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[1] Close to the dayside magnetopause, there is a region of space where each field line has
two magnetic field minima, one near each cusp. That region is located around local noon,
and extends about 1–2 Re from the magnetopause. Particles that enter this region with
equatorial pitch angles sufficiently close to 90� will cross the dayside not along an
equatorial path, but along one of the two branches on either side of the equatorial plane.
The two branches are joined again past local noon. This process of drift-shell
bifurcation (DSB) is nonadiabatic even under static conditions. Two physical mechanisms
can cause this nonadiabaticity: one that is operative for nearly all magnetospheric
magnetic field configurations and another that depends on a particular combination of
north-south and east-west asymmetry in the magnetic field. This paper deals only with the
first mechanism. For configurations with north-south and east-west symmetry, DSB
changes the second invariant I of the motion by a small amount that is of the order of the
gyroradius (the first invariant is intact). For near-equatorial particles (I � 0) the change can
be significantly larger. Assuming north-south and dawn-dusk symmetry, we present
general theoretical expressions for the second-invariant jump DI, which can be applied to
a variety of magnetic field models. The results show that DI is sensitively dependent on
the bounce phase of the particle at the bifurcation line. The RMS value of DI over a
bounce-phase ensemble increases with decreasing mirror field and with increasing kinetic
energy. We verify these results with test-particle simulations using model magnetic fields.
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1. Introduction

[2] The familiar picture of a toroidal drift-shell, though
accurate near the Earth where the field does not significantly
deviate from dipolar, breaks down in a region near the
magnetopause, where the compression by the solar wind
provides a significant perturbation. Let B(s) be the field
strength along a given field line parameterized by s: over
field lines that cross the Earth’s surface at low-to-intermediate
latitudes (low L), B(s) has a single minimum, located near
the magnetic equator. On the other hand, field lines with
high L values come sufficiently close to the dayside
magnetopause so that they are influenced by the external
field. Because of this influence, the field profile B(s) for
such a field line has one local maximum at the equator, and
two local minima near the cusps. Therefore along high-L
lines B(s) is W-shaped, whereas along dipole-like (low-L)
field lines it is U-shaped.
[3] In this paper, we limit our theoretical treatment to

magnetic field models that have symmetry about the z = 0

plane. As discussed briefly in section 7, another DSB-
associated mechanism may operate for magnetic field con-
figurations that lack symmetry about both the z = 0 and y = 0
planes. That mechanism will be the subject of a follow-up
paper.
[4] Figure 1 shows a generic picture of the relevant

region in the equatorial plane. For reasons that will become
clear in following paragraphs, this region of space where the
field lines have a W-shaped field profile is called ‘‘the
bifurcation region’’. The figure assumes that the field is
symmetric with respect to the equator. The second deriva-
tive of the field strength along the field line, d

2B
ds2
, is negative

in the bifurcation region, indicating a local maximum, and
positive everywhere else.
[5] The differences among field lines in terms of strength

profile have significance for particle motion because the
function B(s) (multiplied by the first invariant m) acts as a
potential energy for the bounce motion along the field line.
Therefore if a test particle is initialized on a field line with
W-shaped B(s), such that its mirror field Bm is less than the
local maximum value of B(s), the bounce motion will not be
able to cross the equator and will be confined to the
neighborhood of one of the side minima. The existence of
a local maximum along field lines as described here, and its
implications for bounce motion, is discussed in early studies
such as the works of Mead [1964], Northrop and Teller
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[1960], Shabanskiy and Antonova [1968], and Roederer
[1970].
[6] The present study investigates the dynamics of par-

ticles that are initially bouncing on single-minimum field
lines [U-shaped B(s)], but eventually drift onto double-
minimum field lines [W-shaped B(s)]. If the drift path leads
the particle onto a line whose local maximum is higher in
value than the mirror field Bm, the bounce path will be
broken. Figure 2 illustrates the effect of such a transition on
particle motion.
[7] The full-particle trajectory shown in Figure 2 results

from solving the relativistic Newton-Lorentz equation for
an energetic (6.5 MeV) electron under Tsyganenko-89
[Tsyganenko, 1989] magnetic field model. Electric fields
are ignored, along with any time dependence of the mag-
netic field. We have chosen an energetic electron merely for
illustrative purposes; our discussion is not limited to ener-
getic electrons and our theoretical results can be applied to
any kind of bouncing particle with any energy, so long as
the gyroradius is small compared to the scale length of the
magnetic field.
[8] The electron starts its near-equatorial trajectory at

local midnight and drifts adiabatically across local dawn.
The motion conserves kinetic energy and the first invariant
at all times; hence the mirror field is constant for each
bounce. After a certain point near local noon, the bounce
motion becomes confined to the Southern Hemisphere
(another particle on the same drift shell, but with a different

Figure 1. A schematic, equatorial picture of the region of
interest in this paper. The coordinates are GSM. The region
adjacent to the magnetopause has the property that the field
lines that cross it have a local maximum of field strength
there.

Figure 2. Trajectory of a 6.5-MeV electron in a Tsyganenko-1989c model. The particle is initiated at
local midnight with a large equatorial pitch angle. The central sphere represents Earth, and the
coordinates are in GSM system. Electric fields are ignored; the kinetic energy and the first invariant are
constant along the motion.
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bounce phase, would be diverted to the Northern Hemi-
sphere). Past local noon, the drift motion carries the particle
back onto dipole-like field lines so that the equator-centered
bounce motion is resumed. However, as one can infer
from the significantly different bounce amplitude, the
value of the second invariant has changed and the particle
is carried onto another drift shell.
[9] This transition is an example of ‘‘pitchfork bifurca-

tion’’, where a single stable equilibrium point branches off
into two stable and one unstable equilibria when a system
parameter is varied (here, the local time). Hence we call this
process drift-shell bifurcation (DSB). The purpose of this
article is to quantify the second-invariant change due to
DSB.
[10] Over a bifurcating drift shell, the particle motion is

adiabatic everywhere, except for one or two bounce oscil-
lations in the neighborhood of the ‘‘bifurcation lines’’. On
these lines, the equation B(sm) = Bm is satisfied at exactly
three mirror points: one point near the equatorial plane
where the field strength is maximum, and two points to the
north and south of it. For a given drift shell, there are two
bifurcation lines located at either side of the local noon.
Northrop [1963] qualitatively points out that, near the
bifurcation lines, the central peak of B(s) causes the parallel
motion to slow down. Therefore the bounce period grows,
and thus the adiabaticity conditions are temporarily violated,
causing the second invariant to break (the cyclotron motion
is not disturbed in this process, so the first invariant is not
broken). In contrast, Shabansky [1971] argues that the
bifurcation is so abrupt that the change in the second
invariant due to the nonadiabatic effects can be ignored.
At local noon the second invariant is exactly halved (for
symmetric fields) and when the particle is back at the
nightside, the second invariant value is back to its initial
level.
[11] Perturbative analysis, presented in following sec-

tions, shows that the average nonadiabatic change predicted
by Northrop is a small correction (averaged over all bounce
phases), in the same order as the ratio of drift speed to
bounce speed. Therefore the Shabansky argument holds to
zeroth order in this parameter. For energetic and near-
equatorial particles; however, the first-order correction can
be significantly large. Figure 2 is a case in point.
[12] In choosing the theoretical approaches, we were

guided by the studies of Antonova et al. [2003] and
Vainshtein et al. [1999]. However, our work combines
the two methods and it provides a more general treatment
instead of using a specific magnetic field model.
[13] The bifurcating orbits we describe here should not be

confused with the cusp-trapped orbits described by Sheldon
et al. [1998], which are also found in the cusp region.
Bifurcating orbits follow an Earth-centered drift shell at all
times, while cusp-trapped orbits follow a drift path centered
around the cusp axis, and have a much lower mirror field
value. Under static conditions, the two types of orbits are
topologically disconnected: There is no exchange between
the two populations unless the kinetic energy and/or the first
invariant is subject to change.
[14] The nonadiabaticity of DSB orbits, with sudden

changes in a particle’s second invariant as it passes each
critical point, resembles another problem that is familiar in
radiation-belt physics, namely the jumps that occur in the

first invariant of a trapped particle when it passes through a
resonance with a monochromatic wave [e.g., Albert, 1993].

2. Conditions for Bifurcation

[15] For clarity of discussion, we simplify the bifurcation
problem without sacrificing its essence. We assume a
magnetosphere that has both north-south and dawn-dusk
symmetry. We further assume that the magnetic field is
constant in time and electric fields are negligible. We also
require that the particle has a sufficiently small gyroradius
so that the first invariant is conserved, at least around the
bifurcation lines.
[16] When there are no external forces, the quantity

I�
Z sm

�sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� BðsÞ

Bm

s
ds ð1Þ

can be used as the second invariant of the motion. The
mirror field Bm can be expressed as:

Bm ¼ mu2g2

2m
ð2Þ

where m is the mass of the particle, v is its speed, g � (1 �
v2/c2)�1/2 is the relativistic factor, and m is the first
invariant. The quantity I is related to the formal second
invariant J �

H
p||ds by I = J/2p; therefore, J and I are

both adiabatic invariants if the particle’s kinetic energy is
constant.
[17] Under the static conditions we assumed, I and Bm

uniquely determine a drift shell. Furthermore, because I is
defined in terms of field geometry, the drift path can be
determined without referring to the dynamical details of the
particle motion [Roederer, 1970]. (Of course, the initial
conditions of the motion are necessary to evaluate I and Bm

in the first place.) Then, using the initial conditions, we can
predict whether DSB will occur or not.
[18] Suppose we initialize the particle with Bm and I. In

order to determine the bifurcation line, consider the equa-
torial plane, which, by symmetry, contains all points with
maximum B(s) (in the absence of north-south symmetry, the
discussion applies to the dB

ds
¼ 0 surface). Furthermore,

consider the contour C Bmð Þ ¼ x; yð Þj jB x; y; z ¼ 0ð Þj ¼f
Bmg, which is a contour of constant field strength on that
plane. The bifurcation point, the location where the bifur-
cation line intersects the equatorial plane, must lie on C(Bm).
[19] For the field line that perpendicularly crosses the

bifurcation region at point (x,y), we define the quantity

� x; yð Þ � 2

Z sm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B sð Þ

B 0ð Þ

s
ds ð3Þ

where B(s) is defined along that particular field line and sm
is defined by B(sm) = B(0) (we set the origin s = 0 to the
location where dB

ds
= 0). Note that � has the same form as the

second invariant integral [equation (1)]. Its value is zero at
the edge of the bifurcation region and increases toward the
magnetopause. Bifurcation occurs when the particle drifts to
a point where �(x,y) = I, whose location can be determined
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to arbitrary accuracy by searching along the contour C(Bm).
Electron drift shells bifurcate on the dawn side, ion drift
shells on the dusk side.
[20] Let U Ið Þ ¼ x; yð Þj� x; yð Þ ¼ If g be the equatorial

contour of constant �. For a drift shell defined by I and
Bm, the bifurcation points are given by the intersection of
U(I) and C(Bm). Both curves can be computed easily for a
given magnetic field model. Figure 3 presents a generic
view of how these curves are located on the equatorial
plane. Curves U0, U1, U2 correspond to I0, I1, I2, respec-
tively, with I0 < I1 < I2. The figure shows that the bifurcation
point is closer to local noon for shells with larger second
invariant, keeping the mirror field constant.
[21] By extrapolation of this argument we can see that at a

certain value I = I , the curve U Ið Þ becomes tangential to

C(Bm), and for I > I, there is no intersection at all as
illustrated by curves C1 and U2 in Figure 4. Thus for a
given Bm, there exists an upper limit I (Bm) such that shells
with I > I (Bm) do not bifurcate. This maximum value is
equal to the value of � evaluated at the point where C(Bm)
intersects local noon.
[22] On the other hand, for shells with mirror fields less

than the subsolar field, Bsubsolar, such a maximum value
does not exist. The contour C2 ¼ C Bm2ð Þ in Figure 4 does
not pass through local noon but joins the magnetopause
surface. It can be seen that for any I, U(I) must intersect C2;
therefore, there is no limiting second-invariant value for the
existence of DSB for low values of Bm.
[23] For both types of contours, however, it is possible to

initialize the particle with such a large second invariant
that it will not enter the bifurcation region, but drifts
directly into the magnetopause. The subsequent dynamics
of such ‘‘quasi-trapped’’ particles are outside the scope of
this study (see, Young et al [2002] for the violation of

Figure 3. A schematic view of the bifurcation region in
the equatorial plane. Curve C is a contour of constant Bm,
and U0, U1, U2 are curves of constant �. The intersection of
C with U i gives the bifurcation points for the relevant drift
shell.

Figure 4. Existence of a maximum I for bifurcation.
Given Bm1 such that C1 = C(Bm1), the curve U2 = U(I2) does
not intersect C1, so there is no bifurcation. For smaller Bm2 <
Bsubsolar such that C2 = C(Bm2), all U curves must intersect
C2, so DSB always occurs.
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the first invariant that occurs when a particle crosses the
magnetopause).

3. Sensitive Dependence on Bounce Phase

[24] In the first section we demonstrated that DSB can
influence the second invariant significantly. Here we illus-
trate how this change occurs, and how it depends on the
bounce phase of the particle at the bifurcation line. We defer
the mathematical analysis to the following sections; this
section’s material consists of simulated trajectories.
[25] Such dependence on bounce phase is reported in

several earlier studies, which follow test-particle trajectories
under a variety of magnetospheric configurations, for exam-
ple, Orloff [1998] (protons under integrated space-weather
model) and Delcourt and Sauvaud [1998,1999] (kiloelec-
tron volt protons under Tsyganenko-89 and Mead-Fairfield
model, respectively). Here we present a more systematic
study of phase-dependence by constructing a bounce-phase
ensemble that finely samples the phase interval.
[26] All test-particle trajectories in this section are pro-

duced by solving the guiding-center equations of motion
under a double-dipole model. The guiding-center approxi-
mation is theoretically expected to be valid because the
nonadiabaticity at the bifurcation line should not break the
first invariant, and we have verified that expectation by
numerical integration of full-particle trajectories. The double-
dipole model consists of two Earth-strength dipoles,
moments parallel, placed with a distance 20 Re between
them so that the magnetopause is simulated as a plane at
half distance 10 Re [see, Chapman and Bartels, 1940]. This
is one of the simplest magnetic configuration that allows for
DSB; its simplicity makes it convenient for fast simulations
and for analysis by computer algebra systems. We empha-
size that the general features of DSB discussed in this study
are not limited to this simple model. The theory we present
in later sections is applicable to a wide variety of magne-
tospheric models.
[27] We construct a set of initial conditions such that they

are all located on the same drift shell, but differ in bounce
phase. One way of producing this set is to consider an initial
guiding line ‘ and choosing some points on it. Let Pi =
(xi,yi,zi) be one initial position and Bm be the mirror field
value. Because all members of the initial condition set must
have the same value for the first invariant and for the
energy, the pitch angle at the initial position Pi must satisfy
B(xi,yi,zi) = Bmsin

2ai. Furthermore, the bounce phase fi at
Pi is given by:

fi � f0 ¼ p

Rsi
s0

ð1� BðsÞ
Bm

Þ�1=2
ds

Rsm
�sm

ð1� BðsÞ
Bm

Þ�1=2
ds

ð4Þ

where f0 is the phase assigned to the reference point s0, and
si is the arc length at Pi.
[28] We initiate one hundred trajectories of electron

guiding-centers at various points {Pi} on ‘ and follow them
until they cross the bifurcation region, recording the second
invariant values for each trajectory. We choose an arbitrary
initial guiding line that passes through the point P0 = (7 Re,

�7 Re,0). Zero phase is assigned to the point P0. We set up
the ensemble such that the equatorial pitch angle at P0 is
80�, and the electrons have 175 keV kinetic energy. The
initial second invariant has the value I0 = 0.45 Re, and the
mirror field is Bm = 42.9 nT.
[29] Figure 5 displays how the change of the second

invariant due to DSB depends on the bounce phase of each
particle. The top panel shows the effect of a single bifurca-
tion, when the particles are near local noon. We see that the
difference 2Inoon � I0 is negative for some particles, and
positive for others. The narrow spike in the plot indicates
that a few of them acquire significantly large second invariant
values.
[30] With hindsight (see following sections), we fit the

data to a curve in the form a + b ln|2 sin(f � c)|. The
continuous curve in the top panel of Figure 5 is a fit with
a = 2.85
10�4, b = �0.011, c = �0.101. The ensemble

Figure 5. Top: The change in the second invariant after
DSB, versus the bounce phase. Middle: The motion z(t) for
selected trajectories. (1) Corresponding to phase �p/2,
(2) corresponding to the phase near the peak of the curve,
and (3) phase p/2. Bottom: The total change after crossing
the conjugate bifurcation line.
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average of the curve (average over f) is equal to the
parameter a, which is very close to zero.
[31] The middle panel, which shows the trajectories for

three members of this ensemble, hints at the mechanism that
causes the sharp increase at some phases. The orbits labeled
1 and 3 correspond to particles with phases �p/2 and p/2,
respectively, and orbit 2 corresponds to the phase closest to
the peak of the top panel. We see that orbit 2 lingers around
the equator much longer than orbits 1 and 3 do, thus
breaking the second invariant. The particle just reaches
the peak when the magnetic field there reaches Bm, and
the parallel motion is therefore stalled. Meanwhile, due to
drift, the side minima of the potential B(s) become deeper so
that when the particle finally falls to one side, the orbit goes
through a lower field minimum, thus acquiring a larger
second invariant. If we sample the peak more finely, we can
find other orbits that come closer to equator and stall for
longer times.
[32] When the members of the initial ensemble are

scattered onto neighboring drift shells, they drift across
the day side with slightly different speeds. We follow the
trajectories until they cross the conjugate bifurcation line
and return to the night side. The bottom panel of Figure 5
shows the difference between final and initial second
invariants versus the initial bounce phase. The plot displays
the same central peak as the plot of the top panel, but it is
scrambled because of the speed differential among the
particles. The downward pointing sharp peaks result from
the same ‘‘hang-up’’ process that creates the peak of the top
panel, working backwards in this case. A finer sampling
reveals further dips around the main upward peak (not
shown); in the continuum limit, one can expect to find an
infinite number of dips, very close to each other.
[33] We construct a second and a third ensemble, using

the same initial guiding line. In the second ensemble we
increase the equatorial pitch angle to 89.5�, setting the
kinetic energy of electrons again to 175 keV. The mirror
field of the ensemble is now Bm = 41.88 nT, almost the
same as that of the first ensemble; however, now the initial

second invariant value is set to the small value I0 = 0.0012 Re.
The third ensemble also has an equatorial pitch angle of
89.5�, but the kinetic energy of each member is increased to
413 keV.
[34] Figure 6 displays the change in the second invariant

after a single bifurcation of the original drift shell of these
ensembles. The change DI is positive for all members of the
ensemble, and larger for the ensemble with higher kinetic
energy.
[35] The function a + b ln|2 sin(f � c)| with a = 0.011, b =

�0.012 and c = 0.370 provides a very good fit to the data
points of the second ensemble. A similarly good fit for the
third ensemble is given with the parameters a = 0.023, b =
�0.021, and c = 0.131. In these examples, the ensemble-
averaged change of the second invariant is not zero, but
significantly large and positive.

4. Nonequatorial Particles

[36] In this section and the following, we present a
theoretical analysis of the nonadiabatic changes imposed
by DSB. This section applies the theory of separatrix
crossing to the problem in order to determine the change
in the second invariant. This method was applied to space-
plasma problems before: In their well-known study, Büchner
and Zelenyi [1989] apply the theory of separatrix crossing to
the analysis of Speiser orbits in the magnetotail. In that
problem, the action that is affected by the crossing is not the
second invariant, but

H
_zdz, which is similar to the first

invariant. Although Speiser orbits are very different from
bifurcating orbits, the same formalism applies to both.
[37] The study by Antonova et al. [2003] has a scope that

significantly overlaps with the present section. The authors
apply separatrix-crossing theory to the DSB problem, and
obtain analytical results for a specific magnetic field. Their
results have the same properties as the results we present
here. The present study differs from the work by Antonova
et al. mainly in two aspects. We do not presuppose a
specific magnetic field, so our results are applicable to a
wide class of models; also, we present a treatment of
equatorial particles whose bifurcation cannot be analyzed
with separatrix-crossing theory.
[38] A good review of the adiabatic invariant and of

separatrix crossing, including some applications, is provided
by Henrard [1993].

4.1. Separatrix-Crossing Theory

[39] Using the guiding-center formalism, the bounce
problem can be expressed in the simple form:

d2s

dt2
¼ � m

g2m
dB

ds
ð5Þ

Here m and g are constants by our assumptions, and B(s) is a
slowly changing function (due to drift onto other guiding
lines). Also, the equation undergoes bifurcation at some
instant. In that form, there is no known explicit solution to
equation (5), even when one expands B(s) in a Taylor series.
However, we are mainly interested in the relation between
initial and final values of the second invariant (essentially
an average quantity), and not in the details of the particle
trajectory. To obtain such a relation, we can use the

Figure 6. Two more bounce-phase ensembles at the same
starting location as in Figure 5, with aeq = 89.5�. In both
ensembles, the dayside second invariant has increased for
all particles. The increase is more significant with the
energetic ensemble. The continuous lines are nonlinear fits
to the points.
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separatrix crossing theory developed by Cary et al. [1986]
(CET).
[40] CET postulate the dimensionless Hamiltonian:

Hðq; p;lÞ ¼ w
2

p2 � q2
� �

þ dH q; p;lð Þ ð6Þ

which depends on the slowly changing parameter l ( _l � e �
1 for all times). The parameter w does not depend on q or p,
but may depend on l. The term dH contains higher powers
of q and p, so that dH is negligible near the origin.
[41] Figure 7 shows the contours of H at fixed l (the

frozen system), which are also the phase-space orbits of
the system. The origin (q = 0, p = 0) is a saddle point, and
the separatrix curve corresponds to the H = 0 contour.
Orbits with positive H go around the separatrix, while those
with negative H are confined into one of the separatrix
lobes.
[42] The parameter w can be intuitively interpreted as the

exponentiation rate of the trajectories near the saddle point
at the origin. To see this, note that near the origin, dH is
ignored and the solution to the resulting Hamiltonian
describes orbits with q(t),p(t)/ e±wt.
[43] Let Ya(l) and Yb(l) be the phase space area inside the

left and the right lobe of the separatrix, respectively.
Consider an orbit that is initially outside the separatrix,
with action J0. If Ya(l) and/or Yb(l) are slowly and
monotonically increasing, then there will come a time lx
where Ya(lx) + Yb(lx) = J0, and the orbit crosses the
separatrix. The crossing occurs essentially because the lobe
area shrinks at a rate that is O(e), while the area J0 inside the
trajectory shrinks much more slowly (due to adiabatic
invariance), so the separatrix catches up with the trajectory.
Conversely, if the orbit is initially inside lobe a, whose area
is shrinking, crossing occurs when Ya = J0.
[44] The analogy between this problem and DSB is

straightforward: J0 corresponds to the initial second invari-
ant, the total lobe area Ya(l) + Yb(l) corresponds to � and
the crossing time lx corresponds to the location of the
bifurcation line.

[45] CET adopt a perturbative approach to relate the
postcrossing action Jf to the initial action. The small
perturbation parameter is e � _l. In the final result, terms
of order e2 or higher are ignored.
[46] When the Hamiltonian [equation (6)] is symmetric in

q and p, both lobes cover equal areas and these areas have
equal rates of change (Ya = Yb � Y, _Ya ¼ _Yb � _Y Þ. In this
case, the change in the action for an orbit that is initially
outside of either lobe is:

Jf ¼ Y lxð Þ �
_Y

w

����
lx

ln 2 sinfj j þ O e2
� �

ð7Þ

where f is a constant depending on initial conditions. The
dependence on the initial action J0 is implicit in lx, via
2Y(lx) = J0. For an orbit that is initially inside a lobe that is
shrinking, the relation is:

Jf ¼ 2Y lxð Þ � 2
_Y

w

����
lx

ln 2 sinfj j þ O e2
� �

ð8Þ

[47] In these expressions, the first term is O(1) and the
second term isO(e) (because _Y ¼ e dY

dl). In the limit e!0 (for
example, infinitely fast bouncemotion) the correction term can
be omitted; furthermore, if Y(l) initially increases and then
decreases, we see that after a conjugate pair of crossings, the
action is back to its initial value. This is equivalent to the
argument of Shabansky [1971] mentioned before.
[48] The crossing parameter f is directly related to the

phase of the motion far from the separatrix. The function
�ln|2sinf| is sharply increasing near f = 0 and f = p,
and shallow in between. Initial conditions corresponding
to f � 0 (or an integer multiple of p) create orbits whose
action is significantly increased. They are the orbits
which spend a considerable time near the saddle point
(cf. Figure 5).
[49] If a set of initial conditions is uniformly distributed

in the angle variable but have a common value of J0, they
are uniformly distributed in f, too. The average of the
jumps of the second invariant for such an ensemble will be
equal to zero, because

R
0
2p ln|2sinf| df = 0. However, the

root mean square deviation is not zero, which means that
the members of the ensemble are scattered onto neigh-
boring orbits.
[50] The results in equations (7) and (8) for the post-

crossing action are valid only when J�e, because the
perturbation series is cut off after first order. When J � e,
crossing takes place as soon as the separatrix comes into
existence. For the DSB problem, this requirement means
that equatorial particles with I � 0 are excluded from this
analysis. The case of very small initial second invariant is
analyzed in section 5.
[51] The interested reader can check the theory against

numerical experiments with a toy problem. The quartic
Hamiltonian

Hðq; p;lÞ ¼ p2

2
� l

q2

2
þ q4

4
ð9Þ

where l = et, provides a test case, which can be used to
gain an intuition for the separatrix crossing problem. To

Figure 7. The generic contours of the Hamiltonian
equation (6). The separatrix corresponds to the contour
H = 0. Contours with negative H are confined to the lobes
(region a or b), while positive H contours go around both
lobes (region c).
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have repeated separatrix crossings, just like it occurs with
DSB, one can set l to vary periodically in slow time, for
example, l = c0 + c1sin(et), where c0 and c1 are constants.

4.2. Application to Drift-Shell Bifurcation

[52] In order to apply the theory of separatrix crossings to
the DSB problem, we postulate the following bounce
Hamiltonian:

Hðs; vk;lÞ ¼
v2k

2
þ m
g2m

Bl sð Þ � Bl 0ð Þð Þ ð10Þ

where v|| = _s, and l is a slowly changing coordinate along
the drift path. This Hamiltonian function gives the same
equation of motion as equation (5). The constant term m
Bl(0)/g2m ensures that the separatrix corresponds to the
H = 0 contour. Finally, the Taylor expansion

Bl sð Þ � Bl 0ð Þ ¼ � d2Bl

ds2

����
����
s¼0

s2

2
þO s4

� �
ð11Þ

shows that the bounce Hamiltonian is directly compatible
with the assumed form [equation (6)] of CET theory
(because of the north-south symmetry, the expansion has
no terms with odd powers).
[53] The dimensionless Hamiltonian equation (6) is related

to equation (10) by a scale transformation; therefore the
action J calculated from equation (6) is related to the second
invariant I by a constant factor. Then, when adapting the
jump relations (7) and (8), we can substitute I for J and � / 2
for Y, and the constant factors will cancel.
[54] From the lowest-order terms of the bounce Hamilto-

nian equation (10) we determine the exponentiation rate as:

w lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

g2m
d2Bl

ds2

����
����
s¼0

s
ð12Þ

[55] In the present problem the change of the lobe area is
caused by the slow drift, then the rate of change of � is
given by the directional derivative:

d�

dt
¼ vDh i � r� ð13Þ

Here uDh i is the bounce-averaged drift velocity; therefore,
_� is equal to the spatial derivative of � in the drift direction
at the bifurcation line. Then, for a particle that enters the
bifurcation region with initial (nightside) second invariant
I0, first invariant m and crossing parameter f0, the new
second invariant value I1 will be:

I1 ¼
I0

2
� 1

2

m
g2m

d2B

ds2

����
����
s¼0

	 
�1=2

uDh i � r�

" #
‘b


 ln 2 sinf0j j ð14Þ

All factors are evaluated at the bifurcation line ‘b, which is
the magnetic field line that goes through point (xb,yb)
satisfying I0 = �(xb,yb).
[56] The branches of the drift shell come together at the

conjugate bifurcation line ‘
0

b, located at (x0b,y
0
b) satisfying I1

= �(x0b,y
0
b). When the particle crosses it with crossing

parameter f1, the new nightside second invariant value is:

I2 ¼ 2I1 �
m

g2m
d2B

ds2

����
����
s¼0

	 
�1=2

vDh i � r�

" #
‘0
b


 ln 2 sinf1j j ð15Þ

[57] The results in equations (14) and (15) are quite
versatile, and they can be applied to any magnetic field
model with north-south symmetry (dawn-dusk symmetry is
not necessary). Given the initial first and second invariants
and the energy of a particle at the night side, the jump
magnitude (the phase-independent factor in brackets) can be
predicted from the magnetic geometry alone, without follow-
ing the actual particle trajectory.
[58] Furthermore, the results are applicable even when

time-dependence is allowed, even though I is not an
invariant when the speed of the particle is changing. If the
changes imposed by time-dependent magnetic field and/or
electric fields are adiabatic, one can use the relevant
conservation relations to follow the drift shell up to the
bifurcation line and calculate the new second invariant
using the instantaneous values of m, I, and v.
[59] The crossing parameter f depends on the details of

the bounce motion, so it requires following the actual path
of the system (the conservation laws are not sufficient to
specify it). At the first bifurcation, an ensemble of initial
bounce phases will map onto an ensemble of f, plus a
constant shift. Members of the ensemble are scattered onto
slightly different drift shells with slightly different drift
speeds. It takes many bounces until they reach the next
bifurcation line, by which time the initial bounce phases are
thoroughly mixed. Therefore in the case of multiple cross-
ings we use the random phase approximation, and set f
randomly, which assumes that there are no correlations
between the two crossings. This assumption is not strictly
true: Cary and Skodje [1989] show that from one crossing
to the next, phase mixing is not perfect and correlations
persist; however, Bazzani [1999] demonstrates that after a
few crossings, phase mixing becomes complete and corre-
lation between the initial and current phases goes to zero.

4.3. Numerical Study

[60] We can express equation (14) in a more useful form
by approximating the bounce-averaged drift velocity uDh i
with the pure gradient drift velocity vG:

vDh i � vG ¼ gmu2

2 qj jB2
m

sgn qð Þb̂
r?B ð16Þ

[61] This approximation is reasonably good for particles
with large equatorial pitch angles; however, it does not hold
for all bifurcating particles (as described in section 2, under
some conditions, particles with any pitch angle can bifur-
cate). Still, the gradient drift is always a significant com-
ponent of the overall drift; therefore the approximation
provides at least an order-of-magnitude estimate.
[62] Using this approximation, and substituting m / (g2 m) =

u2 / (2Bm), equation (14) can be rewritten as:

2I1 � I0 ¼
gmu
qj jBm

� G � ð� ln 2 sinf0j jÞ ð17Þ
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where

G � sgn qð Þ b̂
r?Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bm B00j j

p � r�

" #
xb ; ybð Þ

ð18Þ

We recognize that the first factor gmv/(|q|Bm) is equal to
rm, the gyroradius at the mirror point. The dimensionless
factor G should be evaluated right at the bifurcation point
(xb, yb). The function G(x,y) is unique to a given magnetic
field configuration and does not depend on the particle
parameters. Hence one can calculate G(x,y) in advance,
perhaps on a grid that spans the bifurcation region, and then
evaluate G(xb,yb) for the specific bifurcation point dictated
by the particle’s initial conditions.
[63] In this form, we also see that rm gives the scale of the

change in the second invariant. For most bounce phases, the
phase-dependent factor �ln|2sinf0| is of order 1. Further-
more, we demonstrate below that the dimensionless geo-
metric factor G is of order 1 for most of the bifurcation
region. Therefore the change 2I1 � I0 is of the order of a
few rm. This result is not surprising because rm/Re is the
small parameter of the system and the perturbative analysis
keeps terms up to O(rm/Re).
[64] At any given equatorial point (x,y) in the bifurcation

region, the value of G(x,y) can be calculated as follows: We
follow the field line passing through the point and evaluate the
second derivative of B(s) along it by finite differences. The
direction vector b̂ is in z-direction because of the equatorial
symmetry. The mirror field Bm will be equal to the field
strength at (x,y) because this point is a bifurcation point. The
gradients r? B and r� can be evaluated by taking finite
differences along x and y directions around the point.
[65] Using this procedure, we have evaluated G(x,y) over

a grid of equatorial points over a region that spans the
bifurcation region. Figure 8 shows the contour plot of G(x,y)
for the double-dipole model that is used to produce the
simulated trajectories of section 3.
[66] We can directly check the theoretical prediction

against the first set of synthetic data in section 3. The fit

to the data in Figure 5 shows that the coefficient of the
logarithmic term is�0.011; hence,rmG= 0.011Re. Themirror
gyroradius of the followed particle is rm = 5.58
10�3 Re,
which gives the ‘‘experimental’’ value G = 1.97 for the drift
shell over which this particular ensemble moves.
[67] The bifurcation point for this particular drift shell is

at xb = 8.23 Re, yb = �5.97 Re. Evaluation of G at this point,
as defined in equation (17), gives G = 1.90 (cf. Figure 8), in
good agreement with the numerical simulation.
[68] The method is directly applicable to more realistic

magnetospheric models. Figures 9 and 10 show level curves
ofG under Tsyganenko-1989c model, withKp = 1 andKp = 7,
respectively. We see that the range of G values and the
shape of the contours are comparable to the double-dipole
case. The similarity suggests that the fundamental qualities
of DSB are common features of both simple and compli-
cated models.

5. Equatorial Particles

[69] The CET theory of separatrix crossing outlined in the
previous section, albeit powerful and applicable to a wide
variety of systems, cannot be used when the initial action is
very small. In the context of the DSB problem, application
of CET theory requires that I0�rm. However, energetic

Figure 8. Curves of constant G under double-dipole
magnetic field. The magnetopause is the x = 10 plane (the
right-hand edge of the figure). The number G(x,y) is a
measure of the violation of the second invariant for a drift
shell that bifurcates at point (x,y). For most of the
bifurcation region the value of G is of the order of one.

Figure 9. Curves of constant G under Tsyganenko-1989c
magnetic field model, with parameter Kp = 1 (low activity).

Figure 10. Curves of constant G under Tsyganenko-1989c
magnetic field model, with parameter Kp = 7 (high activity).
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particles (large rm) with large equatorial pitch angles (small
I0) can easily violate this condition (for example, relativistic
electrons with pitch angles >80�). To analyze these cases,
we require a complementary approach that is valid in the
regime of small I0.
[70] Numerical traces of equatorial particles (i.e., very

small initial action) show qualitative differences compared
to nonequatorial particle traces. In particular, the bounce-
phase-ensemble graphs in Figure 6 show that the ensemble
average of the second invariant change is nonzero. This
observation generally holds for similar bifurcations [cf.
Bulanov and Naumova, 1996 and Chirikov and Vecheslavov,
2000].
[71] In the context of space plasmas, this method was

applied by Vainshtein et al. [1999] to Speiser orbits in the
magnetotail. Their results are formally similar to ours, even
though the system is very different.

5.1. Bounce Motion With Small Amplitude

[72] In order to develop an expression for the change of
the second invariant with small I0, we return to the bounce
equation of motion [equation (5)]. Because the bounce
amplitude is small, we can expand B(s) in a Taylor series
up to fourth order, resulting in:

d2s

dt2
¼ � m

mg2
� Bð2Þ�� ��sþ Bð4Þ

6
s3

� �
ð19Þ

where B(2) � d2B
ds2

���
s¼0

and B(4)�d4B
ds4

���
s¼0

, and both derivatives

are evaluated at the equator. The second derivative B(2) is
negative. We will assume that B(2) is slowly changing with
time due to drift, but the change of B(4) is negligible.
[73] Bifurcation will occur within a short distance into the

bifurcation region (within one or two bounce cycles).
Therefore we express the second derivative B(2) as a linear
function of drift distance l:

Bð2Þ ¼ vG
dBð2Þ

dl

����
l¼0

t ð20Þ

where we set the origin l = 0 to the edge of the bifurcation
region so that the constant term of B(2) vanishes. The
directional derivative is evaluated along the contour of
constant B = Bm because this is the path of an equatorial
particle, and the drift speed vG is purely due to gradient
drift. Thus we approximate the bounce problem as motion
under a quartic potential with a linearly rising central peak:

d2s

dt2
¼ mvGðl ¼ 0Þ

mg2
d Bð2Þ
�� ��
dl

�����
l¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

ts� mBð4Þ

6mg2|ffl{zffl}
b

s3 ð21Þ

where a and b are positive constant parameters.

5.2. The Painlevé-II Equation

[74] The scale transformation t ! a�1/3x, s !
ffiffi
2
b

q
a1/3y

converts the bounce equation (21) into Painlevé’s second
equation:

d2y

dx2
¼ xy� 2y3 ð22Þ

The six Painlevé equations hold a special place in the theory
of second-order nonlinear ODEs [Clarkson, 2003]. Their
solutions, the Painlevé transcendents, cannot be expressed
in terms of the more familiar functions. However, the
thoroughly investigated asymptotic solutions can be. In the
limit x!�1, Its and Kapaev [1988] give the following
asymptotic result for the Painlevé-II equation:

yðxÞ � ð�xÞ�1=4a
 sin
2

3
�xð Þ3=2þ 3

4
a2 ln �xð Þ þ 8

� �
ð23Þ

The solution parameters a > 0 and 0 � 8 <2p depend on
initial conditions. In the opposite limit, as x!1:

y xð Þ � �
ffiffiffi
x

2

r
� 2xð Þ�1=4r
 cos

2
ffiffiffi
2

p

3
x3=2 � 3

2
r2 ln xþ q

� �
ð24Þ

Both solutions are oscillatory, with an amplitude that dies
off very slowly (with x�1/4). The positive asymptote has two
parabolic branches, as expected.
[75] Because the Painlevé-II equation has no singularities,

the two asymptotic solutions are related to each other via the
following connection formulas [Its and Kapaev, 1988]:

r2 ¼ 1

p
ln
1þ pj j2

2 Impj j ð25Þ

q ¼ �p
4
þ 7

2
r2 ln 2� argG ir2

� �
� arg 1þ p2

� �
ð26Þ

where

p ¼ epa
2 � 1

� �1=2

 exp i

3

2
a2 ln 2� p

4
� argGðia2

�
2Þ � 8

� �
ð27Þ

When Im p < 0, the solution takes the positive branch, i.e.,
the upper sign is taken in equation (24). By means of these
connection formulas, it is possible to relate the initial value
of the second invariant to the post-crossing value.
[76] The exact solution converges to the asymptotic

solutions (23) and (24) rather quickly, especially for small
values of a and r. Except for several bounces around the
bifurcation line, the asymptotic expressions are a very good
approximation to the real motion.
[77] In the transformed coordinates (x,y), the action is

defined as
H

y0dy (over one cycle). Consider an initial
‘‘time’’ �x0 with x0>0 and sufficiently large. Evaluating
the derivative y0(x) from equation (23) and ignoring the
O(x0

�5/4) and higher terms in the derivative, we see that the
phase-space profile consists of ellipses:

yð�x0Þ
x
�1=4
0

 !2

þ y0ð�x0Þ
x
1=4
0

 !2

¼ a2 ð28Þ

and therefore the action J� in the negative asymptote,
which is the area inside that ellipse, is equal to pa2.
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[78] For the positive asymptote we proceed in a similar
manner. At sufficiently large ‘‘time’’ x1 > 0, after ignoring
terms of order x1

�5/4, the phase-space curve is again found to
be an ellipse:

yðx1Þ �
ffiffiffiffiffiffiffiffiffiffi
x1
�
2

q
ð2x1Þ�1=4

0
@

1
A

2

þ
y0ðx1Þ � 1

� ffiffiffiffiffiffiffi
8x1

p

ð2x1Þ1=4

 !2

¼ r2 ð29Þ

(only one of the branches is given; the other branch has the
same area). Then, the action J + in the positive asymptote
(several bounces after the crossing) is equal to pr2. So we
see that the amplitude connection formula (25) gives the
relation between the initial (single branch) and final (double
branch) actions. After substitution of p into equation (25),
some algebraic manipulation gives the postcrossing ampli-
tude r2 in terms of the initial amplitude a2 and phase 8:

r2 ¼ a2 � 1

2p
ln epa

2 � 1
� �

� 1

p
ln 2 sin

3

2
a2 ln 2� p

4
� argG

ia2

2

	 

� 8

� �����
���� ð30Þ

We skip the phase formula q(a2, 8), which can be obtained
similarly.
[79] For the inverse process (crossing the conjugate

bifurcation line, to a single branch), we need to express
a2 in terms of given r2 and q. To that end, we invert the
connection formulas (25) and (26). After some straightfor-
ward algebra, we can express p as a function of r2 and q as
follows:

p r; qð Þ ¼ iepr
2 þ e2pr

2 � 1
� �1=2

exp iy ð31Þ

where

y r; qð Þ � q� 7 ln 2

2
r2 þ 3p

4
þ argG ir2

� �� �
ð32Þ

[80] The variable y is introduced as a shorthand to the
phase of p. From the definition in equation (27) of p, it
follows that:

a2 ¼ 1

p
ln 1þ pj j2
� �

ð33Þ

Direct substitution of p(r, q) and algebraic manipulation
shows that:

a2 ¼ 2r2 þ 1

p
ln 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2pr2

p
siny r; qð Þ

� �
ð34Þ

5.3. Change of the Second Invariant With Small
Initial Values

[81] The inverse transformation x! a1/3t, y!
ffiffi
b
2

q
a�1/3s

will convert the results of the previous subsection back into
the bounce problem. We have already established that the
action of the single branch solution is J� = pa2, and that of
the double branch is J + = pr2, and the relation between

them can be determined with the connection formulas (30)
and (34). To see how the action in (x,y) space is related to
the second invariant, we apply the inverse transformation:

J �
I

dy

dx
dx ¼ b

2a

I
ds

dt
ds ð35Þ

¼ b

a
uI ð36Þ

[82] Consider a particle that is initialized on the night side
with initial second invariant I0, which then undergoes DSB.
Then from equations (30) and (36) above, the next value I1
of the second invariant can be determined.

I1 ¼ I0 �
z
2
ln eI0=z � 1
� �

� z ln 2 sinFj j ð37Þ

where z is a scale factor that depends on the geometry of the
bifurcation line as well as the particle speed:

z � a

bv
¼

6vG � r? Bð2Þ
�� ��

vBð4Þ ð38Þ

Note that the derivatives B(2) and B(4) are taken along the
field line, and evaluated at the equator.
[83] The phase factor F is given as:

F� 3 ln 2

2p
I0

z
� p

4
� arg G

i

2p
I0

z

	 
� �
� 8 ð39Þ

[84] The result in equation (37) displays a formal resem-
blance to the nonequatorial result in equation (14), except

for the middle term z
2
ln eI0=z � 1
� �

. In the limit I0�z, this

middle term reduces to I0/2, thus restoring the form of
equation (14).
[85] Conversely, we can show that in the limit of small

bounce motion, the factor of the logarithmic term in
equation (14) is approximated by z. To see this, we write
� as:

� ¼ 2

Z sm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð2Þj js2
2Bm

� Bð4Þs4

24Bm

s
ds ð40Þ

¼
4
ffiffiffi
2

p
Bð2Þ
�� ��3=2

BmBð4Þ ð41Þ

which is valid for small bounce amplitudes. With the
assumption that the fourth derivative B(4) does not change
significantly along the drift path up to the bifurcation, we
write:

r��
6
ffiffiffi
2

p
Bð2Þ
�� ��1=2

BmBð4Þ r Bð2Þ�� �� ð42Þ

Solving for r|B(2)| and substituting into equation (38) gives

z � B
1=2
mffiffiffi

2
p

u Bð2Þj j1=2
uG � r� ð43Þ
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which is exactly the same as the coefficient of the
logarithmic term in equation (14). However, this approx-
imation does not give the middle term of equation (37),
which was derived for small initial second invariant.
Equations (14) and (37) are complementary in the sense
that they are compatible in limiting cases but neither one is a
special case of the other. In practice, there is an overlap
interval where I is not very small but equation (37) remains
applicable.
[86] A uniform ensemble of particles that share the same

drift shell have the same value for I0, and are uniformly
distributed in F. If I0 is comparable to z, the ensemble
average of DI � 2I1 � I0 will be nonzero because of the
middle term: the second invariant of the whole ensemble
will shift up by a constant factor as observed in Figure 6.
Furthermore, as I0/z!0, this constant shift can be arbitrarily
large (but increasing only logarithmically).
[87] Chirikov and Vecheslavov [2000], who observe a

similar effect in another system, use the term ‘‘ballistic
regime’’ for very small action values where the whole
population experiences a large action jump. In contrast,
large values of initial action are in the ‘‘diffusive regime’’
because an ensemble of particles is scattered onto a small
range of action values, with an average change of zero. The
case of nonequatorial particles, analyzed in the preceding
section, corresponds to the diffusive regime.
[88] Now consider a particle that is already in the bifur-

cation region and happens to have a very small second
invariant I1. When the particle drifts across the conjugate
bifurcation line, it acquires the nightside second invariant
value I2. The value of I2 can be determined with the
connection formulas (34) and (36):

I2 ¼ 2I1 þ z ln 2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2I1=z

p
sinY

� �
ð44Þ

with

Y � q� 7 ln 2

2p
I1

z
þ 3p

4
þ arg G

i

p
I1

z

	 
� �
ð45Þ

It should be noted that z does not have the same value as in
equation (37), but needs to be reevaluated at the new
bifurcation line. Again, in the limit I1�z, the expression
has the same form as the nonequatorial solution (15) (to see
this, the argument of the logarithm needs to be manipulated
using trigonometric identities). Note that in the opposite
limit I1�z, the jump in the second invariant is finite: DI �
I2 � 2I1 = zln2.

5.4. Numerical Study

[89] The analysis of the previous subsection shows that
z is the key parameter for the second-invariant jump.
Substituting for the gradient drift velocity, equation (38)
can be written as:

z ¼ rm3 sgnðqÞ
b̂
r?B
� �

� r? Bð2Þ
�� ��

BmBð4Þ ð46Þ

The factors B(2) and B(4) are the second and fourth
derivatives of field strength along the field line, respec-
tively. We can rewrite this as z � rmF, introducing a new

parameter F that depends only on the geometric properties
of the magnetic field and the drift shell. The expression
should be evaluated at the bifurcation point, which is the
intersection of the contour B = Bm (the drift path) and the
boundary of the bifurcation region.
[90] To compare this theoretical result with the simula-

tions presented in section 3, we evaluate F in the case of a
double-dipole field whose details are described earlier.
Every point along the edge of the bifurcation region
corresponds to a different value of the mirror field Bm of
the drift shell, so we can treat F as a function of Bm.
Figure 11 shows a plot of F versus Bm for the double-dipole
field. We see that F varies between 0 and 3, thus the
parameter z varies between 0 and 3rm.
[91] The electron-ensemble simulations of Figure 6 are

both produced using a mirror field value of 41.88 nT and an
initial second invariant I0 = 1.2
10�3 Re. From Figure 11,
we read that this value predicts an F � 1.04. The 175-keV
electrons have a mirror gyroradius of 5.72
10�3 Re, thus
z = rmF = 5.95
10�3 Re. With these values in place,
equation (37) predicts

2I1 � I0 ¼ 10:11� 11:9 ln 2 sinfj jð Þ 
 10�3Re ð47Þ

which is in agreement with the numerical fit to the data in
Figure 6, except for a constant shift in the phase of all
particles.
[92] The 413-keV electrons have a mirror gyroradius of

9.65
10�3 Re, thus z = 10.04
10�3 Re. Therefore for this
data set, equation (37) predicts

2I1 � I0 ¼ 21:9� 20:1 ln 2 sinfj jð Þ 
 10�3Re ð48Þ

which again agrees well with the synthetic data from
simulations. The theory presented in this section success-
fully explains the ballistic jump in the second invariant.
[93] One can easily apply the method to different mag-

netospheric models, first by determining the edge of the
bifurcation region (the set of points at the equatorial plane

Figure 11. The ballistic parameter F versus the mirror
field values, for the double-dipole field. Small Bm

corresponds to drift shells at large distances from the Earth
and thus bifurcate farthest from local noon.
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satisfying dB/ds = 0), and then by evaluating F at every
point in this set.

6. Magnetospheric Implications

[94] In this study, we focused on the analysis of single
crossings and deferred the analysis of multiple crossings to
another article. However, we would like to share two of the
important implications of DSB for drift shells that cross the
bifurcation region many times.
[95] The first effect is the existence of a diffusive mech-

anism in a constant magnetosphere. At each bifurcation
point, the second invariant makes a jump, which in the long
term can be seen as a random walk because the phase
information cannot be easily tracked. This corresponds to
two radial displacements at each drift cycle.
[96] Researchers are now beginning to combine models

of the radiation belts that represent transport in terms of
diffusion coefficients with numerical MHD models of large-
scale magnetospheric dynamics, which calculate the mag-
netic field configuration as a function of time. DSB-transport
effects could be incorporated approximately in those models
in terms of a diffusion coefficient hDI 2i/2Dt. A full
treatment of this diffusion coefficient will require a statis-
tical treatment, which we defer to a later study. However,
the order-of-magnitude of the diffusion coefficient can be
estimated as:

DII ¼
�I2
# $
2td

� 0:411
r2m
td

G2
dawn þ G2

dusk

� �
ð49Þ

where 0.411 = (1/4p)
R
0
2p ln2 |2sinf| df, the parameter td is

the drift period, and Gdawn, Gdusk are the G factors at the two
bifurcation lines, varying between 0.1 and 10.
[97] We estimate (see the Appendix) that the radial

transport due to DSB becomes comparable to magnetic-
noise-induced diffusion, as estimated by extrapolating the
Brautigam and Albert [2000] formula to the near-magneto-
pause region, for electron energies above 10 MeV, in order
of magnitude. Pitch angles are also altered by the process, at
a rate that increases rapidly with energy. Of course, this
mechanism only operates on particles whose trajectories
come within 1–2 Re of the magnetopause and only for
particles with equatorial pitch angles close enough to p/2
that they undergo drift-shell bifurcation.
[98] The second effect, related to the first, is the emer-

gence of a new type of trapping. Traditionally, energetic
particle trajectories in static-magnetic field configurations
have been divided into three categories: (1) stably trapped,
which refers to drift paths that circle the Earth infinitely
many times; (2) quasi-trapped, which refers to particles that
bounce between mirror points on closed field lines but
cross the magnetopause without completing one complete
drift around the Earth; and (3) untrapped, which refers to
particles that move only on open or interplanetary field
lines. The random walk in the radial coordinate due to DSB
implies that a particle with mirror field Bm < Bsubsolar may
drift around the Earth once (or many times) before its
second invariant becomes sufficiently large so that it drifts
into the magnetopause and presumably escapes. We pro-

pose referring to this new class of particles as ‘‘metastably
trapped’’.

7. Conclusions

[99] Drift-shell bifurcation is a result of the dayside
compression of the magnetosphere. It mainly affects par-
ticles that drift close to the magnetopause. The nonadiabatic
interruption of the bounce motion causes a permanent
change in the second invariant, which is conserved every-
where except around the bifurcation lines.
[100] Simulations and analysis show that particles with

high energies and with large equatorial pitch angles (aeq >
80�) are strongly affected by the violation of the second
invariant. Similarly, shells that bifurcate at the dawnside or
duskside edges of the bifurcation region are more affected
than those which bifurcate near local noon. When we let a
set of particles which have the same energy and occupy the
same drift shell, but differ by bounce phase, drift across
the bifurcation line, we see that they all acquire different
second invariant values. That is, they are scattered onto
neighboring drift shells.
[101] We have presented an analysis of the magnitude of

the second-invariant change, which can be directly applied
to any magnetic field model that is static and possesses
north-south symmetry. We identify two parameter regimes:
The diffusive regime, where the prebifurcation value of the
second invariant is much larger the mirror gyroradius of the
particle’s motion. Such cases are analyzed with the CET
formula. In that regime, the average change of the second
invariant in a bounce-phase ensemble is zero, but the root
mean square change is not zero. When the ensemble is
prepared so that the initial second invariant is of the same
order as, or less than, the mirror gyroradius, we see an overall
shift in the second invariant in addition to the diffusive term.
This is called the ballistic regime, where each particle is
catapulted onto a significantly distant drift shell. This case
precludes the use of the CET formula, but the Painleve
formula is applicable here. These two cases complement
each other to provide a complete picture of the DSB effect.
[102] Our results are equally applicable to both ions and

electrons, provided that the guiding-center approximation
is valid.
[103] Our analysis is based on certain simplifications:

constant magnetic field, zero electric field, and north-south
symmetry. These assumptions can be relaxed. Even in the
presence of electric fields or time-varying magnetic fields, if
the conditions are adiabatic, we can assume that I is a valid
invariant for a few bounces around the bifurcation line.
Then, the formulas in this article can still be used to relate
second-invariant values just before and just after bifurca-
tion. We can also relax the symmetry requirement by
replacing the references to the equatorial plane with the
surface satisfying dB/ds = 0. However, the results of
separatrix-crossing theory by Cary et al. [1986] are more
complicated when such symmetry lacks.
[104] When the interplanetary magnetic field has a strong

y-component, some of that By ‘‘leaks’’ into the magneto-
sphere, resulting in a magnetospheric configuration where
neither north-south nor dawn-dusk symmetry exists. Such
an asymmetry may give rise to a different DSB-associated
mechanism for violating the second invariant. Suppose an
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electron with second invariant I0 + I1 and mirror field Bm

arrives at the dawnside bifurcation point from the dawn side
(Figure 12, left diagram) and gets trapped in the Southern
Hemisphere with invariant I1 (we ignore the first-order
corrections here), the electron drifts past noon conserving
the invariant and arrives at the duskside bifurcation point
(Figure 12 diagram). After passing that point, its invariant
will be I1 + I2, which is less than its initial invariant, since
I0 > I2. Conversely, an electron that gets trapped in the
Northern Hemisphere at the dawn side will have its second
invariant increased.
[105] The change induced by this asymmetry mechanism

depends neither on bounce phase (except to determine on
which side the particle will be trapped), nor on the energy of
the particle. As such, it is of zero order in the gyroradius,
while the bounce-phase-dependent change we investigated
throughout the present article is a first-order effect. Under
general conditions, the asymmetric effect can be as signifi-
cant as the bounce-phase effect we considered in this article.
For particles that undergoDSBwith lower energies, it may be
the dominant agent for the changes in the second invariant.
We leave the detailed analysis of this effect to a later study.
[106] The aim of this paper has been to expose the basic

physics involved in the violation of the second invariant
upon bifurcation. The work was done partly because we felt
it might be useful in future modeling studies of radiation-
belt physics. Of course, drift-shell bifurcation does not
occur in the heart of the radiation belts, so the work reported
here does not directly impact classical radiation-belt-diffusion
models. However, knowledge of transport through the DSB
region may prove useful in theoretical study of the sources
of radiation-belt particles, since the DSB region lies be-
tween the radiation belts and two often-mentioned possible
source regions: the plasma sheet [e.g., Baker et al., 1998]
and the polar cusps [Sheldon et al., 1998]. Furthermore,
careful theoretical treatment of the trapping boundary and
loss through the magnetopause requires treatment of trans-
port in the DSB region.

Appendix A: Estimates of Radial and Pitch-Angle
Diffusion Coefficients

[107] This Appendix presents approximate expressions on
how DII given in equation (49) relates to radial and pitch

angle diffusion coefficients. Within the assumptions we
made in this study, there is no diffusion in energy because
the energy is kept constant.

A1. Radial Diffusion

[108] To estimate the radial diffusion that corresponds to
DII, consider particles mirroring near the equator, where the
magnetic field is a minimum and we approximate B(s) as a
Taylor series in s up to second order. This gives

I � ps2m
2

ffiffiffiffiffiffiffiffi
B00

2B0

r
ðA1Þ

where sm is the distance from the equator to the mirror
point, B0 is the equatorial magnetic field, and B 00 is the
second derivative of B with respect to distance along the
field line, evaluated at the equator. In order to estimate
the relevant quantities, we will assume that the realistic
values will be in the same order of magnitude as the dipolar
values. Walt [1994] provides expressions for field lines and
B(s) under a dipole field. In a dipole, we have:

B00 ¼ 9B0

L2R2
e

ðA2Þ

so that

s2m ¼ 2L2R2
e

9B0

Bm � B0ð Þ ðA3Þ

Combining these three equations and using the dipole
formula for B0 gives:

I � pLRe

3
ffiffiffi
2

p BmL
3

Be

� 1

	 

ðA4Þ

where Be is the field strength at the Earth’s equator.
Differentiating with respect to L, while holding Bm (and
thus energy) constant, gives:

@I

@L

� �
Bm

� pReffiffiffi
2

p 4

3

Bm

Be

L3 � 1

3

	 

ðA5Þ

Figure 12. Schematic view of DSB under asymmetric conditions. An electron with initial second
invariant I0 + I1 undergoes bifurcation at the dawn side (left) and leaves the bifurcation region later with a
different invariant I1 + I2. Note that the change in the invariant is of zeroth order, not sensitively
depending on the bounce phase or on the energy of the particle.
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Here BmL
3 / Be = Bm / B0 � 1 because we assumed that the

particle is mirroring near the equatorial plane. Then, the

right-hand side reduces to pRe/
ffiffiffi
2

p
and we have

DL �
ffiffiffi
2

p

pRe

DI ðA6Þ

which, in turn, gives the following approximate relation
between diffusion coefficients:

DLL � 2

p2R2
e

DII ðA7Þ

To get a numerical estimate, we again assume a dipolar
magnetic field and consider ultrarelativistic electrons,
obtaining:

r2m
td

	 

UR

¼ gmec

qB

	 
2
3gmec

2

4pqBr2
ðA8Þ

Here we assume an equatorial trajectory, so td is the
gradient drift period and r is the radius of the drift path. This
equation can be converted to a numerical formula as
follows:

r2m
td

	 

UR

� 0:047
R2
e

day

	 

W 3

MeV

L

10

	 
7

ðA9Þ

where WMeV = gmec
2 in units of MeV. Substituting equation

(A9) in equation (49) gives the following estimated
diffusion coefficient for ultra-relativistic electrons:

D
DSB;UR
LL � ð0:0039 day�1ÞW 3

MeV

L

10

	 
7

G2
dawn þ G2

dusk

� �
ðA10Þ

Brautigam and Albert [2000] give the following empirical
formula for magnetic diffusion of electrons:

DM
LL

� �
B&A

¼ 100:675þ0:506Kp
L

10

	 
10

ðA11Þ

Of course, the Brautigam-Albert formula was not really
intended for use near the magnetopause, but if we
nonetheless use it at L � 10, we conclude that drift-shell
bifurcation effects become competitive with magnetic-
fluctuation-induced radial diffusion for W > 10 MeV, for
a typical DSB electron (G � 1). Furthermore, it is clear
from Figures 8, 9, and 10 that electrons with relatively small
Bm may acquire G � 10 and thus experience significantly
stronger diffusion. If we apply equation (49) to nonrelati-
vistic ions, we obtain a much higher estimate for the
diffusion rate:

D
DSB;NR
LL � 14:6 day�1

� �
AK2

MeV

L

10

	 
7

G2
dawn þ G2

dusk

� �
ðA12Þ

because the ions have much larger gyroradii. Here A is the
atomic weight of the ion, and KMeV is the kinetic energy, in
units of million electron volts.

[109] Formulas (A9) and (A12) can provide only very
rough estimates and should be applied with caution. It
should, of course, be borne in mind that drift-shell bifurca-
tion only occurs for particles whose drift orbits take them
within 1–2 Re of the magnetopause, so it does not transport
particles through the inner magnetosphere. Also, a particle
that drifts into the bifurcation region with extremely small I
(of the order of the gyroradius) typically has its I value
increased significantly at the first bifurcation point, which
reduces the value of G for later encounters with bifurcation
points. To get a better idea of the overall effectiveness of
DSB-associated transport, it will be necessary to perform
test-particle calculations of large numbers of particles in
realistic magnetic fields under various conditions.

A2. Pitch Angle Diffusion

[110] Conservation of the first invariant implies that

sin2 a
B

¼ 1

Bm

ðA13Þ

Let y � p / 2 � a and assume that |y|�1, which typically
holds for DSB trajectories. Replacing sin2a by 1 � y2

gives:

y2
0 �

B00s2m
2B0

ðA14Þ

where the subscript ‘‘0’’ indicates an equatorial value.
Substituting equation (A14) into equation (A1) gives

y2
0 �

2

p
B00

2B0

	 
1=2

I ðA15Þ

Assuming that the change DI is small compared to I, we get

Dy0ð Þ2� 1

2p
B00

2B0

	 
1=2 ðDIÞ2

I
ðA16Þ

So that the pitch angle scattering coefficient is related to DII

by

Dy0y0
¼ Da0a0

¼ ðDy0Þ
2

2td
ðA17Þ

¼ 1

2p
B00

2B0

	 
1=2
DII

I
ðA18Þ

Finally, using equations (A2) and (A15) gives the relation
between DII and the pitch angle diffusion coefficient:

Da0a0
� 9

2p2L2R2
e

DII

ðp
�
2� a0Þ2

ðA19Þ

¼ 0:187
r2mðG2

dawn þ G2
duskÞ

L2R2
eðp
�
2� a0Þ2td

ðA20Þ

where we used equation (49) to derive the last relationship.
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[111] Equation (A19), which indicates very large values
for the diffusion coefficient for a0 near p/2, was based on
the perturbation analysis presented in section 4. It is invalid
when the change in pitch angle is greater than or compa-
rable to p / 2 � a0. Define a critical value of y0 = p / 2 � a0

such that Da0a0
� y0,crit

2 / 2td, which implies that:

y0;crit ¼ 2 � 0:187 r2m
L2R2

e

G2
dawn þ G2

dusk

� �� �1=4
ðA21Þ

� 0:032W
1=2
MeV

L

10

	 

G2

dawn þ G2
dusk

� �1=4 ðA22Þ

where the last equality applies to ultra-relativistic electrons
only. Then equation (A19) can be rewritten as:

Da0a0 �
ffiffiffiffiffiffiffiffiffiffiffi
0:187

2

r
rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

dawn þ G2
dusk

q
LRetd y0

�
y0;crit

� �2 ðA23Þ

� ð0:085 day�1ÞW 2
MeV

L

10

	 
3




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

dawn þ G2
dusk

q
ðy0

�
y0;critÞ

2
ðA24Þ

Equation (A23) is valid for y0 greater than about y0,crit. The
second equality [equation (A24)] applies to ultrarelativistic
electrons only.
[112] The authors are not aware of detailed treatments of

other pitch angle scattering mechanisms for relativistic
electrons near the magnetopause, but much work has been
done on pitch angle scattering rates for the heart of the outer
radiation belt at L � 4–5, where whistler mode chorus
waves are believed to play an important role. Figure 1 of
Glauert and Horne [2005] shows Da0a0

values of 9–
130 day�1 for 1 MeV electrons with a � p / 2 and
L = 4.5, while Figure 1 of Summers [2005] shows values of
260 day�1 and 9 day�1 for 1 MeV and 3 MeV, respectively.
Thus the pitch angle scattering associated with drift-shell
bifurcation, for electrons with a few million electron volts
of energy, seems to be at least two orders of magnitude
slower than the rate estimated for whistler mode chorus
waves in the heart of the outer radiation belts.
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