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TRANSVERSAL HYPERSURFACES OF ALMOST HYPERBOLIC

CONTACT MANIFOLDS WITH A QUARTER SYMMETRIC NON

METRIC CONNECTION

S. RAHMAN1 §

Abstract. Transversal hypersurfaces of trans hyperbolic contact manifolds endowed
with a quarter symmetric non metric connection are studied. It is proved that transver-
sal hypersurfaces of almost hyperbolic contact manifold with a quarter symmetric non
metric connection admits an almost product structure and each transversal hypersur-
faces of almost hyperbolic contact metric manifold with a quarter symmetric non metric
connection admits an almost product semi-Riemannian structure. The fundamental 2-
form on the transversal hypersurfaces of cosymplectic hyperbolic manifold and (α, 0)
trans hyberbolic Sasakian manifold with hyperbolic (f, g, u, v, α)-structure are closed. It
is also proved that transversal hypersurfaces of trans hyperbolic contact manifold with a
quarter symmetric non metric connection admits a product structure. Some properties
of transversal hypersurfaces with a quarter symmetric non metric connection are proved.

Keywords : Hypersurfaces, Quarter Symmetric semi-metric connection, Quasi-sasakian
manifold, Gass and Weingarten equations.
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1. Introduction

In 1975, Golab [23] introduced the notion of quarter-symmetric connection in a Rie-
mannian manifold with affine connection. This was further developed by Yano and Imai
[11], Rastogi [24], [25], Mishra and Pandey [15], Mukhopadhyay, Roy and Barua [27],
Biswas and De [22], Sengupta and Biswas [9], Singh and Pandey [14] and many other ge-
ometers. Almost contact metric manifold with an almost contact metric structure is very
well explained by Blair [3]. In [28], S. Tanno gave a classification for connected almost
contact metric manifolds whose automorphism groups have the maximum dimension. For
such a manifold, the sectional curvature of plane sections containing ξ is a constant, say
c. He showed that they can be divided into three classes: (1) Homogenous normal contact
Riemannian manifolds with c > 0, (2) global Riemannian products of a line or a circle
with a Kaehler manifold of constant holomorphic sectional curvature if c = 0 and (3) a
warped product space R × fCn

if c < 0. It is known that the manifolds of class (1) are
characterized by some tensorial relations admitting a contact structure. Kenmotsu [10]
characterized the differential geometric properties of the third case by tensor equation
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(∇̄Xϕ)Y = g(ϕX, Y ) − η(Y )ϕX. The structure so obtained is now known as Kenmotsu
structure. In general, these structures are not Sasakian [10].

Oubina studied a new class of almost contact Riemannian manifold known as trans-
Sasakian manifold [6] which generalizes both α -Sasakian [6] and β-Kenmotsu [6] structure.

M. D. Upadhayay studied almost contact hyperbolic (f, g, η, ξ)-structure [13]. Bhatt
and Dubey studied on CR-submanifolds of trans hyperbolic contact manifold [12]. B. Y.
Chen studied Geometry of submanifolds and its applications. Sci. Univ Tokyo. Tokyo,
1981. [2]. R. Prasad, M. M. Tripathi, J. S. Kim and J-H. Cho., studied some properties
of submanifolds of almost contact manifold [17], [18], [19], [20], [21].

2. Preliminaries

Let M̄ be an 2n+1 dimensional manifold with almost hyperbolic contact metric struc-
ture (ϕ, ξ, η, g) where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and
g is the semi Riemannian metric on M̄ . Then the following conditions [13] are satisfied

ϕ2X = X + η(X)ξ , ϕξ = 0 η ◦ ϕ = 0 η(ξ) = −1 (2.1)

g(ϕX, ϕY ) = −g(X,Y )− η(X)η(Y ) (2.2)

g(ϕX, Y ) = −g(X,ϕY ) (2.3)

for vector fields X,Y on M̄ . An almost hyperbolic contact metric structure (ϕ, ξ, η, g) on
M̄ is called trans hyperbolic contact [12] if and only if

(∇̄Xϕ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX] (2.4)

for all smooth vector fields X, Y on M̄ and α, β non zero constant, where ∇̄ is the
Levi-civita connection with respect to g. From (2.4) it follows that

∇̄Xξ = αϕX + β[X + η(X)ξ] (2.5)

for all smooth vector fields X,Y on M̄ . On other hand, a quarter symmetric non metric
connection ∇̄ on M is defined by

∇̄XY = ∇̄∗
XY + η(Y )ϕX (2.6)

Using (2.1) and (2.6) in (2.4) and (2.5), we get respectively

(∇̄Xϕ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX]

−η(Y )X − η(X)η(Y )ξ (2.7)

∇̄Xξ = (α− 1)ϕX + β[X + η(X)ξ] (2.8)

Let M be a hypersurface of an almost hyperbolic contact manifold M̄ equipped with an
almost hyperbolic contact structure (ϕ, ξ, η). We assume that the structure vector field ξ
never belongs to tangent space of the hypersurface M , such that a hypersurface is called a
transversal hypersurface of an almost contact manifold. In this case the structure vector
field ξ can be taken as an affine normal to the hypersurface. Vector field X on M and ξ
are linearly independent, therefore we may write

ϕX = F (X) + ω(X)ξ (2.9)

where F is a (1, 1) tensor field and ω is a 1-form on M .
From (2.9)

ϕξ = Fξ + ω(ξ)ξ

or
0 = Fξ + ω(ξ)ξ

ϕ2X = F (ϕX) + ω(ϕX)ξ (2.10)
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X + η(X)ξ = F (FX + ω(X)ξ) + ω(FX + ω(X)ξ)ξ

X + η(X)ξ = F 2X + (ω ◦ F )(X)ξ (2.11)

Taking account of equation (2.11), we get

F 2X = X (2.12)

F 2 = I (2.13)

η = ω ◦ F
Thus we have

Theorem 2.1. Each transversal hypersurface of an almost hyperbolic contact manifold en-
dowed with a quarter symmetric non metric connection admits an almost product structure
and a 1-form ω.

From (2.12) and (2.13), it follows that

η = ω ◦ F

η(FX) = (ω ◦ F )FX

η(FX) = ω(F 2X)

(ω ◦ F )X = ω(X)

ω = η ◦ F (2.14)

Now, we assume that M̄ admits an almost hyperbolic contact metric structure (ϕ, ξ, η, g)
endowed with a quarter symmetric non metric connection. We denote by g the induced
metric on M also. Then for all X,Y ϵTM , we obtain

g(FX,FY ) = −g(X,Y )− η(X)η(Y ) + ω(X)ω(Y ) (2.15)

We define a new metric G on the transversal hypersurface given by

G(X,Y ) = g(ϕX, ϕY ) = −g(X,Y )− η(X)η(Y ) (2.16)

So,

G(FX,FY ) = −g(FX,FY )− η(FX)η(FY )

= −g(X,Y )− η(X)η(Y ) + ω(X)ω(Y )− (η ◦ F )(X)(η ◦ F )(Y )

= −g(X,Y )− η(X)η(Y ) + ω(X)ω(Y )− ω(X)ω(Y )

= −g(X,Y )− η(X)η(Y ) = G(X,Y )

Then, we get

G(FX,FY ) = G(X,Y ) (2.17)

where equation (2.12), (2.14), (2.15) and (2.16) are used. Then G is semi Riemannian met-
ric on M that is (F,G) is an almost product semi-Riemannian structure on the transversal
hypersurface M of M̄ . Thus, we are able to state the following.

Theorem 2.2. Each transversal hypersurface of an almost hyperbolic contact manifold
endowed with a quarter symmetric non metric connection admits an almost product semi-
Riemannian structure. We now assume that M is orientable and choose a unit vector field
N of M , normal to M . Then Gauss and Weingarten formulae of quarter symmetric non
metric connection are given respectively by
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∇̄XY = ∇XY + [h(X,Y ) + u(X)η(Y )]N, (X,Y ϵTM) (2.18)

∇̄XN = −HX + λfX + u(X)λN (2.19)

where ∇̄ and ∇ are respectively the Levi-civita and induced Levi-civita connections in M̄ ,
M and h is the second fundamental form related to H by

h(X,Y ) = g(HX,Y ), (2.20)

for any vector field X tangent to M , defining

ϕX = fX + u(X)N (2.21)

ϕN = −U, (2.22)

ξ = V + λN, (2.23)

η(X) = v(X)

λ = η(N) = g(ξ,N), (2.24)

for XϵTM we get an induced hyperbolic (f, g, u, v, λ)-structure on the transversal hyper-
surface such that

f2 = I + u⊗ U + v ⊗ V (2.25)

fU = −λV, fV = λU (2.26)

u ◦ f = λv, v ◦ f = −λU (2.27)

u(U) = −1− λ2, u(V ) = v(U) = 0, v(V ) = −1− λ2 (2.28)

g(fX, fY ) = −g(X,Y )− u(X)u(Y )− v(X)v(Y ) (2.29)

g(X, fY ) = −g(fX, Y ), g(X,U) = u(X), g(X,V ) = v(X), (2.30)

for all for X,Y ϵTM where
λ = η(N) (2.31)

Thus, we see that every transversal hypersurface of an almost hyperbolic contact metric
manifold endowed with a quarter symmetric non metric connection also admits a hyper-
bolic (f, g, u, v, λ)-structure. Next we find relation between the induced almost product
structure (F,G) and the induced hyperbolic (f, g, u, v, λ)-structure on the transversal hy-
persurface of an almost hyperbolic contact metric manifold with a quarter symmetric non
metric connection. In fact, we have the following

Theorem 2.3. Let M be a transversal hypersurface of an almost hyperbolic contact met-
ric manifold M̄ equipped with almost hyperbolic contact metric structure (ϕ, ξ, η, g) and
induced almost product structure (F,G).

Then we have
λω = u, (2.32)

F = f − 1

λ
u⊗ V, (2.33)

FU =
1

λ
V, (2.34)

u ◦ F = u ◦ f = λv, (2.35)

FV = fV = λU, (2.36)

u ◦ F =
1

λ
u. (2.37)

Proof:
ϕX = FX + ω(X)ξ

ξ = V + λN
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ϕX = FX + ω(X)V + λω(X)N (2.38)

ϕX = fX + u(X)N (2.39)

From equation (2.38) and (2.39) we have

λωX = u(X), ω(X) =
1

λ
u(X),

FX = fX − ω(X)V,

FX = fX − 1

λ
u(X)V,

F = f − 1

λ
u⊗ V

which is equation (2.33).

(u ◦ F )(X) = (u ◦ f)− 1

λ
u(X)u(V ), u(V ) = 0

u ◦ F = u ◦ f = λv

which is equation (2.35).

FU = fV − 1

λ
u(v)V

FU = −λV − 1

λ
(−1− λ2)V,

FU =
1

λ
V,

which is equation (2.34).

(u ◦ F )(X) = (u ◦ f)(X)− 1

λ
u(X)u(V )

= (u ◦ f)(X)− 1

λ
u(X)(−1− λ2)

= −λu(X) +
1

λ
u(X) + λu(X)

=
1

λ
u(X),

u ◦ F =
1

λ
u

FV = fV − 1

λ
u(V )V = fV = λU,

which is equation (2.36) here equations (2.26), (2.27), (2.28), (2.29), (2.30), (2.31) are
used.

Lemma 2.1. Let M be a transversal hypersurface with hyperbolic (f, g, u, v, λ)-structure
of an almost hyperbolic contact metric manifold M̄ endowed with a quarter symmetric non
metric connection. Then

(∇̄Xϕ)Y = ((∇Xf)Y − u(Y )HX + λfXu(Y ) + h(X,Y )U + u(X)η(Y )U)

+((∇Xu)Y + h(X, fY ) + u(X)η(fY ) + 2u(X)u(Y )λ)N (2.40)

∇̄Xξ = ∇XV − λHX + λ2fX + [h(X,V )− u(X) +X(λ)]N (2.41)

(∇̄Xϕ)N = −∇XU + fHX − λf2X − [h(X,U)− µ(HX)]N (2.42)

(∇̄Xη)Y = (∇Xv)Y + h(X,Y )λ+ u(X)η(Y )λ (2.43)

for all X,Y ϵTM . The proof is straight forward.
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3. Transversal hypersurfaces of cosymplectic hyperbolic manifold with a
quarter symmetric non metric connection

Trans-Sasakian structures of type (α, 0) are called α-Sasakian and trans-Sasakian struc-
tures of type (0, β) are called β-Kenmotsu structures. Trans-Sasakian structures of type
(0, 0) are called cosymplectic structures.

Theorem 3.1. Let M be a transversal hypersurfaces with hyperbolic (f, g, u, v, λ)-structure
of a hyperbolic cosymplectic manifold M̄ endowed with a quarter symmetric non metric
connection. Then

(∇Xf)Y = u(Y )HX + λfXu(Y )− [h(X,Y ) + u(X)η(Y )]U (3.1)

(∇Xu)Y = −h(X, fY )− u(X)η(fY )− 2u(X)u(Y )λ (3.2)

∇XV = λHX − λ2fX (3.3)

h(X,V ) = −X(λ) + u(X) (3.4)

∇XU = fHX − λf2X (3.5)

h(X,U) = µ(HX)

(∇Xv)Y = λHX − λ2fX (3.6)

for all X,Y ϵTM .
Proof: Using (2.7), (2.20), (2.23) in (2.40), we obtain

((∇Xf)Y − u(Y )HX + λfXu(Y ) + h(X,Y )U + u(X)η(Y )U)

+((∇Xu)Y + h(X, fY ) + u(X)η(fY ) + 2u(X)u(Y )λ)N = 0

Equating tangential and normal parts in the above equation, we get (3.1) and (3.2) re-
spectively. Using (2.8) and (2.23) in (2.41), we have

∇XV − λHX + λ2fX + [h(X,V )− u(X) +X(λ)]N = 0

Equating tangential and normal parts we get (3.3) and (3.4) respectively. Using (2.7),
(2.22) and (2.23) in (2.42)

Using (2.7), (2.22) and (2.23) in (2.43) and equating tangential, we get (3.5). In the
last (3.6) follows from (2.43).

Theorem 3.2. If M be a transversal hypersurface with hyperbolic (f, g, u, v, λ)-structure
of a hyperbolic cosymplectic manifold endowed with a quarter symmetric non metric con-
nection, then the 2-form Φ on M is given by

Φ(X,Y ) = g(X, fY )

is closed.

Proof: From (3.1) we get

(∇XΦ)(Y, Z) = h(X,Y )u(Z)− h(X,Z)u(Y ),

(∇XΦ)(Y, Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y ) = 0

Hence the theorem is proved.

Theorem 3.3. If M is a transversal hypersurface with almost product semi Riemannian
structure (F,G) of a hyperbolic cosymplectic manifold endowed with a quarter symmetric
non metric connection. Then the 2-form Ω on M is given by

Ω(X,Y ) = G(X, fY )

is closed.
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Using (3.1), we calculate the Nijenhuis tensor

[F, F ] = (∇FXF )Y − (∇FY F )X − F (∇XF )Y + F (∇Y F )X

and find that [F, F ] = 0.
Therefore, in view of theorem (3.2), we have

Theorem 3.4. Every transversal hypersurface of a trans hyperbolic cosymplectic manifold
endowed with a quarter symmetric non metric connection, admits product structure.

4. Transversal hypersurfaces of trans hyperbolic sasakian manifolds with a
quarter symmetric non metric connection

Theorem 4.1. Let M be a transversal hypersurface with hyperbolic (f, g, u, v, λ)-structure
of a trans hyperbolic Sasakian manifold M̄ endowed with a quarter symmetric non metric
connection. Then

(∇Xf)Y = α[g(X,Y )V − η(Y )X] + β[g(fX, Y )V − η(Y )fX]− η(Y )X

−η(X)η(Y )V + u(Y )HX − λfXu(Y − h(X,Y )U − u(X)η(Y )U (4.1)

(∇Xu)Y = αg(X,Y )λ+ β[g(fX, Y )λ− u(X)η(Y )]− h(X, fY )

−η(X)η(Y )λ− η(fY )u(X)− 2u(X)u(Y )λ (4.2)

∇XV = (α− 1− λ2)fX + β(X + η(X)V +HXλ (4.3)

h(X,V ) = αu(X) + βη(X)λ−X(λ) (4.4)

∇XU = αXλ− β(u(X)V − fXλ) + λX + λη(X)V + fHX − λf2X (4.5)

h(X,U) = λ2η(X) + µ(HX) (4.6)

for all X,Y ϵTM .
Proof: Using (2.7), (2.21), (2.23) in (2.40), we obtain

α[g(X,Y )V − η(Y )X] + β[g(fX, Y )V − η(Y )fX]− η(Y )X − η(X)η(Y )V

= (∇Xf)Y − u(Y )HX + λfXu(Y ) + h(X,Y )U + u(X)η(Y )U)

Equating tangential and normal parts in the above equation, we get (4.1) and (4.2) re-
spectively. Using (2.8) and (2.23) in (2.41), we have

αg(X,Y )λ+ β[g(fX, Y )λ− u(X)η(Y )]− η(X)η(Y )λ

= h(X, fY ) + η(fY )u(X) + (∇Xu)Y + 2u(Y )u(Y )λ

Equating tangential and normal parts we get (4.3) and (4.4) respectively. Using (2.7),
(2.22) and (2.23) in (2.42) and equating tangential parts, we get (4.5) in the last (4.6)
follows from (2.43).

Theorem 4.2. If M be a transversal hypersurface with hyperbolic (f, g, u, v, λ) structure of
a (α, o) trans hyperbolic Sasakian manifold endowed with a quarter symmetric non metric
connection, then the 2-form Φ on M is given by

Φ(X,Y ) = g(X, fY )

is closed.
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Proof: From (4.1) we get

(∇XΦ)(Y, Z) = −α[g(X,Y )v(Z)− g(X,Z)v(Y )]

−β[g(fX, Y )v(Z)− g(fX,Z)v(Y )]

+h(X,Y )u(Z)− h(X,Z)u(Y )

which gives
(∇XΦ)(Y, Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y )

= 2β(Φ(X,Y )η(Z) + Φ(Y, Z)η(X) + Φ(Z,X)η(Y ))

If β = 0, then

(∇XΦ)(Y, Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y ) = 0

that is dΦ = 0. Hence the theorem is proved.

Theorem 4.3. If M is a transversal hypersurface with almost product semi Riemannian
structure (F,G) of a (α, 0) trans hyperbolic Sasakian manifold endowed with a quarter
symmetric non metric connection. Then 2-form Ω on M is given by

Ω(X,Y ) = G(X,FY )

is closed.

Using (4.1), we calculate the Nijenhuis tensor

[F, F ] = (∇FXF )Y − (∇FY F )X − F (∇XF )Y + F (∇Y F )X

and find that [F, F ] = 0. Therefore, in view of theorem (4.2), we have

Theorem 4.4. Every transversal hypersurface of a trans hyperbolic Sasakian manifold
endowed with a quarter symmetric non metric connection admits a product structure.

5. Conclusion

The main objective of this paper is to introduce transversal hypersurfaces of trans
hyperbolic contact manifolds endowed with a quarter symmetric non metric connection.
Some results regarding transversal hypersurfaces of almost hyperbolic contact manifold
with a quarter symmetric non metric connection have been obtained in this context. Fur-
ther I have tried to show that the fundamental 2-form on the transversal hypersurfaces of
cosymplectic hyperbolic manifold and (α, 0) trans hyberbolic Sasakian manifold endowed
with a quarter symmetric non metric connection with hyperbolic (f, g, u, v, λ)-structure
are closed. It is also proved that transversal hypersurfaces of trans hyperbolic contact
manifold with a quarter symmetric non metric connection admits a product structure.
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