 +

α5

15
η
(5)
0

−7aα3

24
η′′′0 +

4α3

3
η′0η

′′
0 +

2α3

3
η0η

′′′
0 +

3α

4
η20η

′
0 −

9aα

8
η0η

′
0. (47)

Integrating (47) with respect to ζ and utilizing the localization condition we have

αa

2
η1 −

3α

2
(η0η1)−

α3

6
η′′1 = − 1

α

∂α

∂τ1
ζη0 − (

1

a

∂a

∂τ1
− 1

α

∂α

∂τ1

∫
η0dζ

−α
∂g

∂τ1
η0 +

α5

15
η
(4)
0 − 7aα3

24
η′′0 +

α3

3
(η′0)

2 +
2α3

3
η0η

′′
0 +

α

4
(η0)

3 − 9aα

16
(η0)

2. (48)

Since we are concerned with the localized waves, in order to remove the secularity in η1,
the coefficient of ζη1 must vanish; which yields

∂α

∂τ1
=

∂a

∂τ1
= 0. (49)

This equation states that the coefficients α and a are independent of τ1. In a similar way
one can prove that α and a are independent of τn (n = 1, 2, 3, ...). The remaining part of
the equation (48) takes the following form

η′′1 + (
12

a
η0 − 4)η1 =

8

a

∂g

∂τ1
η0 −

3a

10
η
(4)
0 +

7a

4
η′′0 − 2(η′0)

2 − 4η0η
′′
0 − 2

a
η30 +

9

2
η20. (50)

Noting the relations

η′′0 = 4η0 −
6

a
η20, (η′0)

2 = 4η20 −
4

a
η30, η

(4)
0 = 16η0 −

120

a
η20 +

120

a2
η30, (51)

the equation (50) becomes

η′′1 + (
12

a
η0 − 4)η1 = (

8

a

∂g

∂τ1
+

11a

5
)η0 + 6η20 −

6

a
η30. (52)

The homogeneous differential equation obtained from (52) admits η′0 as one of the funda-
mental solutions. Therefore, the term proportional to η0 on the right hand side of (52)
causes the secularity in η1. In order to remove this secularity the coefficient of η0 must
vanish, which yields

8

a

∂g

∂τ1
+

11a

5
= 0, or g =

a

2
τ0 −

11a2

40
τ1 + θ1(τn), (n = 2, 3, 4, ...). (53)

This result is exactly the same with that of [12] in which the modified reductive pertur-
bation method was employed. The remaining part of equation (52) becomes

η′′1 + (
12

a
η0 − 4)η1 = 6η20 −

6

a
η30. (54)
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The particular solution of equation (54) gives

η1 = −a

2
η0 +

3

4
η20. (55)

Since, in the present work, we are concerned with the contribution of zeroth order term
to the higher order terms in the perturbation expansion, the non-homogeneous term
Sn(η0, η1, ....ηn−1) will depend only on η0 , i. e., Sn(η0). Thus, in studying the pro-
gressive wave solution, the linearized KdV equation for the n th order term will take the
following form

η′′n + (
12

a
η0 − 4)ηn = (

8

a

∂g

∂τn
+ an)η0 +

n+1∑
k=1

dkη
k+1
0 , (56)

where the coefficient an, dk (k = 1, 2, ..., n + 1) are to be calculated from the higher
order perturbation expansion. Again, the first term on the right hand side causes to the
secularity in ηn ; thus, this coefficient must vanish

8

a

∂g

∂τn
+ an = 0. (57)

From this equation one can determine the dependence of c on τn .
Since the solution obtained here is exactly the same with that of [12], then, one may

raise the question whether a connection exists between the modified reductive perturbation
method and the scaled multiple-space expansion method. The answer to this question is
”yes” provided that the following substitution is made

τ = ϵ3/2cx = c0τ0 + c1τ1 + c2τ2 + 33τ3 + c4τ4 + ...., (58)

where c is the scale parameter defined in [12] and assumes a perturbation expansion of
the form

c = c0 + ϵc1 + ϵ2c2 + ϵ3c3 + ϵ4c4 + ...., (59)

and the coefficients ci are related to g through

ci =
∂g

∂τi
, (i = 0, 1, 2, 3, ...). (60)

3. Conclusion

The study of the effects of the first order term to higher order terms in the reductive
perturbation method leads to some secularities [3, 4]. To remove such secularities various
methods, like the renormalization method by Kodama and Tanuiti [6] , multiple scale
expansion method by Kraenkel and Manna [7] and the modified reductive perturbation
method by Demiray [9]. The methods presented in [6] and [7] are quite complicated as
compared to one given in [9].

In the present work, we studied an application of the scaled multiple-space expansion
method for shallow water theory which was studied before by Demiray [12] through the
use of the modified reductive perturbation method. The result reported here is exactly the
same with that of [11]. We also proposed a method for the evolution equation governing
the n th term in the perturbation expansion. The connection between this approach and
the modified reductive perturbation method is also indicated.
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